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Abstract

This reports gives an introduction to attitude control of the NTNU Test

Satellite (NUTS). It gives an insight to mathematical modeling of satellite

attitude dynamics for 3 degrees of freedom. By the different limitations of

how the NUTS operates, these models are adjusted accordingly.

A set of strategies for controlling the attitude is presented. Through an

explanation of the magnetic actuators, the control laws are also adapted to

work with the NUTS satellite.

Combined, these findings are put to use in the form of a complete Simulink

simulator for the satellite in orbit. Results with different control strategies

and environmental models are given. Some thoughts of utilizing the control

algorithms as part of the final embedded computer system are pointed out

throughout the text.
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Chapter 1

Introduction

1.1 Motivation

The NUTS project has been an ongoing project for two years. During this

time many Project- and Master-Thesis’s has been written evolving several

parts of the attitude controller and ADCS. Not only the controller software

and algorithms, but also different kinds of sensors, thrusters and embedded

platforms.

The goal of this thesis is to do a study evolving the NUTS satellite project.

This includes learning the basics of how a satellite operates in space. For

example satellite orbits, environmental factors, coordinate systems, limits

of the actuator system and avoid singularities with the use of quaternions.

All of this can be both interesting and challenging with a background from

earth based control systems.
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1.2 Outline of the thesis

From the study different nonlinear controllers will prepared. This will be

the basis for further studies and extensions, that can include more advanced

implementations, like attitude estimation.

1.3 The NUTS satellite

Figure 1.1: CAD model of the NUTS satellite
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The NUTS satellite (NTNU Test Satellite) is a continuation of two previous

attempts by NTNU to launch a space vehicle. The first project never

made it to space do to a failure in the launch rocket. The second attempt

made it to space, but no radio signals where ever recorded, and the status

of the project is still ”unknown”. The Department for Electronics and

Telecommunications (IET) now aims for a third try with a launch window

within 2014.

The satellite follows a standard called CubeSat. This is a low-cost alterna-

tive for space related research. The idea is to build a Satellite of 10x10x10

cm (a volume of exactly one liter) with a maximum weight of 1.33 kilo-

grams. The NUTS satellite is however twice the length and weight, a so

called 2 unit (2U) CubeSat. Like stacking two CubeSats on top of each

other. Because of this standard, it is possible for a ”mother-rocket” to

carry several CubeSats, releasing them from 10x10cm chambers.

The orbit used will be a sun synchronous orbit ; going across the globe from

crossing the poles.

• The satellite will go in orbit from the North Pole to the South Pole

• The satellite will be over the same location on Earth at the exact

same solar time (making it easier to collect data via radio signals,

or make observations like pollution from morning rush-trafikk over a

specific city).

• The plane created by the orbit will always face the sun with same

inclination angle.

• The amount of sunlight hitting the satellite (and it’s solar panels) can

be accurately calculated (”daylight” between 50 − 100% of the time
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during one orbit).

• One orbit will take ≈ 5800 seconds

The main mission of the satellite to analyze gravity with the help of an

infrared camera. This camera will be mounted on the bottom of the NUTS,

always pointing towards Earth. Without an attitude controller making sure

this orientation is held, the mission will be completely compromised.

1.4 Attitude controllers

An ADCS (Attitude Determination Control System) gives a sattelitte 3

degrees of freedom (3DOF) in space and is a very common system to include

on satellites. Because the NUTS needs specific observation from Earth’s

surface, an attitude controller is absolutely necessary. Bigger and more

expensive satellites uses 4DOF (surge velocity control) for the ability to

either maintain or change it’s orbit. The International Space Station (ISS)

is one example.

As with any Cybernetic task, there are several approaches for an attitude

controller. In scientific papers and previous master thesises, most solutions

uses a combination of nonlinear controllers. Linearizations attempts have

also been made, but is mostly dependant on a satellite quite near it’s desired

attitude.

State estimation is also an important part of the ADCS. Measurements can

be noisy, discontinuous and biased. However, this is out of the scope of this

project thesis, and will be left for a possible future review.
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Figure 1.2: Sun synchronous orbit

5



Chapter 2

Theory and definitions

This chapter aims to give an overview of different mathematical theory and

definitions used to model the satellite and the controller. Here is also an

overview of sensor systems.

2.1 Coordinate Frames

Three coordinate frames are used for the satellite:

• Earth-centered inertial (ECI) Origin at the centre of Earth, z-

axis pointing out of the north-pole, x and y fixed in space. Non

accelerated frame.

• Earth-centered Earth-fixed Origin at the centre of Earth and the

z-axis pointing out of the north pole. x and y rotates with Earth at

ωEarth = 7.2921 · 10−5rad/s.
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• North-East-Down (NED) Origin at the Earth’s reference ellipsoid

(WGS 1984) and z-axis pointing towards the Earth’s centre (nadir

direction). x and y follows the tangent lines on Earth’s ellipsoid

pointing towards true north and east respectively.

• Orbit, this frame is located at a distance rEarth + haltitude from the

centre of ECI at the centre of the satellite. It’s z-axis always points

towards the centre of ECEF and the x-axis points in the velocity

direction. It rotates around the Earth at ωorbit ≈
√

GM
r3

.

• Body-fixed (BODY) Origin at the center of mass in the satellite,

where x, y and z moves and rotates with the satellite. y is the axis

of maximum inertia, see chapter 4. z is the axis of minimum inertia

(where the camera points out). x is defined as direction of travel.
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Figure 2.1: NUTS with BODY coordinate system and magnetic field B

2.2 Magnetic field

The satellite will be falling around the Earth’s magnetic field at an alti-

tude of around 600 kilometers. At a larger scale it is possible to look at

this magnetic field as a dipole. This means that one basically consider the

Earth as a large dipole magnet, with the magnetic vector field exiting the

south pole and entering the north pole. Simple as it may seem, this in-
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terpretation is has proven very useful over hundred of years for navigating

with instruments like a compass and a printed map.

The NUTS satellite will not only use the magnetic field for navigation, but

also utilize it as medium for actuation (see section 2.3). For this purpose

one should instead look at a more detailed model then a dipole. Every

five years the International Association of Geomagnetism and Aeronomy

updates their International Geomagnetic Reference Field (IGRF). It is con-

structed using data from different satellites and geomagnetic observatories.

The calculation is based on:

V (r, φ, θ) = a
L∑

`=1

∑̀
m=0

(a
r

)`+1
(gm` cosmφ+ hm` sinmφ)Pm

` (cos θ) (2.1)

This is the Gauss coefficients defining a spherical harmonic expansion of

the magnetic scalar potential.

r Radial distance from the Earth’s

center

L Maximum degree of the expansion

φ East longitude

Θ Polar angle

a Earth’s radius

gm` , hm` Gauss coefficients

Where the new and updated coefficients are published each 5 years, mak-

ing it easier to update implementations. With the Aerospace Toolbox in

Matlab, this can be calculated with

1 [mag field vector, hor intensity, declination, ...

inclination, total intensity, mag field sec variation, ...

