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1 Introduction

1.1 Surprises of modern relativistic astrophysics

Since the first paper on Relativistic Astrophysics, published by Hoyle et al.
1964 [100], where crucial role of relativistic gravity in studies of extremal
astrophysical objects was discussed, more than fifty years passed by. Gravity
is really a cosmic force, so the true basis of relativistic astrophysics is the the-
ory of gravitational interaction. Modern relativistic astrophysics deals with
compact relativistic objects (neutron and quark stars), candidates for black
holes of stellar and galactic masses, gravitational radiation and its detection,
massive supernova explosions, gamma ray bursts, jets from active galactic
nuclei and cosmological models of the Universe. The common basis for in-
terpretation of all these observed phenomena is the general relativity theory
(GRT), which now achieves 100 years from its birthday (Einstein 1915 [65];
Hilbert 1915 [96]).

Though the success of GRT in explanation of classical relativistic gravity
effects is generally recognized (Will 2014 [200]), there are some puzzling the-
oretical and observational problems, which stimulate to search for alternative
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gravitation theories. 1 Here I emphasize several observational and conceptual
problems of relativistic astrophysics, which can be considered as a signal for
more wide study alternatives.

First, recently gravitational-wave signals were detected by using Ad-
vanced LIGO interferometric antennas [1], [2], [3]. This means that the grav-
itational field energy carried by gravitational waves, was localized by a GW
detector, i.e. free gravitational field energy can be transformed to the ki-
netic energy of the moving LIGO mirrors. However according to [127] (§20.4,
p.467): ”...gravitational energy... is not localizable. The equivalence princi-
ple forbids”, and (§35.7, p.955): ”...the stress-energy carried by gravitational
waves cannot be localized inside a wavelength”. Hence one can talk only
about smeared-out amount of stress-energy within a region of several wave-
lengths size, while the LIGO gw-detector has length 4 km and localizes the
gravitational wave well inside the gw-wavelength λGW ≈ 4000 km. 2 The
localization of the positive gravitational field energy is also consistent with
firm observations of the energy loss via gravitational wave radiation from bi-
nary system with pulsar PSR 1913+16 3 (recently summarized in [193]). So
gravitational waves carry positive energy density, which would be detected
(localized) also from many other collapsing cosmic objects.

Second, very recent surprising observational facts come from studies of the
black hole (BH) candidates at the centers of luminous Active Galactic Nuclei
and stellar mass Black Hole Binaries. Analysis of the ironKα line profiles and
luminosity variability gave amazing result: the estimated radius of the inner
edge (Rin) of the accretion disk around central relativistic compact objects
(RCO) is about (1.2−1.4)Rg, whereRg = GM/c2 = RSch/2, i.e. less than the
Schwarzschild radius RSch of corresponding central mass (Fabian 2015 [73],
Wilkins & Gallo 2015 [202], King et al.2013 [112]). This points to a suspicion
that in the nature there is no Schwarzschild black holes. For example, in the
case of Seyfert 1 galaxy Mrk335 Rin ≈ 1.23Rg, which means that BH should
be a Kerr BH rotating with linear velocity about 0.998c. What is more, the
emissivity profile sharply increases to smaller radius of the disk (Wilkins 2015
[202]).

Another kind of observations close to horizon of supermassive BH can-
didates comes from mm wavelength VLBI Event Horizon Telescope (EHT),
see Doeleman et al.2009 [58]. Event-horizon-scale structure in the supermas-
sive black hole candidate at the Galactic Centre (SgrA*) and M87 can be
achievable directly with submm EHT in the near future and this will give
possibility at first time to test relativistic and quantum gravity theories at
the gravitational radius (Doeleman et al.2008 [59], Doeleman et al.2009 [58],
Doeleman et al.2012 [60], Falcke & Markoff 2013 [74], Johannsen et al.2015
[109]). The first results of EHT observations at 1.3mm surprisingly demon-
strate that for the RCO in SgrA* there are no expected for BH the light

1 Last version of Will’s review [200] contain list of seven alternative metric grav-
itation theories.

2 Localization of the electromagnetic field energy carried by electromagnetic wave
does not depend on the wavelength, e.g. waves having 1 kilometer wavelength are
localized by antenna having length about 1 meter.

3 R.A. Hulse and J.H. Taylor won in 1993 Nobel Prize in physics for this discovery.
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ring at radius 5.2RSch (Doeleman et al.2008 [59]). These observations have
opened a new page in study of RCO. In particular, EHT has been designed
to answer the crucial questions: Does General Relativity hold in the strong
field regime? Is there an Event Horizon? Can we estimate Black Hole spin by
resolving orbits near the Event Horizon? How do Black Holes accrete matter
and create powerful jets? (Doeleman et al.2009 [58]).

Conceptual obstacles of GRT, which are directly related to these obser-
vations, include well-known ”energy localization” and ”horizon” problems.
The energy localization problem is that within GRT there is no tensor char-
acteristics of the energy-momentum for the gravity field [180], [118], [127],
[22]. Landau & Lifshitz 1971 [118] called this quantity pseudo-tensor of
energy-momentum and noted that covariant divergence of the total energy-
momentum tensor (right side of the Einstein’s field equations Eq.15) does not
express the energy-momentum conservation for matter plus gravity field. The
”pseudo-tensor”(meaning non-tensor) character of the gravitational energy-
momentum in GRT has been discussed from time to time for a century (see
a review Baryshev 2008 [22]), causing surprises for each new generation of
physicists. However rejecting the Minkowski space inevitably leads (according
to Noether theorem) to deep difficulties with the definition and conservation
of the energy-momentum for the gravitational field (see Sec.1.4 and Sec.2.5).

There are several paradoxes of black hole horizon theory (e.g. discussions
in Hawking 2014 [94], 2015 [95], ’t Hooft 2015 [179]). Also, there is paradox
of the infinite time formation of the classical BH event horizon (in the distant
observer coordinates, so for us) and finite time of BH quantum evaporation,
so a BH should evaporate before its formation (Chowdhury & Krauss 2014
[46] ). The situation is confusing and the Stephen Hawking claimed in [94]
that though there is no escape from a black hole in classical theory, but in
quantum theory, however, energy and information can escape from a black
hole. Hawking’s conclusion is that an explanation of the process requires a
theory that successfully merges gravity with the other fundamental forces of
nature.

Modern cosmological observations is well described by the standard cos-
mological LCDM model based on Friedmann’s solutions of GRT field equa-
tions. However there are both observational and conceptual difficulties which
also stimulate analysis of alternative gravitation theories and cosmological
models (Clifton et al. 2012 [47], Baryshev 2015 [26]). Among them: the cold
dark matter crisis on galactic and sub-galactic scales (Kroupa 2012 [117]); the
LCDM crisis at super-large scales (Sylos Labini 2011 [170], Clowes et al.2013
[48], Horvath et al.2015 [98]; Shirokov et al. 2016 [163]); the Newtonian char-
acter of the exact Friedmann equation (Baryshev 2008 [24]); violation of the
energy-momentum conservation within any comoving local volume (Harrison
1995 [92], Baryshev 2008 [24]); violation of the velocity of light by space ex-
pansion velocity for galaxies observed at high redshifts (Harrison 1993 [91],
2000 [93], Baryshev & Teerikorpi 2012 [32] Baryshev 2015 [26]). Modern state
of the standard cosmological model and possible alternatives will be discussed
in Section 5.
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1.2 The quest for unification of fundamental forces

The success of the Standard Model of electromagnetic, weak and strong in-
teractions was achieved on the way of unification of the fundamental physical
forces in the frame of the quantum field theory (QFT). Now it has reached a
respectable status as an accurate and well-studied description of sub-atomic
forces and particles, though difficult conceptual and technical problems re-
main to be solved (Bogolubov & Shirkov 1993 [39]; Wilczek 1999 [195], 2015a
[197], 2015b [198]; ’t Hooft 2004 [178]).

It is expected, that future ”Core Theory” of physics will unify all funda-
mental forces (electromagnetic, weak, strong and gravitation) and also deliver
unification of force (bosons) and substance (fermions) via transformations of
supersymmetry (Wilczek 2015a,b [197] [197]).

One obstacle for unification of fundamental forces with the geometrical
gravitation theory (general relativity theory − GRT) is that the conceptual
basis of GRT principally different from the Standard Model. As it is well-
known, gravity in the frame of GRT is not a force (de Sitter 1916 [53]), so
quantization must be applied to the curved Riemannian space-time, where
energy of gravity field cannot be properly (tensorial) defined ([180], [118],
[127], [22]). Also the problem of the non-renormalizability of the gravita-
tional interaction requires new ideas in QFT, e.g. quantization of space-time
(Rovelli 2004 [155]).

The QFT reconciled Quantum Mechanics with the Relativistic Field The-
ory by construction of interacting substances via material fields that does
obey the laws of Lorentz invariance, gauge invariance and causality. The
concept of a field energy has crucial meaning in the QFT, because of the
energy in a quantized field comes in quantized energy packages, which in all
respects behave like elementary particles.

The association of forces (or, more generally, interactions) with exchange
of particles is a general feature of quantum field theory. Electric and magnetic
forces between charged particles are explained as due to one particle acting
as a source for electric and magnetic fields, which then influence others. With
the correspondence of fields and particles, as it arises in quantum field theory,
Maxwells ED corresponds to the existence of photons, and the generation of
forces by intermediary fields via the exchange of real and virtual photons.

The first step for constructing quantum electrodynamics (QED) is to
develop relativistic classical vector field (Ai(xk)) - classical electrodynamics
(ED). In this paper the ED theory will be used as a primary example for
preparation of the classical part of the QFT. So bellow I emphasize the crucial
points of ED (Landau & Lifshitz 1971 [118]) 4 , which will be compared with
geometrical and field gravitation theories.

The basic principles of ED is:

• the inertial reference frames;
• the flat Minkowski space-time;
• the relativistic vector field Ai(t,x);

4 We use main definitions and notations similar to Landau & Lifshitz [118], so
the Minkowski metric ηik has signature (+,−,−,−), 4-dimensional tensor indices
are denoted by Latin letters i, k, l... which take on the values 0, 1, 2, 3, and Greek
letters α, β, µ, ν... take the values 1,2,3.
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• the Least (Stationary) Action Principle;
• the conservation of charges;
• the gauge invariance principle;
• the localizable energy-momentum tensor of the field.

The action S for the system, consisting of an electromagnetic field with charged
particles, must consist of three parts:

S = S(em) + S(int) + S(p) = −1

c

∫

(

1

16π
FikF

ik +
1

c
Aij

i + ηikT
ik
(p)

)

dΩ . (1)

The notations (em), (int), (p) refer to the actions for the electromagnetic field, the
interaction, and the particles. The physical dimension of each part of the action is

[S] = [energy density]× [volume]× [time],

meaning that the definition of energy density of the field should exists within
the conceptual bases of the principle of stationary action. j i - 4-current, Ai -
4-potential, and F ik - electromagnetic field tensor

Ai = (ϕ,A) , Fik = Ak,i − Ai,k (2)

From the Least Action Principle (δS = 0) by means of the variation of 4-
potentials A i with fixed sources j i we get field equations with conserved sources

(Ak,i − Ai,k), k = −4π

c
j i where j i

,i = 0 . (3)

Following Schwingers ”source theory” ([160], [161]) in ED the electromagnetic field
source is 4-current j i(x

k) = (cρe, j) which together with the Lorentz invariant law of
charge conservation (scalar restriction j i

,i = 0) excludes the scalar source of the 4-
vector field, i.e. the scalar photons. In fact the logic of spin 0 particle exclusion is fol-
lowing: current conservation ⇒ scalar source exclusion ⇒ gauge invariance ⇒
constraint field.

The left side of the field equations eq.(3) allows the gauge invariance in the
form:

Ai → Ai + ξ,i (4)

which allows to use the Lorentz gauge condition

Ai
, i = 0 i.e.

1

c

∂ϕ

∂t
+ divA = 0 (5)

and the final field equations has ordinary wave equation form

(

△− 1

c2
∂2

∂t2

)

Ai = −4π

c
j i . (6)

The gauge invariance eq.(4) is consistent with the conservation of the source
of the field eq.(3) and with the deleting of the ”scalar” photons. Indeed, the 4-
vector field can be decomposed under the Lorentz group into a direct sum of two
subspaces, one of which has 3 components (spin 1 particles) and another has 1
component (spin 0) [80], [11]. 4-potential Ai has 4 independent components, which
correspond to one spin 1 and one spin 0 representations, then current conservation
law allows to exclude the source of the spin 0 particles, so only photon with spin 1
is real:

{Ai} = {1} ⊕ {0} ⇒ current conservation ⇒ {Ai} = {1} . (7)
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The canonical energy-momentum tensor (EMT) of the electromagnetic field, after
symmetrization, has the form:

T ik =
1

4π
(−F ilF k

l +
1

4
ηikFlmF

lm) , (8)

which has following important features:

• T ik = T ki -symmetry condition;
• T 00 = (E2 +H2)/8π > 0 - localized field energy density, positive for both static

and wave field, corresponding to the positive photon energy Ephoton = hν;

• T = ηikT
ik = 0 -trace of the EMT is zero for mass-less particles (photons);

• the EMT from S is defined not uniquely;
• the EMT is gauge invariant.

Variation in action S the trajectory of a particle with fixed 4-potentials gives
the 4-equations of motion for charged particle:

mc
dui

ds
=
e

c
Fiku

k , (9)

or in 3-d form it gives the Lorentz force (i = α) and its work (i = 0):

dp

dt
= eE+

e

c
[v ×H] , (10)

and
dEkin

dt
= eE · v , (11)

Adding to ED the quantum physical requirements - the uncertainty principle,

the principle of superposition, quanta of the field energy as mediators of force,

and so on, the QED was constructed in the frame of QFT, and then unified into

electro-weak theory.

1.3 Einstein’s geometrical and Feynman’s field gravitational physics

Two ways in gravity physics. Since the beginning of the 20th century two
really alternative approaches were put forwarded for the description of the
gravitational interaction in theoretical physics.

The first one is the geometrical Einstein’s general relativity theory (GRT),
which is based on the geometrical concept of curved Riemannian (actually
pseudo-Riemannian) space and reject the ordinary physical concept of force
in application to gravitation. GRT was founded by Einstein 1915 [65]; 1916
[66] and Hilbert 1915 [96], and gives an example of geometrical way in con-
struction of gravity theory. GRT operates with such concepts as metric tensor
gik, geodesics, curvature, equivalence of the free fall to the inertial motion.
Wheeler termed this approach geometrodynamics, underlining the fact that
geometry is not a passive background but becomes a dynamical physical
entity that may be deformed, stretched and even spread in the form of grav-
itational waves. Geometrical gravity treats the gravitational interaction as
the curvature of space and has a singular position among other physical in-
teractions, which are based on the physical concept of the force caused by
the exchange of the quanta of the field.
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During one hundred years GRT was developed and successfully applied
to many gravity phenomena in the Solar System, galactic and extragalactic
astronomy (Will 2014[200]; Kopeikin, Efroimsky, Kaplan 2011 [116]; Brum-
berg 1991 [42]; Zeldovich & Novikov 1984 [206]; Misner, Thorne & Wheeler
1973 [127]; Weinberg 1972 [188], 2008 [190]). However general relativity is
not a quantum theory and many attempts to construct geometrical quantum
gravity theory have not yet brought generally accepted convincing solution of
the ”Quantum theory’s last challenge” (Amelino-Camelia 2000 [7]; Wilczek
2015a,b [197], [198]).

Another approach for understanding gravity was already suggested by
Poincaré, who considered gravitation as a fundamental force in relativistic
space-time. As early as 1905, Poincaré in his work ”On the dynamics of the
electron” put forward an idea about relativistic theory for all physical interac-
tions, including gravity, in flat 4-d space-time (now called Minkowski space).
He pointed out that analogously to electrodynamics, gravitation should prop-
agate with the velocity of light, and there should exist mediators of the inter-
action – gravitational waves, l’ onde gravifique, as he called them (Poincaré
1905 [150]; 1906 [151]). A few years later in his lecture on ”New concepts of
matter” Poincaré wrote about inclusion Planck’s discovery of the quantum
nature of electromagnetic radiation into the framework of future physics for
all fundamental interactions. Poincaré thus could be rightfully regarded as
the visionary of that approach to gravity which describes it as the relativistic
quantum force.

According to Feynman’s Lectures on Gravitation (1971 [76], 1995 [77]) the
field gravitation theory (FGT) must be relativistic and quantum, which is de-
scribed by symmetric second rank tensor field ψik in Minkowski spacetime. So
as in the theory of electromagnetic interaction we have electrodynamics (ED)
and quantum electrodynamics (QED), in the case of FGT we should consider
”gravidynamics” (GD) and ”quantum gravidynamics” (QGD). Within FGT,
as in ED, general concepts of force and localizable positive field energy density
naturally exist, and FGT should be included in the list of the field theories
of fundamental physical interactions.

Due to great success of general relativity in explanation of existing ex-
perimental and observational facts in gravity physics, the field gravitation
theory up to now has been outside general attention. However the field ap-
proach to gravitation was partly developed by number of famous physicists,
among them Birkhoff 1944 [37]; Moshinsky 1950 [131]; Thirring 1961 [177];
Kalman 1961 [110]. Attempts for a quantum description of the gravitational
field were made by Bronstein 1936 [41]; Fierz & Pauli 1939 [78]; , Ivanenko
& Sokolov 1947 [106]; Gupta 1952a,b [89],[90]; Feynman 1963 [75]; 1971 [76];
Weinberg 1965 [187]; Zakharov 1965 [205]; Ogievetsky & Polubarinov 1965
[137] and others. The fundamental role of the scalar part (omitted in Feyn-
man’s Lectures on Gravitation) of the symmetric second rank tensor field
(i.e. its trace ψ = ηikψ

ik) was found and developed by Sokolov and Baryshev
(e.g. [167]; [164]; [166];[13]; [14]; [21]; [26]). As a result, a consistent field grav-
ity theory has been developed, where the central role belongs to the inertial
frames, Minkowski space and localizable positive energy of the gravitational
field, including its scalar part.
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1.4 Why FGT is principally different from GRT

The relation between GRT and FGT was discussed in the literature with
many misleading claims. The spectrum of the opinions is very wide, from the
identity of the field gravity and general relativity, which are ”just different
languages” for the same physical phenomenon, and up to the claim, that the
geometric theory delivers the only possible way to construct the gravitation
theory, and the field gravity is completely wrong. Let us consider the real
state of the art of the problem.

Special features of the geometrical approach. Within geometrical approach
the gravitational interaction is described as a curvature of space-time. GR is
a relativistic non-quantum theory of the gravitational interaction and based
on the following fundamental concepts:

• the non-inertial reference frames;
• the equivalence principle and geometrization of gravity;
• the curved Riemannian space-time with metric gik;
• the geodesic motion of matter and light;
• the general covariance;
• the geometrical extension of Stationary Action Principle.

Note, that the equivalence principle (EP) played an important role in the
history of the general relativity formulation. EP has many forms – from non-
relativistic to philosophical, which are not equivalent and difficult to test.
Actually in experiment one tests the universality of the free fall, which is
expected to be independent on the structure and motion of a test body (also
known as the ”effacing principle” [116]). Another form of the EP is the ge-
ometrization principle, i.e. geodesic motion in Riemannian space, which now
is considered as the primary initial assumption of the geometrical approach.
However the geometrical quantum gravity approach predicts violation of the
EP and Lorentz invariance (Amelino-Camelia et al. 2005 [8]; Bertolami et
al.2006 [36]).

On the bases of these initial principles general relativity was developed
and successfully applied to the number of experiments and observations in the
weak gravity conditions (Will 2014 [200]). Strong gravity GR predictions, like
gravitational collapse to singularity, black hole existence, and global space
expansion, may be observed only within astrophysical conditions where in-
terpretation of the data allows different possibilities due to specific passive
character of the astronomical observations and the dominance of distortion
and selection effects which influence real astronomical data. So, in spite of
many claims about proved existence of black holes and space expansion, up
to now there is no real experimental/observational proof of the GR
strong gravity effects, which are still hypothetical models for the observed
astrophysical phenomena (see discussion in Sec.3 and Sec.4).

In conditions of the weak gravity general relativity is a well verified theory.
It has passed all available tests in the Solar System and binary pulsars.
Nevertheless, more accurate and conceptually new tests in the weak-field
regime are still needed as well as tests of strong-gravity effects ( Fabian 2015
[73]; Wilkins 2015 [202]; Baryshev 2015 [26]; Sokolov 2015 [166]; Will 2014
[200]; Doeleman 2009 [58]; Baryshev 2008 [23]; Bertolami et al.2006 [36]).
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Problem of gravitational field energy-momentum in GRT. The most puz-
zling feature of general relativity is the absence of the tensor character of
the energy-momentum ”tensor” for the gravity ”field”. This was clearly ex-
posed already by Einstein 1918 [68]; Schrödinger 1918 [159]; Bauer 1918 [35],
and more recently discussed by Landau & Lifshitz 1971 [118]; Logunov &
Folomeshkin 1977 [120]; Strauman 2000 [169]; Pitts & Schieve 2001 [147];
Xulu 2003 [203]; Baryshev 2008 [22].

The problem of the energy of the gravity field in general relativity has a
long history, it was, in fact, born together with Einstein’s equations. Hilbert
1917 [97] was the first who noted that ”I contended ... in general relativ-
ity ... no equations of energy ... corresponding to those in orthogonally in-
variant theories”. Here ”orthogonal invariance” refers to theories in the flat
Minkowski space. Emmy Noether 1918 [136], a pupil of Hilbert, proved that
the symmetry of Minkowski space is the cause of the conservation of the
energy-momentum tensor of all physical fields. Many results of modern rel-
ativistic quantum field theories are based on this theorem. So the ”prior
geometry” of the Minkowski space in the field theories has the advantage of
guarantee the tensor character of the energy-momentum and its conservation
for the fields.

In fact, Einstein & Grossmann 1913 [70] came close to Noether’s result
when they wrote: ”remarkably the conservation laws allow one to give a phys-
ical definition of the straight line, though in our theory there is no object
or process modeling the straight line, like a light beam in ordinary relativity
theory”. In other words, they stated that the existence of conservation laws
implies the flat Minkowski geometry. In the same article Einstein & Gross-
mann also emphasized that the gravity field must have an energy-momentum
tensor as all other physical fields. However, in the final version of general rela-
tivity Einstein rejected this requirement in order to have a generally covariant
gravity theory with no prior Minkowski geometry.

