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Towards the end of nineteenth century, Celestial Mechanics provided the most powerful tools
to test Newtonian gravity in the solar systems, and led also to the discovery of chaos in modern
science. Nowadays, in light of general relativity, Celestial Mechanics leads to a new perspective on
the motion of satellites and planets. The reader is here introduced to the modern formulation of
the problem of motion, following what the leaders in the field have been teaching since the nineties.
In particular, the use of a global chart for the overall dynamics of N bodies and N local charts
describing the internal dynamics of each body. The next logical step studies in detail how to split
the N-body problem into two sub-problems concerning the internal and external dynamics, how to
achieve the effacement properties that would allow a decoupling of the two sub-problems, how to
define external-potential-effacing coordinates and how to generalize the Newtonian multipole and
tidal moments. The review paper ends with an assessment of the nonlocal equations of motion
obtained within such a framework, a description of the modifications induced by general relativity
on the theoretical analysis of the Newtonian three-body problem, and a mention of the potentialities
of the analysis of solar-system metric data carried out with the Planetary Ephemeris Program.

PACS numbers: 04.20.Cv, 95.10.Ce

I. INTRODUCTION

At the end of the nineteenth century, two hundred years after the publication of Newton’s Principia, Celestial
Mechanics was a very successful branch of Mechanics (with hindsight, we would speak of Classical Mechanics, but
the Planck constant had not yet been postulated nor measured). The monumental treatise by Tisserand [1–4] had
studied thoroughly planetary motions and their perturbations [1], rotational motion of celestial bodies [2], theories of
lunar motion [3], the theories of Jupiter and Saturn satellites [4], and perturbations of small planets [4]. Moreover,
in his outstanding work on new methods in celestial mechanics [5–8], Poincaré discovered periodic solutions of the
three-body problem [6, 8], asymptotic [6] and doubly asymptotic solutions [8], the nonexistence of uniform integrals
[6], the theory of integral invariants [8], and the whole topic of chaos became part of modern science, jointly with
an assessment of asymptotic methods for studying secular terms [7] in the equations of celestial mechanics, gaining a
better understanding of the limitations of several methods used by astronomers and applied mathematicians.
However, as was stressed by Poincaré in the introduction [6] to volume 1 of his monumental treatise, the relevance of

celestial mechanics from the point of view of fundamental physics lies mainly in the possibility of using it to ascertain
whether Newton’s theory provides the best theory of gravity at all scales (i.e. within the solar system and far beyond
that). Although mankind landed safely on the moon thanks to Newtonian celestial mechanics in Szebehely’s book
[9], the discovery of general relativity led to a novel perspective on the classical problems of Newtonian celestial
mechanics, as is clear from the work of Lorenz and Droste [10], Einstein et al. [11, 12], Levi-Civita [13], Fock [14],
Brumberg [15], Kopeikin [16], Yamada et al. [17]. But the most systematic application of general relativity methods
to celestial mechanics is due to Damour and his collaborators [18–23] (cf. Ref. [24]).
In our review paper, aimed at helping the general reader to become familiar with the modern formulation of the

problem of motion, Sec. II is devoted to the theory of reference systems, Sec. III studies Newtonian tidal and multipole
expansions, Sec. IV leads to relativistic tidal and multipole expansions, and the monopole model is briefly reviewed
in Sec. V. Last, the integro-differential dynamical equations are discussed in Sec. VI and the effects of general
relativity on the restricted three-body problem are summarized in Sec. VII; Sec. VIII outlines the potentialities of
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the analysis of solar-system metric data carried out with the Planetary Ephemeris Program, while concluding remarks
are presented in Sec. IX.

II. THEORY OF REFERENCE SYSTEMS

We here outline the formalism lying behind general relativistic celestial mechanics of systems of N arbitrarily com-
posed and shaped, weakly self-gravitating, rotating, deformable bodies [20–23]. Such a framework yields a complete
description, at the first post-Newtonian order, of both the global dynamics of the N -body system and of the local
structure of each body by employing N + 1 coordinate charts: one global chart xµ ≡ (ct, xi) (i = 1, 2, 3) covering
the entire manifold V4 (see below) for the overall dynamics of the N bodies and N local charts Xα

A ≡ (cTA, X
a
A)

(A = 1, 2, . . . , N), (a = 1, 2, 3) describing the internal dynamics of each body. Hereafter, inspired by Refs. [20–23],
we will use the following conventions: the N bodies are labelled by upper case Latin indices A,B,C = 1, 2, . . . , N ;
the global coordinates xµ ≡ (ct, xi) are such that spacetime indices belong to the second part of Greek alphabet
(µ, ν, λ, . . . ) while purely space indices follow the second part of the Latin alphabet (i, j, k, . . . ); the local coordinate
systems Xα

A ≡ (cTA, X
a
A) are such that spacetime indices and spatial indices are taken from the first part of the

Greek and Latin alphabet, respectively. In order to ease the notation, sometimes the labels A,B,C are omitted. The
essential ingredient of the formalism is represented by the exponential parametrization (in all frames) of the metric
tensor which leads to the linearization of both the field equations (expressible in terms of some potential functions,
in strict analogy with Maxwell theory of electromagnetism) and the transformation laws under a change of reference
system.
Let there be given a four-dimensional smooth differentiable abstract manifold V4 endowed with N abstract world

lines LA (A = 1, 2, . . . , N) and N topological tubes TA ⊂ V4 representing some open neighbourhood of LA. The local
chart Xα

A is said to be adapted to the world line if it maps every point P belonging to LA onto the “time axis” of R4,
i.e.,

Xα
A : TA → R

4 | Xα
A(P ) = (S, 0, 0, 0), P ∈ LA, S ∈ R. (2.1)

In this way it is possible to parametrize LA through the real factor S = cT which fulfils the role of a special affine
parameter having the physical dimensions of a length, i.e., Xα

A(P (S)) = (S, 0, 0, 0), (S ∈ R, P ∈ LA). Moreover, we
can define a one-parameter family of vectorial bases eAα (S) along LA (i.e., a basis of the tangent vector space TP (S)V4

to V4 at P (S) ∈ LA) as

e
A
α (S) =

∂

∂Xα
A

∣

∣

∣

∣

P (S)

, (2.2)

such that

e
A
0 (S) =

∂

∂S

∣

∣

∣

∣

P (S)

, (2.3)

represents the tangent vector to the S-parametrized world line.
By means of the metric-independent structure introduced above the most general coordinate transformation linking

global and local coordinates [20]

xµ = fµ
A(X

0
A, X

1
A, X

2
A, X

3
A), (2.4)

can be expressed by (label A omitted)

xµ(Xα) = zµ(X0) + e µ
a (X0)Xa + ξµ(X0, Xa), (2.5)

where (label A written explicitly)

zµA(S) = fµ
A(S, 0, 0, 0), (2.6)

represents the expression that the S-parametrized world line LA assumes in the global coordinate system xµ, while

e µ
Aa(S) =

∂fµ
A

∂Xa
A

(S, 0, 0, 0), (2.7)
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FIG. 1: The Newtonian decomposition of a position vector in fixed (A) and mobile (B) coordinate systems.

are the global components of the three vectors eAa (S) (cf. Eq. (2.2)) and eventually the term

ξµA(S,X
a
A) = fµ

A(S,X
a
A)− fµ

A(S,0)−Xa
A

∂fµ
A

∂Xa
A

(S,0), (2.8)

is such that

ξµ(X0, Xa) = O
(

(Xa)2
)

as Xa → 0 with fixed X0. (2.9)

In particular, the last condition results from the requirement that the metric admits a post-Newtonian expansion of
the usual type (see Eq. (2.13) below). Note also that Eq. (2.7) is closely connected with the values of the Jacobian
matrix elements

Aµ
α =

∂xµ(Xβ)

∂Xα
, (2.10)

of the coordinate transformation (2.4) evaluated at the origin of the local system.
We believe that Eq. (2.5) can be better understood once we have compared it with the Newtonian decomposition

of a position vector rPA in two frames (Fig. 1)

rPA = rBA + rPB. (2.11)

In fact, since the term zµ(X0) occurring in (2.5) just describes the world line LA in the global frame, it reminds us
of the vector rBA denoting the position of the origin of the mobile frame as seen in the fixed one. As a result, in
the post-Newtonian pattern the global spatial coordinates of the origin of the local coordinate system, following (the
world line of) every body of the system, expressed as functions of the global time t will be represented by xi = zi(t).
Moreover, the term e µ

a (X0)Xa appearing in Eq. (2.5) resembles the quantity rPB = xPBx̂B + yPBŷB + zPBẑB (x̂B,
ŷB, and ẑB being the unit vectors of the axes of the mobile system) because, as pointed out before, e µ

a are the
global version of the vector basis of tangent vector space TP (S)V4. Finally the ξµ term of (2.5) measures the deviation
between Newtonian and post-Newtonian dynamics. Furthermore, it is essential to stress that the structure of Eq. (2.5)
results from the post-Newtonian analysis of those effacement properties which could allow, like in Newtonian theory,
a separation of the N -body problem into two decoupled sub-problems: the internal problem concerning the motion of
each body around its centre of mass and the external one, involving the dynamics of all centres of mass of the bodies.
In fact, in the Newtonian framework the key point towards the achievement of such a decoupling is represented by
the existence of some nonrotating accelerated mass-centred-frames with respect to which, in the description of the
internal problem, the effects of the external gravitational potential acting locally on each body are suppressed, leaving
only small (tidal) effects. The search for a good post-Newtonian definition of some external-gravitational-field-effacing
coordinates in the analysis of the N -body internal problem has led to Eq. (2.5) [18]. This issue is strictly connected
to the post-Newtonian definition of center-of-mass frames and will be further discussed later on.
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At this stage, we can define a metric structure both in the global frame and in the N local systems by

gµν(x
λ) = ηµν + hµν(x

λ),

GA
αβ(X

γ) = ηαβ +HA
αβ(X

γ), (A = 1, 2, . . . , N),
(2.12)

