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Circle-to-Circle
Constant-Thrust Orbit Raising

Salvatore Alfano' and James D. Thorne?

Abstract

This paper provides simple graphical/analytical tools to determine the minimum elapsed
time and associated fuel of a constant-thrust vehicle transferring between coplanar circular
orbits. The rocket equation models the effects of continuous fuel expenditure while also
serving to recast the solution in terms of accumulated velocity change. These orbit-
raising solutions are globally mapped with no restrictions on initial thrust magnitude,
intermediate eccentricity, or number of revolutions of the central body. Several examples
are presented to verify the transfer charts/equations and familiarize the reader with their
use. These are useful tools for mission planners and satellite designers to assess preliminary
fuel requirements and transfer times for constant-thrust systems. They are also good for
performing propulsion trade-off studies for various missions. A straight-edge and scientific
calculator are the only tools needed. | |

Introduction

This paper provides simple graphical/analytical tools for the orbital mission
planner to use in designing optimal, coplanar, circle-to-circle, continuous-thrust
transfers. Four charts are presented that relate vehicle design parameters to orbit
design parameters for orbit raising. -

Each transfer is accomplished with constant thrust through the entire flight path
with no restriction on its magnitude. The direction of thrust is free to vary within
the orbital plane with fuel expenditure modeled by the rocket equation. Although
the initial and final orbits are circular, intermediate eccentricity is allowed to grow
and shrink for any number of orbit revolutions as optimally determined.

There has been a substantial amount of work done on low-thrust trajectories.
Of particular relevance to this paper are the works covering optimal, continuous,
low-thrust transfers [1—-17]; included in these are numerous papers by Edelbaum
[3,7,8,11]. A mission planning tool for optimal, many-revolution, orbit transter
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was presented by Wiesel and Alfano [12] where an analytically derived solution
was obtained and presented in graphical form.

The equations of motion used in this optimal control problem are in their
complete form for the coplanar circle-to-circle case. The initial acceleration A;
appears in these equations and 1s allowed to vary from case to case as a parameter.
Changing the spacecraft initial acceleration always changes the minimum time
to accomplish the orbit raising. To present the solution data in a user-friendly,
universal form (Figs. 1-4), the problem is rescaled using the initial orbit radius
and gravitational parameter of the central body; in addition, the time-of-flight # 1s
replaced by the total accumulated velocity change v;. The results of many such
optimal cases are presented in graphical form, showing the relationship between
spacecraft acceleration, propellant mass fraction, initial-to-final orbit radius ratio,
and the minimum accumulated velocity change. The graphs themselves are
composed of parametric families of optimal solutions assembled in comprehensive
charts for interpolation by the orbital mission planner. Analytical equations are
provided when practical.

The charts and equations cover the total range of spacecraft acceleration values.
Many users of space assets are interested in minimum-time orbit raising and
repositioning, so the high acceleration cases will be of increasing future interest
as continuous-thrust propulsion technology improves.

Equations of Motion

The differential equations that define spacecraft motion are derived under the
following assumptions: the force of thrust is constant and always in the plane
of motion; the vehicle has a fixed propellant mass flow rate; and the vehicle
acceleration is due solely to the force of thrust and a spherically symmetric inverse
square central gravitational field. The polar equations of motion [18] are
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where r is the radial distance of the vehicle from the attracting center, « is the radtal
velocity component, v is the transverse velocity component, w is the gravitational
constant of the attracting center, A; is the initial vehicle acceleration, ¢ is the
in-plane control angle (measured from the transverse direction to the thrust vector
with positive values in the radial direction), and the dot denotes the first dertvative
with respect to time. The specific propellant mass flow rate m 1s the actual mass
flow rate divided by the initial mass; this value is negative when dealing with
propellant loss.