9



sec variation horizontal, sec variation declination, ...

sec variation inclination, sec variation total] = ...

igrf11magm(height, latitude, longitude, decimal year)

Figure 2.2: IGRF magnitude Image courtesy of British Geological Survey

As one can observe from the the figures, it is quite clear that the Earth’s

magnetic field is far from a standard dipole. Both regarding the magnetic

force, and the field itself. This is important, as the satellite’s ADCS system

is bound to know the resultant vector from the magnetic field in order to

produce a suitable current for the coil actuators (see section 4.4).

There is a main practical difference between a dipole field and the IGRF

in low earth orbit (160 - 2000 km). If the Earth had a the magnetic field
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of a perfect dipole magnet, the field would have zero magnitude in the

orbit-frame y-axis. x and y would have almost perfect sinusoidal values

with period of one orbit (try to picture this as a satellite moving around a

dipole like figure 2.4). Contrary, the real IGRF field has somewhat larger

variations of magnitude in the x- and y-axis, and even the z-axis has a

varying magnitude.
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Figure 2.3: Magnetic flux from Earth when modeled as a dipole. Measured

in the orbit coordinate system
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Figure 2.4: Earth as a dipole with experienced magnetic flux in orbit (black)

and total magnetic flux field (pink)
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2.3 Magnetic coils and allignment

Larger, commercial, or military satellite uses different kinds of actuators

to move in space. Some satellites even have so powerful actuators that

they can correct orbit and change their altitude. There also exists so called

”grave-yard orbits” where satellites, by the help of powerful thrusters, can

be brought out when they are otherwise not functional. This can be realized

by using for example monopropellant hydrazine thrusters.
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Figure 2.5: The three electromagnetic coils exposed

The NUTS satellite is a very small satellite in the CubeSat family, and

therefore it has limited storage space for actuators. Large hydrazine thrusters

is definitely off the table, unless the sole purpose of the satellite is to test

such a system. Other variants include ion-thrusters, torque wheels and

electro-magnetic coils. The primary actuator for CubeSats is often torque-
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wheels with magnetic coils as a backup. The NUTS satellite will however

use magnetic coils as the main and only actuators. This is chosen for sev-

eral reasons. Primarily it is very simple and reliable. The footprint is

also far smaller then any other system, combined with a very low power

consumption.

The main drawback is only a limited amount of torque can be produced in

the Earth’s magnetic field. This is the cause of many factors, and a more

mathematical approach can be found in section 4.4.

The coils on the NUTS will be realized by spinning copper thread inside

the frame, making three coils normal to the BODY’s x, y and z axis, as

seen in figure 2.5. The magnetic field generated by the thrusters will be

given in tesla (T) by the formula:

mb =
N ·A
R
· V (2.2)

• N number of turns with copper in the coil

• A area the coil is covering (≈10x20 and ≈10x10 cm)

• V voltage over the coil

• R resistance in the coil

2.4 Sensors for attitude estimation

At the time of this writing there is still discussion on the team for what kind

of sensors that should be included for attitude estimation. The following

options are given:
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• Gyroscope

Most likely included, but has bias and should be used together

with a state estimator or filter.

• Accelerometer

Will give relatively low measurement values in orbit (≈zero lo-

cal gravity) that might only produce a noisy signal with very little

amplitude.

• Magnetometer

The Honeywell HMC5983 has already been chosen as part of

the final hardware assembly. Using the magnetometer requires good

knowledge on Earth’s magnetic field (like an onboard IGRF look-

up-table (LUT)). It also requires testing of the radio-communication

system and other onboard electronics, in order to estimate biases and

noise affecting this instrument.

• Commercial Sun sensor

A sun sensor can be find the direction-vector to the Sun. It can

be thought of as a replacement for an accelerometer. The assembly

is quite simple (shelf component), but might occupy too much area

on the outside of the NUTS, otherwise used for solar panels.

• Sun sensor based on solar panel measurements

Martin Nygren on the NUTS-ADCS team is currently writing his

Project Thesis based on this research.

• Military grade GNSS (GPS)
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A GNSS system can be used to calculate the magnetic field in

orbit, if the satellite carries an onboard IGRF-LUT based on for ex-

ample GPS-coordinates. The GPS system is however not intended for

civil space applications. A request would probably be bureaucratic

and in economically challenging for the NUTS project (prices of ≈
10.000 USD).

A good sun-sensor and a gyroscope should be enough for attitude esti-

mation, with the proper filtering. The controller is also dependent of a

measurement of the magnetic field, and for this a magnetometer is chosen.

The final hardware assembly is yet to be determined by the NUTS project.

However, the simulator used in this thesis will rely on full state feedback

from the mathematical model. To mimic the output of the magnetometer,

noise (based on the HoneyWell data sheet [11]), can be added.
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Chapter 3

Hardware platform

Through this Project Thesis it was always considered an option to make

the controller algorithm available on an embedded platform. I study was

done to investigate different options, that would suit the workflow of the

development.

In the recent years many different low cost hardware modules has reached

the marked. Some of these are complete System on a Chip (SoC) solutions.

Examples are the famous Raspberry Pi, which consists of an 1GHz ARM

CPU, 256MB of RAM, WiFi, USB and network controllers. It even has an

HDMI output, allowing you to run a full-sized 1080p media center out of

the box. All of this at market prize of 35 USD, and it consumes less then

3.5 watts of power.

Other SoC solutions includes the The Panda Board, The Beagle Board and

the Norwegian (Trondheim based) Cotton Candy. All of these products
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are suitable for extensive implementation of Attitude controllers. However,

the main purpose of the attitude controller is now to be fully implemented

as part of the NUTS satellite project. The hardware has already been

chosen as the Atmega2561. This, combined with the very low footprint

and resource friendly implementation, the choice was made for an Arduino

2560. The Arduino mega is well known, trusted, tested and open source. It

evolves around Atmega 2560, which is essentially the same chip used in the

NUTS project, only it has more I/O pins. The specification is a 16 MHz

8-bit AVR micro controller, which in turn, should be more then sufficient

to run the attitude controller.

3.1 Simulink Coder

Simulink Coder, formally known as Real-Time Workshop, is a Toolbox

for the Matlab Simulink environment. Students at NTNU have previously

been given very limited access to this toolbox. But starting from the 2012

autumn semester, it is now part of the Matlab License accessible to all

students.

Simulink Coder, in the very basic, is a tool to help you realize Simulink

diagrams as C or C++ code. It has built in support for the Lego Mind-

storms NXT, Beagleboard and ArduinoMega platforms. By installing a

few extra drivers, a complete Simulink-modelled-system can run on these

devices with a click of a button. If you where to use the code on different

targets, there are options to generate C-code that can later be modified

and used in for example Atmel Studio. Practically it means that what-

ever results you can get from Simulink should be a lot more accessible for
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later development. The group that will assemble and program the satellite

before launch, might not be too familiar with Matlab- or Simulink-code.

Probably they will have a background with more computer programming,

and C-code is a very universal language in their domain.