ηµν being the flat Minkowski metric, whereas hµν and HA
αβ represent the metric deviation in the global and in the

local frames, respectively. By making the standard post-Newtonian assumptions for the metric (T ≡ X0/c) [20, 21]

h00(t,x) = O(c−2), h0i(t,x) = O(c−3), hij(t,x) = O(c−2),

HA
00(T,X) = O(c−2), HA

0a(T,X) = O(c−3), HA
ab(T,X) = O(c−2),

(2.13)

and by postulating that the coordinate transformation (2.5) involves Jacobian matrix elements having the form (“slow
motion assumption”) [20]

A0
0 = O(c−0), Ai

0 = O(c−1), A0
a = O(c−1), Ai

a = O(c−0), (2.14)

the z − e − ξ elements appearing in (2.5) turn out to be highly constrained [20, 21]. In particular, the 3 × 3 time-
dependent matrix eia(S) is such that

δij e
i
a(S) e

j
b(S) = eia(S) e

i
b(S) = δab +O(c−2),

d

dT
eia(T ) = O(c−2),

(2.15)

resembling, modulo Ø(c−2) terms, a slowly changing Euclidean rotation matrix. The only quantity occurring in (2.5)
which is not constrained at the first post-Newtonian order by Eqs. (2.13) and (2.14) is represented by the term ξi,
since it is found in Ref. [20] that ξi = O(c−2). This peculiarity leaves some (gauge) freedom to the spatial coordinates
which can be restricted by imposing in all N +1 frames four algebraic conditions called “spatial isotropy conditions”
which are represented by [20–23]

− g00gij = δij +O(c−4),

−GA
00G

A
ab = δab +O(c−4), ∀ A.

(2.16)

The coordinates selected by Eq. (2.16) are referred to as “conformally Cartesian” or “isotropic”. The gauge choice
(2.16) fixes completely the spatial coordinate freedom in all frames up to time-dependent isometries of Euclidean
three-space. In other words, Eq. (2.16) leaves a gauge freedom in the time coordinate at O(c−4) in all coordinate
systems. Moreover, the spatial isotropy conditions (2.16) imply that the three spatial coordinates xi are harmonic at
the second post-Newtonian order, i.e.,

�gx
i = O(c−4), (2.17)

�g = (1/
√−g) ∂µ (

√−g gµν∂ν) being the d’ Alembert wave operator acting on scalar functions. Since Eq. (2.17)
follows directly from the imposition of the (spatial part of the full) standard harmonic and post-Newtonian gauges,
we see that (2.16) encompasses both these choices.
At this stage, by enforcing both the assumptions (2.13) and (2.14) and the spatial isotropy conditions (2.16) the

structure of the transformation (2.5) is further constrained, leaving only the usual Newtonian freedom involving the
choice of an arbitrarily moving origin zi(t) of the local frame (we will see that a preferred choice is the one for which
the Blanchet-Damour mass dipole vanishes [19]) and of a slowly changing SO(3) rotation matrix Ri

a(T ) describing
the rotational state of the local spatial coordinate grid (together with the gauge freedom for time coordinate we have
just mentioned). The matrix Ri

a(T ) is defined through the 3× 3 matrix eia(T ), since it turns out to be proportional,
apart from second-order terms, to the space-space part of a general Lorentz transformation (i.e., a boost combined
with an arbitrary rotation matrix) [20]

(

1 + O
(

c−2
)

)

eia(T ) =

(

1 +
1

2c2
v
2

)(

δij +
1

2c2
vivj

)

Rj
a(T ) + O(c−4), (2.18)

bij = δij +
vivj

2c2
being the boost components with

vi =
dzi

dt
=

dzi

dT
+O(c−2), (2.19)
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representing the velocity of the origin of the local frame. The slow post-Newtonian evolution of Ri
a(T ) is caught by

d

dT
Ri

a(T ) = O(c−2), (2.20)

while its SO(3) structure is enlightened through the relations

Ri
a(T )R

j
a(T ) = δij ,

Ri
a(T )R

i
b(T ) = δab.

(2.21)

At this stage, we can introduce the exponential parametrization of the ten independent unknown metric tensor
components through the potential wµ = (w,wi), starting from the global frame [19, 20]

g00 = −e−2w/c2,

g0i = −4wi/c
3,

gij = γij e
2w/c2 ,

(2.22)

γij being the three-metric associated to gµν by

γij = −g00gij + g0ig0j . (2.23)

By exploiting Eq. (2.22) and the post-Newtonian assumptions (2.13), six of the Einstein equations imply that the
spatial coordinates are Cartesian coordinates for the three-metric, i.e.,

γij = δij +Ø(c−4), (2.24)

whereas the four remaining Einstein equations give coupled linear partial differential equations for w and the three-
vector components wi = wi expressed by (∂t = c∂0 = ∂/∂t, wi ≡ γijwj) [20]

�w +
4

c2
∂t (∂tw + ∂iwi) = −4πGσ +Ø(c−4),

△wi − ∂i∂jwj − ∂t∂iw = −4πGσi +Ø(c−2),
(2.25)

where −△ is the flat-space Laplacian (in general we would have △ = γijDjDi, Di being the (spatial) covariant
derivative associated to γij), while σ and σi represent a gravitational mass density and a mass current density,
respectively. They are defined in terms of the contravariant components of the (post-Newtonian) stress-energy tensor1

as

σ ≡ T 00 + T jj

c2
,

σi ≡ T 0i

c
.

(2.27)

Note that the definitions given above are independent of the particular form taken by T µν , which is supposed to have
a very general structure, being subjected only to conditions (2.26). Equations (2.25) are found to be gauge invariant,
apart from post-Newtonian error terms, under the transformations [20]

w → w′ = w − 1

c2
∂tλ(x

µ),

wi → w′
i = wi +

1

4
∂iλ(x

µ),

(2.28)

1 Tµν satisfies the usual post-Newtonian assumptions for the matter:

T 00 = Ø(c2),

T 0i = Ø(c),

T ij = Ø(c0).

(2.26)
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λ(xµ) being an arbitrary differentiable function. The (approximate) gauge invariance (2.28) shows a manifest analogy
with typical U(1) transformations underlying Maxwell theory and it is related to the above-mentioned time coordinate
freedom, being expressible as a shift

δt = c−4λ(xµ). (2.29)

If we further exploit the similarity with electromagnetic theory, we can define the gravitational field strength as

bµν = ∂µaν − ∂νaµ, (2.30)

with aµ ≡ (cw,−4wi) and hence the (global) gauge-invariant gravitoelectric and gravitomagnetic fields [20]

ei(w) = ∂iw +
4

c2
∂twi,

bij(w) = ǫijkbk(w) = −4(∂iwj − ∂jwi),
(2.31)

respectively.
Bearing in mind that (2.16) implies that xi coordinates are in the kernel of the wave operator (up to Ø(c−4) terms,

cf. Eq. (2.17)), if we further constrain the (gauge) time variable to be harmonic through the condition

�gx
0 = − 4

c3
(∂tw + ∂iwi) + Ø(c−5) = 0, (2.32)

Eq. (2.25) reduces to the field equations

�w = △w − 1

c2
∂2
tw = −4πGσ +Ø(c−4),

△wi = −4πGσi +Ø(c−2).
(2.33)

The linearity of Eq. (2.25) makes it possible to express its general solution wgeneral
µ as

wgeneral
µ = wN

µ + w̄N
µ , (2.34)

w̄N
µ representing the general solution of the homogeneous system associated to (2.25), i.e.,

Lµ[w̄N
ν ] = 0, (2.35)

wN
µ being a particular solution of the inhomogeneous system (2.25), written as

Lµ[wN
ν ] = −4πG

N
∑

A=1

σµ
A, (2.36)

where σµ
A denotes the source contribution of each body of the system. For an isolated N -body system we can always

set w̄N
µ = 0. Therefore, the potential for the global N -body metric reads as

wN
µ =

N
∑

A=1

wA
µ . (2.37)

If we employ the so-called harmonic gauge, the error occurring in the field equations (2.33) satisfied by wi allows us
to write

� = △+Ø(c−2), (2.38)

and hence the contributions, generated by each body, to the global N -body metric appearing in Eq. (2.37) can be
expressed as

wµ
A(x

λ) = �
−1
sym(−4πGσµ

A), (2.39)

�
−1
sym denoting the half sum of the retarded and advanced flat-space Green’s functions. Of course, strictly speaking,

the inverse of the wave operator is an integral operator with kernel given by the Green functions we have mentioned.
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As long as (2.24) (or equivalently (2.16)) holds, the form of both gravitoelectric and gravitomagnetic fields (2.31)
will be the same in any coordinate system and hence a linear gauge invariant description of the gravitational field
will be always possible, at least to first post-Newtonian order. Therefore, in each local frame Xα

A the local metric
GA

αβ(X
γ
A) satisfying the isotropy condition (2.16) can be exponentially parametrized through the local potential

WA
α = (W,WA

a ) defining, by the same Eqs. (2.30) and (2.31), the local gravitoelectric and gravitomagnetic fields EA
a

and BA
a , i.e., (label A omitted) [20]

G00 = −e−2W/c2 ,

G0a = −4Wa/c
3,

gij = γab e
2W/c2 ,

(2.40)

Ea(W ) = ∂aW +
4

c2
∂TWa,

Bab(W ) = ǫabcBc(W ) = −4(∂aWb − ∂bWa),
(2.41)

the local potential WA
α satisfying Eqs. (2.25), which in Xα

A coordinates read as

�XWA +
4

c2
∂T
(

∂TW
A + ∂aW

A
a

)

= −4πGΣA +Ø(c−4),

△XWA
a − ∂a∂TW

A − ∂a∂bW
A
b = −4πGΣA

a +Ø(c−2),
(2.42)

where �X = △X − 1

c2
∂2
T , △X = ∂a∂a and

ΣA ≡ T 00
A + T aa

A

c2
,

Σa
A ≡ T 0a

A

c
,

(2.43)

the only non-vanishing components of the stress-energy tensor, now defined in the local frame Xα
A, being associated

to the body A itself. By exploiting the linearity of (2.42), the solution WA
α reads as