Optimal Control Formulation

Given an initial and final radius, the fuel used between circular coplanar orbits
must be minimized; this is equivalent to minimizing transfer time because m
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is assumed constant. The control formulation for this problem is taken directly

from Bryson and Ho [18] and repeated here for the reader’s convenience. The
Hamiltonian 1s written as '

H=1+ Ar+ Au+ Ay (5)
where the polar angle is omitted because the exact initial and final positions are not

specified and equations (1—3) do not depend on #. The behavior of the Lagrange
multipliers is given by

. vl 2u Uv
A = -—Au(—-ﬁ : 7;) - (%) ©)

A, = —A, + /\v(i) (7)

r

A, = —,\u(%ﬁ) + A(-—i—‘-—) (8)

The partial of H with respect to the control parameter ¢ must equal zero

oH A;
(—9—5=()lucos¢—}lvsinqb)1+mt=0. (9)
Knowing the acceleration term cannot be zero, the control law is established as
— Au
tan ¢ = — 3 (10)

where sin ¢ = —A,/+/A2 + A2 and cos ¢ = —A,//AZ + A2 [19].

The complete transfer is characterized by the initial choice of Lagrange
multipliers. To date, the only closed-form solution that exists is for the many-
revolution case where intermediate eccentricity is assumed to be zero and only
tangential thrust is considered [3, 12]. Realizing that these multipliers can be scaled
without affecting the control law or A dynamics, A, is set to —1 and a numerical
search is used to find the remaining two.

Accumulated Velocity Change

Accumulated velocity change v, is defined here as the total velocity imparted
by the force of thrust during the elapsed transfer time #,

= [rf 4 dt 11)
Vf ) 1 n ritt I . (

This formulation of the well-known rocket equation serves two purposes: 1t models
the effect of fuel depletion and also defines the relationship between time and
thrust-induced velocity change through the equation

Ve = % ln(l + ﬁ’ltf). | . (12)
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Recasting the minimum-time solution in terms of v, provides the means for a
very compact graphical representation when considering the initial acceleration A;
and the propellant mass fraction,

mp, = —.f;ltf . | | (13)
Given A;, mp, and vy the specific mass flow rate and final time are computed as

o _ _
m=—In(l —m,) - (14)
Vf |

and
Ly == —-mp/rh. (15)

For the limiting case where m and m,, approach zero, the total transfer time from
equation (11) is simply

lf = Vf/Ai.. (16)

Chart/Equation Generation and Discussion

Proper scaling can eliminate the dependence on a specific central attracting body
and allow a global mapping of solutions. The following definitions for distance
and time units are based on the initial radial distance r; and the gravitational
parameter of the central body w:

1 DU = r, (17)

1 TU* = r}/n. (18)

Although these definitions are dependent on the physical parameters of a given
transfer, the equations of motion are not. Conveniently, the gravitational parameter
is always 1 DU*°/TU** and the initial values of the (r, u, v) array for any circle-
to-circle coplanar transfer are simply (1 DU*, 0 DU*/TU*, 1 DU*/TU*). The
final values are (R DU*, 0 DU*/TU*, /1/R DU*/TU*) where R is the ratio of
the final radial distance to the initial (r¢/r;). For this study only orbit raising is
considered (r; > r;).

As previously mentioned, the initial Lagrange multiplier values completely
define the transfer. To solve this two-point boundary value problem A, is set
to —1 and a shooting method [20] is used to find A,, A,, and ¢ Minimum-
time solutions for a variety of orbit ratios and mass fractions are transformed
to accumulated velocity change and plotted versus initial acceleration to produce
Figs. 1-4. Figure 5 was generated by taking the optimal solutions for Fig. 1 and
integrating equation (4) numerically to determine the total polar angle traversed
by the vehicle. | _

The ripples in the curves of Figs. 1—4 reflect a transition region from gravi-
tational force dominance to thrust dominance; they can be used to define the
boundaries of low thrust (flat curve), intermediate thrust (rippled curve), and
high thrust (constant upward sloping curve). Also, the ripples and subsequent
upward slope testify to the additional cost of achieving the final circular condition.
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FIG. 1. v Contours for Various Orbit Ratios R (m, = 0).