A lot of good and thorough work has already been done by students, by

simulating ADCS systems in Matlab. Some embedded boards has also

been custom made. By utilizing the Simulink Coder toolbox, it is now

possible to work directly with Simulink diagrams on the Atmel Atmega2560

(part of the Arduino Mega Kit) that will be used on the satellite going to

space.

3.2 Hardware and software specifications

• ATmega 2561 The code must be able to run on this micro controller;

8-bit AVR

16 MHz

256 Kbytes Flash

• 32-bit floating point precission

This is a limitation to both the Arduino and the 8-bit AVR.

The controller will store decimal values within 32-bit (4-byte).

Precision is not maintained.

”Floats” demand a lot more CPU-time compared to integers.
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Practically, ”floats” should be avoided as much as possible.

• Discrete algorithms All algorithms must be discrete, like for ex-

ample a Kalman filter.

In this particular instance, the code will be generated directly from Simulink.

When the code is compiled and ran directly within Simulink, by using the

Run on target feature, there is very little control to what Simlink actually

outputs. This actually works like any other simulation done in Simulink,

except the Arduino is chosen in a drop down menu. Performance is simply

done by observing how fast the system is running in real-time, to act as an

estimate on how well the code performs.

The other alternative is to compile the code (whole system or ”block by

block”) with certain parameters and code specifications in Simulink. Then

there will be full access to the code, and this can be implemented in a bigger

system (like the final NUTS satellite). One can use any IDE (integrated

development environment) of choice that supports C/C++. Most likely

Atmel’s own tools, known as Atmel Studio, will be used to prepare the final

code on the satellite. As this supports all AVR-hardware on all levels.

As with all programming routines, it is important that the code is read-

able/understandable for a third party. Good documentation and logically

named functions and values is mandatory. The code should also be as mod-

ular and scalable as possible. After the code is generated from Simulink, it

is therefore important to review the code before handing it off to a third

party for implementation. Simulink does however provide fairly good start-

ing point with it’s exported code. Although out of the scope of this thesis,

it is worth mentioning that the ADCS system cannot be delivered as a

plug-and-play solution directly on the satellite. This has to do with how
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the hardware and software is coupled together.
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Chapter 4

Attitude Model

By incorporating theory from Fossen [2], Hughes [5] and Tudor [3] one

can derive an attitude model for the satellite. Usually one would use for

example Fossen’s vectorial setting, but the satellite only has three degrees

of freedom (3 DOF), and the forces acting on the body are fare fewer then

for example a 6 DOF marine craft (at least in our simplification). The

resemblance is still high, and the model can be interpreted as a simplified

version.

4.1 Rigid body kinetics

ICGω̇ + ω × (ICGω) = τm + τ g + τ a (4.1)
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ω =
[
p q r

]>
is the angular velocities in roll, pitch and yaw.

ICG = I>CG > 0 is the inertia tensor about the centre of gravity. When

we assume homogenous displacement of mass along the principal axises, we

can reduce it to a diagonal matrix:

ICG =


Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 =


Ix 0 0

0 Iy 0

0 0 Iz

 (4.2)

Since the NUTS satellite is a 2 unit (2U) CubeSat, one can use the fol-

lowing inertia tensor for a cuboid (with the body frame located at the

center):

ICG =


1
12m(h2 + d2) 0 0

0 1
12m(w2 + d2) 0

0 0 1
12m(w2 + h2)


According to Tudor [3] it is important that Iy > Ix > Iz in order to maintain

the equilibriums of the satellite in the magnetic field (it is the result of how

the gravity will effect the moment of inertia). This has been thoroughly

stressed to the team in charge of the frame and component assembly.

By using a skew-symmetric matrix S(ω) = −S(ω)> =


0 Izr −Iyq

−Izr 0 Izp

Iyq −Ixp 0


the kinetics can be rewritten:

ICGω̇ + S(ω)ω = τm + τ g + τ a (4.3)

25



4.2 Kinematics

q̇ = T q(q)ωb
b/n (4.4)

To represent the attitude we use unit quaternions q. It represents attitude

with a vector containing one real part η and three imaginary parts ε =

[ε1, ε2, ε3]
>. Together q = [η, ε1, ε2, ε3]

>. It also satisfies q>q = 1.

The reason for using unit quaternions is to avoid singularities in the rota-

tional matrices. This is a must have since one have to assume the satellite

can take any arbitrary attitude.

By using the angular velocity transformation from chapter 2 in [1]:

T q(q) =


−ε1 −ε2 −ε3
η −ε3 ε2

ε3 η −ε1
−ε2 ε1 η

 , T>q (q)T q(q) =
1

4
I3x3 (4.5)

A deeper explanation on quaternions can be found in for example Fossen

[1] and Vik [13].

4.3 Environmental torques

The satellite is exposed to several environmental torques on its path around

Earth. The most dominant ones is gravity from Earth and air-resistance

from the upper layers of the atmosphere. The satellite will also be affected
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by gravity from both the moon, the sun and all other objects in the uni-

verse. ”Solar wind/pressure” is also part of the big equation. But apart

from earth-gravity and atmospheric-drag, other environmental torques are

estimated to be small enough to neglect, within the specifications of how

robust an attitude controller should be.

According to [3] the gravity vector τ g can be modeled as:

τ g = 3

(
µ

R3
c

)
zo × I · zo (4.6)

µ Earth’s gravitational constant multiplied with the Earth’s mass

R3
c distance from the Earth centre to the satellite mass

zo z-axis in the orbit frame

A decision has also been made to include a disturbance based on the at-

mospheric drag. This has limited coverage in previous master thesis’s re-

garding the attitude control system. Aerodynamic drag on satellites is not

necessarily an intuitive concept, unless one is familiar with space technol-

ogy.

Rawashdeh et al. [6] shows simulations that a 3U CubeSat can be stabi-

lized with ”fins” for altitudes below 450km. However this can reduce the

lifespan of the satellite, because it slows it down in orbit. It is important to

remember that the aerodynamic drag sets the absolute limit on the lifecy-

cle for any satellite without heave/altitude compensation (like the NUTS

satellite). The orbit speed will eventually decrease so much, the satellite

will fall towards Earth an burn up in the atmosphere. An estimate for

the NUTS satellite is 4 years at an altitude of around 600km. At these
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altitudes the drag is however considerably lower then the ones simulated in

[6]. According to Wertz and Wiley [12] the particle density more then 10

times higher at altitudes of 450km compared to 600km (≈ 1.13×10−12kg/m3

versus ≈ 1.04 × 10−13kg/m3). The aerodynamic drag is therefore most im-

portant considering the surge velocity. But it also has an effect on the

satellite’s attitude.