WA
α = W+A

α +W
A

α , (2.44)

where W+A
α denotes the locally generated part of the potential, i.e., a particular solution of the inhomogeneous system

(2.42) being solved in the harmonic gauge

W+A
α = �

−1
X,sym

(

−4πGΣA
α

)

, (2.45)

while W
A

α represents the external part of WA
α , since it satisfies, in the domain of the local chart Xα

A (i.e., the domain
containing the body A and no other bodies B 6= A), the homogeneous system associated to (2.42).
We have already stated that the investigation of the NewtonianN -body internal problem is carried out by employing

accelerated centre-of-mass frames having local coordinates (cf. Eq. (2.11))

X i
A = xi − ziA(t), (i = 1, 2, 3), (2.46)

(ziA denoting the global coordinates of the barycentre of the body A) with respect to which the external potential
gets replaced by the effective gravitational potential (whose gradient governs the motion of the mass elements in each
barycentric frame)

U
(eff)
A (XA) = U

(ext)
A (XA + zA)− U

(ext)
A (zA)−

d2zA
dt2

·XA, (2.47)

the last term being (fictitious) inertial forces.
By employing Eq. (2.47) from a relativistic point of view (i.e., the potential U is replaced by the metric tensor, six

components of which are gauged away by Eq. (2.16)), it is possible to show that the local and global gravitational
potentials (i.e., the four metric tensor components “surviving” Eq. (2.16)) are related by a transformation law having
the form (label A omitted) [20]

wµ(x
ν) = Aµα(T )W

α(Xγ) + Bµ(X
γ), (2.48)
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the inverse being given by

Wα(X
γ) = (A−1)µα(T ) (wµ(x

ν)− Bµ(X
γ)) , (2.49)

Xγ and xν denoting, respectively, the local and the global coordinates of the same spacetime event and where the
coefficients Aµα(T ) and Bµ(X

γ) depend on global and local components of the velocity vi = dzi/dt of the origin of
the local frame and on the components of the Jacobian matrix of (2.5). The inertial terms occurring in Eq. (2.47)
are represented by the coefficients Bµ, so that the gauge invariant local fields defined by Eq. (2.41) can be split as

E = E
′ +E

′′,

B = B
′ +B

′′,
(2.50)

with

E
′ ≡ E

′
[

A−1
µαw

µ
]

, E
′′ ≡ E

′′
[

−A−1
µαBµ

]

,

B
′ ≡ B

′
[

A−1
µαw

µ
]

, B
′′ ≡ B

′′
[

−A−1
µαBµ

]

,
(2.51)

the terms E′′ and B
′′ being referred to as inertial fields. Moreover, from Eq. (2.48) if follows that the locally generated

potential W+A
α defined (in the harmonic gauge) by Eqs. (2.44) and (2.45) is linked to the A-part of the local potential

wA
µ (cf. Eqs. (2.34) and (2.37)) by the homogeneous transformation [20]

wA
0 (x

ν ) = AA
0α(X

0)W+A
α (Xβ) + Ø(c−4),

wA
i (x

ν ) = AA
iα(X

0)W+A
α (Xβ) + Ø(c−2),

(2.52)

whereas the external local potential W
A

α is related to the part of the global potential generated by all bodies B 6= A
through the inhomogeneous relation

∑

B 6=A

wB
0 (x

ν) = AA
0α(X

0)W
A

α (X
β) + BA

0 (X
β) + Ø(c−4),

∑

B 6=A

wB
i (x

ν) = AA
iα(X

0)W
A

α (X
β) + BA

i (X
β) + Ø(c−2),

(2.53)

AA
µα and BA

µ being the A-part of the coefficients appearing in (2.48).

III. NEWTONIAN TIDAL AND MULTIPOLE EXPANSIONS

In order to deal with the N -body problem in Newtonian gravity, the whole problem is separated, as we have
anticipated before, into two sub-problems, i.e., the external problem, underlying the dynamics of the N centres of
mass and the internal problem, concerning the motion of each body about its centre of mass [14, 18]. We introduce a
set of Cartesian coordinates xi whose indices are raised and lowered through the Euclidean metric δij so that Ai = Ai,
and repeated indices will be summed over.
We suppose that the system is isolated and the bodies are widely separated and finite in extension so that the

dimensionless coupling measuring the force experienced by the bodies is such that

α ≡ L

R
≪ 1, (3.1)

L being their characteristic linear dimension and R their separation. Moreover, the internal structure of bodies is
governed by the isentropic equation of state of a perfect fluid where the pressure p is a function of the mass density
ρ, i.e.,

p = p(ρ). (3.2)

The local fluid motion is governed by the Euler equations

ρ

(

∂

∂t
+ vj

∂

∂xj

)

vi = − ∂p

∂xi
+ ρ

∂U

∂xi
, (3.3)
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where v(t,x) is the fluid velocity field and the gravitational potential U(t, xi) of the system is represented by the
solution of the Poisson equation

△U = −4πGρ, (3.4)

subjected to the boundary condition that it should be bounded everywhere and vanish at infinity

lim
|x|→∞
t=const.

U(t,x) = 0, (3.5)

expressing mathematically the physical hypothesis of having considered an isolated system. The unique solution of
Eqs. (3.4) and (3.5) reads as

U(t,x) = G

∫

ρ(t,x′)

|x− x′|d
3x′, (3.6)

|x−x
′| denoting the Euclidean distance between the field point x and the source point x′, and d3x′ being the Euclidean

volume element. Furthermore, it is a well-known fact that the centre of mass theorem implies that the dynamics of
the system is governed by the set of N differential equations

MA
d2ziA
dt2

=

∫

VA

F i d3x, (A = 1, 2, . . . , N), (3.7)

where MA =
∫

VA

ρ(t,x)d3x is the total mass of the Ath body occupying the volume VA, z
i
A denotes the components

of its centre of mass, defined classically as

ziA(t) =
1

MA

∫

VA

xiρ(t,x)d3x, (3.8)

and F i represents the local force density which, in a perfect fluid model, assumes from (3.3) the form

F i = Fi = − ∂p

∂xi
+ ρ

∂U

∂xi
. (3.9)

The force density can be decomposed, within each body, into an internal force (or self force)

F (int)
i A = − ∂p

∂xi
+ ρ

∂U
(int)
A

∂xi
, (3.10)

the self part U
(int)
A of the gravitational potential (3.6) being defined by

U
(int)
A (t,x) ≡ G

∫

VA

ρ(t,x′)

|x− x′|d
3x′, (3.11)

and an external force

F (ext)
i A = ρ

∂U
(ext)
A

∂xi
, (3.12)

with

U
(ext)
A (t,x) ≡

∑

B 6=A

G

∫

VB

ρ(t,x′)

|x− x′|d
3x′. (3.13)

By exploiting, as pointed out before, the local coordinates (2.46) in order to deal with the internal problem, the
dynamics underlying the motion in the centre of mass frame of the Ath body is governed by (cf. Eq. (3.3))

ρ

(

∂

∂t
+ uj

A

∂

∂Xj
A

)

ui
A = F i (int)

A + F i (ext)
A − ρ

d2ziA
dt2

, (3.14)
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ui
A = dX i

A/dt = vi−dziA/dt being the classical relative velocity of a material point of the body A and where we have

exploited the fact that its directional derivative in the direction defined by ~̇zA (żjA = dzjA/dt) is such that

żjA
∂ui

A

∂Xj
A

= ~̇zA · ~∇ ~XA
ui
A = 0, (3.15)

since ~̇zA does not define any direction in the centre-of-mass frame, where instead ui
A lives. On the other hand, the

external problem is described by (see Eq. (3.7))

MA
d2zi A
dt2

=

∫

VA

F (ext)
i A d3x+

∫

VA

F (int)
i A d3XA. (3.16)

At this stage, let us pay more attention to the internal problem (3.14). Bearing in mind Eqs. (2.46), (3.12), and
(3.13), it follows that

F (ext)
i A = ρ

∂U
(ext)
A (t,x)

∂xi
= ρ

∂

∂xi
U

(ext)
A (t,XA + zA(t)) = ρ

∂

∂Xj
A

U
(ext)
A (t,XA + zA(t))

∂Xj
A

∂xi

= ρ
∂

∂X i
A

U
(ext)
A (t,XA + zA(t)),

(3.17)

and hence the last two terms on the right-hand side of (3.14) become

F (ext)
i A − ρ

d2zi A
dt2

= ρ

(

∂

∂X i
A

U
(ext)
A (t,XA + zA(t))− z̈iA

)

= ρ
∂

∂X i
A

(

U
(ext)
A (t,XA + zA(t))− z̈jAX

j
A

)

= ρ
∂

∂X i
A

(

U
(ext)
A (t,XA + zA(t))− C(t) − z̈jAX

j
A

)

,

(3.18)

C(t) being a generic differentiable function of time. The last term of the above equation represents the most general
definition of effective potential. On choosing, for the sake of simplicity,

C(t) ≡ U
(ext)
A (zA(t)), (3.19)

we recover the definition (2.47) of effective potential and hence the internal problem (3.14) reads as

ρ

(

∂

∂t
+ uj

A

∂

∂Xj
A

)

ui A = F (int)
i A + ρ

∂

∂X i
A

U
(eff)
A (XA). (3.20)

It is now clear that both the external problem (3.16) and the internal one (3.20) are strongly coupled. In fact, in
Eq. (3.16) the first term on the right-hand side has got both internal and external nature, while the second term is
purely internal. Moreover, the internal problem (3.20) is characterized by the presence of the effective potential, which
clearly shows an external structure. However, the choice of the local (external-field-effacing) barycentric coordinates
(2.46) and the occurrence of some physical effects lead to the effacement of these “spurious” terms, allowing a clear
separation of the two problems. We briefly mention these issues [14, 18].
As far as the external problem is concerned, the second term on the right-hand side of (3.16), being the total self

force acting on A, is clearly forced to vanish because of the third Newton’s law of motion. Therefore, the external
problem is now governed by