Schrodinger 1918 [159] showed that the mathematical object tik suggested
by Einstein in his final general relativity for describing the energy-momentum
of the gravity field may be made vanish by a coordinate transformation for
the Schwarzschild solution if that solution is transformed to Cartesian co-
ordinates. Bauer 1918 [35] pointed out that Einstein’s energy-momentum
object, when calculated for a flat space-time but in a curvilinear system of
coordinates, leads to a nonzero result. In other words, tik can be zero when
it should not be, and can be nonzero when it should.

Einstein 1918 [68] replied that already Nordstrom informed him about
this problem with tik. Einstein noted that in his theory tik is not a tensor
and also it is not symmetric. He also withdrew his previous demand of the
necessity to have an energy-momentum tensor: ”There may very well be
gravitational fields without stress and energy density”.

The ”pseudo-tensor” (meaning ”non-tensor”) character of the gravity field
in GR has simple mathematical cause. As emphasized by Landau & Lifshitz
1971 ([118] sec.101 p.304) due to Bianchi identity the covariant divergence
of the right part of Einstein’s equation (which is the EMT of matter T ik

(m)) is

equal to zero, i.e. T ik
(m) ;k = 0. However for conserved quantity one should have

the ordinary partial divergence: ((
√−g)T ik

(m)) ,k = 0. So Landau & Lifshitz
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suggested to consider pseudo-tensor (non-tensor) of energy-momentum of
gravitational field which should be added to the EMT of matter and allow
to fulfill the needed equation ((

√−g)(T ik
(m) + tik)) ,k = 0.

There are many different expressions for pseudo-tensors but the prob-
lem of coordinate dependent (non-physical) definition of the gravity energy-
momentum still exists at fundamental level − gravitational field is not a mat-
ter within GRT. This also demonstrate, that rejecting the Minkowski space
inevitably leads to deep difficulties with the definition and conservation of
the energy-momentum for the gravity field.

Attempts to resolve the gravitational energy-momentum problem in geomet-
rical approach. The main question of the gravity physics is the role of the
global Minkowski space in the gravitation theory. Within the geometrical ap-
proach Minkowski space is a tangent space at each point of curved space (the
local Lorentz invariance). The field approach utilizes the global Minkowski
space to describe all four fundamental physical interactions as material fields
in space.

According to Noether’s theorem in the relativistic field theory the conser-
vation of the energy-momentum relates to the flat global Minkowski space.
However in general relativity there are no conservation laws for the energy-
momentum of the matter plus gravity field, just because of the absence of
the global Minkowski space. The energy problem has deep roots in the geo-
metrical approach, which uses curved space and non-inertial reference frames,
while the field approach based on the Minkowski space with inertial reference
frames naturally contains local EMT for the gravity field.

Within GR there are attempts to construct of a ”quasi-local” energy-
momentum and angular momentum to save the physical concept of the en-
ergy for the gravity ”field” (Szabados 2009 [173]). There are also several
suggestions how to overcome the energy-momentum problem by a modifi-
cation of general relativity, or by postulating additional constraints on the
metric of the Riemannian space, or by introducing together Minkowski and
Riemannian metrics. This has led to different ”field-geometrical” gravity the-
ories with different equations and predictions ( e.g. Logunov & Mestvirishvili
1989 [121]; Yilmaz 1992 [204]; Babak & Grishchuk 2000 [10]; Pitts & Schieve
2001 [147]; Xulu 2003 [203]).

All these theories are geometrical (use geometrization principle) and they
predict some differences with GRT only in the case of the strong gravity
field, which is not directly observed yet. However, as we shall show below,
the results of the consistent Poincare-Feynman field approach has led to
predictions which differ from GRT even in the weak field conditions, which
can be tested by experiments in the Earth laboratories and by observations
using terrestrial and space observatories.

Attempts to unify general relativity with field approach. There are many at-
tempts to reconcile GRT with ordinary relativistic field physics. For a ”proof”
of identity of GRT and FGT approaches some physicists tried to use two op-
posite ways, so called ”top-down” and ”down-top” argumentations.
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The first, top-down approach starts from the ”top” full non-linear Ein-
stein equations and goes to the ”down” - linear weak field approximation.
In this case the GRT field equation is similar to the field equations for the
spin 2 particles in Minkowski space for the quantities hik, defined by the
relation gik = ηik +hik. So in this linear approximation one can consider hik

as ordinary tensor field and introduce its quanta − spin 2 massless particles:
(Bronstein 1936 [41]; Fierz & Pauli 1939 [78]; Ivanenko & Sokolov 1947 [106];
Gupta 1952a,b [89]; [90]; Feynman 1963 [75]; Zakharov 1965 [205]).

The second, down-top approach starts from the ”down” linear equations
for material symmetric tensor potentials ψik in Minkowski space and goes to a
derivation of the ”top” Einstein equations for the ”metric tensor” f ik = ηik+
ψik of an ”effective” Riemannian space (Weinberg 1965 [187]), Ogievetsky
& Polubarinov 1965 [137]; Deser 1970 [52]; Feynman 1971 [76]; 1995 [77];
Misner, Thorne, Wheeler 1973 [127] ).

However there is a number of fundamental obstacles of such transforma-
tion of material field ψik in Minkowski space into non-material curved space
itself with true metrics gik = ηik + hik. First, the quantities f ik = ηik +ψik,
as the sum of two tensors, is a tensor of Minkowski space. Hence its covariant
components are fik = ηik + ψik and mixed components f i

k = δik + ψi
k, and

its trace is f ikfik = 4 + 2ψ + O(ψ2
ik), while for a true metric tensor one

should have the exact relation gikgik ≡ 4. So in the geometrical approach
the trace of the tensor field ψik (scalar part ψ = ηikψ

ik of the gravitational
potentials) is lost. Also for true metric tensor of any Riemannian space its
mixed components are exactly gik ≡ δik, hence geometric theory has hik ≡ 0.

As we discuss below the incompatibility of geometrical (GRT) and quan-
tum field (FGT) approaches exists on the level of the adopted conceptual
principles. Conceptual tensions between quantum mechanics and general rel-
ativity were noted by some physicists (e.g. Wigner in 1957) and have re-
cently again attracted attention (e.g. Amelino-Camelia 2000 [7]; Chiao 2003
[45]; Yilmaz 1992 [204]). The most pressing problem in present-day theoret-
ical physics is how to unify quantum theory with gravitation, i.e. ”quantum
gravity problem”. The standard scheme of quantization applied to general
relativity gives a theory that is not renormalizable (i.e. leads to inevitable
infinities in physical quantities), though the quantization of space-time is
now under construction (Rovelli 2004 [155]). Other attempts are based on
the string/M theory, canonical/loop quantum gravity, and non-commutative
geometry. However the difficulties on this way so large that after all attempts
there is still no quantum geometrical gravity theory (Amelino-Camelia 2000
[7]; Amelino-Camelia et al. 2005 [8]).

Note that, if in a physical theory the energy-momentum tensor of the
field is not defined, then also the energy of the field quanta can not be
defined properly. General relativity is not quantizable in ordinary physical
sense because it has no energy-momentum tensor for the gravity field. Also
important that properly defined energy of the gravity field also exclude an
appearance of singularity and horizon (Sec.4.2).

Special features of the Poincare-Feynman approach. Feynman discussed the
strategy of the FGT and suggested to construct ”theory of gravitation as the
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31st field to be discovered” ([77] p.15). He analyzed basic principles of the
FGT and emphasized, that ”geometrical interpretation is not really necessary
or essential for physics”([77] p. 113).

So the natural relativistic quantum field approach to gravitational inter-
action should be developed on the way where other fundamental interactions
already have been constructed. Feynman emphasized that the ”world cannot
be one-half quantum and one-half classical” and ”it should be impossible to
destroy the quantum nature of fields” ([77] p.12).

Modern physics deals with four presently known fundamental interac-
tions: the electromagnetic, the weak, the strong and the gravitational. The
first three interactions are described by using Lagrangian formalism of the
relativistic quantum field theory in Minkowski space. The FGT theory also
should be based on the same Lagrangian concepts, including also specific
scalar-tensor character of the gravitational field:

• the inertial reference frames;
• the flat Minkowski space-time wih metric ηik;
• the symmetric tensor potentials ψik(xm) with trace ψ(xm) = ψikηik;
• the universality of gravitational interaction;
• the Stationary Action Principle (Lagrangian formalism);
• the conservation law of energy-momentum;
• the gauge invariance principle;
• the localizable energy-momentum tensor of the gravitational field;
• the gravitational field energy quanta as mediators of the gravity force;
• the uncertainty principle and other quantum postulates.

In Sec.3 we discuss how to construct the consistent Poincare-Feynman
field gravity theory based on these initial principles. The energy of the grav-
itational field plays the central role in a reasonable theory of gravitational
interaction. Feynman’s notorious words in a letter to his wife ”Remind me
not to come to any more gravity conferences” ([77] Foreword p.xxvii) are
related to this very issue, he did not wish to discuss the question of whether
there is energy of the gravitational field. For him gravitons were particles
carrying the energy-momentum of the field: ”the situation is exactly analo-
gous to electrodynamics − and in the quantum interpretation, every radiated
graviton carries away an amount of energy h̄ω” ([77] p. 220).

Nowadays, when the Nobel Prize in Physics (1993) was given for the
discovery of the binary pulsar PSR 1913+16, which is loosing orbital energy
due to gravitational radiation, and the Advanced LIGO gw-antennas have
detected the gravitational waves (i.e. have localized gw-energy), it is clear
that Feynman was right when insist on the necessity to have proper concept
of the energy of the gravitational field. In the field gravity approach there
is usual localizable energy-momentum tensor (EMT) of the gravity field,
while in geometrical approach there is well-known problem of pseudo-tensor
character of the EMT of the gravitational field.

A note on the history of the field gravity approach. The history of the field
gravity approach is characterized by many contraversal opinions and mislead-
ing claims. From time to time at a gravity conference a physicist appeared
who announced that he ultimately had just derived the full non-linear Ein-
stein’s equations from the spin 2 field approach and he will demonstrate it
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at the next conference. However at the next conference the situation was
repeated.

There are many papers and discussions about the derivation of Einstein’s
field equations from the spin 2 theory (another name for the field theory), and
hence about the identity of general relativity and field approach. Feynman in
his lectures on gravitation also tried to derive the full nonlinear Einsteinian
Lagrangian by iterating the Lagrangian of the spin 2 field. However many
physicists feel a tenuity of such derivation and this is why each eminent
physicist try to demonstrate his personal derivation of the geometry from
field approach.

Misner, Thorne & Wheeler [127] (chapter 7, p.178) wrote that ”tensor
theory in flat spacetime is internally inconsistent; when repaired, it becomes
general relativity”. They refereed to papers by Feynman [75], Weinberg [187],
and Deser [52] on a ”field” derivation of Einstein’s equations. Actually in all
this derivations they get first the spin-2 field equations which are identical
with Einstein’s equations in the linear approximation . To perform the next
step to get nonlinear equations one needs to fix the EMT of the gravitational
field, so to use the physical concept of the field energy (including its necessary
properties), which disappear in the ”top” non-linear Einstein’s equations.
Just this crucial step is still a controversial subject.

The internal inconsistence of such attempts to derive Einstein’s equations
from the spin 2 field theory, was noted by Straumann 2000 [169] (p.16), who
pointed out that:

• general relativity having black hole solutions violates the simple topological
structure of the Minkowski space of the quantum field theory;

• general relativity has lost the energy-momentum tensor of the gravity field
together with the conservation laws, while in the Standard Model the EMT
and its conservation is the direct consequences of the global symmetry of
the Minkowski space.

Padmanabhan 2004 [141] gave a comprehensive review of all such at-
tempts and demonstrated that all derivations of general relativity from a
spin 2 field are based on some additional assumptions that are equivalent to
the geometrization of the gravitational interaction.

Indeed, as we noted above, general relativity and field gravity rest on
incompatible physical principles, such as non-inertial frames and Riemann
geometry of curved space on the one side, and material tensor field in inertial
frames with Minkowski geometry of flat space on the other side. Geometri-
cal approach eliminates the gravity force, as already de Sitter [53] noted:
”Gravitation is thus, properly speaking, not a ’force’ in the new theory”.
This however leads to the problem of energy just because the work done by
force changes the energy.

Within the field approach the gravity force is directly defined in an or-
dinary sense as the fourth interaction and has quantum nature (Feynman
[76]; [77]). The question may be formulated as following. Which is more gen-
eral description of gravitation: geometry of curved space (so a property of
space-time itself) or relativistic quantum field (so a kind of matter) in space?
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Astrophysical tests of the nature of gravitational interaction. The relation
between GRT and FGT is still an open question. Intriguingly, due to differ-
ent predictions for observations, this question can be answered by means of
astrophysical observations and lab experiments, so to test which theory has
wider region of applicability?

In physics any mathematical theory has restricted region of applicabil-
ity, i.e. exact mathematical equations and it’s solutions actually have only
approximative physical sense. This is why in physics the last word belong
to experiments, and especially to the crucial experiments and observations,
when rival theories predict different results for certain clearly stated exper-
iment. The geometrical and field approaches are not equivalent experimen-
tally, though the classical relativistic gravity effects in the weak field are
identical in both theories. Because of common region of experimentally tested
effects, it is possible that geometrical approach can be an approximation of
the true quantum field gravity or vise verse.

Geometrical approach of the classical general relativity predicts such spe-
cific objects as singularities, black holes, and expanding space of Friedmann
cosmological model.

The consistent field approach predicts that the gravity force has an ordi-
nary quantum nature. Actually the gravity force is the sum of the attraction
(spin 2) and repulsion (spin 0))(as will be shown in Sec.3 and Sec.4). This
prediction of the FGT theory opens possibilities for novel type of experiments
in gravity physics. Spin 2 plus spin 0 contribution to the gravity force, scalar
gravitational waves, the translational motion of rotating bodies, the atmo-
sphere and the magnetic field of the relativistic compact objects in ”black
hole candidates” are specific effects of the field gravity which may distinguish
FGT from general relativity. In cosmology within the frame of FGT there is
a possibility of infinite flat static Minkowski space filled by ordinary baryonic
matter and having linear Hubble law of cosmological redshift as the global
gravitational redshift effect (see Sec.5).

It is a remarkable result of our considerations that the choice between
two conceptually different gravity theories may be founded on the results of
experiments/observations in physical laboratory. For example, the problem
of gravity quantization is directly linked to the choice of the nature of gravi-
tational interaction. Indeed, if gravity is geometrical in nature (a property of
curved space), then one should develop methods of space-time quantization
(i.g. Rovelli [155]). But if gravity is a force mediated by gravitons (quanta
of the tensor relativistic field), then one should find methods based on the
concept of the energy of the gravity field and develops new principles for
overcoming the non-renormalizability problem. It will be shown below, that
future astrophysical observations of the compact relativistic objects, space
experiments in the Solar System and cosmologically relevant observations
of the Local and High Redshift Universe may distinguish between these two
cardinally different (though having similar predictions within common region
of applications) approaches to the theory of gravitational interaction.
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2 Einstein’s geometrical gravitation theory

The final mathematical formulation of the main equations of general relativ-
ity was done by Einstein [65], [66] and derived by Hilbert [96] from geometri-
cal extension of the stationary action principle. It is a mathematically exact
non-linear theory without any inner limitations to its physical applications
and this is why in GRT singularities and black holes exist. Below we con-
sider shortly the basic steps in construction GRT and its main predictions for
experiments/observations, which we shall compare with corresponding equa-
tions and predictions of the FGT. We use designations as in the textbook
by Landau & Lifshitz [118]. The fundamental physical constants c, G, h are
used explicitly.

2.1 Basic principles

The principle of geometrization. General relativity is based on the principle
of geometrization, which states that all gravitational phenomena can be de-
scribed by the metric of the Riemannian space. This means that Einstein’s
gravity theory has no ”prior geometry”, such as the flat Minkowski space
in other fundamental interaction theories. Gravity is not a material field in
space, but is a property of the curved space itself. The role of the gravita-
tional ”potential” is played by the metric tensor gik which determines the
4-interval of the corresponding Riemannian space:

ds2 = gikdx
idxk (12)

A test particle moves along a geodesic line of the Riemannian space.
Note that geodesic motion is a form of the equivalence principle, which

actually has many ”non-equivalent” formulations like universality of free fall
or philosophical equivalence of the inertial reference frames to the refer-
ence frames accelerated by homogeneous gravity field. Equivalence principle
played an important role when general relativity was born, while now the
basic principle is the principle of geometrization, having clear physical and
mathematical formulation. The most clear and concise presentation of GR is
the textbook by Landau & Lifshitz [118]. The most comprehensive descrip-
tion of the geometrical view on gravity is the textbook by Misner, Thorne &
Wheeler [127].

The principle of least action. Einstein’s field equations are obtained from
the principle of least action by the variation of the metric tensor gik in the
action S of the system matter + gravitational field. It is very important that
the action contains only two parts (there is no interaction Lagrangian, while
other fields contain the interaction part Sfg) :

S = S(m) + S(g) =
1

c

∫

(

Λ(m) + Λ(g)

)√−gdΩ , (13)
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where Sm and Sg are the actions for the matter and gravitational field, Λ(m)

is the Lagrangian for the matter, and the Lagrangian for the field is

Λ(g) = − c4

16πG
ℜ . (14)

Here ℜ is the scalar curvature of the Riemannian space.

2.2 Basic equations of general relativity

Einstein’s field equations. Variation δgik in (13) gives δ(S(m) + S(g)) = 0 for
the field equations:

ℜik − 1

2
gik ℜ =

8 πG

c4
T ik
(m) , (15)

where ℜik is the Ricci tensor. T ik
(m) is the energy-momentum tensor (EMT) of

the matter, which includes all kinds of material substances, such as particles,
fields, radiation, dark energy including the vacuum T ik

(vac) = gikΛ (where Λ

is the Einstein’s cosmological constant).
Note that T ik

(m) does not contain the energy-momentum tensor of the

gravity field itself, because gravitation is not a material field in general rela-
tivity (as also discussed below).

The equation of motion of test particles. A mathematical consequence of the
field equations (15) is that due to Bianchi identity the covariant derivative
of the left side equals zero, so for the right side we also have

T ik
(m) ; i = 0 . (16)

This continuity equation also gives the equations of motion for a considered
matter. 5 It implies the geodesic equation of motion for a test particle:

dui

ds
= −Γ i

klu
kul . (17)

ui = dxi/ds is the 4-velocity of the particle and Γ i
kl is the Christoffel symbol.

2.3 The weak field approximation

All relativistic gravity effects that have been actually tested by observations,
relate to the weak field, where the Newtonian potential |ϕ| << c2. This is
why the weak field approximation has an important role in gravity physics.

5 It is not a conservation of the energy-momentum of the system because T ik
(m)

does not contain the energy-momentum of the gravity field (Landau & Lifshitz
[118]p.304). We shall discuss this in sec.2.5.
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The metric tensor. In the case of a weak gravity field the metric tensor
usually is expressed in the form

gik = ηik + hik

gik = ηik − hik

gik = δik (18)

Here eq.(18) means that a tensor of Riemannian space gik is presented by the
sum of two non-tensor quantities, because ηik and |hik| << 1 are not tensors
of the curved space, e.g. in the third identity of eq.(18) the components

hik ≡ 0. Indeed, the different signs of the quantities ĥ for covariant and
contravariant components of the metric tensor ĝ are caused by the exact
identity valid for the trace of the metric tensor of any Riemannian 4-space:

gik · gik = 4 (19)

As we shall see below this is an essential difference with the consistent field
approach where the sum of two tensors is a tensor of Minkowski space.

The field equations. In the linear approximation |hik| << 1 and Einstein’s
equations (15) become

(

△− 1

c2
∂2

∂t2

)

hik =
16πG

c4

[

T ik
(m) −

1

2
ηikT(m)

]

. (20)

In the important case of a static spherically symmetric weak gravitational
field the solution of these equations gives the metric tensor, expressed in
isotropic coordinates:

gik = ηik +
2ϕN

c2
diag(1, 1, 1, 1)

gik = ηik − 2ϕN

c2
diag(1, 1, 1, 1)

gik = δik , gikg
ik = 4 (21)

where ϕN = −GM/r is the Newtonian potential.

The equation of motion in the weak field. The post-Newtonian approxima-
tion of the weak field takes into account all terms of order v2/c2 and ϕN/c

2.
PN-geodesic equations are frequently used in relativistic celestial mechan-
ics. The 3-acceleration of a test particle in the static spherically symmetric
weak gravity field (e.g. a planet around the Sun) is given by the equation
(Brumberg 1991[42]; Kopeikin et al. 2011 [116]):

(
dv

dt
)
GR

= −{1 + (1 + α)
v2

c2
+ (4− 2α)

ϕ
N

c2
− 3α(

r

r
· v
c
)2}∇ϕ

N

+(4− 2α)
v

c
(
v

c
·∇ϕ

N
) , (22)

where v = dr/dt, ϕ
N
= −GM/r, and ∇ϕ

N
= GMr/r3. An important quan-

tity here is the parameter α. It is determined by the choice of the coordinate
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system: α = 2 for the Painleve coordinates, α = 1 for the Schwarzschild coor-
dinates, and α = 0 for harmonic and isotropic coordinates. Hence the orbit of
a particle will depend on the chosen coordinates. To avoid this non-physical
result it is suggested that observable physical quantities should not depend
on the coordinate parameter α by taking into account an ad hoc procedure
of measuring quantities involved in the orbital motion phenomenon. 6

It should be emphasized that directly from equation of motion(22) follows
the dependence of gravitational acceleration from the value and direction
of the test particle velocity. So this result contradicts to that form of the
equivalence principle where one asserts the independence of the free fall on
the velocity of a test particles.

2.4 Major predictions for experiments/observations

Number of predictions of general relativity for both weak and strong fields
were derived from Einstein’s field equations and the equations of motion.
The triumph of GR in physics and astronomy is caused by experimental
and observational confirmation of Einstein’s equations with high accuracy.
Application of GR to cosmology will be considered in Sec.5.