Hughes [5] suggests an expression for the aerodynamic drag;

τ a = ρaVorbit[VorbitAdragcpV̂ orbit − (ICG + V̂ orbitJ)ωb
ob] (4.7)

ρa density of the atmosphere in kg/m3

Vorbit magnitude of orbit velocity vector (constant)

Adrag projected 2-dimensional surface area facing the velocity direction

cp centre of pressure

V̂ orbit unit velocity direction

ICG moment of inertia

J new moment of inertia for drag

The idea is basically to create a new moment of inertia matrix J that is

slightly off centre from the normal I. This will contribute to the moment

of inertia when the satellite is spinning. Aerodynamic theory also suggests

that the centre of pressure might not be aligned with the centre of mass,

generating a torque even when the satellite is not spinning. The constant τ a

is simulated as a ”worst case” scenario, with the largest possible area facing

the surge direction. That in turn gives the highest possible disturbance
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torque from the atmospheric drag (based on Hughes expression (4.7)). It

can also be seen that if the satellite spins, the torque will be higher.

4.4 Actuator dynamics

The choice of magnetic actuators for the NUTS satellite has several advan-

tages. It is cheap, solid-state and uses very little power. Since the coils can

be winded around the frame components, it virtually does not take up any

space. Weight is overall not considered an issue with any of the components,

since the satellite frame is relatively small given the weight limitations.

There is simply not enough space to fit 2.6 kg of components.

On the other hand, modeling the dynamics and control algorithm can be

challenging, since the magnetic field where the satellite is moving changes

constantly. An analogy could be an air-plane moving through a various-

density atmosphere, suddenly leaving you with limited control of either roll,

pitch or yaw.

The satellite falls around the Earth surrounded by a changing magnetic

flux field in the body frame Bb = [Bx, By, Bz]
>. In order for the satellite

to change it’s attitude, it generates a magnetic field of it’s own with one of

the three electric coils:

mb =


mx

my

my

 =


NxAxVx

Rx

NyAyVy

Ry

NzAzVz
Rz

 (4.8)

mb magnetic field in the BODY axis/coordinate system

29



N number of turns with copper thread in the coil

A area of the coil

V voltage over the coil

R resistance in the coil

The torque produced is given as the cross product of mb and Bb;

τm = mb ×Bb = S(−Bb) ·mb =


0 Bz −By

−Bz 0 Bx

By −Bx 0




NxAxVx
Rx

NyAyVy

Ry

NzAzVz
Rz

 (4.9)

This relation can be observed from figure 4.1. Her is Earth’s magnetic field

Bb, the magnetic field set up by the actuators mb and the resulting cross

product of the two as the torque τm. Remember that the torque vectors

must not be interpreted as force vectors. This is torque around the vector.

The vector τ d will be further explained in section 4.5.
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Figure 4.1: Magnetic and torque vector relations - Image courtesy of [3]

From figure 4.1 it can be observed that mb can be derived as the following

crossproduct:

mb = τm ×Bb (4.10)

By writing the full expression for mb, a control allocation matrix based on

the voltage V can be derived;
NxAxVx

Rx

NyAyVy

Ry

NzAzVz
Rz

 = τm ×B
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Now separating the the voltage vector
NxAx
Rx

0 0

0
NyAy

Ry
0

0 0 NzAz
Rz



Vx

Vy

Vz

 = τm ×B

By solving the expression for V , the control allocation matrix Kcoil is

found 
Vx

Vy

Vz

 =


NxAx
Rx

0 0

0
NyAy

Ry
0

0 0 NzAz
Rz


−1

τm ×B

V = K−1coil(τm ×B) (4.11)

This is done because a real world satellite only accepts voltage signals as

inputs, not torque. Keep in mind that B will change throughout the orbit.

On the contrary, N , A and R are constants that will be final after the

assembly of satellite.
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By using this in equation 4.9, an expression for τm can also be found1;

τm =


0 Bz −By

−Bz 0 Bx

By −Bx 0




NxAx
Rx

0 0

0
NyAy

Ry
0

0 0 NzAz
Rz



Vx

Vy

Vz



τm = S(−B) ·Kcoil · V (4.12)

One can observe that since the magnetic field is cyclic, two of the com-

ponents in Bb can be zero at the exact same time in space. Meaning the

satellite will not be able to induce a torque around one axis. At this point

the satellite will indeed be under-actuated. By comparing equation (4.9)

with figure 2.3 it can be seen that this will happen approximately four

times during one orbit (if the satellite is following the orbit frame, and the

Earth’s magnetic field is modeled as a dipole). This is however not that big

of an issue, since the magnetic field is cyclic, and the satellite will eventually

move out of this state (see figure 2.3).

4.5 Scaling and limitations

It is important to understand the relationship between τm and τ d. This can

be seen as the available torque and the desired torque. The desired torque

is the torque that the controllers optimally would like to produce. This

could be any arbritary torque in the BODY coordinate system. Because

τm is given as the cross product (4.9), τm will always be in the plane

1V 6= K−1
coilS(−B)−1τm, because S(−B)−1 is singular
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perpendicular to Bb. This can be seen in figure 4.1. By further inspection

it can also be seen that the torque from the controller τ d might not be in

this plane.

To deal with this issue, one must simply acknowledge that τm is as close to

τ d it is possible to get. That is τm will only be able to represent the com-

ponent of τ d lying in the plane perpendicular to Bb. Mathematically the

length of τ d should be scaled down to match this restriction, to avoid un-

necessary use of electricity. To achieve this a scaling function is multiplied

with equation (4.10):

mb = f(·)τm ×Bb (4.13)

By combining this with equation (4.9), a new expression for τm is formed

τm = f(·)(τ d ×Bb)×Bb (4.14)

By the definition of a cross product, it is possible to express the length of

τm with a function of the angle α between B and τ d

|τm| = |mb||Bb| = f(·)|Bb||τ d||Bb|sin(α)

Now one can solve for f(·) by the fact that |τm| = |τ d|sin(α) (right-angled

triangle):

f(·) =
1

|Bb|2
(4.15)
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The final expression for mb
2:

mb =
1

|Bb|2
(Bb × τm) (4.16)

and the final expression for τm:

τm =
1

|Bb|2
(τ d ×Bb)×Bb (4.17)

2By the cross product definition; Bb × τm = −τm ×Bb. This is depends on what
direction Bb is defined positive.
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Chapter 5

Controller

Based on literature studies, an attitude controller will here be derived. The

controllers is based on previous master thesis’s and papers.

5.1 Passive controller

A passive controller for a CubeSat can be set up quite easy using strong

rare-earth magnets like for example neodymium magnets. This can be set

up as part of a semi-passive system, to act as more damping to the system,

or it can work completely on its own.

Reasons for choosing such a system is many. First of all a CubeSat has

limited amount of space for actuators. A neodymium magnet can produce

a much more powerful magnetic field then an electromagnet for the same

size (given the limited power supply). The extra space can be used for
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other equipment. Some missions, unlike the NUTS project, might not have

any preference to the attitude of the satellite, other then for example a slow

spin rate. A constant (powerful) magnet can be added to work on its own,

or act as gain in one direction:

τ = τneodymium or τ = τ controller + τneodymium (5.1)

A passive controller can also work very well for geostationary satellites (not

moving relative to the NED frame). For such a purpose, one can simply

mount a magnet aligned with the constant, non-changing, magnetic field in

this orbit.