MA
d2zi A
dt2

=

∫

VA

ρ(t,XA + zA)
∂

∂xi
U

(ext)
A (t, zA +XA)d

3XA. (3.21)

We will shortly see that the hypothesis according to which the bodies of the system are widely separated (cf. Eq.
(3.1)) is crucial in proving the effacement of the internal structure from the external problem. In fact, we will introduce

two simultaneous Taylor expansions. First of all, we Taylor expand
∂

∂xi
U

(ext)
A (zA +XA) ≡ U

(ext)
A (zA +XA),i about

XA = 0, i.e., a power series in XA = 0 called tidal expansion, according to

U
(ext)
A (zA +XA),i = U

(ext)
A (zA),i +

1

2
U

(ext)
A (zA),ijkX

j
AX

k
A +Ø(|XA|3), (3.22)
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giving, jointly with (3.21), the expansion in α

MA
d2zi A
dt2

= MAU
(ext)
A (zA),i +

1

2
IjkA U

(ext)
A (zA),ijk +Ø(α3), (3.23)

where we have defined the mass moment of the body A as

Iij...kA (t) ≡
∫

VA

ρ(t, zA +XA)X
i
AX

j
A . . . Xk

A d3XA. (3.24)

In particular, the symmetric tensor

IijA (t) =

∫

VA

ρ(t, zA +XA)X
i
AX

j
A d3XA = IjiA (t), (3.25)

denotes the second-order relative mass moment and

IiA(t) =

∫

VA

ρ(t, zA +XA)X
i
A d3XA = 0, (3.26)

since the X i
A frame is such that its origin coincides with the centre of mass of A (see the Newtonian definition (3.8)).

Moreover, we have also exploited the fact that, on dimensional ground, (ρ(t, zA +XA) ≡ ρA(t,XA) being the mass
density of A and the square brackets denoting the physical dimension of the derivatives of the potential)

∫

VA

d3XA ρA(t,XA)Ø(|XA|3) ∼ MA L3
[

U
(ext)
A ,ijkl

]

∼ α3MA

[

U
(ext)
A ,i

]

, 2 (3.27)

i.e., α3 smaller than the first term on the right-hand side of (3.23). Furthermore, bearing in mind that the functions
ρ(t,x′) occurring on the right-hand side of Eq. (3.13) refer to mass densities of the bodies B 6= A (i.e, the source

terms of the external potential), it follows that the Laplacian of U
(ext)
A (XA + zA) vanishes when evaluated within the

body A. As a result, the trace part of the mass moments appearing in (3.23) give no contribution. In addition, the
Schwarz theorem about mixed partial derivatives allows us to get rid also of the antisymmetric part of (3.24) at any

order in (3.23). Thus, we define the Newtonian multipole moment Qij...k
A (t) of the body A as the symmetric trace-free

part of Iij...kA (t), which we denote by enclosing the indices within the symbol 〈·〉, i.e.,

Qij...k
A (t) ≡ I

〈ij...k〉
A (t). (3.28)

For instance, bearing in mind that for a generic rank-two tensor T ij we have

T 〈ij〉 = T (ij) − 1

3
δijT kk, (3.29)

T (ij) denoting the symmetric part of T ij , it easily follows that

Qij
A(t) = IijA (t)− 1

3
δijIkkA (t), (3.30)

once the symmetry property showed up in Eq. (3.25) has been exploited. Qij
A(t) is referred to as quadrupole moment

of A [18]. The centre-of-mass-frame condition can now be expressed as the vanishing of the dipole moment (cf. Eq.
(3.26)), i.e.,

Qi
A(t) = 0, (3.31)

whereas the total massMA (see below Eq. (3.7)) can be conceived as the monopole moment of the body A. We will see
that within the relativistic framework the Newtonian multipole moments (3.28) will be replaced by Blanchet-Damour
multipole moments [19, 20]. However, at this stage we have realized that Eq. (3.23) is equivalent to

MA
d2zi A
dt2

= MAU
(ext)
A (zA),i +

1

2
Qjk

A U
(ext)
A (zA),ijk +Ø(α3), (3.32)

2 Recall from Eq. (3.23) that Ø(|XA|3) contains implicitly spatial indices.
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and hence we are ready to introduce in the external potential (cf. Eq. (3.13))

U
(ext)
A (t,x) =

∑

B 6=A

G

∫

VB

ρB(t,XB)

|x− zB −XB|
d3XB, (3.33)

the second Taylor expansion we mentioned before, which is called multipole expansion, simply representing an expan-

sion of |x− zB −XB|−1 about XB = 0, i.e., a power series in XB having the form (like before
∂

∂xi
f ≡ f,i)

1

|x− zB −XB|
=

1

|x− zB|
+

(

1

|x− zB|

)

,i

(

−X i
B

)

+
1

2

(

1

|x− zB |

)

,ij

(

−X i
B

)

(

−Xj
B

)

+Ø(|XB |3). (3.34)

Thus, by substituting Eq. (3.34) in (3.33), the joint effect of the well-known result regarding the Laplacian

△
(

1

|x− zB|

)

= −4πδ(3) (x− zB) , (3.35)

and of Eq. (3.31) allows us to express

U
(ext)
A (t,x) =

∑

B 6=A

G

[

MB

|x− zB |
+

1

2
Qij

B

(

1

|x− zB|

)

,ij

]

+Ø(α3), (3.36)

Qij
B denoting the quadrupole mass moment of the body B. The final step remaining consists in expressing (3.32) by

means of (3.36). Since all derivatives of U
(ext)
A beyond the third order contribute Ø(α3) (see Eq. (3.27)), it is easy to

see that the external motion admits the final α-expanded form

MA
d2zi A
dt2

=
∑

B 6=A

[

GMAMB
∂

∂ziA

1

|zA − zB|
+

1

2
G
(

MAQ
jk
B +MBQ

jk
A

) ∂3

∂ziA∂z
j
A∂z

k
A

1

|zA − zB|

]

+Ø(α3),

(A = 1, 2, . . . , N).

(3.37)

The last equation clearly shows how the external Newtonian problem depends on the internal structure of bodies
through the quadrupole moments. However, let us introduce the ellipticity parameter [14, 18]

ε ≡ sup
A

(

|Qij
A |

|IijA |

)

, (3.38)

which measures the relative deviation of the body A from sphericity, in the sense that (cf. Eq. (3.25))

ε ∼ |Qij
A |

MAL2
. (3.39)

Under the hypothesis that the bodies, having finite mass and dimension, are almost spheric in shape (weakly self-
gravitating bodies), i.e,

ε ≪ 1, (3.40)

we have

Qij ∼ εML2 ≪ 1. (3.41)

Furthermore, since the term
[

∂3

∂ziA∂z
j
A∂z

k
A

1

|zA − zB |

]

∼ 1

R4
(3.42)

the joint effect of Eqs. (3.41) and (3.42) is such that the second term on the right-hand side of (3.37) gives a
contribution

(GM)(εML2)

(

1

R4

)

=

(

GM2

R2

)

(εα2) ≪
(

GM2

R2

)

. (3.43)
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In other words, the second term on the right-hand side of (3.37) is εα2 smaller than the Newtonian force between two
point masses, i.e., it is much smaller than the first term on the right-hand side of (3.37). Therefore, we can conclude
that the internal structure is effaced in the description of the Newtonian external dynamics, which, upon discarding
terms of order εα2 and α3, turns out to be eventually represented by the autonomous system ofN differential equations

MA
d2zi A
dt2

=
∑

B 6=A

GMAMB
∂

∂ziA

1

|zA − zB |
, (A = 1, 2, . . . , N). (3.44)

describing the motion of the centre of mass zA(t) of each body having constant mass MA [13, 18].
Regarding the internal motion (3.20), it is possible to achieve an effacement of the external structure in a similar

way as before by introducing a tidal expansion of the external potential (see Eq. (3.22)) and hence of the effective
potential (2.47) according to

U
(eff)
A (XA) = GA

i X i
A +

1

2
GA

ij X
i
AX

j
A +Ø(|XA|3), (3.45)

where the gravitational gradients or tidal moments [20] are defined by

GA
i (t) = U

(ext)
A (zA),i −

d2

dt2
zi A,

GA
i1i2...il

(t) = U
(ext)
A (zA)i1i2...il , (l ≥ 2),

(3.46)

and turn out to be automatically symmetric and trace free for the vanishing of the Laplacian of U
(ext)
A within the

body A. In this case we find that the local coordinates (2.46) are such that the external potential gives a negligible
contribution, in the sense that the effective potential is essentially reduced to tidal forces. Moreover, the internal
problem is characterized by a particular issue (first noticed by Newton himself in his famous Principia) for which if
the gravitational mass of a body equals its inertial mass then the external structure is even more effaced than one would
expect [18]. In fact, it has been this condition (implicitly always assumed) that has allowed us to define the effective
potential (2.47). This peculiar property regarding the gravitational and inertial mass will become fundamental in
general relativity and it is known as the weak equivalence principle.

IV. RELATIVISTIC TIDAL AND MULTIPOLE EXPANSIONS

It should be clear from the Newtonian analysis outlined in the last section that, within the post-Newtonian frame-
work, the following issues should be tackled:

(i) How to split the general N body problem into two sub-problems concerning the internal and external dynamics ?

(ii) How can we achieve those effacement properties that would allow a decoupling of the two sub-problems?

(iii) Which is the analogue of the centre-of-mass-external-potential-effacing coordinates (2.46)?

(iv) How can we generalize the Newtonian multipole and tidal moments (Eqs. (3.28) and (3.46))?

