
Approximating a Circle or an Ellipse
Using Four  Bezier Cubic Splines

Don Lancaster
Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram 57.
http://www.tinaja.com
don@tinaja.com
(928) 428-4073
 
Bezier Cubic Splines are an excellent and preferred method to draw the smooth 
continuous curves often found in typography, CAD/CAM, and graphics in general.

Among their many advantages is a very sparse data set allowing a mere eight 
points to completely define a full and carefully controlled and device independent
curve. Many tutorials and examples are now present in our Cubic Spline Library. A
brief and useful intro appears here. 

Cubic splines are exceptionally easy to use in the PostScript computer language. 
But are also generally implementable in most higher level languages and in all but
the smallest of bare bones microprocessors. Two obvious things to do with cubic 
splines are drawing complete circles and ellipses. It turns out that a mere four 
splines can be used for either task. To an accuracy of well better than one part in 
one thousand. And thus "good enough" for most graphics and all but the most 
precise of CAD/CAM or optical needs.

Let us begin by excerpting some key Bezier Cubic Spline properties from our      
HACK62.PDF tutorial…

Here is a cubic spline shown in its graph space…

The first influence
point sets the direction

and the enthuasiasm that the
spline leaves the initial
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spline enters the final
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Here is how a cubic spline appears in its equation space…

     x = At 3 + Bt 2 + Ct + D
     y = Et 3 + Ft 2 + Gt + H 

t (for time) always goes from 
zero at the initial point  to 
a one at the final point.

This is a faster "cube free" form of the equation space math…

     x = ((( At ) + B ) t + C ) t + D
     y = ((( Et ) + F ) t + G ) t + H

How to get from graph space to equation space…

     A = x 3 - 3x 2 + 3x 1 - x 0   E = y3 - 3y2 + 3y1 - y0
     B = 3x 2 - 6x 1 + 3x 0       F = 3y2 -6 y1 + 3y0       
     C = 3x 1 - 3x 0                   G = 3y1 - 3y0 
     D = x 0                                H = y0

How to get from equation space to graph space…

     x 0 = D                              y0 = H 
     x 1 = D + C / 3                    y 1 = H + G / 3
     x 2 = D + 2C / 3 + B / 3         y 2 = H + 2G / 3 + F / 3  
     x 3 = D + C + B + A                  y 3 = H + G + F + E          

Some of the earlier web derivations of the single magic number math needed for 
a four-spline fit tended towards being complex and obtuse. Actually, the initial 
solution can be quite simple. Here’s a prototype unity normalized spline you can 
scale and rotate and translate to quad fit any ellipse or circle… 

(0,0)

(1,1)

(x1,0)

(1,y1)

We can immediately see that x0 = 0 and that x1, remains our sought after magic 
variable. And that x2 = 1 and x3 = 1. By symmetry, solving x1 also gives us y1. 
Plugging these into our above math quickly gives us…
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              x = (3x1 - 2) t 3 + (3 - 6x1 ) t 2 + (3x1 ) t

If we want to force a t = 0.5 at the tangent of 45 degrees, then…

        0.707107 = 0.125(3x1 - 2) + 0.25(3 - 6x1 )+ 0.5(3x1)

Which directly and simply leads us to…

    The NORMAL 4-spline magic number is 0.55228475. And
    is equal to the normalized distance along the tangent
    between an initial point and an influence point.

    This gives an exact circle fit every 45 degrees and has a
    worse case error of less than one part in one thousand and 
    an average error of less than one part in two thousand.

    Any error is always POSITIVE and OUTSIDE the circle.

    This magic number is also FOUR THIRDS of ONE LESS than
    the SQUARE ROOT OF TWO.

A one part in one thousand error would be one pixel on a screen circle of 14 
inches at 73 DPI. It would be just over one pixel per inch on a 1200 DPI printer. 
Both of these are more than good enough for most people most of the time. On 
the other hand, if you were machining a three inch cylinder for an engine, the 
three mil error would probably be wildly unacceptable.

Can We Do Better?

Few people realize that the above usual web derivation is not the best you can 
do. Our first clue is that the error is everywhere positive. And that a "best" 
solution should have nearly equal positive and negative error regions.

How do you measure the errors? Any point on a true circle has to obey…

                                 x2 + y2 = r2 

Thankfully, your t values will be nearly linear with your degree values. So, for 
various t values, you find an x and a y pair. Compare their actual circle radius to 
the expected unity value to find your peak and average error deviations. 
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I’ve always been a great fan of Newton’s Method. Otherwise known as "shake the
box". In which you get near a good answer and then keep making minor changes
till you get as close as you care to. These techniques were vital to our Magic         
Sinewave energy efficiency developments.

This obviously leads to backing off on the magic constant so long as the distortion
keeps reducing. Lo and behold, at a value nearly 0.000501 lower , we find…

    A BEST 4-point spline magic number is 0.551784.