The NUTS project however, have strict specifications regarding attitude.

Since magnetic field will be changing constantly as product of the polar

orbit, a passive controller might even disturb the satellites position even

further.

One the contrary, all electric components that induce a current will generate

a magnetic field. Also batteries can be magnetic. When the satellite is fully

assembled, it is possible to measure the sum of the total magnetic field

generated by the NUTS. If this turns out be above the saturation limit of

the controller, one can install a constant magnet in the frame, compensating

in the opposite direction:

τmagnet = mmagnet ×Bb = −(mNUTS ×Bb) = −τNUTS (5.2)

=⇒ τmagnet + τNUTS = 0 (5.3)

The NUTS is bound to create a local magnetic field. Even if it is within

the ”robustness limits” of the controller, it should be measured, as it will
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act as bias on the magnetometer (see section 2.4).

5.2 Detumbling

A detumbling controller will most likely be part of the final ADCS sys-

tem. As the name states, the only purpose is to slow down unknown initial

tumbling/spin in the attitude. Two alternatives has previously been pro-

posed in the NUTS project, Bdot and Dissipative controller. The B-dot

controller shows excellent results in the detumbling phase after the satel-

lite has ejected from the carrying rocket [3]. It is not particularly useful

for correcting small deviations. This is because the Bdot controller, as the

name suggests, only reacts to rate of change in the geomagnetic field (Ḃ)

in the BODY coordinate system. In practice, this controller will never rest

and constantly drain power from the satellite. As previously stated, Bdot

can do an excellent job for de-tumbling the satellite, and then switching to

a different controller.

Another approach is to use the angular velocity ωb
ob in the BODY frame

relative to the orbit frame. (Keep in mind that the orbit coordinate system

always points its z-axis towards Earth. This gives a constant rotation in the

BODY y-axis). This measurement can be taken from a sun-sensor and/or

a gyroscope to avoid the use of the magnetometer. The controller could

take the following form:

τ b
controller = −kdωb

ob, kd > 0 (5.4)
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Setting up an expression for voltage

mb = τ b
controller ×Bb

V = K−1coilm
b

V = K−1coil(τ
b
controller ×Bb)

V = K−1coil(−kdω
b
ob ×Bb)

V = −kdK−1coil(ω
b
ob ×Bb)

Now the scaling factor from section 4.5 is taken into account

V = − kd

|Bb|
K−1coil(B

b × ωb
ob), |V | < 5 volts (5.5)

This will act as the detumbling controller of choice in further testing and

simulations in chapter 7. The limit on voltage as ±5 volts is set by the

hardware specification on the NUTS power supply system.

5.3 Model-independent Control Law

Wen and Kreutz-Delgado describes in [7] a model-independent control law:

τ = kpε− kdω̃ (5.6)

It is stated that the controller is ”...globally stabilizing for a class of desired

trajectories” by a Lyapunov analysis. However, this controller cannot be

globally stabilizing. Both due to the fact that the system is not controllable

in parts of the orbit, and that the system has multiple equilibriums caused

by gravity.
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τ torque on any arbitrary axis

kp constant proportional controller gain

ε imaginary part of the quaternion q = [η ε]> = [η ε1 ε2 ε3]
>, q → ±[1 0 0 0]>

kd constant derivative controller gain

ω̃ angular velocity minus desired velocity ω̃ = ωb − ωdesired, ω̃ → 0

This is a PD-controller that can be seen as an extension to the detumbling

controller;

τ b
controller = −kpε− kdωb

ob, kd, kp > 0 (5.7)

With the same approach as in the previous section, the controller (with

voltage as output) can be derived

V = − kp

|Bb|
K−1coil(B

b × ε)− kd

|Bb|
K−1coil(B

b × ωb
ob)

V = −
K−1coil

|Bb|

(
−kp(Bb × ε)− kd(Bb × ωb

ob)
)
, |V | < 5 volts (5.8)

This is the primary controller that will maintain the attitude of the NUTS.

The idea is to switch this controller on when the satellite has travelled a

finite number of orbits, and it can be assumed that most of the spin is gone.

This controller is the basis for many quaternion feedback satellite attitude

controllers. A short stability analysis is found in appendix A.
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Chapter 6

Simulator

In order to test the controllers, one need off course a simulator. There are

several ways to make a simulator. It can be built from ground up, with the

advantage of having an in depth knowledge of the entire systems. But it is

time consuming and difficult to implement with all complexities evolving a

full sized simulator. Complexities like environmental torques and satellite

kinetics. Errors (in for example the Simulink environment) can also be very

time consuming debug.

Another approach is to test controller algorithms on already existing sim-

ulators. These simulators can be previously made systems from graduated

students or commercial companies. If the simulator has well documented

code, and has been approved by a third party, less time is needed to eval-

uate the simulator. Instead it is possible to start evaluating the controller

design right away.
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Prevoius studies and developments of simulators was done. Inspiration,

testing and benchmarking was investigated in order to complete the sim-

ulator. Both Zdenko Tudor’s [3] and Eli Jerpseth Overby’s [9] simulators

where used as inspiration. An extension of Tudor’s simulator is also used by

other members NUTS. Results from their work, has been discussed during

this development. A direct performance comparison between the simulators

is not given here, since their work is still in writing.

The Princeton Satellite Systems CubeSat Toolbox was acquired by NUTS

as a commercial alternative. But given the limited timeframe, the results

have not been compared with this simulator.
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6.1 Nonlinear Simulink Simulator

Figure 6.1: Nonlinear NUTS Simulink model with controller
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Previous simulators has mostly been developed in Matlab code. It can

be very time-consuming to carry on such projects, since it is all written

code. It was also known from the beginning that the controller had to be

compiled for a specific embedded platform (see section 3.2). Going from

Simulink to C-code with the Simulink Coder environment was consider a

great advantage (see section 3.1). For this reason the development of a

Simulink simulator was begun. This simulator was made from ground up,

with inspiration from [9].

It includes a nonlinear satellite model exactly like the one described in

chapter 4. But instead of the IGRF model, a dipole is used. This choice was

mainly done because it is was considered too time-consuming to develop

an IGRF model, and the controller performance should still be valid for

testing with a ”dipole-environment”.

The main Nonlinear Satellite block consists of the satellites kinematics and

kinetics. Except from the voltage input from the controller, the satellite

block has three inputs; Dipole magnetic field, Gravity torque and Aerody-

namic drag. These are transformed to the BODY-coordinate system using

Rb
o outputted from the Satellite block. The aerodynamic drag is also de-

pendent on the angular velocity, so this is feedback as well.

The goal was initially to create a simulator with full-state-back to the con-

troller. The output from the Satellite block is therefore q, ωb
ob and Bb, that

are the attitude, angular velocity and magnetic resultant vector in BODY.

The NUTS team have however decided on a specific magnetometer to use.

The data resembling this instrument has been implemented in the IMU

block, but can be turned on and off via a switch in the block. More results

on this feature can be found in chapter 7.