Some of the above questions have been already answered in this paper and it should be also clear that they are
all intertwined. In fact, the formalism developed by Damour, Soffel, and Xu in Refs. [20–23] is such that the N
internal problems and the single external problem can be dealt with simultaneously within the N + 1 frames whose
features have been illustrated before. Moreover, we have seen that the analogue of (2.46) is represented by (2.5), which
represents the starting point to achieve a linear (first order) description of the gravitational field (cf. Eqs. (2.25) and
(2.42)). We will shortly see how some of the components of the field e µ

a (X0) occurring in (2.5) are fixed though the
search of some post-Newtonian effacement. Finally, the generalization of (3.28) is represented by Blanchet-Damour
mass and spin moments, whereas for Eq. (3.46) the role fulfilled by external potentials met in Eq. (2.44) will be
crucial.
The first who dealt with the cancellation of internal structure at the first post-Newtonian order in the external

problem was Levi-Civita [13] (for a recent application of the Levi-Civita model, motivated by the work in Refs. [25–28],
see also Ref. [29]). Starting from the Einstein equations written in the de Donder(-Lanczos) gauge, Levi-Civita was
able to split the Lagrangian for the geodesic motion of planets into a classical Newtonian part and into an Einstein
modification. The required cancellation of the internal structure was then achieved by multiplying the Lagrangian by
a constant giving rise to an equivalent set of equations of motion. Expressed in a modern language, the self-action
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effects were renormalised away and the final equations just ended up describing the dynamics of the (classically
defined, through Eq. (3.31)) centre of mass of each body. This model has been surely overtaken by Damour, Soffel
and Xu, who adopt a new purely post-Newtonian definition of centre-of-mass frame (see below) and, above all, leave
always unspecified the form of the stress-energy tensor, in contrast with Levi-Civita approach, which uses a perfect
matter model, although this choice is advocated only after a number of detailed calculations supplemented by some
physical assumptions. However, in order to tackle the issue of generalizing the Newtonian description of Sec. III, we
have to introduce Blanchet-Damour multipole moments. The great contribution of Ref. [19] and its generalization
made in Refs. [20–23] consists not only in having generalized the Newtonian moments seen in the last section, but also
in having found a post-Newtonian analogue of both the (asymptotic) field multipole moments (3.36) (representing
the gravitational field outside the material source and at a finite distance from it or close to space-like or null-like
infinity, see Ref. [30]) and the source multipole moments (3.24) and (3.28) (expressing the moments in terms of the
source). We have already seen that the gravitational field felt by each body both in the global frame and in its own
frame can be decomposed as the sum of a locally generated part (defined in the harmonic gauge) and an external one.
Blanchet-Damour multipole moments can be used to describe the former in any reference system. In other words, we
can characterize either wA

µ (i.e., the potential generated by one of the N bodies of the system as seen in the global

frame, cf. Eq. (2.37)) orW+A
α (i.e., the local frame potential occurring in Eq. (2.44)). Considering for definiteness the

local potential W+A
α = (W+A,W+A

a ), it has been demonstrated that in any local Xα
A system it admits, outside the

body A, the following Blanchet-Damour multipole expansion (label A omitted on local time coordinate TA ≡ X0
A/c

and on spatial Minkowskian coordinates3 Xa
A) (∂/∂X

a
A ≡ ∂a) [20]:

W+A(T,Xa) = G

{

[

MA(T +R/c) +MA(T −R/c)

2R

]

− ∂

∂Xa1

[

Ma1

A (T +R/c) +Ma1

A (T −R/c)

2R

]

+
1

2!

∂

∂Xa1

∂

∂Xa2

[

Ma1a2

A (T +R/c) +Ma1a2

A (T −R/c)

2R

]

+ · · ·+ (−1)l

l!

∂

∂Xa1

∂

∂Xa2

. . .
∂

∂Xal

[

Ma1a2...al

A (T +R/c) +Ma1a2...al

A (T −R/c)

2R

]

+ . . .

}

+
1

c2
∂

∂T

(

ΛA − λ
)

+Ø(c−4),

(4.1)

W+A
a (T,Xe) = −G

{

− 1

R

d

dt
MA

a +
1

2!

∂

∂Xb1

(

1

R

d

dt
MA

ab1

)

− 1

3!

∂

∂Xb1

∂

∂Xb2

(

1

R

d

dt
MA

ab1b2

)

+ · · ·+ (−1)l

l!

∂

∂Xb1

∂

∂Xb2

. . .
∂

∂Xbl−1

(

1

R

d

dt
MA

ab1b2...bl−1

)

+ . . .

+ ǫabc

[

−1

2

∂

∂Xb

(

1

R
Sc
A

)

+
1

2!

2

3

∂

∂Xb

∂

∂Xd1

(

1

R
Scd1

A

)

− 1

3!

3

4

∂

∂Xb

∂

∂Xd1

∂

∂Xd2

(

1

R
Scd1d2

A

)

+ · · ·+ (−1)l

l!

l

l + 1

∂

∂Xb

∂

∂Xd1

∂

∂Xd2

. . .
∂

∂Xdl−1

(

1

R
S
cd1d2...dl−1

A

)

+ . . .

]

}

− 1

4

∂

∂Xa

(

ΛA − λ
)

+Ø(c−2),

(4.2)

where the sum over repeated indices is understood, R = (XaXa)
1/2 = (δabX

aXb)1/2 and ǫabc denotes the Levi-Civita
symbol and

ΛA ≡ 4G

{

1

3

[

µA(T +R/c) + µA(T −R/c)

2R

]

− 1

2!

3

5

∂

∂Xa1

[

µA
a1
(T +R/c) + µA

a1
(T −R/c)

2R

]

+ · · ·+ (−1)l

(l + 1)!

2l+ 1

2l+ 3

∂

∂Xa1

∂

∂Xa2

. . .
∂

∂Xal

[

µA
a1a2...al

(T +R/c) + µA
a1a2...al

(T −R/c)

2R

]

+ . . .

}

,

(4.3)

3 Bearing in mind Eq. (2.24), spatial indices are always raised and lowered by means of Kronecker delta δab.
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µA
a1a2...al

≡
∫

VA

d3XX〈bXa1Xa2 . . . Xal〉Σb(T,X
c). (4.4)

The functions MA
a1a2...al

and SA
a1a2...al

represent the Blanchet-Damour mass and spin multipole moments, respectively,
which generalize the corresponding Newtonian quantities (3.24) and (3.28). They read in turn as [19, 20]

Ma1a2...al

A (T ) ≡
∫

VA

d3XX〈a1Xa2 . . .Xal〉Σ(T,Xc) +
1

2(2l+ 3)c2
d2

dT 2

(
∫

VA

d3X X〈a1Xa2 . . . Xal〉XbXbΣ(T,X
c)

)

− 4(2l+ 1)

(l + 1)(2l + 3)c2
d

dT

(
∫

VA

d3X X〈bXa1Xa2 . . .Xal〉Σb(T,X
c)

)

, (l ≥ 0),

(4.5)

Sc1c2...cl
A (T ) ≡

∫

VA

d3X ǫ
〈cl

ab Xc1Xc2 . . . Xcl−1〉XaΣb(T,Xd), (l ≥ 1). (4.6)

These equations deserve some comments:

(i) The above relations are given in terms of compact-support integrals extended only over the volume VA of the
isolated body A and taken with respect to the origin of the local frame A.

(ii) In the sums occurring in Eqs. (4.1)–(4.6) the spatial indices underlying the derivatives, the tensors and the
local coordinates grow in number. In particular, in Eq. (4.1) the sum begins with l = 0, whereas (4.2) with l = 1.
Moreover, all the spatial derivatives cannot be expressed with the concise multi-index notation, since they always
represent derivatives of the first order with respect to the local coordinates Xai (i ∈ {1, 2, . . . , l}, l ∈ N − {0}).
However, we are aware of the fact that Eqs. (4.1)–(4.6) become more succinct by employing Blanchet-Damour
notation [19–23] (which represent a sort of generalized multi-index notation), but we have deliberately avoided using
it in order to make all equations clearer (even if more lengthy) at a first sight.

(iii) The first term occurring on the right-hand side of Eq. (4.5) simply denotes the corresponding Newtonian quantities
(3.24) and (3.28).

(iv) The term l = 0 in Eq. (4.5) is known as Blanchet-Damour mass of the body A.

(v) The spin multipole moments (4.6) are purely Newtonian terms (i.e., they are written with Newtonian accuracy
since no Ø(c−2) appear). In Ref. [22] a first-order post-Newtonian definition of the spin dipole SA

c (the term with l = 1
in Eq, (4.6)) has been found. However, the post-Newtonian accuracy for all terms l ≥ 1 of a closed self-gravitating
system has been achieved in Ref. [31].

(vi) λ(T,Xa) denotes a gauge function taking into account the possibility of employing an arbitrary gauge. This
aspect represents one of the generalizations introduced in Ref. [20] with respect to Ref. [19], where the harmonic
gauge was instead exploited.

Having defined Blanchet-Damour mass and spin multipole moments, we can now generalize the remaining Newtonian
notions, such as the definition of local centre of mass frame. In fact, a local XA

α coordinate system will have its spatial
origin coinciding for all TA times with the centre of mass of the body A if its Blanchet-Damour dipole moment (i.e,
the term l = 1 of the sum (4.5) vanishes. In other words, the post-Newtonian counterpart of Eq. (3.31) now reads as

0 = Ma
A(TA) =

∫

VA

d3XA Xa
AΣ(TA, X

b
A) +

1

10c2
d2

dT 2
A

∫

VA

d3XA Xa
A Xb

AX
A
b Σ(TA, X

c
A)

− 6

5c2
d

dTA

∫

VA

d3XA

(

Xa
AX

A
b − 1

3
δabX

c
AX

A
c

)

Σb(TA, X
e
A).

