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Preface

Solving an optimal control or estimation problem is not easy. Pieces of the puzzle
are found scattered throughout many different disciplines. Furthermore, the focus of this
book is on practical methods, that is, methods that I have found actually work! In fact
everything described in this book has been implemented in production software and used to
solve real optimal control problems. Although the reader should be proficient in advanced
mathematics, no theorems are presented.

Traditionally, there are two major parts of a successful optimal control or optimal
estimation solution technique. The first part is the “optimization” method. The second part
is the “differential equation” method. When faced with an optimal control or estimation
problem it is tempting to simply “paste” together packages for optimization and numerical
integration. While naive approaches such as this may be moderately successful, the goal of
this book is to suggest that there is a better way! The methods used to solve the differential
equations and optimize the functions are intimately related.

The first two chapters of this book focus on the optimization part of the problem. In
Chapter 1 the important concepts of nonlinear programming for small dense applications
are introduced. Chapter 2 extends the presentation to problems which are both large and
sparse. Chapters 3 and 4 address the differential equation part of the problem. Chapter
3 introduces relevant material in the numerical solution of differential (and differential-
algebraic) equations. Methods for solving the optimal control problem are treated in some
detail in Chapter 4. Throughout the book the interaction between optimization and integra-
tion is emphasized. Chapter 5 describes how to solve optimal estimation problems. Chapter
6 presents a collection of examples that illustrate the various concepts and techniques. Real
world problems often require solving a sequence of optimal control and/or optimization
problems, and Chapter 7 describes a collection of these “advanced applications.”

While the book incorporates a great deal of new material not covered in Practical
Methods for Optimal Control Using Nonlinear Programming [21], it does not cover every-
thing. Many important topics are simply not discussed in order to keep the overall presen-
tation concise and focused. The discussion is general and presents a unified approach to
solving optimal estimation and control problems. Most of the examples are drawn from
my experience in the aerospace industry. Examples have been solved using a particular
implementation called SOCS. I have tried to adhere to notational conventions from both
optimization and control theory whenever possible. Also, I have attempted to use consistent
notation throughout the book.

The material presented here represents the collective contributions of many peo-
ple. The nonlinear programming material draws heavily on the work of John Dennis,
Roger Fletcher, Phillip Gill, Sven Leyffer, Walter Murray, Michael Saunders, and Mar-
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garet Wright. The material on differential-algebraic equations (DAEs) is drawn from the
work of Uri Ascher, Kathy Brenan, and Linda Petzold. Ray Spiteri graciously shared his
classroom notes on DAEs. I was introduced to optimal control by Stephen Citron, and I
routinely refer to the text by Bryson and Ho [54]. Over the past 20 years I have been for-
tunate to participate in workshops at Oberwolfach, Munich, Minneapolis, Victoria, Banff,
Lausanne, Griefswald, Stockholm, and Fraser Island. I’ve benefited immensely simply
by talking with Larry Biegler, Hans Georg Bock, Roland Bulirsch, Rainer Callies, Kurt
Chudej, Tim Kelley, Bernd Kugelmann, Helmut Maurer, Rainer Mehlhorn, Angelo Miele,
Hans Josef Pesch, Ekkehard Sachs, Gottfried Sachs, Roger Sargent, Volker Schulz, Mark
Steinbach, Oskar von Stryk, and Klaus Well.

Three colleagues deserve special thanks. Interaction with Steve Campbell and his
students has inspired many new results and interesting topics. Paul Frank has played a
major role in the implementation and testing of the large, sparse nonlinear programming
methods described. Bill Huffman, my coauthor for many publications and the SOCS soft-
ware, has been an invaluable sounding board over the last two decades. Finally, I thank
Jennifer for her patience and understanding during the preparation of this book.

John T. Betts



Chapter 1

Introduction to Nonlinear
Programming

1.1 Preliminaries
This book concentrates on numerical methods for solving the optimal control problem.
The fundamental principle of all effective numerical optimization methods is to solve a
difficult problem by solving a sequence of simpler subproblems. In particular, the solution
of an optimal control problem will require the solution of one or more finite-dimensional
subproblems. As a prelude to our discussions on optimal control, this chapter will focus
on the nonlinear programming (NLP) problem. The NLP problem requires finding a finite
number of variables such that an objective function or performance index is optimized
without violating a set of constraints. The NLP problem is often referred to as parameter
optimization. Important special cases of the NLP problem include linear programming
(LP), quadratic programming (QP), and least squares problems.

Before proceeding further, it is worthwhile to establish the notational conventions
used throughout the book. This is especially important since the subject matter covers a
number of different disciplines, each with its own notational conventions. Our goal is to
present a unified treatment of all these fields. As a rule, scalar quantities will be denoted by
lowercase letters (e.g., α). Vectors will be denoted by boldface lowercase letters and will
usually be considered column vectors, as in

x=


x1
x2
...

xn

 , (1.1)

where the individual components of the vector are xk for k = 1, . . . ,n. To save space, it will
often be convenient to define the transpose, as in

xT = (x1, x2, . . . , xn). (1.2)

A sequence of vectors will often be denoted as xk ,xk+1, . . . . Matrices will be denoted by

1



2 Chapter 1. Introduction to Nonlinear Programming

boldface capital letters, as in

A=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 . (1.3)

1.2 Newton’s Method in One Variable
The fundamental approach to most iterative schemes was suggested over 300 years ago by
Newton. In fact, Newton’s method is the basis for all of the algorithms we will describe.
We begin with the simplest form of Newton’s method and then in subsequent sections gen-
eralize the discussion until we have presented one of the most widely used NLP algorithms,
namely the sequential quadratic programming (SQP) method.