45



State feedback is sent to the Controller block that in turn calculates a

voltage to correct the attitude. The controller block has been developed

using Matlab function blocks. This makes it somewhat easier to make

radical changes, but still maintain an acceptable simulation time. The

controller also has an so called orbit propagator, that simply calculates the

number of orbits based on time. This is tuned to trigger the PD-controller,

when the detumbling controller most likely has finished it’s job.

All initial states and constants are set by running an Init.m file. Such as

weight, initial attitude and coil parameters. After simulation, all relevant

data is sent to a Plot signals block, that can be plotted in Matlab using

the plot script.

Last, but not least, is a block containing data on the Battery. It is pop-

ular to show how much energy the satellite uses, but it was found more

interesting to give this as a function of the satellites battery.

A full breakdown of the model can be found in appendix C.
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Chapter 7

Results

This chapter will present the results from the different controller approaches.

The following specifications is equal to all simulations:

• Simulator The Simulink Simulator from section 6.1

• Simulation time 30.000 seconds (≈ 6 orbits)

• Initial attitude (except for the constant controller)

ωb
ob inital angular velocity given in rad/sec

ωb
ob = [0.1 − 0.2 0.05]>

Θob inital attitude orienation in roll, pitch, yaw in degrees

Θob = [10◦ 5◦ − 2◦]>

• Altitude 600 kilometers Low Earth Orbit
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• Mass 2.6 kg

• Coil parameters (found by the model built in [3])

Nx = 355 Ny = 800 Nz = 800

Ax = 144 cm2 Ay = 144 cm2 Az = 64 cm2

Rx = 110 Ω Ry = 110 Ω Rz = 110 Ω

• Battery 3.7 V 1800 mAh

• Magnetometer noise is OFF except for the specific simulation 7.6

• Aeordynamic drag is OFF except for the specific simulation 7.5

The initial angular velocity and orientation was based a ”worst case plausi-

ble” scenario. Since the satellite is spinning relatively fast after deployment,

the initial orientation won’t effect the results much. To limit the amount

of presented data, only the most import figures are here presented. Also be

aware that there is no difference between ±180◦ in the attitude plots. This

is a result of how the quaternions are converted.

7.1 Passive controller

The passive controller discussed in section 5.1, was implemented with data

found from a commercial product.

• K&J Magnetics, Inc.

• Neodymium-Iron-Boron
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• Cylinder dipole

• 13.6 grams

• Surface field 0.6487 Tesla

This was realized as simply disconnecting the state feedback from the con-

troller, and adding a constant magnetic field in the satellite block. Initial

attitude and angular-velocity was zero.

From the plots one can observe that the satellite goes into a completely

uncontrolled spin.
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Figure 7.1: Attitude with constant magnet
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Figure 7.2: Angular velocity with constant magnet
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7.2 Detumbling controller

V = − kd

|Bb|
K−1coil(B

b × ωb
ob), |V | < 5 volts

kd = 4 · 10−5

Here, the detumbling controller from section 5.2 is simulated. The value

for kd was first set quite high (kd ≈ 2), but this resulted in a very aggres-

sive and unstable controller. After some discussion with the NUTS-ADCS

team, it was tuned down a lot., and the satellite finally calmed down, as

intended.

It is clear from the plots that the angular velocity calms down almost com-

pletely after just a couple of orbits. The attitude is however way off.
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Figure 7.3: Angular velocity with the detumbling algorithm
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Figure 7.4: Attitude with the detumbling algorithm
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7.3 PD-controller

The PD-controller from section 5.3 is simulated with the following controller

gains;

V = −
K−1coil

|Bb|

(
−kp(Bb × ε)− kd(Bb × ωb

ob)
)
, |V | < 5 volts

kd = 4 · 10−5

kp = 5 · 10−8

Again, kp and kd is found by tuning. kp is also above the threshold found

in the stability analysis in appendix A.

From the plots it can be seen that the angular velocity is slightly less stable

then what the detumbling controller alone could manage. The attitude is

however better, but has somewhat high oscillations.

55



Figure 7.5: Angular velocity with only the PD-controller

56



Figure 7.6: Attitude with only the PD-controller
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7.4 Detumbling and PD-controller combination

V = − kd

|Bb|
K−1coil(B

b × ωb
ob), orbits ≤ 2

V = −
K−1coil

|Bb|

(
−kp(Bb × ε)− kd(Bb × ωb

ob)
)
, orbits > 2

kd = 4 · 10−5

kp = 5 · 10−8

|V | < 5 volts

In this simulation a combination of the Detumbling- and PD-controller was

tested. After trial and error the PD-controller was set to ”take over” after

2 orbits. Otherwise, the parameters are the same.

One can easily spot that after two orbits the controller starts to consider

controlling the attitude. The angular velocity is very calm, and the attitude

almost zero by a deviation of one degree.

This time the quaternion plot is also included, and one can observer how

q →≈ [1 0 0 0]>.

It is also interesting to observer how the controller pushes the limits on the

voltage output and how this calms down in synergy with the attitude. The

battery is on the contrary nearly not effected.
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Figure 7.7: Angular velocity with detumbling and PD-combination

59



Figure 7.8: Attitude with detumbling and PD-combination
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Figure 7.9: Angular velocity with detumbling and PD-combination Zoomed
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Figure 7.10: Attitude with detumbling and PD-combination Zoomed
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Figure 7.11: Quaternions with detumbling and PD-combination
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Figure 7.12: Volts set up by the detumbling and PD-combination
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Figure 7.13: Battery use with detumbling and PD-combination
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7.5 Aerodynamic drag

V = − kd

|Bb|
K−1coil(B

b × ωb
ob), orbits ≤ 2

V = −
K−1coil

|Bb|

(
−kp(Bb × ε)− kd(Bb × ωb

ob)
)
, orbits > 2

kd = 4 · 10−5

kp = 5 · 10−8

|V | < 5 volts

ICGω̇ + S(ω)ω = τm + τ g + τ a

By adding the aerodynamic torque, the satellite still manages to calm down

the angular velocity. The attitude is still however way off at up to 100◦,

and also suffers from oscillations. These simulations is also consistent with

what the rest of the NUTS-ADCS team achieved.
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Figure 7.14: Angular velocity with aerodynamic disturbance
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Figure 7.15: Attitude with aerodynamic disturbance
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7.6 Simulated magnetometer feedback

Based on the Honeywell HMC5983 specifications, the magnetometer feed-

back to the controller was given added noise.

V = − kd

|Bb|
K−1coil(B

b × ωb
ob), orbits ≤ 2

V = −
K−1coil

|Bb|

(
−kp(Bb × ε)− kd(Bb × ωb

ob)
)
, orbits > 2

kd = 4 · 10−5

kp = 5 · 10−8

|V | < 5 volts

Bb = Bb ± 0.0002 tesla

The result is still a stable attitude, but a lot more noisy angular velocity.