    This gives an exact circle fit every 30 degrees.

    The peak and average errors are 24 percent lower.

    Errors alternate POSITIVE and NEGATIVE along the circle.

    This magic number is 0.000501 lower than NORMAL.

 
Some Code

The PostScript computer language gives you all sorts of ways to explore cubic     
splines. By using Distiller as a PostScript Interpreter, you can easily export 
values to other projects as needed. Their arc and arcn operators let you create 
splines for any angle, and four spline fits for a circle. 

Here is how you report a spline on a PostScript path…

{== == (moveto\\n) print flush }
{== == (lineto\\n) print flush }
{== == == == == == (curveto\\n) print flush }
{(closepath\\n) print flush} pathforall

Here are a pair of ellipse and circle drawing PostScript utility procs…

/magic 0.55228475 0.00045 sub store  % improved value

/drawellipse {2 div /yrad exch store 2 div /xrad exch store 
/xmag xrad magic mul store /ymag yrad magic mul store 
xrad  neg 0 moveto xrad neg ymag xmag neg yrad 0 yrad 
curveto xmag  yrad xrad ymag xrad 0 curveto xrad ymag 
neg  xmag yrad neg 0  yrad neg curveto xmag neg yrad neg 
xrad neg ymag neg xrad neg  0 curveto} bind def

/drawcircle {dup drawellipse} bind def
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To use the ellipse proc, you pretranslate so your ellipse is centered on 0,0. You 
then enter your x diameter and your y diameter. Such as 300 200 drawellipse. 
For circles, you enter your diameter instead. Such as 250 drawcircle.

This example might be of use in reconstructing a logo for a historic                     
interurban railway…

The actual proc can be found in the sourcecode for this GuruGram.

Digging Deeper

So, how many splines are needed to approximate a circle to machine shop 
accuracy? Or, going the other way, how horrendously bad are the two-spline and 
three-spline circle approximations? 

I’ve done a detailed analysis on this that gives you the full error plots and exact 
error values. It is available commercially through our Consulting Services. Here is 
a summary of the key results…

    The BEST 2-spline magic number is 1.333333. Worst
    case normalized error deviation is 0.0196725. The
    average deviation is 0.00869406.

    The BEST 3-spline magic number is 0. 0.7698112. Worst
    case normalized error deviation is 0.00150716. The
    average deviation is  0.000705631. 

    The BEST 4-spline magic number is 0.551784. Worst
    case normalized error deviation is 0.000265718. The
    average deviation is 0.00012482  

    The BEST 5-spline magic number is 0.433072. Worst
    case normalized error deviation is 6.78897e-05. The
    average deviation is 3.22829e-05.
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    The BEST 6-spline magic number is 0.3572045. Worst
    case normalized error deviation is 2.38419e-05. The
    average deviation is 1.20421e-05.

    The BEST 8-spline magic number is 0.2652031. Worst
    case normalized error deviation is 4.05312e-06. The
    average deviation is 1.89818e-06

An eight spline circle fit puts you down in the four parts per million worst case 
and two parts per million average deviation range. Thus, it would seem that an    
8-spline circle fit should be more than adequate for most CAD/CAM or machine
shop needs. Additional splines are probably gross overkill unless approaching 
optical accuracy is needed.

Once again, the magic number is the normalized distance along the tangent line
between the entry or exit point and its corresponding influence point. 

A Final Detail or two

The behavior of the "t" parameter in most any cubic spline is usually subtle and 
non-obvious. In general, t starts at zero, ends at unity, and changes faster along 
any "more bent" portions of the x versus y curve. Surprisingly, on a spline circle 
approximation, "t" is nearly (but not quite) linear with degrees of arc.

You can find the exact degrees versus "t" relationship by using inverse trig           
functions. Your x and y values represent a unique circle of origin zero.

Here are some of the missing PostScript inverse trig procs…

/acos {2 copy dup mul exch dup mul sub abs sqrt exch pop
         exch atan} def      % - xside hypotenuse acos -

/asin {2 copy dup mul exch dup mul sub abs sqrt exch pop
         atan} def           % - yside hypotenuse asin -

/trig.acos {1 acos} def  % arcosine from trig value input

/trig.asin {1 asin} def  % arcosine from trig value input

Note that the latter two convenience procs demand a unity radius.

Normal t versus degree errors are typically a small fraction of a degree. Their only 
usual consequence is to very slightly skew the average deviation errors.

The expression for the "all error positive" magic number for any number of splines
is  4/3[(1 - cosz)/sinz] degrees per half angle. 4-spline 45 degrees = 0.551784, 
etc…
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For More Help

Additional info on cubic splines can be found on our Cubic Spline library page. As
are many dozens of examples of Bezier cubic spline techniques.
 
Additional consulting services are available per our Infopack services and on a 
contract or an hourly basis. Additional GuruGrams are found here.

Further GuruGrams await your ongoing support as a Synergetics Partner.
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