(4.7)

By virtue of the above equation, the abstract world line LA will now follow in a precise way the motion of the matter
within A and hence it can be identified as a centre-of-mass world line. However, how the definition (4.7) leads to
the cancellation of the effects due to the external gravitational potential represents a more subtle argument than in
Newtonian theory, where Eq. (2.46) makes the accelerated frames fulfil the role of both comoving frame and external
field effacing frames (or freely falling frames) [18]. In fact, if we regard (4.7) as identifying the comoving frames,
we are left with some freedom in the choice of the system XA

α which can be neatly exploited in order to efface the
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external gravitational potential also within the post-Newtonian framework [20]. Let us now explain how this goal can
be achieved.
By exploiting Eqs. (2.48)–(2.53), the external potential occurring in (2.44) can be completely decomposed in terms

of the local mass density ΣB
β (XB) as [20]

W
A

α (XA) =
∑

B 6=A

WB/A
α (xµ(XA)) +W

′′A

α (XA), (4.8)

where the first term represents the contribution resulting from all bodies B 6= A

WB/A
α (xµ(XA)) = �

−1
x,sym

(

−4πG

∣

∣

∣

∣

∂XB(x)

∂x

∣

∣

∣

∣

AA (−1)
αµ (TB)AB

µβ(TB)Σ
B
β (XB(x))

)

, (4.9)

whereas W
′′A

α (XA) results from the inertial effects underlying the change of (“accelerated”) frames xµ → Xα
A and

reads as

W
′′A

α (XA) = −AA (−1)
αµ (TA)BA

µ (XA). (4.10)

Note that in the above equations the term AA (−1) results from the inversion of Eq. (2.48) (i.e., Eq. (2.49)), while
the Jacobian occurring in (4.9) relates the global density of B to its local frame through

σB
µ (x) =

∣

∣

∣

∣

∂XB(x)

∂x

∣

∣

∣

∣

AB
µβ(X

0
B)Σ

B
β (XB(x)). (4.11)

Using the definition (4.8), we can say that the external potential is locally effaced in the frame of the body A if it
vanishes for all times TA at the origin of the frame [20], i.e.,

W
A

α (TA, 0, 0, 0) = 0, ∀TA. (4.12)

Because of the inertial terms appearing in Eq. (4.10), the four effacement conditions (4.12) involve a choice of some
of the e µ

a (X0) coefficients occurring in Eq. (2.5), as we pointed out before (see Ref. [20] for more details).
In order to conclude the “generalization task” of this section, let us generalize to the post-Newtonian framework

the tidal moments (3.46). Let in some local frame (∂a = ∂/∂Xa
A, ∂T = c ∂/∂X0

A)

E
A

a (T,X
b) ≡ ∂aW

A
+

4

c2
∂TW

A

a ,

B
A

a (T,X
d) ≡ ǫabc∂b

(

−4W
A

c

)

,
(4.13)

be the external electric and magnetic gauge invariant fields. The gravitoelectric and gravitomagnetic post-Newtonian
tidal moments are defined as [20–23]

GA(T ) ≡ W
A
(T, 0, 0, 0),

GA
a1a2...al

(T ) ≡ ∂〈a1
∂a2

. . . ∂al−1
E

A

al〉
(T,X)

∣

∣

∣

Xb=0
, (l ≥ 1),

HA
a1a2...al

(T ) ≡ ∂〈a1
∂a2

. . . ∂al−1
B

A

al〉
(T,X)

∣

∣

∣

Xb=0
, (l ≥ 1).

(4.14)

respectively. Note however that the monopole tidal moment GA(T ) can be gauged away through Eq. (4.12). Eventu-
ally, by means of Eqs. (4.1), (4.2), and (4.8) it is possible to express the post-Newtonian tidal moments of the body
A through the superposition of N contributions: N − 1 of them are generated separately by each body B 6= A of the
system while the last one represents the inertial terms. All of them are completely computable from Blanchet-Damour
multipole moments [21].

V. THE MONOPOLE MODEL

The starting point towards the derivation of the simplest Lagrangian model describing the dynamics of the N -body
system is represented by Blanchet-Damour multipole moments (4.5) and (4.6) and the tidal moments (4.14). Bearing
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in mind that the vanishing of the four-divergence of the energy-momentum tensor Tαβ(Xγ
A) = 0 in the local Xα

A frame
implies, in the context of linearized gravity, the conservation for all times TA of the mass monopole, mass dipole and
spin dipole moments of an isolated system, the post-Newtonian counterpart of this result leads to the existence of
constraints on the time evolution of the three lowest local Blanchet-Damour multipoles of the body A having the form
[20–23]

d

dTA
MA =

1

c2
F

(1PN)
0

(

M (p)A
a1a2...al

, G
(p′)A
b1b2...bl

)

+Ø(c−4), (5.1)

d2

dT 2
A

MA
a = MAGA

a +M b1
A GA

ab1 +
1

2!
M b1b2

A GA
ab1b2 + · · ·+ 1

l!
M b1b2...bl

A GA
ab1b2...bl

+ . . .

+
1

c2
F (1PN)
a

(

M (p)A
a1a2...al

, S
(q)A
b1b2...bl

;G
(p′)A
a′

1
a′

2
...a′

l

, H
(q′)A
b′
1
b′
2
...b′

l

)

+Ø(c−4),

(5.2)

d2

dT 2
A

SA
a = ǫ bc

a

(

MA
b GA

c +MA
bd1

GAd1

c +
1

2!
MA

bd1d2
GAd1d2

c + · · ·+ 1

l!
MA

bd1d2...dl
GAd1d2...dl

c + . . .

)

+Ø(c−2), (5.3)

with

M (p)A
a1a2...al

=
dp

dT p
A

MA
a1a2...al

, etc. (5.4)

F
(1PN)
0 and F

(1PN)
a are referred to as energy loss and post-Newtonian force terms, respectively. The right-hand sides

of Eqs. (5.1)–(5.3) are all given in terms of bilinear couplings between the Blanchet-Damour mass and spin multipole
moments of the body A and the post-Newtonian tidal moments felt by A and their time derivatives. In particular,
they are separately linear, on the one hand, on MA

a1a2...al
, SA

a1a2...al
, and their time derivatives and, on the other hand,

on GA
a1a2...al

, HA
a1a2...al

, and their time derivatives.
The most feasible framework that can be built up within Damour, Soffel, and Xu formalism is represented by the

monopole model, according to which each body is described exclusively by its Blanchet-Damour mass and the whole
system is subjected to the ansatz

MA
a1

= MA
a1a2

= · · · = MA
a1a2...al

= · · · = 0,

SA
a1

= SA
a1a2

= · · · = SA
a1a2...al

= · · · = 0,
(5.5)

which in turn, jointly with the arguments formulated at the end of Sec. IV and the bilinear structure of Eq. (5.1)–(5.3),
implies

d

dTA
MA = Ø(c−4). (5.6)

In other words, the monopole model is defined to have constant Blanchet-Damour mass while all other Blanchet-
Damour moments vanish (and hence the post-Newtonian tidal moment, too). Within this framework, the global-frame
post-Newtonian equations of motion for a system of N (weakly self-gravitating) Blanchet-Damour monopoles leads to
the well-known Einstein-Infeld-Hoffmann model, in the sense that the acceleration of each body is given [11, 12, 20, 23]

d2

dt2
ziA = a

i(EIH)
A (zB ,vB) + Ø(c−4), (5.7)

with

a
(EIH)
A = −

∑

B 6=A

GMB

r2AB

nAB − 1

c2

∑

B 6=A

GMB

r2AB

nAB

[

v
2
A + 2v2

B − 4vA · vB − 3

2
(nAB · vB)

2 − 4
∑

C 6=A

GMC

rAC

−
∑

C 6=B

GMC

rBC

(

1 +
1

2

rAB

rCB
nAB · nCB

)

]

− 1

c2
7

2

∑

B 6=A

∑

C 6=B

nBC
G2MBMC

rABr2BC

+
1

c2

∑

B 6=A

(vA − vB)
GMB

r2AB

(4nAB · vA − 3nAB · vB),

(5.8)

where

rAB = |zA(t)− zB(t)|,

nAB =
|zA(t)− zB(t)|

rAB
.

(5.9)
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VI. ANALYSIS OF THE INTEGRO-DIFFERENTIAL DYNAMICAL EQUATIONS

The formalism outlined in Secs. II-V has the great advantage of providing an efficient analysis where the integro-
differential nature of the dynamical equations underlying the description of the N -body system can be “tackled”
through the introduction of the Blanchet-Damour multipole moments and the post-Newtonian tidal moments. In this
Section we aim at outlining the features of the post-Newtonian equations describing the system without introducing
any expansion, the reason being that a powerful computational recipe is not a substitute for the matters of principle
that the theoretical physicist must consider in his research.
The equations expressing the evolution of the material distribution of each body can be achieved in the following

way [20]. At the first post-Newtonian order the equations representing the exchange of energy and momentum between
each volume element of the system and the gravitational field, i.e.,

T µν
;ν = 0, (6.1)

(the semicolon indicating the usual covariant derivative) are found to be equivalent, in the local A-frame, to the
evolution system for Σα = (Σ,Σa) (cf. Eqs. (2.41) and (2.43)) (label A omitted)















∂

∂T

[(

1 +
4

c2
W

)

Σa

]

+
∂

∂Xb

[(

1 +
4

c2
W

)

T ab

]

= F a(T,X) + Ø(c−4),

∂

∂T
Σ +

∂

∂Xa
Σa =

1

c2
∂

∂T
T bb − 1

c2
Σ

∂

∂T
W +Ø(c−4),

(6.2)

where F a(T,X) resembles the Lorentz force density of electromagnetism

F a = ΣEa(W ) +
1

c2
Ba

b(W )Σb, (6.3)

fulfilling the role of a gravitational force density at the first post-Newtonian order, as is clear from Eq. (6.2). The set
of Eqs. (6.2) should be supplemented with the equations expressing the evolution of the gauge invariant gravitational
potential Wα, Eqs. (2.45) and (4.8)–(4.10), which make the whole system nonlocal in space because of the inverse
operator �

−1 (which is an integral operator with kernel given by a Green function), thus recovering its integro-
differential nature that we mentioned before.
First of all, we rewrite Eqs. (6.2) as

W
∂Σa

∂T
= −Σa ∂W

∂T
− c2

4

∂Σa

∂T
− c2

4

∂

∂Xb

[(

1 +
4

c2
W

)

T ab

]

+
c2

4
F a +Ø(c−4),

∂W

∂T
=

1

Σ

∂T bb

∂T
− c2

Σ

∂Σ

∂T
− c2

Σ

∂Σa

∂Xa
+Ø(c−4),

(6.4)

which, upon defining

f(T,X) ≡ 1

Σ

∂T bb

∂T
− c2

Σ

∂Σ

∂T
− c2

Σ

∂Σa

∂Xa
+Ø(c−4),

ha(T,X) ≡ −c2

4

∂Σa

∂T
− c2

4

∂

∂Xb

[(

1 +
4

c2
W

)

T ab

]

+
c2

4
F a +Ø(c−4),

(6.5)

assumes the concise equivalent form











W
∂Σa

∂T
= −Σaf + ha,

∂W

∂T
= f.