The voltage output from the controller is also changing very rapidly.
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Figure 7.16: Angular velocity with noise on magnetometer feedback
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Figure 7.17: Attitude with noise on magnetometer feedback
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Figure 7.18: Voltage out put from controller with noise on magnetometer

feedback
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7.7 Controller on Arduino

To run only the controller on the Arduino, while the simulator was ran on

the PC, was not realizable. This kind of hardware-in-the-loop (HIL) was

not possible with the standard Simulink Coder tools. It is however possible

to run the entire Simulink system on the Arduino. The result of this showed

that the system was running used around one second per time-step, with a

fixed time-step of 0.1.
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Chapter 8

Discussion and conclusion

It is unknown exactly what the initial attitude and angular velocity will

be in real life. It is however reasonable that the initial orientation will be

quite ”far off” the desired trajectory, but the initial angular velocity will

most likely be lower then the simulations.

It is quite clear that the Passive controller 7.1 is not working to neither

damp the system nor maintaining attitude. This was quite self explana-

tory before the simulation, but it should not underestimated as a tool to

compensate for unwanted constant magnetic fields.

The detumbling controller 7.2 does an excellent job at detumbling the satel-

lite. Both for high and low initial angular velocities. Clearly any angular

velocity is punished, but the controller fails to correct the attitude. This is

however expected, as the angular velocity goes down, the controller simply

does not generate much torque.
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By instead using PD-controller 7.3 it was able to correct the attitude much

better. However not sufficiently. This might be a result of somewhat higher

angular velocities that is not compensated for.

The theory suggested a combination of detumbling and PD-control 7.4. Af-

ter several simulations it was found that the detumbling controller would

have damped the angular velocity sufficiently after two orbits. The orbit

propagator was then used to switch to the PD-controller. This demon-

strates relatively good results. The angular velocity is extremely close to

zero (±1 · 10−5 rad/sec). The attitude is also very close with a deviation

of ±1◦. This was discussed with the NUTS-group in charge of the camera

system. They can tolerate deviations up to ±50◦ in x- and y-axis, so the

attitude is well within limits.

The quaternions is behaving exactly the way the controller was intended.

Slowly converging q →≈ [1 0 0 0]>. The regulator is also within the limits

of voltage output. It might look like this would consume a lot of battery,

but the results clearly shows this is not the case.

When adding the disturbance caused by aerodynamic drag 7.5, the con-

troller will manage to detumble, but it cannot correct the attitude. The

first solution to this was to ad more gain to the controller, but this re-

sulted in a too aggressive behavior and eventually an uncontrolled spin of

the satellite. It is obvious that a different control strategy should have

been used. The deviations is however tolerated by the camera system, as

they are within the ±50◦ limit in the x- and y-axis. But from a cybernetic

perspective, such deviations should try to be avoided.

On the contrary, it is not necessary that the aerodynamic torque is correct.

One also have to take into account that the torque is constant-worst-case.
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For example it is more likely that the aerodynamic torque will decrease

when the satellite closes in on the reference attitude, since the area facing

the velocity is smaller, and the centre of pressure might be closer to the

center of gravity.

In the last simulation 7.6 noise from a simulated magnetometer was added

to the state feedback. Both the attitude and angular velocity shows nearly

the same results as the combined detumbling and PD-controller. But the

voltage generated by the controller tries to ”follow” the magnetic feedback.

This also results in a more noisy angular velocity. Clearly the regulator

needs a filter. But real issue is that there is no limitation to how fast the

voltage from the controller change with time. This is simply a flaw with

the simulator.

As an extra simulation the whole system was ran on the Arduino 7.7. Re-

search was done to perform both hardware-in-the-loop (HIL) and processor-

in-the-loop. This was not supported with the regular procedures of Simulink

Coder. More as an interesting test, the entire Simulink model was ran on

the Arduino. The code was able to compile and run without any errors.

Simulation time was however very long (about 0.1 time-step = 1 second).

It is however well known that a PD-controller can run on a micro controller

of this type 3.2. So the test is more interesting if the code should later be

extended with more complex functions for the controller.

8.1 Conclusion

Designing a satellite attitude control system for the NUTS requires an

extensive knowledge of how the satellite project will be carried through.
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The environment of operation has strict boundaries, and the satellite has a

limited amount of space for both actuators and sensor systems. Knowing

these limitations it is still possible to use standard theory and definitions

for both mathematical modeling and controller design.

The Simulink Simulator is a sufficiently good ”sandbox” to test different

control strategies. It has some simplifications in terms of the magnetic

field, and it has some flaws in the voltage output. All of this can however

be fixed, since the simulator is quite modular and scalable.

The final full state feedback PD-controller shows adequate results, except

for the inclusion of aerodynamic torque. This reason for this is consid-

ered a combination of the controller design and a too harsh aerodynamic

torque.

Using the Arduino platform for performance testing was not conclusive, as

HIL-testing was not achieved. The Simulink code is however considered

valid to be compiled for this platform.

8.2 Future work

The Simulink simulator should first of all be expanded to include more real-

istic environment models like; IGRF look-up-tables, a more dynamic aero-

dynamic torque, final sensor assembly of NUTS satellite (and the noise/bias

data of these) and more realistic disturbance on magnetic sensors when us-

ing the actuators and radio systems. If the simulator is expanded to include

such realistic measurements, a filter or state estimator should be part of

the system. A real feedback from the actuators affecting the magnetome-

77



ter should also be taken into account. A possible solution to run a HIL

test with the Arduino, is to acquire real sensors that can act as input, in-

stead of the simulator. Finally, the PD controller should also be expanded

(possibly integral action) to compensate for the large deviations caused by

aerodynamic torque.
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Appendix A

Stability analysis

Lyapunov theory can be used to both to test stability of a system, and to

arrive at a stabilizing control law. Both Soglo [10] and Tudor [3] uses this

to different extents, and some of their results will here be presented.

V =
1

2
ωb>

ob Iω
b
ob +

3

2
ω2
oc
>
3 Ic3 −

1

2
ω2
oc
>
2 Ic2

1

2
ω2
o(Iy − 3Iz)

∂V

∂t
= V̇ = ωb>

ob τ
b
m ≤ 0 ∀ τm = 0

This means the system is stable in a Lyapunov sense (with zero input)

With controller, the Lyapunov function can be extended to

V =
1

2
ωb>

ob Iω
b
ob +

3

2
ω2
oc
>
3 Ic3 −

1

2
ω2
oc
>
2 Ic2

1

2
ω2
o(Iy − 3Iz) + k[ε>ε+ (1− η)2]
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Here k > 0. Because of the quadratic expression, the extension will be;

zero for the correct attitude (ε = 0 ∧ η = 1), positive definite for other

attitudes.

Soglo and Tudor are also using the fact that ε>ε + η2 = 1. This means it

is possible to rewrite the last term as 2k(1− η). The time derivative of this

is −2kη̇. Accordingly, the the new expression for V̇ is

V̇ = ωb
ob[kε+ τ b

m]

with the expression for the control law

τ b
m = −dωb

ob − kε with gain d > 0, k > 8ω2
0(Iy − Iz) > 0

That is the same controller as found chapter 5.1

1For the values used in the simulator, the k-gain should be 8× 10−9 or higher.
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Appendix B

Matlab Simulink code

The init.m script for setting up all the parameters and defining initial

values.