As seen in Fig. 5, failure to complete a revolution during transfer increases the
associated cost. The optimal steering law causes the eccentricity to increase for
the first half of each revolution and then diminish in the latter half: the greater
the thrust, the greater the eccentricity increase. If the total polar angle is not a
multiple of 27, the eccentricity must be zeroed out to meet the final condition of
a circular orbit: the additional cost of this process is reflected by the peaks in the
curves. When making more than five revolutions ot the central body this effect is
negligible because the induced eccentricity 1S very small and correctable with little
additional maneuvering. If the final state is reached in less than one revolution,
the intermediate eccentricity and associated cost grow with the shortness of the
transfer arc. This is reflected in the positive slope of the curves. The cost of re-
circularization diminishes as the ratio R increases because the gravitational force 1s
less, making vehicle acceleration more effective. Also, when compared to Fig. 1,
the smaller ripples of Figs. 2—4 reflect the increased thrust effectiveness due to
mass loss.

Wiesel and Alfano [12] characterized all continuous-thrust circle-to-circle
transfers where A; < 107* DU™/ TU™? due to the constancy of accumulated
velocity change for a given orbit ratio. The equation relating orbit radius r to
velocity change v for coplanar transfers [12] reduces to

-
dr r3

dv Vp,'

(19)
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FIG. 2. w; Contours for Various Orbit Ratios R (m, = 0.25).
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FIG. 3. v, Contours for Various Orbit Ratios R (m, = 0.5).
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Using the previously defined units and boundary conditions, the accumulated
velocity change for orbit-raising is simply |

vp=1-u/R. (20)

The constant upward sloping lines In Figs. 1-4 are analytically determined
by examining the limiting high-thrust case; the gravitational force 1s dwarted by
the thrust and assumed negligible. This results in a straight-line radial trajectory
where acceleration is directly away from the central body until the switching time
t;, then it is reversed to complete the transfer. All transfers where A; > 4 can be
approximated by the equation

ve = 20/(R = DA, (m, _ 0) (212)

or

(R — 1A,
2-m, — 21l —m,"

The final time is found from equation (15) or (16) and the switching time is

(m, >0).  (21b)

Ve = —In(1 — mp)\

t, = 05t, (m, =0) (22a)

Oor

t; = (1 “VL- m”)tf, (m, > 0). (22b)

Chart/Equation Verification and Use

As a matter of convention, the input parameters will always be given as the
array (r;, re, iy A, mp). It is assumed the reader can determine total accumulated
velocity to two significant figures from the transfer charts; six significant figures
will be carried in all computations to reduce round-off error. Physical constants
can be found in Seidelmann [21]. The data will be presented in the following form:

a) Unscaled Input Array

b) Scaled Input Array (equations (17) and (18))

¢) Accumulated velocity change from appropriate chart or equation

d) Mass flow rate (equation (14), if needed)

¢) Minimum time-of-flight (equation (15) or (16)).

Test Case 1

The first test case is an Earth-Mars transfer where both planetary orbits are
assumed to be circular and coplanar. The spacecraft starts in a heliocentric orbit
free of Earth’s gravitational field and finishes free of Mars’ field; Earth escape and
Mars capture are not considered. An Earth-Mars transfer solution can be found 1n
Bryson and Ho [18], but a mass flow rate of —12.9 Ib/day is given for a 10* Ib
vehicle instead of the propellant mass fraction required here; interpolation will be
needed to find a solution. The specific mass flow rate is —1.29 X 107°/day or
—1.49306 X 107'/s; as a starting point m, is set at 0.25.

a) (1.49598 X 101! m, 2.27939 X 10'! m, 1.32712X m’/s?,

8.33173 X 107* m/s2 0.25)
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b) (1.0 DU*, 1.52368 DU*, 1.0 DU*’/TU*2, 0.1405 DU*/TU*?, 0.25)

c) vy =054 DU*/TU* (from Fig. 2)

d) m = —0. O748506/TU = —1.49026 X 1073/s

e) tyr = 3.33999 TU™ = 1.67756 X 107 s
This final time solution is adequate because m1 from equation (14) is within two
significant figures of the original. For illustration purposes, m, will be increased
to 0.5 and interpolation will be used to refine the results and better determine
the transfer time. '

a) (1.49598 x 10" m, 2.27939 X 10! m, 1.32712 X 1029 3 /82,

8.33173 X 1074 m/s 0.5)

b) (1.0 DU*, 1.52368 DU*, 1.0 DU**/TU*?, 0.1405 DU*/TU*?, 0.5)