The classical relativistic gravity effects in the weak field. The classical weak
gravity effects have been tested with accuracy of about 0.1÷ 1% (Will [200];
Kopeikin et al.[116]). Among these experimentally verified effects are:

• Universality of free fall for non-rotating bodies,
• The deflection of light by massive bodies,
• Gravitational frequency-shift,
• The time delay of light signals,
• The perihelion shift of a planet,
• The Lense-Thirring effect,
• The geodetic precession of a gyroscope,
• The emission and detection of the quadrupole gravitational waves.

In the next sections we shall show that all this effects can be explained also
within the field gravity approach with the same formulas for the observed
quantities, hence they can not distinct between GRT and FGT. However in
FGT there are additional weak gravity effects which can be used as crucial
tests for GR and FG theories: e.g. free fall of rotating bodies, attraction
and repulsion components of the gravitational force, and additional scalar
gravitational radiation. Recently detected GW signals by Advanced LIGO
antennas also disccussed in Sec.4.2 .

6 The problem of the physical meaning of coordinates in general relativity has
been debated for a long time and up to now there is no commonly accepted solu-
tion. E.g., Misner, Thorne & Wheeler 1973 [127], p.1097) wrote that Schwarzschild
coordinates are ”wrong” because ”physicists, astronomers and other celestial me-
chanics have adopted the fairly standard convention of using ’isotropic coordinates’
rather than ’Schwarzschild coordinates’ when analyzing the solar system”.
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Strong gravity effects in GRT: Schwarzschild metric. General relativity pre-
dictions for the strong gravity includes an exact solution of Einstein’s equa-
tions (15) for any centrally symmetric mass distribution which is called the
Schwarzschild metric. It has the following form for the 4-interval in the
Schwarzschild system of coordinates (t, r, θ, φ):

ds2 = (1− rSch
r

)c2dt2 − dr2

1− rSch
r

− r2(sin2θ dφ2 + dθ2) . (23)

In other coordinate systems this interval has different form for the singular
term. The metric in eq.(23) depends only on the total mass M of the gravi-
tating body. The quantity rSch is called the Schwarzschild radius for the mass
M :

rSch =
2GM

c2
= 3 km

M

M⊙
. (24)

This metric shows that at r = rSch the 00-component is equal to zero and
the 11-component is infinite. They say that the gravity ”force” becomes so
strong that nothing, not even light, can escape a body whose whole mass M
is inside rSch (a definition of the black hole).

An external observer within a static system of coordinates will see matter
collapsing eternally on the black hole. But if one chooses a non-static free-
falling system of coordinates, one finds that a co-falling matter will within
a finite (and rather short) proper time cross the gravitational radius. Then
the matter inevitably falls into the center of the field (r = 0), the true singu-
larity of the metric. This again demonstrates the crucial role of coordinate
transformations in general relativity.

Tolman-Oppenheimer-Volkoff equation. Another important exact result within
general relativity is the equation of hydrostatic equilibrium:

dp

dr
= −G(ρ+ p/c2)(M + 4πpr3/c2)

r2(1− rSch/r)
. (25)

According to this Tolman-Oppenheimer-Volkoff equation the factor 1/(1 −
rSch/r) leads to an infinite pressure gradient for r → rSch. This has a deep
consequence: there is an upper limit for the mass of static compact relativistic
stars, around 2 - 3M⊙. According to the standard GR, compact objects with
larger masses may exist only as black holes.

2.5 Conceptual problems of geometrical approach

In spite of the great success of the geometrical approach to description of
existing experiments/observations in gravitation physics, there are some con-
ceptual problems of GRT which should be noted in our paper. Among them
the most important are:

• the physical sense of the energy-momentum of the space curvature,
• the physical sense of the black hole horizon and singularity,
• the physical sense of the space creation in the expanding Universe.
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Geometrical approach without black holes? In recent literature there is in-
triguing discussion about physical impossibility of black holes, horizons and
singularities. Logunov & Mestvirishvili[121]; Kisilev et al.[113]; Mitra[128];
Gershtein et al.[83] emphasized the important role of additional physical con-
ditions which should be used for physically reasonable solution of Einstein’s
equations. Fore example the Hilbert’s causality principle leads to elimination
of horizons and singularities [83].

A re-analysis of the physical meaning of the coordinate transformation
in general relativity led Mitra[128];[129] to the conclusion that a black hole
should have zero mass. Considering both the 4-velocity and the physical 3-
velocity of a co-moving observer he concluded that instead of genuine black
holes there is a solution of Einstein’s equations describing an ”eternally col-
lapsing object” (ECO) with a size close to rSch and all the time radiating
energy so that an event horizon never originates.

Robertson & Leiter [154] introduced the strong principle of equivalence re-
quiring that ”special relativity must hold locally for all time-like observers in
all of space-time”. They found solutions of Einstein’s equations which satisfy
the requirement for time-like world line completeness and introduced ”mag-
netospheric eternally collapsing objects”. Such MECOs possess an intrinsic
magnetic moment and they do not have any event horizon and curvature
singularity.

If a substance has an unusual equation of state p = p(ρ), like that of
the physical vacuum and dark energy, it is possible to obtain non-singular
static GR solutions for arbitrary large masses, which are stable, and have no
singularity, no event horizon and no information paradox (Dymnikova[62];
Mazur & Mottola[126]; Chapline[44]).

These works show that additional conditions on the equation of state or
coordinate transformations or the metric tensor of Riemannian space can
change the physical contents of the geometrical gravity theory.

The energy-momentum of the space curvature? As we already mentioned,
together with Einstein’s equations the conceptual problem of the energy of
the gravitational field was born. The ”pseudo-tensor” (actually non-tensor)
character of the EMT of the gravity ”field” in GRT has been discussed in
many papers, where different ways to avoid this obstacle were suggested.

A mathematical consequence of the Einstein’s equation (15) is that the
covariant divergence of the matter energy-momentum tensor equals zero:

T ik
(m) ; i = 0 . (26)

One is tempted to see in this expression a usual conservation law, but let us
cite the famous, but often ignored statement by Landau & Lifshitz ([118],
sect.101 p.304): ”however, this equation does not generally express any con-
servation law whatever. This is related to the fact that in a gravitational
field the four-momentum of the matter alone must not be conserved, but
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rather the four-momentum of matter plus gravitational field; the latter is
not included in the expression for T ik

(m)”.
7

To define a conserved total four-momentum for a gravitational field plus
the matter within it, Landau & Lifshitz [118] suggested the expression

∂

∂xk
(
√−g)(T ik

(m) + tik(g)) = 0 . (27)

Here tik(g) is called the energy-momentum pseudo-tensor. It is important that

the quantities tik(g) do not constitute a tensor, i.e. they depend on the choice

of the system of coordinates. There are many variants of the expressions sug-
gested for the pseudo-tensor, among them Einstein’s (non-symmetric) and
Landau & Lifshitz’s (symmetric) pseudo-tensors. Unfortunately all these ex-
pressions do not satisfy to the necessary conditions for EMT of real field (see
Sec.1.2).

Moreover, this way of introducing the energy for the geometrized gravity
field within GRT is conceptually inconsistent, as discussed in detail by Lo-
gunov & Folomeshkin (1977)[120] and Logunov & Mestvirishvili (1989)[121].
Also Yilmaz (1992)[204] has shown that for any pseudo-tensor due to the
Freud identity one has ∂i(

√−g tik) = 0, which leads to a difficulty with the
definition of the gravitational acceleration.

Non-localizability of gravity energy. There are attempts to give a physical
reason for the non-tensor character of the energy of a gravity field due to
the non-localizability of the gravitational field in the geometrical approach
(Misner, Thorne & Wheeler [127], p.467): ”It is not localizable. The equiv-
alence principle forbids.” They also noted the following properties of the
pseudo-tensor: ”There is no unique formula for it, ... , ’local gravitational
energy-momentum’ has no weight. It does not curve space. It does not serve
as a source term ... It does not produce any relative geodesic deviation of
two nearby world lines ... It is not observable.” The problem is also clearly
seen in the case of the gravitational wave detection (will be discussed in Sec-
tion 4.2). So the actual cause of the absence of the gravity field energy, i.e.
the pseudo-tensor character of the EMT of the gravitational field in general
relativity, is the principle of geometrization.

In Friedmann cosmology the problem of the energy of the gravity field
leads to the paradox of continous creation/annihilation of matter within any
finite comoving volume of an expanding space (will be discussed Sec.5).

Attempts to overcome the energy problem by using simultaneously Minkowski
and Riemannian spaces. In the literature there are attempts to construct a
gravity theory which based on both flat and curved spaces by accepting some
Lorentz-covariant properties of Minkowski space in ”effective” Riemannian

7 Mathematically this is because the integral
∫

T ik
(m)

√−gdSk is conserved only

if the condition ∂(
√−gT ik

(m))/∂x
k = 0 is fulfilled, while eq.(26) gives T ik

(m) ; k =

(1/
√−g)(∂(√−gT ik

(m))/∂x
k)− (1/2)(∂gkl/∂xi)T

kl
(m) = 0.
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space (this is comprehensively reviewed by Pitts & Schieve [147]). As an ex-
ample of such works we mention three ”field-geometrical” theories developed
by Logunov, Yilmaz, Grishchuk and their collaborators.

Logunov & Mestvirishvili [121] developed a field-geometrical gravity the-
ory, called the relativistic theory of gravitation (RTG), where they accept
”geometrization principle” for matter, while conserve Minkowski flat space
for gravitation field. They introduce the metric tensor gik of the effective
Riemann space, and also accept a ”causality principle” as an additional re-
striction on gik. Due to these assumptions there is no black hole solution in
RTG. The scalar part of gravitational tensor potentials exists only in a static
field and can not be radiated. The cosmological solution is the Friedmann
expanding space with the critical matter density. Recent development of the
RTG includes also non-zero rest mass of the gravity field.

Yilmaz [204] constructed a field-geometrical theory where the right-hand
side of the field equation contains the EMT of the gravity field in the effective
Riemann space with the background Minkowski space. The metric of the
effective Riemann space has an exponential form and excludes the event
horizon and singularity. The existence of the EMT of the gravity field allows
one to consider N-body solutions in this theory.

Baback & Grishchuk [10] claimed that they constructed a field approach
which is completely identical to general relativity : ”GR may be formulated
as a strict non-linear field theory in flat space-time. This is a different for-
mulation of the theory, not a different theory.” They introduce the metric
tensor gik(xl) of a curved space-time via the field variables hik(xl) in the

form gik = (ηik + hik)
√

γ/g with the condition gikgil = gkl = δkl . Hence
the tensor of Riemannian space is presented as a sum of two non-tensors,
because the Minkowski metric ηik is not a tensor of curved space. Then they
developed a Lagrangian theory where there are energy-momentum tensor of
the gravitational field (close to LL-pseudotensor), black holes, quadrupole
radiation and expanding space of Friedmann’s cosmology. However the inter-
nal inconsistency of this approach follows from incompatibility of the initial
principles of the geometrical and field theories which leads in GR to dif-
ferent observable consequences. E.g. above we have discussed the notes by
Straumann[169] and Padmanabhan [141] who emphasized that in GR there
is a non-trivial topology of black holes, while Minkowski space has a trivial
one. Also the expanding space of GR violates energy conservation, which is
impossible for the field in Minkowski space.

Absence the required physical properties of the EMT in the metric gravity
theories. Besides the true tensor character of the EMT there are additional
properties of energy-momentum known from the quantum relativistic field
theories of other physical interactions. For example the EMT of the boson
fields must have the following features:

• symmetry, T ik = T ki;
• positive localizable energy density, T 00 > 0;
• zero trace for massless fields, T = 0.

The above considered attempts to introduce the EMT of the gravity field
within geometrical and effective ”field” approaches, though could obey the
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symmetry condition, do not possess the other two necessary features of the
EMT, i.e. a positive localizable energy density and zero trace. These prop-
erties of EMT must be fulfilled within the consistent field approach for both
static and free fields, as in the case of the electromagnetic field (Sec.1.2).

The energy problem may be demonstrated with the simplest case of a
spherically symmetric weak static gravity field. Indeed, for this case, like in
a terrestrial laboratory, one can easily calculate the predicted value of the
energy density of the gravitational field for different pseudo-tensors. For in-
stance, in harmonic coordinates the Landau-Lifshiz symmetric pseudotensor
gives negative energy density of the gravity field

t00LL = − 7

8πG
(∇ϕ

N
)
2
. (28)

Also the ”final” energy-momentum tensor of the gravity field, which was
derived by Grishchuk, Petrov & Popova [87], has a negative energy density

of the weak static field : t00GPP = − 11
8πG (∇ϕ

N
)
2
.

Hence, according to the LL-pseudo-tensor and the GPP-tensor the energy
density of the static gravitational field is negative, which conflicts with the
quantum field theories of other fundamental interactions. Also the traces of
all these EMTs do not vanish for static fields.

The physical sense of the space creation in the expanding Universe. In cos-
mology GRT predicts that the homogeneous matter distribution expands
together with space. The linear Hubble law of the space-expansion veloc-
ity Vexp = H × R is the strict consequence of the matter homogeneity. The
physics of the space expansion (increasing distances between galaxies with in-
creasing time) contains several paradoxes. Harrison [93,91,92] demonstrated
that the cooling of homogeneous hot gas (including photon gas of CMBR)
in the standard cosmological model (SCM) actually means the violation of
energy conservation in the expanding space. In modern version of SCM the
term “space expansion” actually means continuous creation of vacuum, some-
thing that leads to conceptual problems. Recent discussion by Francis et al.
[79] on the physical sense of the increasing distance to a receding galaxy
without motion of the galaxy is just a particular consequence of the arising
paradoxes [26].

In the Sec.5 we present analysis of the conceptual problems of the SCM:
the violation of energy conservation for local comoving volumes, the exact
Newtonian form of the Friedmann equation (no direct relativistic effects of
expanding substances, e.g. the absence of an upper limit on the receding
velocity of galaxies which can be greater than the speed of light), and the
presence of the linear Hubble law deeply inside very inhomogeneous large
scale galaxy distribution of the Local Universe.

Conclusion. The above discussion demonstrates that all ”field-geometrical”
theories which introduce a metric of an ”effective” Riemannian space in the
form gik ≈ ηik + hik must obey an exact equalities gik ≡ δik and gikgik ≡ 4
and so eliminate exactly the internal scalar part - the trace of the true tensor
potential. Hence such metric gravity theories lose some essential properties of
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the field approach and receive some unphysical properties of the geometrical
approach, e.g. non-tensor character of the gravity field energy, the negative
energy of the static field, the event horizon and singularity etc.

So one can conclude that all attempts to derive ”geometry” from ”gravi-
tons” explicitly or implicitly contain propositions that reduce the field ap-
proach to geometrical one ([169]; [141]). Hence, the question is how to con-
struct a consistent field gravitation theory (quantum gravidynamics) based
on relativistic quantum principles and which, only as an approximation to
reality, contains geometrical interpretation, like geometrical optics in electro-
dynamics.

3 Poincaré-Feynman’s field approach to gravitation theory

In Sec.1.3 – 1.4 we have emphasized that the field gravitation theory has
its roots in papers by Poincare, Birkhoff, Thirring, Kalman, Feynman and
some other eminent physicists. The field approach offers a natural solution
to the energy problem, because Minkowski space implies the invariance un-
der the Poincaré group transformation and hence the usual definition of the
energy-momentum tensor of the gravitational field and conservation laws, as
it follows from the Noether’s theorem.

We stress that the construction of the field gravity theory has not com-
pleted yet and important questions are still open. For example, the quanti-
zation of the gravity field needs to take into account the conservation of the
gravitational energy and the finiteness of the gravity force, in order to over-
come the problem of non-renormalizability. The main strategy of the consis-
tent field approach is not to write down the final non-linear exact equations,
but to control the physical sense of the energy-momentum of the gravita-
tional field in the description of the gravitational interaction. A construction
of the field gravity theory was started in the works by Fierz & Pauli 1939
[78]; Birkhoff 1944 [37]; Moshinsky 1950 [131]; Thirring 1961 [177]; Kalman
1961 [110]; Feynman 1971, 1995 [76], [77]; Bowler 1976 [40]. The fundamen-
tal role of the scalar part of the symmetric tensor potentials ψik(r, t), i.e. its
trace ψ(r, t) = ηikψ

ik, was carefully studied by Sokolov and Baryshev (see
e.g. references in [167]; [164]; [21]; [22]; [23]).

Up to now, within the field gravity theory only the weak field approxi-
mation at the post-Newtonian level has been studied in detail, though some
results for strong field regime also exist. The modern development of FGT is
enough to show the feasibility of the field approach and to give predictions,
which distinguish FGT and GRT. Hence, in contrast to many claims, the
field gravity theory is experimentally different from the geometrical general
relativity.

3.1 Initial principles

The unity of the fundamental interactions. As Feynman [77] emphasized the
gravitational interaction can be described as a non-metric quantum relativis-
tic symmetric second rank tensor field in Minkowski space which is based on
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the Lagrangian formalism of the field theory. He discussed a quantum field
approach to the gravity just as the next fundamental physical interaction
and claimed that ”the geometrical interpretation is not really necessary or
essential to physics” ([77], p.113).

The FGT is constructed on the common bases with other fundamental
physical interactions plus several additional features specific for gravitational
interaction. As we noted in Sec.1.4 these basic principles include:

• the inertial reference frames and Minkowski space with metric ηik;
• the symmetric second rank tensor potential ψik(xm) and especially its trace
ψ(xm) = ψikηik describe gravitational interaction;

• the Lagrangian formalism and Stationary Action principle;
• the principle of consistent iterations;
• the universality of gravitational interaction;
• the conservation law of the energy-momentum;
• the gauge invariance of the linear field equations;
• the positive localizable energy density and zero trace of the gravity field EMT;
• the quanta of the field energy as the mediators of the gravity force;
• the uncertainty principle and other quantum postulates.

These elements are the basis of the consistent field approach to gravitation
and form a natural starting point for understanding the physics of gravity
phenomenon similarly to other fundamental forces.

The principle of consistent iterations. The gravity field has a positive en-
ergy density and this energy, in turn, becomes a new source of an additional
gravity field and so on. This non-linearity is taken into account by the itera-
tion procedure. It is usual in physics to consider first a linear approximation
and then add non-linearity by means of iterations.

The field gravity theory is constructed step by step using an iteration
procedure so that at each step all physical properties of the EMT of the
gravity field are under control. Each step of iteration is described by linear
gauge-invariant field equations with fixed sources in the right-hand side, as
it is assumed in the derivation of field equations from the stationary action
principle. An important outcome of this procedure is that the superposition
principle also can be reconciled with the non-linearity of the gravity field.

The principle of stationary action. The mathematical tool is the Lagrangian
formalism of the relativistic field theory. To derive the equations of motion
for the gravity field and for the matter one uses the principle of stationary
action, which states that for the true dynamical behaviour of the field and
matter the variation of the action δS = 0.

The action integral for the whole system of a gravitational field plus
particles (matter) consists of the three parts (instead of two parts in GR
eq.(13)):

S = S(g) + S(int) + S(m) =
1

c

∫

(

Λ(g) + Λ(int) + Λ(m)

)

dΩ . (29)

The notations (g), (int), (m) refer to the actions for the gravity field, the inter-
action, and the matter (particles or other sources), dΩ = dV dt . The physical
dimension of each part of the action is [S]= [energy density]×[volume]×[time],
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meaning that the definition of energy density of the field should be defined
in the theory at the conceptual level.

In general relativity the action integral (13) has only two parts Sg and Sm.
There is no interaction part in GR, because of the principle of geometrization.

Lagrangian for the gravitational field. Within the Feynman’s field approach,
the gravity field is presented by symmetric 2nd rank tensor potentials ψik(r, t)
in Minkowski space with metric ηik. The Lagrangian for the gravitational
field, related to considered fixed source, we take in the form:

Λ(g) = − 1

16πG

[

(

2ψ,n
nmψ

lm
,l − ψlm,nψ

lm,n
)

−
(

2ψ,l
lnψ

,n − ψ,lψ
,l
)]

. (30)

This differs from Thirring’s [177] choice by a divergent term, which does not
change the field equations, but has the advantage that the canonical energy
momentum tensor is symmetric. Here ψik

,l = ∂ψik/∂xl is the ordinary partial
derivative of the symmetric second rank tensor potential.

Lagrangian for matter. The Lagrangian for matter depends on the physical
problem in question (particles, fields, fluid or gas). Gravity is also a kind of
matter and at each iteration step it is considered as a source fixed by the
preceding step.

For relativistic point (structureless) particles the Lagrangian is

Λ(p) = −ηikT ik
(p) , (31)

where T ik
(p) is the EMT of the particles

T ik
(p) =

∑

a

mac
2δ(r− ra){1−

v2a
c2

}1/2uiauka. (32)

Here m, v, ui are the rest mass, 3-velocity, and 4-velocity of a particle.
For a relativistic macroscopic body the EMT is

T ik
(m) = (ε+ p)uiuk − pηik . (33)

Here ε and p are the energy density and pressure of a comoving volume
element.

The principle of universality and Lagrangian for interaction. In the field
approach the principle of universality states that the gravitational field ψik

interacts with all kinds of matter via their energy-momentum tensor T ik, so
the Lagrangian for the interaction has the form:

Λ(int) = − 1

c2
ψikT

ik (34)

The principle of universality, eq.(34), was introduced by Moshinsky 1950
[131]. It replaces the equivalence principle used in the geometrical approach.
From the principle of universality of gravitational interaction (UGI) and the
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stationary action principle one can derive those consequences of the equiv-
alence principle, which do not create paradoxes. As it will be shown below,
according to UGI the free fall acceleration of a body does not depend on its
total mass, but does depend on the direction and value of its velocity.

The equivalence principle of GRT cannot be a basis of the field gravity,
because it eliminates the gravity force and accepts the equivalence between
the inertial motion and the accelerated motion. E.g., the equivalence principle
creates a puzzle in a gedanken experiment with the electric charge resting in
the gravity field on a laboratory table (which was debated in the literature for
a long time). 8 In the frame of GRT, due to the equivalence of the laboratory
frame (with gravity) and the accelerated free falling frame with ”a = g”,
the charge at rest on the table is equivalent with an accelerated free falling
charge. But a charge with a constant acceleration ”a” should radiate energy
according to the relation P = (2/3)(e2/c3)a2 ergs/s while resting charge in
the lab has a = 0 so radiated energy P should be zero.

In the field gravity theory the charge at rest on the table does not radiate
and the free falling charge does radiate, just because the inertial frame is
not equivalent to the accelerated frame. The concept of an inertial frame is
fundamental for all physical interactions and it is preserved in field gravity
theory.