(6.6)

The distributional relation involving the step function and Dirac delta function

∂

∂T
θ(T ) = δ(T ), (6.7)
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is such that Eq. (6.6b) can be solved at once by writing

W (T,X) =

∫

dτ θ(T − τ)f(τ,X). (6.8)

At this stage, we can describe concisely the methods that might lead to the resolution of the integro-differential
system (6.6). First of all, bearing in mind Eqs. (2.44), (2.45), and (6.8) we can easily derive that

�XW (T,X) =

∫

dτ �X [θ(T − τ)f(τ,X)] = �X

(

W+ +W
)

= −4πGΣ(T,X), (6.9)

since �XW = 0. Therefore, the above equation can give some information on the features of the function f(τ,X) and
can also be worked out by exploiting the following relation involving the d’Alembert operator of two scalar functions
g = g(T,X) and z = z(T,X):

�X(gz) = (�Xg) z + g (�Xz) + 2ηαβ∂
αg ∂βz. (6.10)

Moreover, another way to proceed can be as follows. Equations (2.44) and (2.45) suggest applying the d’Alembert
operator to the system (6.6) and exploit, whenever we meet �XW (T,X), the fact that its locally generated part W+

α

is such that

�XW+
α = −4πGΣα. (6.11)

Unfortunately, this approach exhibits many drawbacks due mainly to the fact that the nice property (6.10) cannot
always be exploited since in Eq. (6.6) both vector and tensor quantities appear. As an example, for a vector A the
vector Laplacian is defined as

△XA = ∇X (∇X ·A)−∇X × (∇X ×A) , (6.12)

which reduces to the usual scalar Laplacian when applied to scalar fields. Since the vector Laplacian returns a vector
field (unlike the scalar Laplacian, which gives a scalar quantity), Eq. (6.10) cannot be exploited throughout the
calculation we delineated above. In spite of this, we can easily evaluate �Xf(T,X), which may represent a crucial
step toward the resolution of (6.6), since it leads to an useful relation to be employed in Eq. (6.9). First of all, we
can write f(T,X) in an equivalent form as (cf. Eq. (2.43))

f(T,X) = Σ−1

(

∂

∂T
T 00 − c2∇X ·Σ

)

, (6.13)

which does not represent the product of two scalar functions because of the presence of the component T 00 of the
stress-energy tensor T µν . However we can easily show that, since in Minkowski background the d’Alembert operator,
when acting on the first term in round brackets of (6.13), behaves as if it was applied on a scalar function, Eq. (6.10)
can be still exploited. Indeed, in the most general curved background geometry we should have evaluated the following
quantity4

� (∂λT
µν) = gαβ (∂λT

µν);βα = gαβ
(

T µν
;λ − Γµ

σλT
σν − Γν

σλT
µσ
)

;βα

= gαβ
[

T µν
;λβα − (Γµ

σλT
σν);βα − (Γν

σλT
µσ);βα

]

.
(6.14)

In order to evaluate the above equation, we only need to consider that a third-order covariant derivative of a twice
contravariant tensor reads as

T µν
;λβα = ∂α

(

T µν
;λβ

)

− Γσ
αβT

µν
;λσ − Γσ

αλT
µν

;σβ + Γµ
σαT

σν
;λβ + Γν

σαT
µσ

;λβ , (6.15)

whereas a second order one is given by

T µν
;λβ = ∂β

(

T µν
;λ

)

− Γǫ
λβT

µν
;ǫ + Γµ

ǫβT
ǫν

;λ + Γν
ǫβT

µǫ
;λ

= ∂β

(

∂λT
µν + Γµ

ξλT
ξν + Γν

ξλT
µξ
)

− Γǫ
λβ

(

∂ǫT
µν + Γµ

ǫξT
ξν + Γν

ǫξT
µξ
)

+ Γµ
ǫβ

(

∂λT
ǫν + Γǫ

λξT
ξν + Γν

λξT
ǫξ
)

+ Γν
ǫβ

(

∂λT
µǫ + Γµ

ξλT
ξǫ + Γǫ

ξλT
µξ
)

.

(6.16)

4 We are performing a general calculation and hence Greek indices are written without following the distinction between local and global
charts outlined at the beginning of Sec. II.
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At this stage, bearing in mind the last two equations, the simple argument according to which the connection
coefficients along with their partial derivatives constitute functions which can always be made to vanish in flat
Minkowski space (e.g. by employing the global rectangular patch (t, x, y, z)) allows us to conclude that, in the flat
background geometry we are handling, Eq. (6.14) reduces simply to

� (∂λT
µν) = ηαβ∂α∂β∂λT

µν , (6.17)

actually showing that the action of �X on
∂

∂T
T 00 is the same as on generic scalar functions.

Therefore, we can now employ (6.10) and write

�Xf(T,X) =
(

�XΣ−1
)

(

∂

∂T
T 00 − c2∇X ·Σ

)

+Σ−1

[

∂

∂T

(

�XT 00
)

− c2�X (∇X ·Σ)

]

+ 2ηαβ∂
α
(

Σ−1
)

∂β

(

∂

∂T
T 00 − c2∇X ·Σ

)

,

(6.18)

where we have employed the commutator relation

[

∂

∂T
,�X

]

= 0.

Regrettably, it is clear that both approaches outlined above, despite being ultimately intertwined, are really hard
to pursue.

VII. BEYOND TWO BODIES: THE RESTRICTED THREE-BODY PROBLEM

Following the review spirit of this paper, we have decided to conclude it with a section dealing with the analysis
of the relativistic restricted three-body problem which, as shown in Ref. [32], in the simplest case of (quasi-)circular
motion and within the c−5 order shows important deviations from the Newtonian theory because of the loss of energy
by gravitational radiation. In particular, Lagrangian points become Lagrange-like quasi-libration points undergoing
secular trends. This approach differs a little bit from the one described in the previous sections, as we will shortly
see.
Consider a framework for which the gravitational field is described in terms of a global chart by the metric

gµν = ηµν + hµν , (7.1)

whereas the motion of a test particle in such a field is given by the geodesic equation

ẍα + Γα
µν ẋ

µẋν = 0, (7.2)

the dot denoting differentiation with respect to the coordinate time t. In order to achieve a c−5 accuracy, we should
evaluate Christoffel symbols appearing in (7.2) within the accuracy

Γi
00 ∼ c−7, Γi

0k,Γ
0
00 ∼ c−6, Γi

km,Γ0
0k ∼ c−5, Γ0

km ∼ c−4, (7.3)

and introduce the usual post-Newtonian approximation

h00 = c−2h
(2)
00 + c−4h

(4)
00 + c−5A

(5)
00 + c−6h

(6)
00 + c−7A

(7)
00 +Ø(c−8),

h0i = c−3h
(3)
0i + c−5h

(5)
0i + c−6A

(6)
0i +Ø(c−7),

hij = c−2h
(2)
ij + c−4h

(4)
ij + c−5A

(5)
ij +Ø(c−6),

(7.4)

the components A
(5)
00 , A

(7)
00 , A

(6)
0i , and A

(5)
ij being responsible of the gravitational radiation of celestial bodies (i.e.,

second-half post-Newtonian terms). By employing the above expansions and the harmonic gauge, it is possible to
show that the Lagrangian L describing the dynamics of a test particle in the gravitational field (7.1) within the order
Ø(c−5) is given by the function

L = f(xµ, h(n)
µν , A

(m)
µν ), (7.5)

whose particular form can be read in Ref. [32].
In order to describe the quasi-Newtonian restricted quasi-circular three-body problem, we should first of all consider

the dynamics of the two primaries generating the field in which the motion of the small planetoid takes place. By
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employing the barycentric system (defined classically by (3.31)) the dynamical equations, to first order, of the two
bodies of masses M1 and M2 are given by [32]

M1x
i
1 +M2x

i
2 +

1

2c2

[

M1

(

(v1)
2 − GM2

R

)

xi
1 +M2

(

(v2)
2 − GM1

R

)

xi
2

]

+Ø(c−4) = 0, (7.6)

and

M1v
i
1+M2v

i
2+

1

2c2

[

M1

(

(v1)
2 − GM2

R

)

vi1 +M2

(

(v2)
2 − GM1

R

)

vi2 −
GM1M2

R
(N · v1 +N · v2)N

i

]

+Ø(c−4) = 0,

(7.7)
where

Ri ≡ xi
1 − xi

2, V i ≡ vi1 − vi2, viK ≡ ẋi
K ,

R ≡
√

RiRi, N i ≡ Ri

R
, N · v = δijN

ivj ,
(7.8)

(the index K = 1, 2 labelling the primaries). In terms of relative coordinates, the equations of motion can be put in
the form [32]

R̈i = Bi ≡ B
(0)
i + c−2B

(2)
i + c−4B

(4)
i + c−5B

(5)
i +Ø(c−6), (7.9)

where the coefficients B
(n)
i are functions of the relative coordinates Ri, V i and the masses M1 and M2 of the bodies.