C) Vi = 0.59 DU*/TU* (from Fig. 3)

d) m = —0. 165063/TU = —3.28637 X 1073/s

e) tr = 3.02915 TU™ = 1.52144 X 10’ s.
Linear interpolation of r produces a final time of 3.33951 TU*, 1.67729 X 10’ s,
or 194.131 days. This is within two significant figures of the Bryson and Ho
solution of 193 days [18] and the exact numerical solution of 192.748 days.

Test Case 2

This case involves a LEO-GEO coplanar transfer from a circular parking orbit
of 1.05 DUy to a final circular orbit of 6.61 DUg. The initial vehicle acceleration
is 4.0 X 107 m/s* with a propellant mass fraction of 0.25.

a) (1.05 DUs, 6.61 DU, 1.0 DUY/TUZ, 4.0 X 107° m/s*, 0.25)

b) (1.0 DU*, 6.29524 DU*, 1.0 DU*3/TU*?, 4.50079 X 1077 DU*/TU**,

0.25)
C) vy = 0.60144 DU™*/TU™ (from equation (20))
d) m = —2.15282 X 10"7/TU = —2.48 X 10719/
e) tr = 1.16126 X 10° TU™ = 1.00806 X 10° s.

This case involves low thrust (flat curve for Figs. 1-4, v, constant for a given
orbit ratio R regardless of m, or A;) and agrees with the numerical solution.

Test Case 3

This is a high-thrust LEO-GEO transfer similar to case 2 with the acceleration
increased by a factor of 10® and a propellant mass fraction of 0.75.

a) (1.05 DUg, 6.61DU,, 1.0 3/TUZ%, 4.0 X 10°> m/s?, 0.75)

b) (1.0 DU*, 6.29524 DU¥, 1 0 DU*3/TU*2, 45.0079 DU*/TU*?, 0.75)

C) vy = 42.80285 DU / TU* (from equation (21b))

d) m= —1 45771/TU = —1.67925 X 1073/s

e) t; = 0.514505 TU™ = 446.628 s.
The exact numerical solution i1s 445.582 s.

Closing Remarks

This paper provides simple graphical/analytical tools to determine the minimum
elapsed time and associated fuel of a constant-thrust vehicle for circle-to-circle
coplanar transfers. Accumulated velocity change replaces the time-of-flight while
also accounting for propellant mass loss. The solutions are globally mapped with
no restrictions on initial thrust magnitude, intermediate eccentricity, or number
of revolutions of the central body. Several examples are presented that verify the
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transter charts/equations and show their ease of use. These are useful tools for
mission planners and satellite builders to assess preliminary fuel/time requirements
or to compare different propulsion technologies. No computer is needed for
analysis, only a straight-edge and a scientific calculator.

Figures 1-4 were designed for preliminary fuel/time assessment and do not
portray the associated control history of the thrust angle ¢. The numerical
solutions are very sensitive to small changes of the initial Lagrange multipliers;
charts of multipliers could not be read with sufficient accuracy, so none were
included in this paper. Also, because this paper deals with preliminary design,
charts of 1nitial thrust angles were not included. A method to determine the
thrust vectoring strategy analytically or semi-analytically will be the subject of a
future paper.

A Hohmann-like transfer will always be more fuel efficient than a continuous-
thrust transfer; this could be accomplished by a series of near-impulsive thrusting
segments at a predetermined periapsis followed by a similar sequence at the
corresponding apoapsis. Two advantages of continuous thrusting are shorter
transfer times and reduced on-off cycling of the propulsion system. The charts
and equations given here are well suited for such trade-off studies.
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