Instead of the equivalence principle, FGT is based on the principle of
universality of gravitational interaction, according to which gravity ”see”
only the energy momentum tensor of any matter. This point is also different
from all ”effective geometry” theories where the universality of gravity is
understood as geodesic motion in Riemannian space.

3.2 Basic equations of the Field Gravity Theory

Field equations. Using the variation principle to obtain the field equations
from the action (29) one must assume that the sources T ik of the field are
fixed (or the motion of the matter given) and vary only the potentials ψik

(serving as the coordinates of the system). On the other hand, to find the
equations of motion of the matter in the field, one should assume the field
to be given and vary the trajectory of the particle (matter). So keeping the
total EMT of matter in (34) fixed and varying δψik in (29) we get

− ψik,l
l + ψil,k

l + ψkl,i
l − ψ,ik − ηikψlm

,lm + ηikψ,l
l =

8πG

c2
T ik . (35)

The trace of the field equations (35) gives the scalar equation for generating
the scalar part of the symmetric second rank tensor – its trace ψ(r, t), in the
form

2ψ,l
l − 2ψlm

,lm =
8πG

c2
T . (36)

The field equations (35) are identical to the linear approximation of Ein-
stein’s field equations and that is why there are many similarities between

8 A discussion of the puzzle of the electron resting in the lab gravitational field
presented in [123]. Actually this effect is related to more general Unruh effect [84]
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GRT and FGT in the weak field regime. However, very important differ-
ence is that ψik(r, t) and ηik (both and their sum too) are true tensors of
the Minkowski space and the trace ψ(r, t) is a true scalar of the Minkowski
space. But in GRT the quantities hik and ηik are not tensors of a general
Riemannian space. In consistent geometrical approach this quantities should
obey the following relations: hik = −hik, hik = 0 and h = 0 due to the exact
formula for the 4-scalar trace gikgik = 4 valid for any metric tensor. In FGT
the second rang symmetric tensor should obeys relations for their compo-
nents: ψik = ψik, and ψi

k = ψk
i , and ψ = ηikψ

ik, where the 4-scalar trace
ψ = ψ(r, t) is a function of coordinates.

Remarkable features of the field equations. First, the divergence of the left
side of the field equations (35) is zero, implying the conservation law

T ik
,k = 0 , (37)

in the approximation corresponding to the step in the iteration proce-
dure. In the zero approximation it does not include the EMT of the gravity
field, but the first approximation contains the gravity field of the zero ap-
proximation and expresses the conservation laws and the equations of motion
at the post-Newtonian level. It is important that the conservation law (37)
does not restricts the trace of the energy-momentum tensor.

Second, equation (35) (and its consequence (36)) is gauge invariant, i.e.
it is not changed under the following transformation of the potentials:

ψik ⇒ ψik + λi,k + λk,i , (38)

and corresponding transformation of the trace

ψ ⇒ ψ + 2λm,m . (39)

The four arbitrary functions λi are consistent with the four restrictions on
the source EMT due to energy-momentum conservation. Note that the con-
servation law is a property of the field equations which does not depend on
the choice of a gauge transformation. Also the conservation law (37) does not
restrict the equation (36) for the scalar part of the source, while it restricts
the equation (35) for the tensor part of the source.

An important difference between this gauge transformation of the gravi-
tational potentials and the general covariant transformation of coordinates in
GRT (Lee derivative), is that (38) (and its consequence (39)) are performed
in a fixed inertial reference frame. 9 The gauge freedom (38) and (39) al-
lows one to put four additional conditions on the potentials, in particular a
Lorentz invariant gauge – the Hilbert-Lorentz gauge 10 ([177]):

ψik
,k =

1

2
ψ ,i . (40)

9 The gage transformation (38) of the gravitational potentials can also be written
as ψik ⇒ ψik + λi,k + λk,i + 2γ ,ik which however does not change the number of
arbitrary functions because the arbitrary function γ can be included in 4 arbitrary
new functions λ′

i = λi + γ ,i.
10 Also called as the de Donder gauge



30

With the gauge (40) the field equations get the form of wave equations:
(

△− 1

c2
∂2

∂t2

)

ψik =
8πG

c2

[

T ik − 1

2
ηikT

]

, (41)

and for the trace component this gives the field equation for the scalar part
ψ = ηikψik of the gravitational potentials:

(

△− 1

c2
∂2

∂t2

)

ψ(r, t) = −8πG

c2
T (r, t) . (42)

Note the opposite signs in the right-hand sides of eqs.(41, 42). This corre-
sponds to the important fact that the pure tensor part of the field represents
attraction, while the scalar part gives repulsion. This result is caused by
the fact that in the Lagrangian (30) the tensor and scalar parts have opposite
signs, which does not mean negative energy of the scalar field but reflects
the opposite signs of the pure tensor and pure scalar forces.

Scalar and traceless tensor are dynamical fields in FGT. The multi-component
structure of the symmetric tensor potential ψik(r, t) is a most important
thing in the quantum field theory. It is well known (Barnes [11]; Fronsdal
[80]) that the symmetric 2nd rank tensor field ψik can be decomposed under
the Lorentz group into a direct sum of subspaces: one spin-2, one spin-1,
and two spin-0 representations. The decomposition and the appropriate pro-
jection operators are exhibited explicitly in Barnes [11]. It corresponds to
the dividing the reducible symmetric tensor into a nine-component traceless
part and a single-component part which is diagonal. The single component
subspace is a spin-0 representation of the Lorentz scalar – the trace of the
symmetric tensor ψik. In the symbolic form we have:

{ψik} = {2} ⊕ {1} ⊕ {0′} ⊕ {0} . (43)

The symmetric tensor ψik contains n = 10 independent components. The
relation between the number of components n and the value of the spin s
(n = 2s+1) is fulfilled for the four particles as 10 = 5+ 3+ 1+ 1 in eq.(43).

Following to the Schwinger’s source theory [160] the real particles corre-
sponds to the source components after taking into account conservation laws.
(four additional conditions to delete the four source components). Hence, af-
ter four restrictions from the conservation laws of the energy-momentum
tensor, which delete four source components corresponding to particles with
spin-1 and spin-0’, the field equations (35) will describe only two real sources
of the gravitational potentials ψik as the mixture of two fields with spin-2
and spin-0 (there is no restriction on the trace component), which generated
by two corresponding parts of the source T ik of the gravity field:

{T ik} = {2} ⊕ {0} =⇒ {ψik} = {2} ⊕ {0} (44)

Now we can present the EMT of the source and the initial symmetric tensor
potentials as the sum of pure tensor spin-2 and pure scalar spin-0 parts:

T ik = T ik
{2} + T ik

{0} = (T ik − 1

4
ηikT ) +

1

4
ηikT . (45)
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ψik = ψik
{2} + ψik

{0} = (ψik − 1

4
ηikψ) +

1

4
ηikψ , (46)

where ηikT
ik
{2} = 0, ηikT

ik
{0} = T and ψik

{2} = φik, ηikψ
ik
{2} = 0, ηikψ

ik
{0} =

ψ. Both equations(35) and (36) are gauge invariant, hence for the Hilbert-
Lorentz gauge (40) they can be written in the form

(

△− 1

c2
∂2

∂t2

)

ψik
{2} =

8πG

c2
T ik
{2} or

(

△− 1

c2
∂2

∂t2

)

φik =
8πG

c2

[

T ik − 1

4
ηik T

]

(47)
and
(

△− 1

c2
∂2

∂t2

)

ψik
{0} = −8πG

c2
T ik
{0} or

(

△− 1

c2
∂2

∂t2

)

ψ
1

4
ηik = −8πG

c2
T
1

4
ηik

(48)

This means that the field gravity theory is actually a scalar-tensor theory,
where the scalar part of the field is simply the trace of the tensor potentials
ψ = ηikψ

ik generated by the trace of the energy-momentum tensor of the
matter T = ηikT

ik. According to the wave equations (47, 48) for spin-2
and spin-0 fields, both kinds of gravitons are massless particles, moving with
velocity of light (Sokolov & Baryshev [167]).

Zakharov 1965 [205] noted that the interacting gravitational field ψik in
eq.(35) describes spin-2 and spin-0 gravitons. However absence of the scalar
part of the metric in geometric gravity theory (gikgik = 4) leads him to
rejection of the scalar waves in GR. However, in the frame of FGT, one should
take into account both quadrupole tensor and monopole scalar gravitational
radiation. Because the conservation law (37) does not restrict the scalar part
of the source the spin-0 field is real and not a constraint field. 11

The source of the scalar wave is the variable trace of the EMT source,
e.g. for particles T = mc2(1− v2/c2)1/2 and variation of the particles kinetic
energy will generate the scalar gravitational radiation, e.g. via spherical pul-
sations of a gravitating system. The radiated scalar gravitational wave is
monopole and has a longitudinal character in the sense that a test particle
in the wave moves along the direction of the wave propagation (GWs are
considered in Sec.4.2).

The energy-momentum tensor of the gravity field. The standard Lagrangian
formalism and the Lagrangian of the gravity field (30) give the following
expression for the canonical energy-momentum tensor:

T ik
(g) =

1

8πG

{

(ψlm,iψ ,k
lm − 1

2
ηikψlm,nψ

lm,n)− 1

2
(ψ,iψ,k − 1

2
ηikψ,lψ

,l)

}

(49)

11 In the case of electrodynamics the conservation of 4-current lead to exclusion of
1 component of the source of the 4-vector potentials, though constraint equations
exist. The conservation law of EMT in FGT restrict only four components and
leaves pure tensor and trace-scalar fields real. In the metric gravity theories there
is an additional condition that the trace of the metric tensor equals to constant, so
the scalar wave is absent.
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Two important remarks should be made about this expression.
First, the EMT has an ordinary tensor character and so it is conceptu-

ally well defined. However, the Lagrangian formalism cannot give a unique
expression for an EMT of any field (e.g. Bogolyubov & Shirkov [39]; Landau
& Lifshitz [118]) because a term with zero divergence can always be added.
For the final determination of the EMT of the field additional physical re-
quirements must be used, like the positive energy density, the symmetry, and
zero value for the trace in the case of a massless field.

Second, the negative sign of the scalar part (the 2nd term in (30)) does
not mean that the spin 0 field has negative energy. It reflects the repulsive
force produced by the scalar when the field interacts with the sources.

For the free field the energy is positive for the pure tensor (spin 2) and
scalar (spin 0) components. Indeed, the total Lagrangian (30) of the interact-
ing gravity field can be divided into two independent parts that correspond
to two independent particles with spin 2 (φik) and spin 0 (ψ). These have
the following free field Lagrangians

Λ{2} =
1

16πG
φlm,nφ

lm,n, and Λ{0} =
1

64πG
ψ,nψ

,n. (50)

Both signs are positive due to the positive energy density condition for in-
terger spin free particles. Corresponding EMTs for the tensor and scalar free
fields are

T ik
{2} =

1

8πG
φ ,i
lm φlm,k, and T ik

{0} =
1

32πG
ψ,iψ,k . (51)

These are symmetric, have a positive energy density and a zero trace for the
case of plane monochromatic waves.

The retarded potentials. In the frame of FGT the solution of the field equation
(41) for the case of the weak field and slow motion can be presented in the
form of retarded potentials:

ψik(r, t) = −2G

c2

∫

T̂ ik(r ′ , t−R/c)

R
dV ′ + ψik

0 , (52)

where R = r − r ′ - is the radius vector from the volume element dV ′ =
dx′dy′dz′ to the point r, the source has the form T̂ ik = T ik − (1/2)Tηik in
corresponding approximation, ψik

0 is the free field solution.
There is important possibility for the scalar field equation (42) which in

the case of zero trace for the field and interaction EMTs has exact solution:

ψ(r, t) =
2G

c2

∫

T(m)(r
′ , t−R/c)

R
dV ′ + ψ0 , (53)

where T(m) is the trace of the matter EMT, and ψ0 is the solution of equation
(42) without the right-hand side. In particular, for the case of a moving test
particle along trajectory r0 = r0(t), having the trace of EMT in the form

T = mc2
√

1− v2/c2δ(r− r0) , (54)
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one gets from Eq.(53)

ψ(r, t) =
2Gm

√

1− v2/c2

R− (v ·R)/c
=

2Rmc
2

R
D , (55)

where Rm = Gm/c2, R = |r − r0| , v = v(t′) , R = R(t′) - in the particle

point at the moment t′ = t− R(t′)/c , and D =
√

1− v2/c2/(1− v cos θ/c)
- the relativistic Doppler-factor.

Equations of motion for test particles. Let us consider the motion of a
relativistic test particle with rest-mass m0, 4-velocity u

i, 3-velocity v in the
gravitational field described by the symmetric tensor potential ψik on flat
Minkowski space-time, where the Cartesian coordinates always exist and the
metric tensor ηik = diag(1,−1,−1,−1).

To derive the equation of motion in FGT we use the stationary action
principle in the form of the sum of the free particles and the interaction parts:

δS = δ(
1

c

∫

(Λ(p) + Λ(int))dΩ) = 0 (56)

where dΩ is the element of 4-volume and the variation of the action is made
with respect to the particle trajectories δxi for fixed gravitational potential
ψik. The free particle Lagrangian is

Λ(p) = −ηikT ik
(p) (57)

and the interaction Lagrangian in accordance with principle of universality
of the gravitational interaction Eq.(34) is

Λ(int) = − 1

c2
ψikT

ik
(p) (58)

where the energy-momentum tensor (EMT) of the point particle is

T ik
(p) = m0c

2δ(r− rp){1−
v2

c2
}1/2uiuk (59)

Below we use Landau & Lifshitz ([118]) method of 4-coordinates variation for
the derivation of the equation of motion. Inserting Eqs.(59),(58) into Eq.(56)
and taking into account that ds2 = dxldx

l we get

∫

(m0cδ(
√

dxldxl) +
m0

c
δ(ψik

dxidxk
√

dxldxl
)) = 0 (60)

Performing the variation and integrating by parts, and taking into account
that the variation is made for the fixed values of the integration limits, we
find

∫

(m0cduiδdx
i +

2m0

c
d(ukψik)δx

i −
m0

c
d(ψlku

lukui)δx
i − m0

c
ukδψikdx

i) = 0 (61)
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Consider also that

dui =
dui

ds
ds; dxi = uids; δψki = ψki,lδx

l;

d(ulukuiψlk) = uluiu
kψlk,ndx

n + ulukψlkdui + 2ψlku
luidu

k;

finally we get the following equation of motion for test particles in the field
gravity theory (Baryshev [13]):

Ai
k

d(m0cu
k)

ds
= −m0cB

i
klu

kul , (62)

where m0cu
k = pk is the 4-momentum of the particle, and

Ai
k =

(

1− 1

c2
ψlnu

lun
)

ηik −
2

c2
ψknu

nui +
2

c2
ψi
k , (63)

Bi
kl =

2

c2
ψi
k,l −

1

c2
ψ ,i
kl − 1

c2
ψkl,nu

nui , (64)

The equation (62) is identical to the equation of motion derived by
Kalman [110] in another way, by considering the relativistic Lagrange func-
tion L defined as S =

∫

L ds
c and relativistic Euler equation:

d

ds
(
∂L

∂uk
uk − L)ui +

∂L

∂ui
= − ∂L

∂xi
(65)

Inserting in Eq.(65) the expression for the relativistic Lagrange function

L = −m0c
2 −m0ψik

dxi

ds

dxk

ds
(66)

one gets Kalman’s equations of motion (Kalman [110]), which may be also
presented in the form of Eq.(62).

Static spherically symmetric weak field. For a spherically symmetric static
weak field of a body with mass density ρ0 and total mass M , the zero (New-
tonian) approximation of the total EMT equals that of the matter

T ik
(m) = diag(ρ0c

2, 0, 0, 0) (67)

and the solution of the field equations (eq. 41) is the Birkhoff’s [37] potential

ψik = ϕ
N
diag(1, 1, 1, 1), (68)

where ϕ
N
= −GM/r is the Newtonian potential outside the SSS gravitating

body. We note again that ψik is a true tensor quantity in Minkowski space.
The Birkhoff’s gravitational potential (68) according to equation (46), can

be expressed as the sum of the pure tensor and scalar parts ψik = ψik
{2}+ψ

ik
{0}

, so that

ψik =
3

2
ϕ

N
diag(1,

1

3
,
1

3
,
1

3
) − 1

2
ϕ

N
diag(1, −1, −1, −1) . (69)
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This corresponds to attraction by spin 2 and repulsion by spin 0 parts of the
Birkhoff potential. Indeed, inserting potential (69) to the equation of motion
(62) in the considered approximation we get expression for 3-force in the
form:

FN = F(2) + F(0) = −3

2
m∇ϕN +

1

2
m∇ϕN = −m∇ϕN (70)

Hence the Newton force of gravity is the sum of attraction due to the
spin 2 tensor field and repulsion due to the spin 0 scalar field. Thus FGT is,
strictly speaking, a scalar-tensor theory. But in contrast to the Brans-Dicke
theory that introduces additional scalar field with coupling constant ω, in
FGT the scalar field is the trace ψ = ηikψ

ik of the tensor potential ψik and
has the same coupling constant G.

In the first (post-Newtonian) approximation the total EMT of the system
is equal to the sum of the EMT for the matter, interaction and gravity field
(Kalman [110]; Thirring [177]; Baryshev [14]):

T ik
(Σ) = T ik

(p/m) + T ik
(int) + T ik

(g) . (71)

From the solution (eq. 68) and accepted the expressions for the interaction
EMT

T ik
(int) = ρ0ϕNdiag(1, 1/3, 1/3, 1/3) (72)

and the EMT of the gravity field

T ik
(g) = +

1

8πG
(∇ϕ

N
)
2
diag(1, 1/3, 1/3, 1/3) (73)

we find the total energy density for the system gas + gravity in the form

T 00
(Σ) = T 00

(p/m) + T 00
(int) + T 00

(g) =
(

ρ0c
2 + e

)

+ ρ0ϕN
+

1

8πG
(∇ϕ

N
)2 . (74)

Here (ρ0c
2 + e) gives the rest mass and kinetic (or thermal) energy densi-

ties, ρ0ϕN
is the negative interaction energy density, and (∇ϕ

N
)2/8πG is the

positive and localizable energy density of the gravitational field.

Relativistic physical sense of the potential energy. The total energy of the
system in PN approximation will be

E(Σ) =

∫

T 00
(Σ)dV = E0 + Ek + Ep (75)

where E0 =
∫

(ρ0c
2) dV is the rest-mass energy, Ek =

∫

(e) dV is the kinetic
energy, and Ep is the classical potential energy that equals the sum of the
interaction and gravitational field energies:

Ep = E(int) + E(g) =

∫

(ρ0ϕN
+

1

8πG
(∇ϕ

N
)2) dV =

1

2

∫

ρ0ϕN
dV (76)



36

The PN correction due to the energy of the gravity field. In the field approach
a gravitating body is surrounded by a material gravitational field ψik whose
mass-energy density is given by the 00-component of the EMT of the gravity
field in eq.(73). In the PN approximation this leads to a nonlinear correction
for the gravitational potential.

Considering the energy density of the gravitational field (the last term
in eq. 74) as the source in the field equation of the second order, we get a
nonlinear addition to Birkhoff’s ψ00 component

ψ00 = ϕ
N
+

1

2

(ϕ
N
)2

c2
. (77)

Corrections to other components do not influence the motion of particles in
this approximation.

The PN equations of motion. Substituting Birkhoff’s potential (68) into
the equation of motion (62) and taking into account the nonlinear PN cor-
rection (77) one gets the 3-acceleration for a test particle:

(dv

dt

)

FG
= −

(

1 +
v2

c2
+ 4

ϕ
N

c2

)

∇ϕ
N
+ 4

v

c

(v

c
·∇ϕ

N

)

(78)

This equation coinsides with the PN equation of motion in GRT only when
in eq.(22) the isotropic or harmonic coordinates are used (i.e. α = 0). It is
important that within the FGT the equation of motion does not depend on
the choice of the coordinate system. Also it is important that in the frame
of FGT the energy of the gravitational field is an observable quantity which
may be measured by observations of the orbital motion of a test particle.

The Newtonian limit. Substituting (69), which gives the gravitational po-
tential as the sum of the pure tensor and scalar parts, into eq.(62) and ne-
glecting all terms of the order v2/c2 we get the Newtonian force as the sum of
two parts: the attractive force F(attr) due to the spin 2 part and the repulsive
force F(repuls) due to the spin 0 part:

FN = F(attr) + F(repuls) = −3

2

GmM

r3
r+

1

2

GmM

r3
r = −GmM

r3
r . (79)

This calculation shows that even on the Newtonian level the physics of the
field gravity theory dramatically differs from general relativity.

The role of the scalar part of the field. The scalar ψ is an intrinsic part of the
gravitational tensor potential ψik and is not related to extra scalar fields such
as was introduced in the Jordan-Brans-Dicke theory. So the observational
constraints existing for this extra scalar field do not restrict the scalar part
ψ of the tensor field ψik. Moreover, without the scalar ψ it is impossible to
explain the classical relativistic gravity effects.

Repulsive force of the scalar part. Inserting to the equation of motion (62)
the scalar part of the gravitational potential in the form ψlm

{0} = (1/4)ψηlm,
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we get the equation of motion of a test particle in the scalar gravity field
ψ = ψlmη

lm as
(

1 +
1

4

ψ

c2

)

dpi

ds
=
m

4c

(

ψ,i − ψ,lu
lui
)

. (80)

In the case of a weak field (ψ/c2 << 1) this equation gives for spatial
components (i = α) the expression for the gravity 3-force

dp

dt
= −m

4
∇ψ . (81)

In the case of the weak static field (68) the trace of the tensor gravitational
potential is equal to ψ = −2ϕ

N
, hence we get for the gravity 3-force

dp

dt
= +

1

2
m∇ϕ

N
. (82)

This means that the scalar spin 0 part of the tensor field leads to a repulsive
force and only together with the attractive force from the pure tensor spin 2
part the result is the Newtonian force (79).

The most intriguing consequence of the field gravity theory is that the
scalar part (spin 0) corresponds to a repulsive force, while the pure tensor
part (spin 2) corresponds to attraction. This explains the ”wrong” sign for the
scalar part in the EMT of the gravity field (eq. 49), because total Lagrangian
describes simultaneously attractive and repulsive parts of the total field.