1 clc

2 clear all

3

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Parameters for earth and orbit %

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 m = 2.6; % [kg] Satellite mass

9 dx = 0.11; % X−axis length

10 dy = 0.1; % Y−axis length

11 dz = 0.2; % Z−axis length

12 Re = 6371.2e3; % [m] Earth radius

13 Rs = 600e3; % [m] Satellite altitude

14 Rc = Re+Rs; % [m] Distance from earth ...
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center to satellite

15 G = 6.67428e−11; % Earth gravitational constant

16 M = 5.972e24; % Earth mass

17 w O = sqrt(G*M/Rcˆ3); % Satellite angular velocity ...

relative Earth

18 w O IO = [0 −w O 0]'; % Velocity of orbit coordinate ...

system

19

20

21 %%%%%%%%%%%%%%%%%%%%%%

22 % Moments of inertia %

23 %%%%%%%%%%%%%%%%%%%%%%

24

25 Ix = (m/12)*(dyˆ2+dzˆ2); % X−axis inertia

26 Iy = (m/12)*(dxˆ2+dzˆ2); % Y−axis inertia

27 Iz = (m/12)*(dxˆ2+dyˆ2); % Z−axis inertia

28

29 % The inertia matrix

30 Inertia = diag([Ix Iy Iz]);

31

32

33 %%%%%%%%%%%%%%%%%%%%%%%

34 % Initial orientation %

35 %%%%%%%%%%%%%%%%%%%%%%%

36

37 % Set the satellites inital attitude in degrees (set by user)

38 roll degrees 0 = 10;

39 pitch degrees 0 = 5;

40 yaw degrees 0 = −2;
41

42 %roll degrees 0 = 0;

43 %pitch degrees 0 = 0;

44 %yaw degrees 0 = 0;

45
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46 % Converting to radians

47 roll = (pi/180)*roll degrees 0;

48 pitch = (pi/180)*pitch degrees 0;

49 yaw = (pi/180)*yaw degrees 0;

50

51 % Converting to quaternions (set as inital value in ...

Kinematics integrator)

52 q 0 = euler2q(roll, pitch, yaw);

53

54

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 % Initial angular velocity %

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

58

59 %Initial angular velocity in radians per second (set by user)

60 %w B OB 0 = [0 0 0]';

61 %w B OB 0 = [0.0005 0.0003 −0.003]';
62 w B OB 0 = [0.1 −0.2 0.05]';

63

64 %Calculates inital rotation matrix from body to orbit

65 %(This rotation matrix = I if q 0 = [+−1 0 0 0])

66 R o b = Rquat(q 0);

67 R b o = R o b';

68

69 %c1 is the first column vector in R b o

70 %This can be used to calculate the inital

71 %angular velocity relative intertia frame

72 c2 = R b o(:,2);

73 c1 = R b o(:,1);

74 w B IB 0 = w B OB 0+w O*c1

75

76

77 %%%%%%%%%%%%%%%%%%%

78 % Regulator gains %
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79 %%%%%%%%%%%%%%%%%%%

80

81 %K p = 0;

82 %K d = 4e−5;
83

84 K p = 5e−8;
85 K d = 4e−5;
86

87

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

89 % Coil parameters and controll allocation matrix %

90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

91

92 % Number of turns with copper thread in each coil

93 Nx = 355;

94 Ny = 355;

95 Nz = 800;

96

97 % Area of each coil

98 Ax = 0.08*0.18;

99 Ay = 0.08*0.18;

100 Az = 0.08ˆ2;

101

102 % Resistance in each coil

103 Rx = 110;

104 Ry = 110;

105 Rz = 110;

106

107 % K matrix − controll allocation matrix for regulator

108 K = [(Nx*Ax)/Rx 0 0; 0 (Ny*Ay)/Ry 0; 0 0 (Nz*Az)/Rz];

109

110

111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

112 % The dipole megnetic field of Earth %
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113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

114

115 % Permeability of vacuum

116 my = 1e17/(4*pi);

117

118 % Magnitude of magnetic field

119 B null = my/(Rcˆ3);

The detumbling algorithm inside the controller block

1 function V = fcn(K,w b ob,B b)

2 % Controller gain

3 d = K p;

4

5 % Moment set up by controller

6 m B = −(d/norm(B b,2)ˆ2)*cross(B b,w b ob);

7

8 % Torque set up by coils

9 V = (Kˆ−1)*m B;

The reference controller algorithm inside the controller block

1 function V = fcn(K,B b,w b ob,q)

2

3 eps = q(2:4);

4

5 % Controller gains

6 d = K d;

7 k = K p;

8

9 % Moment set up by controller
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10 m B = ...

(1/norm(B b,2)ˆ2)*(−d*cross(B b,w b ob)−k*cross(B b,eps));

11

12 V = (Kˆ−1)*m B;

The Aerodynamic torque algorithm as input to the satellite

1 %CODED BY GAUTE BRAATHEN 2012

2

3 function tau a = fcn(R B O,w B OB,w O,I)

4

5

6 m = 2.6; % [kg] Satellite mass

7 jx = 0.03; %0.05 % X−axis length

8 jy = 0.03; %0.049 % Y−axis length

9 jz = 0.083; % Z−axis length

10 Jx = (m/12)*(jyˆ2+jzˆ2); % X−axis inertia

11 Jy = (m/12)*(jxˆ2+jzˆ2); % Y−axis inertia

12 Jz = (m/12)*(jxˆ2+jyˆ2); % Z−axis inertia

13 J = diag([Jx Jy Jz]); % Inertia matrix

14

15 x = 0.1;

16 y = 0.1;

17 z = 0.2;

18 A xo = x*z; % Outer satellite area, x−panel
19 A yo = y*z; % Outer satellite area, y−panel
20 A zo = x*y; % Outer satellite area, z−panel
21 A drag = z*sqrt(xˆ2 + yˆ2); % Maximum area for calc ...

disturbance drags

22

23 Re = 6371.2e3; % [m] Earth radius

24 Rs = 600e3; % [m] Satellite altitude
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25 Rc = Re+Rs; % [m] Distance from earth ...

center to satellite

26

27 orbitPeriod = (2*pi)/(w O); % For defining simulation length

28

29 vel = 2*pi*Rc/orbitPeriod; % Orbit velocity

30

31 rho a = 4.89e−13;
32

33 c p = [0.02 0.02 0.02]';

34 c p x = Smtrx(c p);

35 %Vr = R B O*[−1 0 0]';

36 Vr = R B O*[0 −1 0]';

37 Vr x = Smtrx(Vr);

38

39 tau a = rho a*vel*( vel*A drag*c p x*Vr − (I + ...

Vr x*J)*w B OB );
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Appendix C

Simulink model

Figure C.1: The complete Simulink model unmasked
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Figure C.2: The Nonlinear Satellite block

93



Figure C.3: The Kinetics block

Figure C.4: The Kinematics block
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Figure C.5: The Controller block
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