In particular, the term B
(5)
i is a dissipative term having the form

B
(5)
i =

8

5

G2M2µ

R3

[(

3V2 +
17

3

GM

R

)

(

NkVk

)

N i −
(

V
2 +

3GM

R

)

V i

]

, (7.10)

µ ≡ M1M2/(M1 +M2)
2 being a dimensionless parameter. Such a term is responsible for the secular changes in the

semi-major axes and eccentricities of the orbits of the primaries, the resulting secular variation in the orbital periods
being a well-confirmed effect in the context of binary pulsars.
In order to deal with the restricted three-body problem, we take into account the simplest situation in which the

two massive bodies move along quasi-circular orbits. Choosing the plane R3 = Ṙ3 = 0 as the plane of motion of the
primaries and introducing polar coordinates

R1 ≡ R cosu,

R2 ≡ R sinu,
(7.11)

Eq. (7.9) gives

R̈−Ru̇2 = B1 cosu+B2 sinu,

d

dt
(R2u̇) = R (−B1 sinu+B2 cosu) ,

(7.12)

B1 and B2 having the same properties of the coefficients occurring on the right-hand side of (7.9). If we seek solutions
having the form

R = A+∆R,

u = Λ +∆u,
(7.13)

where

Λ = nt+ Λ0, (7.14)

(A, Λ, n, and Λ0 being constants) the correction terms ∆R ∼ Ø(c−5) and ∆u ∼ Ø(c−5) (which are caused by the
dissipative terms occurring in Eq. (7.12)) are found to be

∆R = −2AkΛ,

∆u =
3

2
kΛ2,

(7.15)
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k being a small parameter given by

k =
32

5c5
n5A5µ. (7.16)

Therefore, putting together all the above results, the quasi-circular orbits of the two primaries read as

R = A (1− 2kΛ) ,

u = Λ +
3

2
kΛ2.

(7.17)

At this stage, we can consider the dynamics of a test particle immersed in the gravitational field of the binaries moving
along the quasi-circular orbits (7.11) and (7.17). The equations of motion of the small planetoid are given by

ẍi = −1

2

∂

∂xi
h
(2)
00 = −GM1

xi − xi
1

(r1)3
−GM2

xi − xi
2

(r2)3
, (7.18)

with

rK ≡
√

(x− xK)i (x− xK)
i
,

xi
1 ≡ M2

(M1 +M2)
Ri,

xi
2 ≡ M1

(M1 +M2)
Ri,

(7.19)

where the functions Ri are given by Eqs. (7.11) and (7.17). Such a problem is called quasi-Newtonian restricted
three-body problem and its main peculiarity is represented by the fact that radiation terms are taken into account.
Like in the Newtonian case, the rotating synodic frame can be employed, with coordinates

x1 ≡ ξ1 cosu− ξ2 sinu,

x2 ≡ ξ1 sinu+ ξ2 cosu,

x3 ≡ ξ3,

(7.20)

where the coordinates of the binary components depend on time only through the radiation terms

ξ1K = ± MJ

(M1 +M2)
R, (K 6= J), (7.21)

(K = 1, 2 and J = 1, 2 labelling the primaries, the plus sign occurring if K = 1, while the negative one if K = 2) and

ξ2K = ξ3K = 0. (7.22)

Therefore, the dynamical equations for the test body assume the form [32]

ξ̈1 = −GM1

(r1)3

(

ξ1 − M2

(M1 +M2)
R

)

− GM2

(r2)3

(

ξ1 +
M1

(M1 +M2)
R

)

+ 2u̇ξ̇2 + (u̇)2ξ1 + üξ2, (7.23)

ξ̈2 = −
[

GM1

(r1)3
+

GM2

(r2)3

]

ξ2 − 2u̇ξ̇1 + (u̇)2ξ2 − üξ1, (7.24)

ξ̈3 = −
[

GM1

(r1)3
+

GM2

(r2)3

]

ξ3, (7.25)

with

(r1)
2 =

(

ξ1 − M2

(M1 +M2)
R

)2

+
(

ξ2
)2

+
(

ξ3
)2

,

(r2)
2 =

(

ξ1 +
M1

(M1 +M2)
R

)2

+
(

ξ2
)2

+
(

ξ3
)2

.

(7.26)
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We are now ready to describe the most significant features of this system. First of all, since, unlike the classic case,
the system (7.23)–(7.25) is not autonomous, the Jacobi integral gets replaced by the Jacobi quasi-integral relation

1

2

3
∑

i=1

(

ξ̇i
)2

=
GM1

r1
+

GM2

r2
+

1

2
(u̇)

2
[

(

ξ1
)2

+
(

ξ2
)2
]

+ 2G(M1 +M2)µnkA

∫

dt

[(

ξ1 − M2

(M1 +M2)
R

)

1

(r1)3
−
(

ξ1 +
M1

(M1 +M2)
R

)

1

(r2)3

]

+ ü

∫

dt
[

ξ2
(

ξ̇1 − u̇ξ2
)

− ξ1
(

ξ̇2 + u̇ξ1
)]

− 1

2
CJ ,

(7.27)

CJ being the classical Jacobi constant. Moreover, we can evaluate the relativistic phenomena affecting the classical
position of Lagrangian points. In fact, the Newtonian theory predicts for the circular restricted three-body problem
five equilibrium points which can be divided into two categories: the unstable collinear ones (L1, L2, and L3) lying on
the line joining the primaries and the triangular ones (L4 and L5) being the vertices of an equilateral triangle whose
basis is represented by the line connecting the massive bodies. Thus, by analogy in the quasi-Newtonian problem
stated above there exist five quasi-libration points.
We focus on the non-collinear points. Classically, for k = 0 the position of L4 is given by (in the planar case where

ξ3cl = 0)

ξ1cl =
M2 −M1

2(M1 +M2)
A,

ξ2cl =

√
3

2
A,

r1,cl = r2,cl = A.

(7.28)

By employing the post-Newtonian pattern, we can look for coordinates of the quasi-Lagrangian point L4 having the
form

ξ1 = ξ1cl + δξ1,

ξ2 = ξ2cl + δξ2,

ξ3 = δξ3,

(7.29)

and

r1 = R

(

1− 1

2R
δξ1 +

√
3

2
δξ2 + . . .

)

,

r2 = R

(

1 +
1

2R
δξ1 +

√
3

2
δξ2 + . . .

)

.

(7.30)

By substituting the above ansatz into Eqs. (7.23)–(7.25) we obtain, to first order in k,

δξ1 =
2

3
√
3

1− µ

µ
Ak,

δξ2 = −2

9

M2 −M1

µ(M1 +M2)
Ak,

δξ3 = 0,

(7.31)

showing that the binary gravitational radiation terms force the coordinate of L4 to change with time, hence revealing
its true quasi-equilibrium nature5. The same arguments can be applied also to the classical collinear Lagrangian
points. Again, their coordinates are no longer constant in time and they are turned into quasi-libration points whose
positions depend secularly on time [32].

5 These are indirect perturbations affecting the position of libration points caused by radiation terms occuring in Eq. (7.17).
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VIII. POTENTIALITIES OF THE PLANETARY EPHEMERIS PROGRAM PEP

An approach to the test of the foundations of general relativistic celestial mechanics different from, and complemen-
tary to, what reported in this work is the analysis of solar-systemmetric data carried out with the Planetary Ephemeris
Program, hereafter referred to as PEP. This is a software package developed at the Harvard-Smithsonian Center for
Astrophysics over the past several decades [33, 34]. PEP has been used successfully to describe the three-body prob-
lem of the Sun-Earth-Moon in the weak-field slow-motion regime, in the solar system barycenter frame, taking into
account numerically additional perturbing effects (the other planets, Pluto, asteroids, Earth/Moon geodesy effects).
In particular, the de Sitter precession of the orbit of the Moon has been measured [35–37] and this, as well as other
general relativity tests (equivalence principle etc.) are being continuously refined [38–40] by using lunar laser ranging
metric data [41]. Even this experimental approach is affected by technical complexities of the underlying models and
of the code for implementing the models [42]. Integrated analytical-numerical approaches (this work and PEP’s),
strongly aided by an ever-increasing set of experimental metric measurements from new solar system missions (on the
Moon, but also on Mars [43]), have the potential to improve our detailed knowledge of the solar system dynamics and
of how to use it to probe general relativity.

IX. CONCLUDING REMARKS AND OPEN PROBLEMS

In the very accurate review paper in Ref. [44], the author stresses that relativistic celestial mechanics has one
irrefutable merit, i.e., its exceptionally high precision of observations absolutely unattainable in cosmology and as-
trophysics. In his opinion, with which we agree, the final goal of relativistic celestial mechanics is to answer the
question whether general relativity alone is able of accounting for all observed motions of celestial bodies and the
propagation of light. The work in Ref. [44] lists eventually the following major tasks of relativistic celestial mechanics
in the years to come: the investigation of general relativistic equations of motion, orbital evolution with emission of
gravitational radiation, general relativistic treatment of body rotation, and the motion of bodies in the background
of the expanding universe.
In particular, the most important unsolved problem of Newtonian celestial mechanics, which is possibly the proof

of stability of the solar system (cf. the work in Refs. [45–47]), remains an unsettled issue also in general relativity,
but, well before achieving this goal, it is important to improve the tools at our disposal in order to perform at
least numerical simulations of planetary and satellite motion when all celestial bodies (including moons, asteroids
and comets) are taken into account. Mankind has now at disposal some high performance supercomputers with
capabilities that were inconceivable in the nineties, but unless we succeed in overcoming technical difficulties resulting
from non-local terms in the equations of motion, we will have to limit ourselves to the spectacular progress achieved
in the investigation of two-body dynamics in strong fields [48–63]. Hopefully, the weak-gravity regime that is relevant
for many aspects of solar system dynamics will be better understood as well in the (near) future.
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(Gauthier-Villars, Paris, 1894).
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