Poincaré force and Poincaré acceleration in PN approximation. In the post-
Newtonian approximation we keep terms down to an order of v2/c2 ∼ ϕN/c

2 ≪
1 in Eq.(62). For the PN accuracy we need calculations of the ψ00 compo-
nent with the same order, while other components of the tensor gravitational
potential ψik can be calculated in the linear approximation. Under these
assumptions from Eq.(62) for (i = α) we get the expression for the PN
3-dimensional gravity force (which we shall call the Poincaré gravity force
remembering his pioneer work in 1905 on the relativistic gravity force in flat
space-time):

FPoincare =
dp

dt
= −m0{(1 +

3

2

v2

c2
+ 3

φ

c2
)∇φ− 3

v

c
(
v

c
·∇φ)}

−m0{3
v

c

∂φ

c ∂t
− 2

∂Ψ

c ∂t
+ 2(

v

c
× rotΨ)} (83)

where φ = ψ00, Ψ = ψ0α = −ψ0α.
Taking into account the expression Eq.(77) for the PN 00-component of

the gravitational potential, we get the corresponding Poincare 3-acceleration
of the test particle :

dv

dt
= −(1 +

v2

c2
+ 4

ϕN

c2
)∇ϕN + 4

v

c
(
v

c
·∇ϕN )

+ 3
v

c

∂ϕN

c ∂t
− 2

∂Ψ

c ∂t
+ 2(

v

c
× rotΨ) (84)
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From the (i = 0) component of Eq.(62) follows the expression for the
work of the Poincaré force:

dEk

dt
= v ·FPoincare =

−m0v · {(1− 3

2

v2

c2
+ 3

φ

c2
)∇φ− 3

v

c

∂φ

c ∂t
+ 2

∂Ψ

c ∂t
} (85)

An important particular case is the static spherically symmetric weak
gravitational field for which Ψ = 0, ∂φ/∂t = 0, ψik = diag(φ, ϕN , ϕN , ϕN )
hence the PN 3-acceleration will have the simple form:

(
dv

dt
)FGT = −(1 +

v2

c2
+ 4

ϕN

c2
)∇ϕN + 4

v

c
(
v

c
·∇ϕN ) (86)

From the equation of motion (86) it is clear that the acceleration of a test
particle depends on the value and the direction of its velocity and gravi-
tational potential and this is a coordinate independent relativistic gravity
effect.

For circular motion v ⊥ ∇ϕN , hence the PN 3-acceleration is

(
dv

dt
)⊥FGT = −(1 +

v2

c2
+ 4

ϕN

c2
)∇ϕN (87)

For radial motion v ↑↓ ∇ϕN the 3-acceleration is

(
dv

dt
)
‖
FGT = −(1− 3

v2

c2
+ 4

ϕN

c2
)∇ϕN (88)

In GRT, as we noted above, PN equation of motion Eq.(22) is dependent
on the choice of a coordinate system (due to parameter α) and this is why
one can not directly use this equation for a derivation of observable effects.
In contrast to Eq.(22), in FGT the Eq.(86) is valid for all coordinate systems
in an inertial frame related to the center of mass of the main gravitating
body. This allows one in FGT to calculate observable effects from coordinate
independent equations (83) and (86).

Lagrange function in Post-Newtonian approximation According to expres-
sion (29) for the action in the case of a gravitating test particle the Lagrange
function has the form

L = −mc2
√

1− v2

c2
− mc2
√

1− v2/c2

(

Φ

c2
− 2Ψ

c2
· v
c
+
θαβ
c2

vαvβ

c2

)

, (89)

where Φ = ψ00 ,Ψ = (ψ0α) , θαβ = ψαβ .
Taking into account small parameters (v/c) we get

L(4) = −mc2 + mv2

2
+
mv4

8c2
−mΦ− 1

2
mΦ

v2

c2

+2m
(

Ψ · v
c

)

−m

(

θαβ · v
αvβ

c2

)

. (90)
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For a system of N gravitationally interacting particles we get

L(PN) =
∑

a

mav
2
a

2
+
∑

a

mav
4
a

8c2
+
∑

a

∑

b

Gmamb

2rab
+
∑

a

∑

b

3Gmambv
2
a

2c2rab

−
∑

a

∑

b

∑

c

G2mambmc

2c2rabrac
−
∑

a

∑

b

Gmamb

4c2rab
[7(vavb) + (vanab)(vbnab)] ,(91)

where nab is the unite vector in direction (ra − rb).
Note, that this Lagrange function in the frame of FGT does not depends

on coordinate system. It coincides with the corresponding expression in GRT,
just because in the frame of GRT the harmonic coordinates was used to derive
eq.(91) . This coincidence also explains many similarities in predictions of
FGT and GRT.

4 Relativistic gravity experiments/observations in FGT

4.1 Classical relativistic gravity effects

The field equations (41) and equations of motion (62), which in the frame
of FGT is contained in the expression of the conservation of total energy-
momentum T ik

(Σ) ,k = 0 in corresponding iteration, lead to various observable

consequences of the field gravity. It is important that the classical weak-field
relativistic gravity effects are the same in both FG and GR theories, hence
they can not distinct between GRT and FGT. These common predictions are
following:

• Universality of free fall for non-rotating bodies,
• The deflection of light by massive bodies,
• Gravitational frequency-shift,
• The time delay of light signals,
• The perihelion shift of a planet,
• The Lense-Thirring effect,
• The geodetic precession of a gyroscope,
• The quadrupole gravitational radiation.

Universality of free fall . The rest mass m0 of a structureless test particle
appears in both sides of the equation of motion (62), hence it is canceled
off. This demonstrate that within FGT the universality of the free fall is
a direct consequence of the principles of stationary action and universality
of gravitational interaction. Hence the universality of free fall is not a new
”principle of equivalence” but is a particular case of the old stationary action
principle. The motion of a test particle in the gravity field of a massive body
does not depend on the rest mass m0 of the test particle and in fact it checks
the universality of the rest mass of a particle.

For the case of an macroscopic extended body, when one probes the free
fall of a real body, which includes internal structure and contributions from
all interactions, contribution from thermal energy and pressure, and also
rotation of a body, should be analyzed separately (this will be done below).
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Light in the gravity field. Within the field gravity theory the deflection of
light and the time delay of light signals are consequences of the interaction
Lagrangian Lint = ψikT

ik
(elm), taken in the form corresponding to the univer-

sality of gravitational interaction (UGI). This gives the ”effective” refraction
index in the PN approximation [177], [131]:

n(r) = 1 +
2GM

c2r
. (92)

Hence the velocity of a light signal will have the value

cg(r) =
c

n
= c

(

1− 2GM

c2r

)

, (93)

so the direction of light ray is changed and the time delay appears, both with
the same amount as actually observed.

For a photon moving at the impact distance b from a point mass M , in
the weak field approximation the asymptotic deflection angle is :

θFG = θGR = 2θN =
4GM

c2b
. (94)

where θN = 2GM/v2b is the Newtonian deflection angle. One of the most
spectacular success of the GRT was the observed value of the light bending
for the Sun, which according to eq.(94) equals to θGR = 1.75”. The same
value of light bending FGT unambiguously predicts.

Interestingly, using a lift analogy (equivalence principle), Einstein 1911
[64] first derived for the deflection angle a value that was a half of really
observed value, i.e. Newtonian result θN. Later it was claimed that additional
contribution from the curvature of space should be taken into account.

From equation of motion (78) one gets that a particle passing with ve-
locity v the central mass M at the impact distance b, will experience a small
deflection angle:

θFG = (1 +
v2

c2
) θN . (95)

Hence for the particle velocity v = c one gets the same result as eq.(94).
One may verify from the equation of motion in GRT (22), that in order

to derive these formulae one should use isotropic or harmonic coordinates
(i.e. α = 0), while in FGT the equation of motion (78) and deflection angle
does not depend on coordinates.

The time delay of light signals. In the frame of FGT, the time delay phe-
nomenon, or the Shapiro effect, is caused by the change of velocity of light
according to eq.(93). If an emitter at a distance r1 sends a light signal to
a mirror at a distance r2 from a gravitating mass, and R is the distance
between the emitter and the mirror, then the additional travel time is

(∆t)FG =
4GM

c3
ln(

r1 + r2 +R

r1 + r2 −R
) . (96)

For the case of the Sun the value of 4GM⊙/c
3 is about 20µs.
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Though the time delay has the same value for both FGT and GRT, but the
physical interpretation of this effect in the field gravity theory has different
explanation without geometrical space-time properties. Again in the frame
of FGT this effect does not depend on the coordinates.

Atom in gravity field and gravitational frequency-shift. The gravitational
redshift of spectral lines in the frame of FGT is a consequence of the shift
of atomic levels. It is universal, because gravitation changes the total energy
and all energy levels of an atomic system. In the PN approximation Eobs =
E0(1 + ϕ

N
/c2) and hence hνobsik = ∆E0

ik(1 + ϕ
N
/c2).

Moshinsky [131] was the first who consider the interaction Lagrangian
(eq. 34) for the case of the interaction between the gravity field and the
spinor and electromagnetic fields of a hydrogen atom. A spectral line with
frequency νem radiated by an atom at the distance r from the surface of a
massive body with radius R and mass M , will be observed at infinity from
the body to have a frequency νobs. This gravitational redshift in the weak
field approximation (R >> Rg) is given by

zgrav =

(

νem − νobs
νobs

)

=
GM

c2r
. (97)

For the Sun the value of GM⊙/R⊙c
2 is 1.9× 10−10. A more general formula

for the gravitational redshift is:

1 + zgrav =
1

√

1 + 2Φ
c2

(98)

where Φ = ψ00, which gives the correct PN result zgrav ≈ |ϕ
N
|/c2.

In GRT the observed frequency shift is due to the clock that runs faster
when it is farther from the gravitating body. GRT general relation is dt =
dτ/

√
g00, so the Einstein’s gravitational redshift is

1 + z
GR

=
1

√

1− 2GM
c2r

. (99)

Note that in GRT there is an acute discussion about a correct interpretation
of the gravitational redshift. According to Will [199] and Okun, Selivanov &
Telegdi [138] [139] the energy and frequency of the photon does not change
during its radial motion in the gravity field, i.e. the photon does not lose or
gain energy. Some times the gravitational redshift effect is considered as a
foundation of the strong equivalence principle of GRT [200].

The pericenter shift and positive energy density of gravity field. It is well-
known in celestial mechanics [42], [116], that additional terms to Newtonian
equation of motion in the form of the eq.(78) leads to the formula for the
rate of the pericenter shift ω̇ of the orbit of a test particle (planet), having
semi-major axis a, eccentricity e and period P , in the form:

(ω̇)
FG

=
6πGM

c2a(1− e2)P
. (100)
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This effect is derived in the frame of the FGT as an analysis of the small
terms of the equation of motion (78) by using ordinary mechanics without
geometrical concepts of GRT. For Mercury this gives 43”/century, while for
the binary pulsar PSR1913+16 the effect is much larger, about 4o/year.

The formula (100) is the same as in GRT, but the interpretation is dif-
ferent. E.g. the nonlinear contribution (the 2nd term in eq.77) due to T 00

(g)

provides 16.7% of the total value (100). Therefore in the field gravity theory
the pericenter shift is directly contains the positive energy density of the
gravity field, making this physical quantity experimentally measurable.

The Lense-Thirring effect. The Lense-Thirring (LT) precession is a direct
consequence of the ordinary mechanics for the system having additional terms
in corresponding Lagrangian without the geometrical concept of ”dragging
of inertial frames”.

In the frame of FGT the LT effect is a direct consequence of the Lagrange
function (90). An elliptical orbit of a non-rotating test particle, moving in
the field of a central massive rotating body, will revolve as a whole about the
direction of the rotation axis of the central body with the rate [118]

ΩLT =
2GJ

c2a3(1 − e2)3/2
(j− 3l(l · j)) , (101)

where j = J/J , l = L/L, L is the orbital angular momentum of the particle,
and J is the angular momentum of the central body.

Resent Gravity Probe B experiment [86] confirmed that for an Earth-
orbiting satellite LT effect is about 0.1”/year, meaning that the orbit will
make a whole rotation in about 13 million years. In the case of pulsars in
binary systems and accreting RCO this precession is much larger.

The relativistic precession of a gyroscope. The rate of precession of a gyro-
scope orbiting a rotating massive body is the sum of two independent parts,
one due to the gravitational potential of the central body, effectively non-
Newtonian (the Weyl-effect), and the second due to its rotation (the Schiff-
effect). This effect can be calculated as the contribution from the Lagrange
function of the system of gravitating point masses in the second approxima-
tion (eq. 91). It does not contain any reference on the geometrical concepts
(see [118] sec.106) Because this Lagrange function is the same for GRT and
FGT, then the result is the same also:

ΩWS =
3GM

2c2R2
o

n×Vo +
GJ

c2R3
o

(3n(n · j)− j) . (102)

Here Ro is the radius vector of the center of inertia of the gyroscope, n =
Ro/Ro, Vo is the orbital velocity, J and M are the angular momentum and
the mass of the central body, and j = J/J .

For a gyroscope orbiting the Earth over the poles this precession amounts
to about 7”/year. Recent measurement of the precession effects by using the
drag-free satellite Gravity Probe B [72] gave the value of the gyroscope pre-
cession which is the same in GRT and FGT and cannot distinguish between
them.
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The quadrupole gravitational radiation. The gravitational radiation is a
natural consequence of the Field Gravity approach because relativistic grav-
itational field obeys the wave equation (41). In the weak field approximation
by means of the usual retarded potentials solution (52) of the wave field
equations one can infer ([21]) that a system of moving bodies will radiate
energy in the form of tensor (spin 2) gravitational waves.

Let us consider the generation of gravitational wave by means of a system
of gravitating bodies which have slow motion (v << c). In the wave zone
(R >> λ), where the distance R to the field point much larger than the size
b of the system (R >> b), the retarded potentials (52) can be presented in
the form of (n · r′)/c series

ψik(r, t) ≈ − 2G

c2r

∫

T̂ ik(r′, t)d3r′ − 2G

c3r

∂

∂t

∫

(n · r′)T̂ ik(r′, t)d3r′

− G

c4r

∂2

∂t2

∫

(n · r′)2T̂ ik(r′, t)d3r′ + . . . . (103)

The standard calculations, which takes into account the traceless character
of the pure tensor free wave φik, gives

φ23 = φ32 = − G

3c2r
D̈23 , φ22 − φ33 = − G

3c2r

(

D̈22 − D̈33

)

, (104)

where Dαβ =
∫

̺(3xαxβ−r2δαβdV is the reduced tensor of quadrupole mass
moment. So the tensor gravitational radiation (spin 2 field) is quadrupole (the
third term in (103)).

According to the equation (51) the positive and localizable energy density
of the tensor quadrupole gravitational wave is

T 00
{2} =

G

36πc6r2

[

...

D
2

23 +
1

4

( ...

D22 −
...

D33

)2
]

ergs

cm3
. (105)

The total radiation in all directions gives the quadrupole luminosity cT 00
{2}:

LFG
{2} =

G

45c5
...

D
2

αβ

ergs

sec
. (106)

Tensor gravitational waves in the frame of FGT are transversal and corre-
spond to a particle with spin 2. The quadrupole luminosity (106) is iden-
tical to the corresponding formula in GRT. A binary system will lose or-
bital energy via quadrupole gravitational radiation with luminosity L{2} ≈
2× 1032(M1/M⊙)

2(M2/M⊙)
2(M1 +M2/2M⊙)(a/R⊙)

−5 ergs/sec. Mi is the
mass of a component, a is the semi-major axis. 12

12 It is important to note that to calculate the loss of energy (106) one should use in
GRT an expression for the energy-momentum ”pseudotensor” of the gravitational
field, ill-defined in general relativity. This difficulty originated a long-time discussion
about the reality of gravitational waves in GRT (Trautman 1966 [180]).
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4.2 New FGT predictions different from GRT

The structure of the Newtonian force. As we derived above from the equation
of motion (62) for the case of a test particle in the symmetric tensor potential
ψik, the Newtonian limit gives the usual Newtonian force as the sum of the
attractive (spin 2 part) and the repulsive (spin 0 part) force (see eq. 79):

FN = (F{attr} + F{repuls}) =
3

2
FN − 1

2
FN . (107)

This new understanding of the Newtonian force and potential opens new ways
for experiments on the nature of the gravitational interaction, e.g. to measure
the scalar ”antigravity” even in weak-field laboratory conditions. A change
of balance between the scalar and tensor parts of the gravitational potential
could in principle explain the (debated) gravity-shielding experiments with
high-critical-temperature ceramic superconductors reported by Podkletnov
& Nieminen[148] and Podkletnov[149]. Modanese[130] concluded that there
is no convincing physical understanding of the experiments. Recently an anal-
ogous effect of a small change in the weight of a rotating superconducting
disc was detected by Tajmar et al.[174].

Translational motion of rotating test body. The gravity force acting on a ro-
tating test body was considered by Baryshev [19] in the frame of FGT. From
Eq.(83) in the case of a gyroscope motion in a static spherically symmetric
gravitational field it follows the expression for the elementary Poincaré force
dFP acting on each elementary mass dm of the gyroscope:

dFP = −{(1 + 3

2

v2

c2
+ 4

ϕN

c2
)∇ϕN − 3

v

c
(
v

c
·∇ϕN )}dm (108)

For a rotating rigid body the total gravity force is the sum of elementary
forces acting on elementary masses:

FP =

∫

dFP (109)

Taking into account that the velocity v of an element dm may be presented
in the form

v = V + [ωr] (110)

where V is the translational velocity of the body, ω is the angular velocity, r
is the radius vector of an element dm relative to its center of inertia, so that
∫

rdm = 0.
Inserting Eq.(110) into Eq.(108) and Eq.(109) we get

FP = −M{(1 + 3

2

V 2

c2
+ 4

ϕN

c2
+

3

2

Iω2

Mc2
)∇ϕN

−3
V

c
(
V

c
·∇ϕN )− 3

Mc2

∫

[ωr]([ωr] ·∇ϕN )dm} (111)

where M =
∫

dm =M0 is the total rest mass of the body, I is its moment of
inertia. Note that the assumption of rigid rotation of the test body Eq.(110)
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is used by Landau & Lifshitz ([118],p.331) for a post-Newtonian derivation
of rotational relativistic effects in GR. The non-rigidity of a body does not
play an important role in our case.

The relativistic relation between force F acting on a body and momentum
p of the body is:

F =
dp

dt
= mI

d(V/(1− V 2/c2))

dt
(112)

where mI is the inertial mass of the body, V is the translational velocity of
the body. From this relation it follows that the 3-acceleration is given by:

dV

dt
=

√

1− V 2/c2

mI
(F− V

c
(
V

c
·F)) (113)

The inertial mass mI of the rigidly rotating test body may be found from
the relation

mI =
1

c2

∫

T 00d3x =M0 + Erot/c
2 (114)

where T 00 is the 00-component of the energy momentum tensor of the ro-
tating body, M0 is its rest mass, and the last equality is obtained by using
Eq.(59) for energy momentum tensor of particles composed the body. For
rigidly rotating ball Erot = (1/2)Iω2. Note that in the general case of a self-
gravitating macroscopic body the energy density is T 00 = T 00

(m)+T
00
(int)+T

00
(g)

which gives also the correct contribution from classical potential energy (see
Thirring [177]; Baryshev [14]).

Under the gravity force Eq.(111) the rotating body will get the 3-acceleration
according to the general relation of Eq.(113) where the inertial mass is given
by Eq.(114). Hence the acceleration may be written in the form:

dV

dt
= −(1 +

V 2

c2
+ 4

ϕN

c2
+

Iω2

M0c2
)∇ϕN

+4
V

c
(
V

c
·∇ϕN ) +

3

M0c2

∫

[ωr]([ωr] ·∇ϕN )dm (115)

The equation (115) of motion of a small rotating body having the angular
velocity ω and the rest mass M0 around of the central mass M shows that
the translational orbital velocity of the body will have additional perturba-
tions due to its rotation. Note that one should also add conditions of energy
and angular momentum conservation of the rotating body. The last term in
Eq.(115) depends on the direction and value of the angular velocity ω of the
body and has an order of magnitude v2rot/c

2. In principle this effect may be
measured in laboratory experiments and astronomical observations including
Lunar Laser Ranging and pulsars in binary systems[19].

Testing the equivalence and effacing principles. Important conceptual prob-
lem in discussion of the equivalence principle (EP) is how to give proper
relativistic definitions for inertial and gravitational masses without refer to
the non-relativistic Newtonian equation of motion and without non-verifiable
statements.
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In the frame of general relativity the definition of the EP based on
consideration of an inertial frame of Newtonian dynamics where the equation
of motion of a test body in a Newtonian gravity field with the potential ϕN

is

(
dv

dt
)N = −mG

mI
∇ϕN (116)

where mI is the inertial mass and mG is the gravitational (passive) mass of
the body, dv/dt = a is the Newtonian acceleration of the body under the
action of the Newtonian gravity force FN = −mG∇ϕN .

The ratio mG

mI
= 1 + η (117)

is not generally restricted by Newtonian mechanics, and the statement that
η = 0 is called the weak equivalence principle. According to the Newtonian
equation of motion (Eq.116) an extended body may play the role of the test
particle and for η = 0 the acceleration under gravity force does not depend
on the velocity and internal structure of the body.

From modern tests, which use bodies having different compositions the
achieved precision in the inferred equality of the inertial and gravitational
masses (mI,mG) is about 10

−13. Several new high-accuracy tests of the equiv-
alence principle have been suggested in last years (Haugan & Lämmerzahl
2001; Bertolami, Paramos & Turyshev 2006).

Within the field gravity theory the basic concept is the universality
of gravitational interaction (UGI), which is determined by the relativistic
interaction Lagrangian (Eq.34), from which a certain form of equations of
motion is derived and can be tested by experiment/observations. In FGT,
according to the relativistic PN equation of motion (78) for test body in a
static field, the 3-acceleration is

dV

dt
= −(

m0

m0
)

{

(1 +
V 2

c2
+ 4

ϕN

c2
+)∇ϕN + 4

V

c
(
V

c
·∇ϕN )

}

(118)

whereV is the velocity of the body, ϕN is the Newtonian gravitational poten-
tial. In the right side of Eq.(118) the rest mass of the body m0 is canceled due
to the same energy-momentum tensor in both (interaction and free particle)
Lagrangian. Hence gravitational acceleration

• does not depend on the rest mass m0 of the test body,
• does depend on its velocity V (both on value and direction) and on the
value of the gravitational potential ϕN at the location of the particle.

This means that there are different ways in relativistic regime to define the
inertial mI and the gravitational mG masses.

For example, in the case of rotating test body, according to GRT equiv-
alence principle the free fall acceleration of a body does not depend on its
internal structure (effacing principle) and composition. Hence differently ro-
tating bodies will have the same gravitational acceleration (if one neglects
the tidal effect).

However in FGT according to equation of translational motion of rotating
body (115) there is an orientation-dependent contribution in the free fall
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acceleration. Hence rotating body can give new tests of possible violation of
EP due to rotational Erot = (1/2)Iω2 of the body at the level of Erot/M0c

2

which for radius R0 and angular velocity ω is

Erot

Mc2
≈ 2× 10−12(

R0

10cm
)2(

ω

104rad/sec
)2 (119)

The most straightforward application of Eq.(115) is to perform a ”Galileo-
2000” experiment (which is an improved 21st century version of the famous
Stevinus-Grotius-Galileo experiment with freely falling bodies in the Earth’s
gravity field) just taking into account rotation of the bodies. Instead of the
Newtonian equation of motion Eq.(116) in frame of FGT we have Eq.(115)
and the motion of a rotating body differs from that of non-rotating one.

Indeed let us consider three balls on the top of a tower (like the 110-m
Drop Tower of the Bremen University). The first ball is non-rotating and
according to Eq.(115) its free fall acceleration is:

g1 = (
dV

dt
)1 = −(1− 3

V 2

c2
+ 4

ϕN

c2
)∇ϕN (120)

Let the rotation axis of the second ball be parallel to the gravity force,
i.e. ω‖∇ϕN , hence its free fall acceleration is:

g2 = g1 × (1 +
2

5

R2
0ω

2

c2
) (121)

where one takes into account that for a homogeneous ball with radius R0

and mass M0 the moment of inertia is I = 2
5M0R

2
0.

Let the rotation axis of the third ball be orthogonal to the gravity force,
i.e. ω ⊥ ∇ϕN , hence its free fall acceleration is:

g3 = g1 × (1− 1

5

R2
0ω

2

c2
) (122)

Equations (120),(121),(122) imply that the considered three balls will
reach the ground at different moments. True, the difference is very small,
for example if the radius of the ball is R = 10 cm and its angular velocity
ω = 103 rad/sec, then the expected difference in the falling time from 110 m
tower will be ∆t ≈ (1/2)(∆g/g)t ≈ 2.5× 10−13 sec.

For NASA’s Gravity Probe-B experiment [72] with the drag-free gyro-
scope orbiting the Earth the expected in FG perturbation of the acceleration
of the translational orbital motion of the gyroscope (having radius 2 cm and
rotational speed about 80 Hz) is about δg/g ∝ 10−15, which is yet too small
for detection the signal in this experiment.

Another type of laboratory experiment for direct testing the velocity de-
pendence of the Poincaré gravity force (111) is to weigh rotating bodies. If
two bodies are at the balance and at a moment they start to rotate with
different orientations of the rotation axes then the balance will be violated
and hence measured by a scale. The expected difference in forces is again
about the value given by Eq.(119).
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In these laboratory experiments there are no problem with choosing a co-
ordinate system at all. The height of a tower and the moments of the contact
of the rotating bodies with the ground, and also readings of a balance scales
are directly measurable quantities. Hence the equation of motion Eq.(86) in
the field gravity theory gives a uniquely defined value for these laboratory
experiments. Note that at microscopic level the spin orientation dependence
of the gravity force also should be tested. Materials composed with regularly
oriented spins of particles or regularly directed internal motion of particles
can have different free fall accelerations, which in principle may be tested by
experiments.

Scalar and tensor gravitational radiation. Gravitational field equations (47,
48) describe the radiation of two types – pure tensor (traceless, spin 2) ”gravi-
tons” and scalar (trace of the tensor potential, spin 0) ”levitons” 13.

In the frame of FGT the scalar wave generation can be calculated from
the Eq.(53) for retarded potentials, which gives in the case of the wave zone
approximation the following expression:

ψ(r, t) ≈ 2GM0

r
− 2GEk

c2r
+

2GM0

cr

(

n · Ṙ
)

+
G

c2r
nαnβ Ïαβ + . . . , (123)

where M0 =
∑

ma , Ek = 1/2
∑

mav
2
a , R =

∑

mara/
∑

ma , Iαβ =
∑

max
α
ax

β
a . Taking derivative of (123) over time (at fixed point r) and

excluding non-contributing terms, we get following equation for the time
derivative of the scalar potential:

ψ̇(r, t) = −2GĖk

c2r
. (124)

It means that the scalar gravitational radiation is the second order monopole
radiation, and there is no first order monopole, dipole and quadrupole scalar
radiation. Using the expression (51) for the energy density in the scalar wave,
we get

T 00
{0} =

GĖ2
k

8πc6r2
ergs

cm3
. (125)

The energy flux is cT 00
{0}, so the additional loss of energy (in 4π steradian)

due to the scalar monopole radiation [16] is

L{0} =
G

2c5
Ė2

k

ergs

sec
. (126)

so the scalar gravitational (actually ”anti-gravitational”) radiation has the
same order 1/c5 as the tensor quadrupole radiation.

A test of the validity of the gravitational radiation formulae is offered by
binary pulsar systems. For a binary system the loss of energy due to the pure
tensor gravitational radiation is given by the quadrupole luminosity Eq.(106)

(which is the same in FGT and GRT) L(2)FG = (G/45c5)
...

D
2

αβ (ergs/sec),

13 The name ”leviton” was suggested by V.V. Sokolov for spin 0 scalar gravitons
which corresponds to the repulsive force
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where Dαβ is the quadrupole moment of the system. Tensor gravitational
wave in the frame of FGT is transversal and has localizable positive energy.

For a binary system the quadrupole luminosity is

< Ė >{2}=
32G4m2

1m
2
2 (m1 +m2)

(

1 + 73
24e

2 + 37
96e

4
)

5c5a5 (1− e2)
7/2

ergs

sec
, (127)

here m1,m2 are masses of the two stars, a is the semimajor axis and e is the
eccentricity of the relative orbit.

For a binary star system the orbital additional energy loss via scalar waves
(according to Eq.(126)) is

< Ė >{0}=
G4m2

1m
2
2 (m1 +m2)

(

e2 + 1
4e

4
)

4c5a5 (1− e2)
7/2

ergs

sec
. (128)

Hence the ratio of the scalar to tensor luminosity is

< Ė >{0}

< Ė >{2}

=
5

128
·

(

e2 + 1
4e

4
)

(

1 + 73
24e

2 + 37
96e

4
) . (129)

The value of this ratio lies in the interval 0 - 1.1 % depending on the value
of the eccentricity ’e’, and for a circular orbit equals zero. However for a
pulsating spherically symmetric body there is no quadrupole radiation and
the scalar radiation becomes dominating.

According to Weisberg et al. 2003 [191], 2010 [192], 2016 [193] the ob-
served rate of change of the orbital period was measured more and more
precisely and now is Ṗ obs

b = (−2.423 ± 0.001)10−12 [193]. The GRT and
FGT predict for the corresponding change of binary period due to posi-
tive energy loss in quadrupole gravitational waves the very precise value:

Ṗ quad
b = (−2.40263± 0.00005)10−12 [193]. Hence the observed excess of en-

ergy loss (relative to spin-2 radiation) is ∆
{2}
obs = (+0.848± 0.041)% .

The orbit of the binary pulsar PSR1913+16 has an eccentricity e =
0.6171334(5), hence the expected additional energy loss due to scalar gravita-
tional radiation (Eq.129) is∆scalar = 0.735% [16]. Hence the remain observed

excess relative to spin-2 plus spin-0 gravitational radiation is ∆
{2}+{0}
obs =

(+0.113± 0.041)% .
It has been shown by Damour & Taylor 1991 [51] that the observed rate of

the orbital period change Ṗ obs
b must take into account the kinematic ”Galac-

tic effect” of the relative acceleration of the pulsar and the Sun in the Galaxy.
In the model of the planar circular motion of the Sun and the pulsar the
Galactic contribution is given by the relation [51]:

(

Ṗb

Pb

)Gal

= − V 2
0

cR0
cos l − V 2

1

cR1

[

R0

R1

(

d

R0
− cos l

)]

+ µ2 d

c
(130)

were V0, V1 are the circular velocities at the Sun’s R0 and the pulsar’s R1

positions in the Galaxy, l = 49. 97 ◦ is the pulsar’s galactic longitude, µ is the
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proper motion of the pulsar, d is the distance to the pulsar, c is the velocity
of light.

However there is large uncertainty in the Galactic effect due to adopted
model of the Sun-pulsar relative motion, adopted distance to the pulsar and
errors in the proper motion of the pulsar. The distance d to the pulsar
PSR1913+16 is a critical parameter in the calculation of the Galactic ef-
fect. Unfortunately, the line of sight to the pulsar passes through a complex
region of our Galaxy, and one must be very careful, when derives the value
of the distance to the pulsar from the dispersion measure. For example ac-
cording to Weisberg et al. 2003 [191] the distance to the pulsar d = 5.9±0.94
kpc and the proper motion µ = 2.6 ± 0.3 mas/yr while Weisberg et al.2016
[193] adopted d = 9.0±3 kpc and the proper motion µ = 1.48±0.04 mas/yr.
So it is possible to choose such Galaxy model parameters which allow to
compensate the observed excess of Ṗ obs

b .
In particular the distance to the pulsar PSR1913+16 requires further

careful determination by using different methods. 14 A direct determination
of the pulsar distance may be regarded as a test of fundamental physics,
related to the nature of gravitation. Also distances to other binary pulsars
will be crucial for gravity physics. According to [193] now the rate of orbital
period change has been measured for other eight binary pulsars with accuracy
about 5% so in the near future the scalar GW contribution will be tested
more reliably.

Detection of GW signals by Advanced LIGO. Recently the detection of GW
signals by Advanced LIGO antennas was announced [1], [2], [3]. This break-
through discovery has opened new possibility for study the fundamental
physics of the gravitational interaction.

The LIGO Scientific Collaboration and the Virgo Collaboration team
presents the interpretation of the detected GW events GW150914, GW151226
and LVT151012 as the binary black hole merger signals with total masses up
to 100 M⊙ [3]. They used models of the waveform covering the inspiral,
merger and ringdown phases based on combining post-Newtonian theory,
the effective-one-body formalism and numerical relativity simulations. As a
result they found that the observed GW signals corresponds to coalescence
of the binaries with masses 36.2 and 29.1, 14.2 and 7.5, 23 and 13 (in M⊙),
at distances 420, 440 and 1000 (in Mpc) respectively.

However, in the frame of the GRT there is an important conceptual ob-
stacle (Trautman 1966 [180]) which forbids the localization of the GW energy
due to the pseudo-tensor character of the energy-momentum of the gravita-
tional field in all metric gravity theories. According to Misner, Thorne and
Wheeler 1973 [127] in §20.4.”Why the energy of the gravitational field cannot
be localized” on p.467 they wrote: ”...gravitational energy... is not localizable.
The equivalence principle forbids”. And in §35.7.”The stress-energy carried
by a gravitational wave” on p.955 they wrote: ”...the stress-energy carried
by gravitational waves cannot be localized inside a wavelength”. Hence one

14 If the distance to the pulsar PSR 1913+16 has the critical value d = dcrit = 5.4
kpc, then the second term in eq.(130) equals zero. For distances d < dcrit this term
even changes its sign.
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can talk only about smeared-out amount of stress-energy within a region
of several wavelengths size. But the LIGO gw-detectors (arm length 4 km)
have localized the gw-energy by measuring the oscillating wave-form of the
gw-signal well inside the gw-wavelength (λGW ≃ 3000 km).

In the FGT the energy-momentum of the gravitational field is the true
tensor, so the GW energy is localizable and carries positive energy, which is
given by Eq.(51). Hence the detection of the GW signals can be considered as
a new confirmation of the Feynmans field gravitation theory, which is based
on the fundamental concept of localizable positive energy of the gravitational
field.

The radiation of the quadrupole GW in the FGT has the same value as
in GRT, so the interpretation of the observed oscillating form of the aLIGO
signals can be presented as the coalescence of the binary Relativistic Compact
Objects (instead of black holes). But in FGT also the scalar radiation exists
and this can be tested in the near future by means of modern GW detectors.
The scalar gw-radiation arises from the spherical pulsations of the collapsing
bodies (in massive core collapse SN) and also can be detected and identified
by related optical SN explosion.

According to the eq.(51) the flux of the gw-energy in the flat monochro-
matic scalar GW is given by

S{0} = cT 00
{0} =

c3

32πG
(ḣ)2

erg

sec cm2
(131)

where h = A/c2 is the dimensionless gravitational potential A of the wave.
Let us consider the ”standard” gw-puls introduced by Amaldi & Pizzella
1979 [5], which is a sinusoidal wave A(t, x) = A0 cos(ωt−kx) with amplitude
A0, frequency ω0 = 2πν0 and duration τg. For the scalar GW, the amplitude
h0 = A0/c

2 of the signal on the Earth due to the gw-puls that occurs at a
distance r, with total energy Egw is

h0 = 1.95× 10−21

(

100Mpc

r

)(

102Hz

ν0

)(

Egw

1M⊙c2

)1/2(
0.5s

τg

)1/2

. (132)

Expected rate of gravitational wave signals from core collapse SN explosions
and binary RCO coalescence within inhomogeneous Local Universe (r ≤ 100
Mpc) was considered by Bayshev & Paturel 2001 [29]. Sensitivity h ≃ 10−22

is enough for detection of such gw-events from the Virgo galaxy cluster and
the Great Attractor.

Interaction of gravitational wave with gw-antenna has different physics
in FGT and GRT ([16], [29]). If we substitute the expression for the scalar
plane monochromatic gravitational wave

ψik
{0} = A(t, x)ηik = A0 cos(ωt− kx)ηik (133)

into equation (80) and leave the main terms we get the following equations
of motion of test particle in scalar wave

dvy
dt

=
dvz
dt

= 0 , (134)
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dvx
dt

=
1

4c

∂ψ

∂t
. (135)

and the equation for the work produced by the scalar wave (i = 0 in Eq.(80)):

dEkin

dt
=
m0

4c
vx
∂ψ

∂t
= −m0c

2

32c4
h20 ω sin(2ωt+ α) , (136)

the kinetic energy of the test particle in the scalar wave is

Ekin(t) =
m0c

2

64
h20 (1 + cos(2ωt+ α)) . (137)

Hence according to eqs.(134, 135, 136) the scalar wave accelerates the test
particle and the gravitational force produces the work which change the ki-
netic energy of the particle.

Also the scalar wave is longitudinal and the test particle oscillates along
the direction of the wave propagation around initial position with the velocity
amplitude ∆v and the distance amplitude ∆x

∆v =
cA

c2
and ∆x =

A

kc2
=

λA

2πc2
. (138)

For two test particles at a distance l0 ≪ λ along x-axis we get the dimen-
sionless amplitude of oscillation in the form ∆l0/l0 = A/c2 = h.

It is important to note that scalar gravitational wave does not interact
with the electromagnetic field because the interaction Lagrangian equals zero

Λ(int) = − 1

c2
ψik
{0}T

(em)
ik = − 1

4c2
ψ T(em) = 0 . (139)

It means that detection of the scalar wave can be achieved by means of laser
interferometric antenna, because the GW affects only the test masses and
has no action on the photon beam. Also very important to know the position
of the GW source on the sky for testing the longitudinal and transversal
character of the GW.

However, up to now there is no optical-x-ray-gamma identification at the
sky the probable sources of GW radiation though the astrophysical black hole
candidates are the most bright sources of optical-Xray radiation (due to real
astrophysical gas environment). As it was demonstrated many times in the
history of astronomy ( e.g. radio sources, x-ray sources, gamma bursts) it is
impossible to get correct model of radiation process without identification of
source at least in two different wave-bands – too many concurrent models are
possible. In the near future the Advanced Virgo antenna will start to operate
and the localization of the GW sources will achieve about 1 square degree, so
optical identification of this violent astrophysical event will be possible with
accuracy about 1 arcsec. Only after such identifications one can speak about
correct understanding the GW events detected by gw-antennas.

This is why the suggested by LIGO group interpretation of the observed
events as black holes coalescence is actually a preliminary model. For exam-
ple instead of black holes it can be two orbiting relativistic compact objects
(RCO) possible in FGT which emit gravitational waves during the late in-
spiral, merger and pulsations of the resulting RCO. The oscillating form of
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the GW signal is possible within FGT as the inspiral, merger and amplitude
decay during coalescence of binary RCO. Also oscillating profile is possible
for the core pulsations during supernova collapse.

The riddle of Core Collapse Supernova explosions. The problem of super-
nova explosion is one of the most intriguing in modern relativistic astro-
physics. Expected amplitudes and forms of gravitational wave (GW) signals
from supernovae explosions detected on the Earth by gravitational anten-
nas essentially depend on the adopted scenario of core-collapsed explosion
of massive stars and relativistic gravity theory. This is why the expected
detections of GW signals from SN will give for the first time experimental
limits on possible theoretical models of gravitational collapse including the
strong field regime and even quantum nature of the gravity force. For the
estimates of the energy, frequency and duration of supernova GW emission
one needs a realistic theory of SN explosion which can explain the observed
ejection of massive envelope. Unfortunately, for the most interesting case of
SNII explosion such a theory does not exist now, but there is a hope that
future 3D supercomputer’s calculations will bring a solution of the SNII ex-
plosion. However, as it was sadly noted by Paczynski 1999 [140] if there were
no observations of SNII it would be impossible to predict them from the first
principles.

Modern theories of the core collapse supernova are able to explain all
stages of evolution of a massive star before and after the explosion. How-
ever, the theory of the explosion itself, which includes the relativistic stage
of collapse where a relativistic gravity theory should be applied for the cal-
culation of gravitational radiation, is still controversial and unable to explain
the mechanism by which the accretion shock is revitalized into a supernova
explosion (see discussion by Burrows 2013 [43], Imshennik 2010 [105] ).

Burrows [43] in his review ”Perspectives on Core-Collapse Supernova The-
ory” emphasized that one of the most important, yet frustrating, astronomi-
cal question is What is the mechanism of core-collapse supernova explosions?
Fifty-years history of CCSN theory, which uses advanced hydrodynamics and
shock physics, convection theory, radiative transfer, nuclear physics, neutrino
physics, particle physics, statistical physics, thermodynamics and gravita-
tional physics have not definitively answered that question. Intriguingly up
to now there is no theoretical understanding how to extract such energy from
relativistic collapse of the iron core and produce observed kinetic energy of
the expanding stellar envelope [43], [61], [105], though there is a hope that fu-
ture supercomputer calculations can resolve the problem of CCSN explosion
in the frame of GRT.

According to the review [43] for all trustworthy models of the core-collapse
SN (CCSN) the energy of the explosion is never higher than a few tenths of
Bethe (1 Bethe = 1051 ergs), which is not enough to overcome the gravita-
tional binding energy of the canonical neutron star mass ∼ 1.5Msun. Many
years theorists have been presented with a stalled accretion shock at a ra-
dius near ∼ 100− 200 km and have been trying to revive it (a review of the
literature see [43], [105]). This bounce shock should be the CCSN explosion.
However, both simple theory and detailed numerical simulations universally
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indicate that due to neutrino burst and photodissociation of the in-falling
nuclei debilitate the shock wave into accretion within ∼ 5 milliseconds of
bounce. What is more, if the shock is not revived and continues to accrete,
all cores will collapse to black holes, which contradict observations of NS in
SN remnants. Rapid rotation with magnetic fields (e.g. [38]) and 3D MGD
simulations taking into account different instabilities need to be studied more
carefully in future. The true model should explain also such observational
properties of the CCSN as two stage collapse and simultaneous burst of
gravitational waves [105] (as it was in the case of SN1987A [82]). However
up to now though many different revival mechanisms were considered there
is no successful model yet, because the problem of CCSN explosion exists at
a very fundamental level.

A possibility to revive the bounce shock essentially depends on the grav-
ity force acting within the pre-neutron star (pre-NS), where at least post-
Newtonian relativistic gravity effects should be taken into account [186].
Within the field approach to gravitation besides the tensor (spin 2) waves
there is the scalar (spin 0) ones, generated by the trace of the energy-
momentum tensor of considered matter. Though in the field gravity theory,
there is no detailed calculations of the relativistic stages of the core collapse,
but, in principle, the repulsive scalar part of gravitational potential could
could lead to revive the bounce shock. Also the released energy of the scalar
GW may reach values of about one solar rest mass, with characteristic fre-
quency 100 – 1000 Hz and durations up to several seconds (Baryshev [18];
Baryshev & Paturel [29]).

According to FGT the general physical concepts of force, energy-momentum,
energy-quanta are working as in other theories of fundamental physical inter-
actions, so that gravity force and positive energy density of the gravitational
field exist inside and outside a massive body. An important new element of
the FGT is the principal role of the scalar part of the symmetric tensor field,
which is its trace and actually present repulsive force, which was missed in
Feynman’s lectures on gravitation [76], [77].

The CCSN explosion within FGT has essentially different scenario than in
GRT. Post-Newtonian equations of relativistic hydrodynamics in the frame
of FGT were derived in Baryshev [14], according to which the gravity force
essentially depends on the value and direction of the gas flow. For example
according to PN equation of a test particle radial motion (88) there is a

critical value of the radial velocity vrad ≃ c/
√
3 ≈ 0.577 c. For v > vcrit the

gravitational acceleration goes to zero. This gives possibility for pulsation of
the inner core of the pre-NS star and formation of main explosion shock wave
together with jet-like outflow along the rotation axis. The PN equations of
the gas motion was derived in [14] from the conservation laws of the total
energy-momentum for the system gas plus gravitational field found in the
first iteration:

(

T ik
(gas) + T ik

(int) + T ik
(g)

)

, i
= 0 . (140)

From Eq.140 we get
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For the static configuration the gas velocity v = 0 and the post-Newtonian
equation of hydrostatic equilibrium of a spherically symmetric body in FGT
will be:

dp

dr
= −G(̺0 + δ̺)M∗

r

r2
, (142)

where

δ̺ =
e+ p

c2
+ 2̺0

Φ

c2
, (143)

M∗
r =

∫ r

0

4πr′2(̺0 +
e+ 3p

c2
+ 2

̺0Φ

c2
+ 2

(dΦ/dr)2

8πGc2
)dr′ . (144)

The most important difference between equation Eq.(142) of hydrostatic
equilibrium in FGT and the Tolman-Oppenheimer-Volkoff equation (Eq.25)
in GRT, is that within FGT the relativistic gravity corrections lead to a
decrease of the gravitating mass (and so gravitational force) relative to its
Newtonian value (due to the negative value of the gravitational potential
(Φ = ψ00 < 0)). According to Eq.(142) a hydrostatic equilibrium is possible
for any large mass. Another important prediction of the FGT is that the
supermassive stars (suggested as a possible source of energy in quasars) are
stable to small adiabatic pulsations ([15], [32]).

Core-collapse supernova explosions, gamma-bursts, neutrino and gravita-
tional bursts have common origin. Hence a direct test of the strong gravity
effects would be the detection of a gravity wave signal from the relativistic
collapse. The absence of black holes in the FGT makes dramatic changes in
the physics of supernova explosions. The collapse of the iron core of mas-
sive pre-supernovae stars will have a pulsation character and leads to long
duration gravitational signals, comparable with neutrino signals and gamma
ray bursts, i.e. several seconds. The relation of the gamma-ray-burst (GRB)
phenomenon to relativistic core-collapse supernovae has become a generally
accepted interpretation of the GRBs (Paczynski [140], Sokolov [165]). If the
compact GRB model suggested by Sokolov et al. [168] obtains further con-
firmation, then there should be a correlation of the gamma-x-ray signal with
neutrino and gravitational bursts.

Note, that the gravitational antenna GEOGRAV had observed a signal
from SN1987A together with the neutrino signal observed by the Mont Blanc
Underground Neutrino Observatory (Amaldi et al. 1987 [6]; Aglietta et al.
1987 [4], Imshennik 2010 [105], Galeotti & Pizzella 2016 [82]). This has been
interpreted by Baryshev 1997 [18] as a possible detection of the scalar gravita-
tional radiation (if the bar changes its length) from the spherical core-collapse
of the supernova. Another possibility to explain the gw-signal from SN1987A
in metallic bar antenna (fixed to the ground) is to take into account the rela-
tive difference in motion of free electrons and proton lattice under the action
of the scalar GW.
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An observational strategy to distinct between scalar and tensor gravita-
tional waves by using sidereal time analysis was considered by Baryshev &
Paturel 2001 [29]. There is an evidence for possible detections of gravitational
signals by Nautilus and Explorer antennas (Astone et al. 2002 [9]). Though
they was not confirmed by later observations (after ”improving” sensitivity,
which actually excluded resonance), it is needed to develop detectors of GW
signals based on working principles compatible with FGT.

Relativistic compact objects instead of black holes. In the case of strong grav-
ity the predictions of FGT and GRT diverge dramatically, mainly because
of the positive localizable energy density of the gravitational field and the
crucial role of the scalar potential component (trace of the symmetric tensor
potential) generated by the trace of EMT of the gravitational field sources.
The scalar field is attraction and only in combination with pure tensor part
(which is attraction) gives the classical Newtonian gravitation.

In FGT there is no black holes, horizons and singularities, and no such
limit as the Oppenheimer-Volkoff mass. This means that compact massive
objects in binary star systems and active galactic nuclei are good candidates
for testing GRT and FGT theories. According to FGT for a static weak field
conditions the positive energy density of the gravitational field around an
object with mass M and radius R is

εg =
(∇ϕ

N
)
2

8πG
=

GM2

8πr4
ergs/cm3 . (145)

So around a neutron star there is a ”cloud” of gravitational field with mass
density

̺g = 1.1× 1013
(

M

M⊙

)2(
10 km

R

)4

g/cm
3
. (146)

It is positive, localizable, and does not depend on a choice of the coordinate
system. On the surface of a neutron star the mass density of the gravity field
is about the same as the mass density of the nuclear matter.

A very general mass-energy argument shows that in FGT there is the
limiting radius of any self-gravitating body and there is no singularities. This
argument is a precise analogue to that of the classical radius of electron.
Indeed, the total mass-energy of the gravitational field existing around a
body is given by

Ef =

∫ ∞

R0

(∇ϕ
N
)2

8πG
4πr2dr =

G M2

2R0
. (147)

This energy should be less than the rest mass-energy of the body, which
includes the energy of the gravity field. From this condition it follows that:

Ef < Mc2 ⇒ R0 >
G M

2c2
. (148)

If one takes into account the non-linearity of the gravity field and the internal
energy-part inside the object, then the value of the limiting radius further
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increases, because ”the energy of the field energy” should be added. As the
gravitational radius Rg for any massive body in the field gravity we define
the radius, where mass-energy of the gravitational field equals to half of its
mass-energy measured at infinity,so:

Rg =
G M

c2
=

1

2
RSch , (149)

As we have discussed in Introduction, very recent surprising observational
fact is that the estimated radius of the inner edge (Rin) of the accretion disk
around black hole candidates has sizes about (1.2−1.4)Rg = (0.6−0.7)RSch

(Fabian 2015 [73], Wilkins & Gallo 2015 [202], King et al.2013 [112]). This
points to a suggestion, that instead of a Kerr BH rotating with velocity
about 0.998c, we observe ordinary RCO having radius close to its limiting
FGT value Rg (Eq.149).

Also VLBI observations, using submm wavelength Event Horizon Tele-
scope (EHT), will have unique angular resolution which will achieve event-
horizon-scale structure in the supermassive black hole candidate at the Galac-
tic Centre (SgrA*) and M87. The first results of EHT observations at 1.3mm
surprisingly has demonstrated that for the RCO in SgrA* there are no ex-
pected for BH the light ring at radius 5.2RSch (Doeleman 2008 [59]). Again
this may points to a possibility the existence of limiting FGT RCO having
finite gravity force at its surface which does not produce light rings. So in
the frame of FGT there is prediction, that forthcoming EHT observations
at 0.6mm will discover a combination of radiation from a central RCO, ac-
cretion disc and the origin of relativistic jet from the surface of the RCO
(without black hole in the center).

Observations of the stellar mass BH candidates surprisingly discovered
a preferred value of RCO mass about 7Msun [166]. Intriguingly a quantum
consideration of the macroscopic limiting high density quark-gluon bag gives
self-gravitating configurations with preferred mass 6.7Msun and radius 10 km
[166]. So, quantum gravidynamics predicts two peaks in mass distribution of
the stellar-mass relativistic compact objects: 1.4Msun for neutron stars and
6.7Msun for quark stars.

An important consequence of the positive energy density εg of gravita-
tional field distributed around a body is the existence of the limiting gravity
force for objects having limiting size ∼ Rg. It can be shown [16], that for
εg > 0 the solution of the corresponding Poisson equation ∆ϕ = +(∇ϕ)2/c2,
gives for potential gradient and hence for the force, that

Fg = m
dϕ

dr
=
GmM

r2
1

(1 +GM/rc2)
, (150)

hence for r → Rg the gravity force decreases relative to its Newtonian value.
And for the limiting size r = Rg gravitational acceleration and gravitational
force are restricted by:

gmax ≤ c4

GM
=

c2

Rg
, and Fg(max) ≤

mc4

GM
=
mc2

Rg
<
c4

G
. (151)
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where the last inequality is written for the case m = M . For negative energy
density εg < 0 one would got infinite acceleration and force at finite radius
r = Rg, as it happens in GRT. Importantly, in the frame of FGT the super-
massive RCO have very small gravitational acceleration (and force for unite
mass m) at their surface.

Other predictions for testing. Existing variants of quantum geometry predict
violation of the equivalence principle, possible violation of the Lorentz invari-
ance, and time-varying fundamental physical constants at such a level that
their detection may be realistic in near future (Amelino-Camelia et al.[8];
Bertolami et al.[36]).

However, up to now increasingly strong limits have been derived on varia-
tions of fundamental constants (Uzan [184]; Pit’eva & Pit’ev [146]). Also first
observations of sharp images of a very distant supernova did not confirm the
predicted quantum structure of space-time at Planck scales (Ragazzoni et al.
[152]). There is also no deflection from the Newtonian gravity law at small
distances down to µm scales (Nesvizhevsky & Protasov [133]).

An evidence on the similarity of the gravity force to other physical forces
was obtained in recent experiments by Nesvizhevsky et al. [134];[135]. Using
freely falling ultra-cold neutrons they showed that the gravity force acts
similarly to the usual electric force producing quantum energy levels for the
micro-particles moving in the gravity field (Westphal at al. [194]).

5 Cosmology in GRT and FGT

Modern cosmology is considered as an extension of the laboratory physics
to the whole observable Universe. In fact, cosmological model is a particular
application of the gravitation theory to the infinite mass distribution. This is
why observational cosmology is so important for testing possible approaches
to the physics of gravitational interaction.

5.1 General principles of cosmology

Cosmology is a science on the infinite spatial matter distribution and its evo-
lution in time. Cosmology as a physical science is based on observations, ex-
periments and theoretical interpretations. Sandage 1995 [157] used the term
”Practical Cosmology” to denote the study of the largest achievable scales
of the Universe and the search for the world model which best describes it.
Our understanding the Universe is growing with gradually deepening sam-
ple of its observable part which delivers possibilities for testing alternative
hypotheses in the bases of cosmological models.

In the book Baryshev & Teerikorpi 2012 [32] the ”practical cosmology”
is presented as wider based than any specific cosmological model. This is
because its methods are especially aimed at testing the initial assumptions
and basic predictions of different world models.

Very important new aspect of cosmological physics is that we study a
realization of infinite mass distribution — N-body system with N = ∞. Also
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the time retardation effect should be taken into account in studies of the
deep parts of the observable Universe.

In cosmology the usual lab suggestion about isolation of a local system
does not valid at all, because there is no external empty space. In the infinite
mass distribution all problems are internal and division on local and global
physics should be studied carefully. New specific physical relativistic quantum
effects can appear at cosmological distance and time scales.

For example the definition of an inertial reference frame in cosmology
can be made on the hypothesis of exact cancelation of all external forces
∑

Fi = 0. A practical realization of such globally rest inertial frame can
be based on the observation of the cosmic microwave background radiation
isotropy.

Cosmology deals with a number of empirical facts among which one hopes
to find fundamental laws. This process is complicated by great limitations
and even under the paradigmatic grip of any current standard cosmology.
One should distinguish between two kinds of cosmological laws:

– experimentally measured empirical laws,
– logically inferred theoretical laws.

The major empirical steps in modern cosmology are connected with ad-
vances in instrumentation during the 20th century. The logically inferred
theoretical laws (theoretical interpretations) are made on the basis of an ac-
cepted cosmological model, e.g. the standard or an alternative cosmological
model.

Three fundamental cosmological empirical laws were then unveiled:

– the cosmological redshift-distance law cz = Hr,
– the thermal law of isotropic cosmic background radiation Bν(T ),
– the fractal power-law correlation of galaxy clustering Γ (r) ∼ r−γ .

The empirical laws, being based on repeatable observations, are indepen-
dent of existing or future cosmological models. The theoretical laws are valid
only in the frame of a specific model. Good examples are the empirical Hub-
ble’s redshift-distance (z ∝ r) law and the corresponding theoretical linear
velocity-distance (V ∝ r) law within the Friedmann model.

5.2 Friedmann’s homogeneous model as the basis of the SCM

Initial assumptions. The geometrical approach of general relativity leads to
the Friedmann cosmological model, the frame for modern cosmological re-
search. The expanding homogeneous universe explains all available data,
though there are some paradoxes, which are discussed in the next section.

Nowadays the expanding Big Bang cosmological model is generally ac-
cepted as the standard cosmological model (SCM) for description of the
structure and evolution of the physical Universe (Peebles [143], Weinberg
[190], Baryshev & Teerikorpi [32]). SCM is based on the geometrical gravity
theory (general relativity) and uses the description of all physical processes
in expanding space. The fundamental assumptions of the SCM are:
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• General relativity can be applied to the whole Universe (gik; ℜiklm; T ik
(m+de)).

• Homogeneous and isotropic matter distribution in the expanding Universe
(ρ = ρ(t); p = p(t); gik = gik(t)).

• Laboratory physics works in the expanding space.
• Inflation in the early universe is needed for explanation of the flatness,
isotropy and initial conditions of large scale structure formation.

Einstein’s cosmological principle. The fundamental basic element of the SCM
is the Einstein’s Cosmological Principle, which states that the universe is
spatially homogeneous and isotropic at enough ”large scales”. The
term ”enough large scales” relates to the fact that the universe is obviously
inhomogeneous at scales of galaxies and clusters of galaxies. 15 The hypoth-
esis of homogeneity and isotropy of the matter distribution in space means
that starting from certain scale rhom, for all scales r > rhom we can consider
the total energy density ε = ρc2 and the total pressure p as a function of
time only, i.e. ε(r, t) = ε(t) and p(r, t) = p(t) . Here the total energy density
and the total pressure are the sum of the energy densities for matter and
dark energy : ε = εm + εde, and p = pm + pde.

An ideal fluid equation of state p = γ̺c2 is usually considered for cosmo-
logical fluid, where usual matter and dark energy have following partial equa-
tions of state: pm = βεm with 0 ≤ β ≤ 1, and pde = wεde with −1 ≤ w < 0.
Recently values w < −1 also were considered for description the ”fantom”
energy.

Expanding space paradigm. An important consequence of homogeneity and
isotropy is that the line element ds2 = gikdx

idxk may be presented in the
Robertson-Walker form:

ds2 = c2dt2 − S2(t)dχ2 − S2(t)I2k (χ)(dθ
2 + sin2θdφ2) , (152)

where χ, θ, φ are the ”spherical” comoving space coordinates, t is synchronous
time coordinate, and Ik(χ) = (sin(χ), χ, sinh(χ)), corresponding to curva-
ture constant values k = (+1, 0, − 1) respectively. S(t) is the scale factor,
which determines the time dependence of the metric.

The expanding space paradigm states that the proper (internal) metric
distance r to a galaxy with fixed co-moving coordinate χ from the observer is
given by relation r(t) = S(t) · χ and increases with time t as the scale factor
S(t). Note that physical dimension of metric distance [r] = cm , hence, if
physical dimension [S] = cm, then χ is the dimensionless comoving coordinate
distance. In direct mathematical sense χ is the spherical angle and S(t) is
the radius of the sphere (or pseudosphere) embedded in the 4-dimensional
Euclidean space. It means that the ”cm” (the measuring rod) itself is defined
as unchangeable unit of length in the embedding 4-d Euclidean space.

15 There is more general Mandelbrot’s Cosmological Principle which state the
fractality of matter distribution together with isotropy. Fractal cosmological models
can be build on the basis of MCP also in the frame of GRT.
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It is important to point out that the hypothesis of homogeneity and
isotropy of space implies that for a given galaxy the expansion (recession) ve-
locity is proportional to distance (exact linear velocity-distance relation
for all RW metrics Eq. (152)):

Vexp(r) =
dr

dt
=
dS

dt
χ =

dS

dt
· r
S

= H(t)r = c
r

rH
(153)

where H = Ṡ/S is the Hubble constant (also is a function of time) and
rH = c/H(t) is the Hubble distance at the time t. Note that for r > rH one
gets expansion velocity more than velocity of light Vexp(r) > c.

The dark energy as a matter. In SCM the dark energy is included in the
Einstein’s field equations in the form:

ℜik − 1

2
gik ℜ =

8 πG

c4
(T ik

(m) + T ik
(de)) , (154)

where ℜik is the Ricci tensor, T ik
(m) is the energy-momentum tensor (EMT) of

the matter, which includes all kinds of material substances, such as particles,
fields, radiation, and T ik

(de) is the EMT of dark energy, in particular, the

cosmological vacuum is described by T ik
(vac) = gikΛ, where Λ is Einstein’s

cosmological constant. Usually T ik
(m) and T

ik
(de) are considered as independent

quantities, though there are models with interacting matter and dark energy
[88]. Note that T ik

(m) does not contain the energy-momentum tensor of the

gravity field itself, because gravitation in general relativity is a property of
space and is not a material field.

A mathematical consequence of the field equations (Eq. (154)) is that the
covariant divergence of the left side equals zero (due to Bianchi identity), so
for the right side we also have

(T ik
(m) + T ik

(de)) ; i = 0 . (155)

The continuity equation (Eq. (155)) also gives the consistency relation with
other equations.

Friedmann’s equations. In comoving coordinates the total EMT has the form
T i
k = diag(ε,−p,−p,−p) and for the case of unbounded homogeneous matter

distribution given by metric Eq. (152), the Einstein’s equations (Eq. (154))
are directly reduced to the Friedmann’s equations (FLRW model). From the
initial set of 16 equations we have only two independent equations for the
(0,0) and (1,1) components, to which we must add the continuity equation
(Eq. (155)) which has the form

3Ṡ/S = −ε̇/(ε+ p).

Using the definition of the Hubble constant H = Ṡ/S , the Friedmann’s
equations get the form:

H2 − 8πG

3
̺ = −kc

2

S2
, or 1−Ω = −Ωk , (156)
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and

S̈ = −4πG

3

(

̺+
3p

c2

)

S , or q =
1

2
Ω

(

1 +
3p

̺c2

)

, (157)

where Ω = ̺/̺crit, ̺crit = 3H2/8πG, Ωk = kc2/S2H2 q = −S̈S/Ṡ2, and
Ω, p, ̺ are the total quantities, i.e. the sum of corresponding components for
matter and dark energy.

Note that the Friedmann’s equations Eq. (157, 156) in terms of the metric
distance r(t) = S(t) · χ get the exact Newtonian form:

r̈ = −GMg(r)

r2
, and

V 2
exp

2
− GM

r
= const , (158)

where Mg(r) = − 4πG
3

(

̺+ 3p
c2

)

r3 is the gravitating mass of a comoving ball
with radius r(t).

Solving the Friedmann’s equations one finds the dependence on time the
scale factor S(t) or the metric distance r(t), which is the mathematical pre-
sentation of the space expansion.

Fundamental conclusions of the SCM. There are many explained astrophys-
ical phenomena in the frame of the SCM, such as cosmological redshift of
distant objects, cosmic microwave background radiation, Big Bang nucle-
osynthesis of light elements, large scale structure formation, chemical com-
position of matter and other. The main observational conclusions of the SCM
are:

• Cosmological redshift (1+ z) = λ0/(λ1) = S0/S1 , and the linear velocity-
distance relation Vexp = H × r is the consequence of the space expansion
r(t) = S(t)× χ of the homogeneous Universe.

• Cosmic microwave background radiation is the result of the photon gas
cooling in the expanding space T (z) = T0(1 + z).

• Small anisotropy ∆T/T (θ) of the CMBR is determined by the initial spec-
trum of density fluctuations which are the source of the large scale struc-
ture of the Universe.

• The physics of the expanding Universe is described by the LCDM model
which predicts the following matter budget at present epoch: 70% of unob-
servable in lab dark energy, 25% unknown nonbaryonic cold dark matter,
5% ordinary matter . Visible galaxies contribution is less than 0.5% .

Observational puzzles of the SCM. The mentioned above fundamental results
of the SCM interpretations of the observational data rise new problems for
the basis of the SCM. We emphasize here several such problems which were
discussed recently in the literature.

• Absurd Universe. The visible matter of the Universe, the part which
we can actually observe, is a surprisingly small (about 0.5%) piece of the
predicted matter content and this looks like an ”Absurd Universe”[182].
What is more, about 95% of the cosmological matter density, which deter-
mine the dynamics of the whole Universe has unknown physical nature.
Turner[183] emphasized that modern SCM predicts with high precision the
values for dark energy and nonbaryonic cold dark matter, but ”we have
to make sense to all this”.
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• The cosmological constant problem. One of the most serious problem
of the LCDM model is that the observed value of the cosmological constant
Λ is about 120 orders of magnitude smaller than the expectation from the
physical vacuum (as discussed by Weinberg[189] and Clifton et al.[47]).
In fact the critical density of the Ω = 1 universe is ̺crit = 0.853 ×
10−29g/cm3, while the Planck vacuum has ̺vac ≈ 10+94g/cm3..

• The cold dark matter crisis on galactic and subgalactic scales.
There are number of problems with predicting behavior of baryonic and
nonbaryonic matter within galaxies. It was discussed by Kroupa [117]
that there are discrepancies between observed and predicted galaxy density
profiles (the cusp problem), small number of observed satellites galaxies
(missing satellites problem), and observed tight correlation between dark
matter and baryons in galaxies, which is not expected within LCDM galaxy
formation theory.

• The LCDM crisis at super-large scales. The most recent observa-
tional facts which contradict the LCDM picture of the large scale structure
formation, come from: the 2MASS, 2dF and SDSS galaxy redshift surveys
(Sylos Labini [170]), problems with observations of baryon acoustic oscil-
lations (Sylos Labini et al.[?]), existence of structures with sizes ∼ 400
Mpc/h in the local Universe (Gott et al.[85], Tully et al.[181])and ∼ 1000
Mpc/h structures in the spatial distribution of distant galaxies, quasars
and gamma-ray bursts (Nabokov & Baryshev [132], Clowes et al.[48],
Einasto et al.[63], Horvath et al.[98]), alternative interpretation of the
shape of the CMBR correlation function (Lopez-Corredoira & Gabrielli
[125]), lack of CMBR power at angular scales larger 60 degrees and cor-
relation of CMBR quadrupole with ecliptic plain (Copi et al. [49]).

Conceptual paradoxes of the SCM. The existence of the mentioned above
observational puzzles in the SCM interpretations of the astrophysical data
rises a question: Does the contemporary standard cosmological model present
the ultimate physical picture of the Universe?

Contemporary fundamental assumptions in the basis of SCM have led
us to the serious observational puzzles which stimulate to search for a new
cosmology . As it was emphasized by Turner [183] for making new cosmology
one has to answer a new set of questions and the future world model will
reveal deep connection between fundamental physics and cosmology: ”There
may even be some big surprises: time variation of the constants or a new
theory of gravity that eliminates the need for dark matter and dark energy”
[183].

Intriguingly, besides the mentioned above observational puzzles there are
several deep conceptual problems in the foundation of the SCM. Their so-
lution could open the door to construction more firmly established future
cosmology. Below we present several such conceptual difficulties/paradoxes
of the SCM, which already have been discussed in the literature:

• Vacuum energy paradox: in the framework of the Einstein’s geomet-
rical gravity theory (GRT) there is the paradox of too small value of the
Lambda term, considered as the physical vacuum [189].



64

• 1st Harrison’s paradox (energy-momentum non-conservation):
physics of space expansion contains such puzzling phenomena as continu-
ous creation of vacuum and violation of energy-momentum conservation
for matter in any comoving volume, including photon gas of cosmic back-
ground radiation [92], [26].

• 2nd Harrison’s paradox (”motion without motion”): the galaxy
cosmological velocity is conceptually different from the galaxy peculiar ve-
locity, in particular the cosmological redshift in expanding space is not
the Doppler effect, but the Lemaitre effect applicable to a receding galaxy
having velocity larger than the velocity of light (so cosmological redshift is
a new physical phenomenon which includes the global gravitational cos-
mological redshift) [91], [93], [26].

• Hubble-deVaucouleurs’ paradox: in the expanding space the linear
Hubble law is the fundamental consequence of the assumed homogeneity,
however modern observations reveal existence of strongly inhomogeneous
(power-law correlated) large-scale galaxy distribution at interval of scales
1 ÷ 100 Mpc, where the linear Hubble law is firmly established, i.e. just
inside inhomogeneous global spatial galaxy distribution [34], [27].

5.3 Fractal cosmological model in the frame of FGT

A Field Gravity Fractal (FGF) cosmological model was suggested by Bary-
shev 1981 [12] and further developed in Baryshev 2008d [25]. It is true that
the Standard Cosmological Model (LCDM) has been developing more than
30 years by many physicists before it gets the modern form with many im-
portant results. However possible cosmological models in the frame of FGT
have not been developed yet because of absence of published foundations of
the FGT approach. It is too early to make detail comparison between SCM
and FGF. The field gravity fractal cosmological model has now preliminary
qualitative character, but it contains also several quantitative results. The
modern status of FGF cosmology allows one to formulate the really crucial
observational tests of those basic interpretations of fundamental cosmological
facts, such as linearity of cosmological redshifts together with strong inho-
mogeneity of large scale spatial galaxy distribution at distances less than 400
Mpc (z < 0.1) where superclusters of galaxies exist.

The FGF model is based on the two assumptions:

• the matter gravitational interaction is described by the Poincare-Feynman’s
field gravity theory,

• the actual baryonic matter distribution is described by a fractal density
law with critical fractal dimension Dcrit = 2.

Within FGF framework a new qualitative picture of the Universe has emerged,
with some quantitative results that may be tested by current and forthcoming
observations. The field gravity theory allows one to consider infinite matter
distribution in Minkowski space without the gravitational potential paradox.
A global evolution of matter is possible without space expansion and ini-
tial singularity. Cosmological redshift could have global gravitational nature.
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The energy-momentum tensor of the interaction plays the role of an effective
cosmological Lambda-term.

Instead of assumed in SCM homogeneous non-baryonic dark matter and
dark energy, the fractal distribution of dark + luminous baryonic matter
from the scales of galactic halos up to the Hubble radius, with the fractal
dimension of the total (luminous and dark) matter equals to D = 2, can
explain the observed linear Hubble law as the global gravitational redshift.

Universal cosmological solution for infinite matter distribution. In the frame
of GRT the weak-field approximation corresponds to the smallness of two
quantities simultaneously: the gradient of gravitational potential ∇ϕ → 0
and the gravitational potential itself |ϕ| → 0. However a specific feature of the
field gravitation theory is that there is the case of a weak force (small gradient
of the field) while |ϕ| → c2/2. This is what happens in the cosmological
problem and we can obtain some quantitative results even from the post-
Newtonian equations.

Let us consider the case of a static homogeneous (̺ = const) dust-like
cold (p = 0, e = 0) infinite matter distribution within infinite space. Using
expressions for the post-Newtonian total EMT (Eqs.71,74) and taking into
account the traceless of the field and interaction EMTs, we get from Eq.41
the equation for the ψ00 = ϕ component in the form

∆ϕ = 4πG

(

̺+
2

c2
̺ϕ+

2

8πGc2
(∇ϕ)2

)

. (159)

In our case the main terms in the right-hand side of this equation are the pos-
itive rest mass density ̺ and the negative interaction mass density (2̺ϕ/c2).
The last term can be neglected, because for large mass the force goes to zero.
Hence we have the simple equation

∆ϕ− 8πG̺

c2
ϕ = 4πG̺ . (160)

Note that Eq.160 is equivalent to the Einstein’s cosmological equation with
Lmbda-term Λ = 8πG̺/c2.

The cosmological solution of Eq.160 is

ϕ = −c
2

2
(161)

which means that the net force from the infinite mass distribution equals
zero for any place in the Universe.

Cosmological global gravitational redshift. In the case of the finite ball having
fractal matter distribution with D = 2, i.e. the rest mass density law is

̺ =
̺0r0
r

(162)

the solution of Eq.160 inside the ball has the form

ϕ(x)

c2
= −1

2
+

I1(4
√
x)

4
√
xI0(4

√
x)

(163)



66

where x = r/RH , and RH = c2/(2πG̺0r0) is the Hubble radius for the
D = 2 fractal universe, where β = ̺0r0 = const is the new fundamental
fractal constant.

For distances r << RH the gravitational potential is a linear function
of distance between a source and observer ϕ(r) ∝ r1 and the cosmological
gravitational redshift zcos−grav(r) = δϕ/c2 = (ϕ(r) − ϕ(0))/c2 will be

zcos−grav =
2πG̺0r0

c2
r =

Hg

c
r (164)

where δϕ is the gravitational potential difference between the surface (ob-
server) and the center of the ball (source).

Why does the cosmological gravitational effect give the redshift? From
the causality principle it follows that the event of emission of a photon (or
a spherical wave) by the source, which marks the centre of the ball, must
precede the event of detection of the photon by an observer. The latter event
marks the spherical edge where all potential observers are situated after the
transition time t = r/c. Therefore to calculate the cosmological gravitational
shift within the cosmologically distributed matter one should cut a material
ball with the center in the source and with the radius of the ball equal to the
distance between the source and an observer. In this case the cosmological
gravitational shift is towards red.

Note that in some discussions of the global cosmological gravitational
shift [206] they put the observer to the center of the ball and hence get a
blueshift instead of de Sitter’s and Bondi’s redshift. However, such a choice
of the reference frame violates the causality in the process considered: the
ball with the source on its surface has no causal relation to the emission of
the photon.

Moreover the full explanation of the global gravitational redshift will be
obtained only in the frame of future relativistic quantum field gravity theory.
Indeed, from Eq.(164) one get the expression for the gravitational Hubble
constant:

Hg = 2π̺0r0
G

c
, (165)

which can be viewed a production of the fundamental constants only. This
is because for a structure with fractal dimension D = 2 the constant β =
̺0r0 may be actually viewed as a new fundamental physical constant which
determining the value of the gravitational Hubble constant. If the value of the
fractal constant is β = 1/(2π) g/cm2 as it happens for an ordinary galaxy,
where e.g. one can take ̺0 = 5.2 × 10−24(g/cm3 and r0 = 10 kpc, then
Hg = 2πβG/c = 68.7(km/s)/Mpc.

Intriguingly, for the fractal matter distribution with fractal dimension
D = 2, the mass density – radius relation (̺r ∼ 1 g/cm2) looks universal:
starting from the nuclear scales (̺ ∼ 1012g/cm3; r ∼ 10−12cm) continues at
galactic scale (̺ ∼ 10−24g/cm3; r ∼ 1024cm) and holds up to the Hubble
radius (̺ ∼ 10−28g/cm3; r ∼ 1028cm). So the universal linear gravitational
redshift law within the fractal structure with D=2 would have deep roots
in the fundamental physics and Hg can be expressed as a combination of
fundamental constants of microphysics via expressions ̺0 and r0 for nuclear
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matter (h, c,mp,me) (Baryshev & Raikov 1988 [14], Baryshev et al. [33]). So,
to understand the global gravitational cosmological redshift one also requires
to construct the G-h-c gravitation theory.

The total mass-radius relation. For distances r << RH the gravitating mass
is given by the relation

M(r) = 2π̺0r0 r
2 = 4.8× 1011Msun

(

r

10 kpc

)2

, (166)

The interesting coincidence that this mass is close to a total galaxy mass
(including dark matter) within the radius r about 10 kpc, and also to the
critical value of the total mass of the Universe within the Hubble radius
r = RH .

However an obstacle appears from estimation (Eq.166) of the gravitating
mass. To produce the gravitational Hubble law on scales of about 10 Mpc
the total mass within such balls should be M(10Mpc) = 4.8 1016Msun. Such
values much exceed the mass of the luminous matter and this is why the FGF
model is compelled to assume that a sufficient amount of dark matter has the
fractal distribution with D = 2. Also, to have sufficiently small fluctuations
in the Hubble law in different directions around an observer the fractal should
be a special class: isotropic with small lacunarity.

The observed distribution of luminous matter (galaxies) on scales from 10
kpc up to 100 Mpc is well approximated by a fractal distribution with D = 2
([170], [32], [176]). This means that within the FGF model both dark and
luminous matter is similarly distributed on these scales. The nature of the
fractal dark matter has to be determined from future observations. Current
restrictions on possible dark matter candidates leave room for cold dead stars,
neutron and quark stars, Jupiters, planet size objects, asteroids and comets,
Pfeniger’s hydrogen cloudlets, and also macroscopic quark dust [107], [50].

For large distances (r >> RH) the total gravitating mass is M(r) =
(c2/2G) r for both D = 2 and D = 3 fractal structures. For scales larger than
RH the fractal dimension of dark matter may become D=3, corresponding
to a homogeneous distribution.

The evolution of the Universe. In Minkowski space-time filled by matter
there is a special frame of reference, namely the one where the matter is at
rest on the average relative to the cosmic background radiation. This frame
of reference allows one to speak also about a universal time and the arrow of
time is determined by the growth of the local entropy. Initial fluctuations in
the homogeneous gas of primordial hydrogen exponentially grow into large
scale structures according to the classical scenarios by Jeans 1929 [108] and
Hoyle 1953 [99]. The fractal structure of matter distribution withD = 2 could
naturally originate as the result of the evolution of the initial fluctuations
within the explosion scenario (Schulman & Seiden 1986 [162]). The fractal
structure with critical dimension Dcrit = 2 is also preferred in the dynamical
evolution of self-gravitating N-body system (Perdang 1990 [145]; de Vega et
al., 1996 [56]; 1998 [57]).
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Within the Dcrit = 2 fractal structure the gravity force acting on a par-
ticle from other particles is constant because of M ∝ r2 ⇒ F ∝ M/r2 ∝
const. The positive energy density of the gravity field within D = 2 fractal
structure is also constant: εg = T 00

g ∝ (dϕ/dr)2 ∝ const. There is an inter-
esting suggestion by Raikov & Orlov 2008 [153] that the Pioneers effect in
solar system may be caused by these cosmological drag-force.

The time-scale of the structure evolution is determined by the characteris-
tic Hubble time: tH ≈ RH/c ∝ (̺H)−1/2 ≈ 1010yrs. The total evolution time
of the Universe may be several orders of magnitude larger, which could be
tested by observations at high redshifts and by numerical simulations of the
large-scale structure and galaxy formation in static space but dynamically
evolving matter.

According to the classical argument by Hoyle (1982 [101], 1991 [102]) the
cosmic microwave background radiation could be a remnant of the evolution
of stars because the CMBR energy density equals to the energy released by
the nuclear reactions in stars of all generations during the Hubble time. The
optical photons radiated by stars could be thermalized by scattering and
gravitational deflections by structures of different masses and scales. The
fractal dark matter is also a product of the process of stellar evolution and
large scale structure formation. Hence in the frame of the FGF cosmological
model all three phenomena - the cosmic background radiation, the fractal
large scale structure, and the Hubble law, - could be consequences of a unique
evolution process of the initially homogeneous cold hydrogen gas.

5.4 Crucial cosmological tests of alternative models

Philosophical, methodological and sociological aspects of the development of
the science on the whole Universe was recently analyzed by Lopez-Corredoira
[124], who emphasized the important role of alternative ideas in cosmology,
though usually they have small funding in modern cosmological society. The
mathematical and physical basis for the construction of alternative cosmo-
logical models was discussed by Baryshev & Teerikorpi [32].

For distinction between alternative cosmological models one should de-
velop the crucial observational tests, which compare different predicted re-
sults for different models. For this it is very important to understand specific
physical processes which characterized the key properties of a certain model.

Physics of space expansion. Mathematically space expansion is a continuous
increasing with time of the distance r(t) between galaxies. It is given by
relation r(t) = S(t) ·χ where S(t) is the scale factor from Eq. 152. But what
does space expansion mean physically? And how can one test its reality?

Cosmological physics of the expanding space is essentially different from
the lab physics and even contains deep paradoxes which should be stud-
ied carefully [24]. Physically, expansion of the universe means the continues
creation of space together with physical vacuum. Real Universe is not homo-
geneous, it contains atoms, planets, stars, galaxies. In fact bounded physical
objects like particles, atoms, stars and galaxies do not expands. So inside
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these objects there is no space creation. This is why the creation of space is
a new cosmological phenomenon, which has not been tested yet in physical
laboratory.

The first puzzling feature of the space expansion physics is that the Fried-
mann’s equations Eq. (157, 156), in terms of the metric distance r(t) =
S(t) · χ, actually have the exact Newtonian form Eq.(158). So according to
general relativity the dynamics of the whole universe is determined by the
exact Newtonian acceleration and Newtonian kinetic plus potential energy
conservation (here velocity of light c does not change the Newtonian charac-
ter of the equations).

The second puzzling fact of the space expanding universe is that in the
case of the equation of state p = γ̺c2 the mass-energy of any local comoving
ball (having radius r(t)) is changing with time as:

Mg(r) = −4πG

3
(1 + 3γ)̺r3 ∝ S−3γ(t) . (167)

For example, for photon gas γ = 1/3 and the initially hot radiation is cooling
proportional to the scale factor S(t).

In cosmology Eq.(167) gives us a possibility to calculate of how much
the energy increases or decreases inside any finite comoving volume but it
does not tell us where the energy comes from or where it goes. As Harrison
emphasized: ”The conclusion, whether we like it or not, is obvious: energy in
the universe is not conserved” (Harrison [93]).

Another puzzling consequence of the Friedmann’s equations Eq. (158) is
that in exact general relativistic expansion dynamics of the universe there is
no relativistic effects due to the velocity of a receding galaxy. The expansion
velocity is larger than the velocity of light for distances larger than the Hubble
distance: Vexp > c for r > RH , where RH = c/H (see also Eq. (153)).

The nature of cosmological redshift. Hubble & Tolman 1935 [104] were the
first who tried to constract an observational tests for testing the nature of
the cosmological redshift. In the Sandage’s list of the ”23 astronomical prob-
lems” [157] the number fifteen (the first in the cosmological section) sounds
intriguingly:”Is the expansion real?”.

In fact the literature on the SCM contains acute discussion on the nature
of the cosmological redshift [32], subject which constantly produces ”common
big bang misconceptions” or the ”expanding confusions”. A summary of such
discussions was done by Francis et al.[79] who confronts Rees & Weinberg
claim: how is it possible for space, which is utterly empty, to expand? How
can nothing expand? The answer is: space does not expand. Cosmologists
sometimes talk about expanding space, but they should know better, with the
state by Harrison[93]: expansion redshifts are produced by the expansion of
space between bodies that are stationary in space.

In mathematical language within FLRW space expanding model the cos-
mological redshift is a new physical phenomenon where due to the expansion
of space the wave stretching of the traveling photons occurs via the Lemaitre’s
equation (1 + z) = λ0/λ1 = S0/S1, which is different from the familiar in
lab the Dopplers effect. One can also see this if one compares the relativistic



70

Doppler and cosmological FLRW velocity-redshift V (z) relations. The rela-
tivistic Doppler relation has the form VDop(z) = c(2z+ z2)/(2+2z+ z2) and
the velocity always less than c, while expanding space velocity Vexp can be
arbitrary large[32].

Intriguingly in modern cosmology there is no direct observational testing
of the reality of the space expansion (Sandage [157]). However it is important
to note that on the verge of modern technology there are direct observational
tests of the physical nature of the cosmological redshift. First crucial test of
the reality of the space expansion was suggested by Sandage [156], who noted
that the observed redshift of a distant object (e.g. quasar) in expanding space
must be changing with time according to relation dz/dt = (1+ z)H0−H(z).
In terms of radial velocity, the predicted change dv/dt ∼ 1 cm s−1/yr. This
may be within the reach of the future ELT telescope [119], [142].

Even within the Solar System there is a possibility to test the global
expansion of the universe. According to recent papers by Kopeikin [114],
[115] the equations of light propagation used currently by Space Naviga-
tion Centers for fitting range and Doppler-tracking observations of celestial
bodies contain some terms of the cosmological origin that are proportional
to the Hubble constant H0. Such project as PHARAO may be an excel-
lent candidate for measuring the effect of the global cosmological expansion
within Solar System, which has a well-predicted frequency drift magnitude
∆ν/ν = 2H0∆t ≈ 4 × 10−15(H0/70kms

−1Mpc−1)(∆t/103s), where H0 is
the Hubble constant ∆t is the time of observations. In the case of the non-
expanding Universe the frequency drift equals zero.

Fractality of large-scale galaxy distribution. Modern observations of the 3-
dimensional galaxy distribution, obtained from huge redshift surveys (such
as 2MASS, 2dF and SDSS), demonstrate (e.g. [171], [170], [172], [176], [27])
that at least for interval of scales 1÷100 Mpc/h there is a power law relation
between the average galaxy number density n(R) and the radiuses of test
spheres R, so that n(R) ∝ R−γ (see reviews by Sylos Labini [170], Baryshev
& Teerikorpi [32], Baryshev [27] ). Such power law behavior is known as the
de Vaucouleurs law [54], [55]. Note that the power law correlation function
is the characteristic feature of the discrete stochastic fractal structures in
physics (phase transitions, strange attractors, structure growth) and has clear
mathematical presentation (e.g. Gabrielli et al.[81]).

The observed linearity of the Hubble law [103] in the local Universe was
confirmed by modern studies based on Cepheid distances to local galaxies,
supernova distances, Tully-Fisher distances and other distance indicators,
which demonstrate that the linear Hubble law is well established within in-
terval of scales 1÷ 100 Mpc/h (Ekholm et al. [71], Karachentsev et al.[111],
Sandage [158], Baryshev & Teerikorpi [32], Baryshev [27]). A puzzling conclu-
sion is that the Hubble law, i.e. the strictly linear redshift-distance relation, is
observed just inside strongly inhomogeneous galaxy distribution, i.e. deeply
inside fractal structure at scales 1÷ 100 Mpc/h.

This empirical fact, called ”Hubble-deVaucouleurs paradox”, presents
a profound challenge to the standard model where the homogeneity is the ba-
sic explanation of the Hubble law, and ”the connection between homogeneity
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Fig. 1 Demonstration of the Hubble-deVaucouleurs paradox. The observed ”ap-
parent” radial velocity-distance relation (Vapp vsR) for 156 Local Volume galaxies
is shown from [111] (filled and empty dots corresponds to different methods of dis-
tance estimation). The theoretical linear Hubble law Vapp = cz = HlocR (straight
line) also is shown. The observed conditional density-radius relation (Γ vs r) for
VL2N sample from 2MRS survey is shown by dash-line from [176]. The theoretical
power-law Γ (r) ∝ r−γ with exponent γ = 1 is shown (dash-and-dot line) at the
same scales (1÷ 6 Mpc), which corresponds to the stochastic fractal structure hav-
ing the critical fractal dimension D = 2. For the whole interval of scales 1 ÷ 100
Mpc see [27].

and Hubble’s law was the first success of the expanding world model” (Peebles
et al.[144]).

However, contrary to this expectation, modern data show a good linear
Hubble law even for very inhomogeneous spatial distribution of nearby galax-
ies (see Fig.1 and [27] for whole interval of scales 1 ÷ 100 Mpc). It leads to
a new conceptual puzzle that the linear Hubble law is not a consequence of
the homogeneity of spatial galaxy distribution.

6 Conclusion

Detailed comparison of basic concepts and of experimental/observational ef-
fects for Einstein-Hilbert’s geometrical general relativity (GRT) and alterna-
tive non-metric Poincare-Feynman field gravity theory (FGT) is presented.
At the Post-Newtonian (PN) level all really measured classical relativistic
gravity effects have the same values in both GRT and FGT approaches.
However FGT also predicts, even in the weak field approximation, radically
different from GRT effects, which can be tested by experiments/observations.

This opens possibility for formulation and performing conceptually new
experiments/observations for testing the gravity physics based on the field
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theoretical description of the gravitational interaction similarly to field the-
ories of other fundamental interactions in Minkowski space. The most im-
portant difference is that according FGT the principle of universality of the
gravitational interaction together with the total energy-momentum conser-
vation and gauge invariance of the symmetric tensor gravitational potential
lead to the force of gravity which is produced by the sum of the two real
massless positive energy fields – the attraction due to traceless part of the
symmetric tensor potential (spin 2 ”tensor gravitons”) plus the repulsion
due to intrinsic scalar part corresponding to the trace of the symmetric ten-
sor potential ( spin 0 ”scalar gravitons” — ”levitons”). FGT theory predicts
testable differences from GRT, such as: the translational motion of a rotating
body, which may be tested by Lunar Laser Ranging and high accuracy orbit
observations of pulsars in binary systems; the detection of the scalar grav-
itational radiation, generated by the trace of the energy-momentum tensor
of the source which can be tested by forthcoming advanced LIGO-Virgo ob-
servations; the absence of singularities and horizons for relativistic compact
objects (RCO), which can be tested by forthcoming EHT observations of the
SgrA* and M87; the detection of quark stars and surface magnetic field of
RCO; and the global gravitational nature of the cosmological redshift, which
may be verified by the Sandage’s dz/dt and Kopeikin’s ∆ν/ν effects and
other crucial observational tests of reality of systematic increasing distances
between galaxies.

Much more observational work is needed, including future observations
with LOFAR, SKA, ALMA and also other infrared, optical and x-gamma
ray facilities, which will bring new tests for cosmological models both at
small and large redshifts. These new crucial experiments/observations will
be performed in the near future and can be used to distinguish between the
alternative conceptual bases for the theory of the gravitational interaction
and cosmology, which is important for development of the relativistic astro-
physics.
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