Suppose it is required to find the value of the variable x such that the constraint
function

c(x)= 0. (1.4)

Let us denote the solution by x∗ and let us assume x is a guess for the solution. The basic
idea of Newton’s method is to approximate the nonlinear function c(x) by the first two terms
in a Taylor series expansion about the current point x . This yields a linear approximation
for the constraint function at the new point x̄ , which is given by

c(x̄)= c(x)+ c′(x)(x̄− x), (1.5)

where c′(x)= dc/dx is the slope of the constraint at x . Using this linear approximation, it
is reasonable to compute x̄ , a new estimate for the root, by solving (1.5) such that c(x̄)= 0,
i.e.,

x̄ = x− [c′(x)]−1c(x). (1.6)

Typically, we denote p ≡ x̄− x and rewrite (1.6) as

x̄ = x+ p, (1.7)

where
p =−[c′(x)]−1c(x). (1.8)

Of course, in general, c(x) is not a linear function of x , and consequently we cannot
expect that c(x̄) = 0. However, we might hope that x̄ is a better estimate for the root x∗
than the original guess x ; in other words we might expect that

|x̄− x∗| ≤ |x− x∗| (1.9)

and
|c(x̄)| ≤ |c(x)|. (1.10)

If the new point is an improvement, then it makes sense to repeat the process, thereby
defining a sequence of points x (0), x (1), x (2), . . . with point (k+1) in the sequence given by

x (k+1) = x (k)− [c′(x (k))]−1c(x (k)). (1.11)
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For notational convenience, it usually suffices to present a single step of the algorithm, as in
(1.6), instead of explicitly labeling the information at step k using the superscript notation
x (k). Nevertheless, it should be understood that the algorithm defines a sequence of points
x (0), x (1), x (2), . . . . The sequence is said to converge to x∗ if

lim
k→∞|x

(k)− x∗| = 0. (1.12)

In practice, of course, we are not interested in letting k →∞. Instead we are satisfied with
terminating the sequence when the computed solution is “close” to the answer. Further-
more, the rate of convergence is of paramount importance when measuring the computa-
tional efficiency of an algorithm. For Newton’s method, the rate of convergence is said to
be quadratic or, more precisely, q-quadratic (cf. [71]). The impact of quadratic conver-
gence can be dramatic. Loosely speaking, it implies that each successive estimate of the
solution will double the number of significant digits!

Example 1.1 NEWTON’S METHOD—ROOT FINDING. To demonstrate, let us sup-
pose we want to solve the constraint

c(x)= a1+a2x+a3x2 = 0, (1.13)

where the coefficients a1,a2,a3 are chosen such that c(0.1) = −0.05, c(0.25) = 0, and
c(0.9)= 0.9. Table 1.1 presents the Newton iteration sequence beginning from the initial
guess x = 0.85 and proceeding to the solution at x∗ = 0.25. Figure 1.1 illustrates the
first three iterations. Notice in Table 1.1 that the error between the computed solution and
the true value, which is tabulated in the third column, exhibits the expected doubling in
significant figures from the fourth iteration to convergence.

So what is wrong with Newton’s method? Clearly, quadratic convergence is a very
desirable property for an algorithm to possess. Unfortunately, if the initial guess is not
sufficiently close to the solution, i.e., within the region of convergence, Newton’s method
may diverge. As a simple example, Dennis and Schnabel [71] suggest applying Newton’s
method to solve c(x)= arctan(x)= 0. This will diverge when the initial guess |x (0)| > a,
converge when |x (0)|< a, and cycle indefinitely if |x (0)| = a, where a = 1.3917452002707.
In essence, Newton’s method behaves well near the solution (locally) but lacks something
permitting it to converge globally. So-called globalization techniques, aimed at correcting
this deficiency, will be discussed in subsequent sections. A second difficulty occurs when

Table 1.1. Newton’s method for root finding.

Iter. c(x) x |x− x∗|
1 0.79134615384615 0.85000000000000 0.60000000000000

2 0.18530192382759 0.47448669201521 0.22448669201521

3 3.5942428588261×10−2 0.30910437279376 5.9104372793756×10−2

4 3.6096528286200×10−3 0.25669389900972 6.6938990097217×10−3

5 5.7007630268141×10−5 0.25010744198003 1.0744198002549×10−4

6 1.5161639596584×10−8 0.25000002858267 2.8582665845267×10−8

7 1.0547118733939×10−15 0.25000000000000 1.8873791418628×10−15
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Figure 1.1. Newton’s method for root finding.

the slope c′(x)= 0. Clearly, the correction defined by (1.6) is not well defined in this case.
In fact, Newton’s method loses its quadratic convergence property if the slope is zero at
the solution, i.e., c′(x∗) = 0. Finally, Newton’s method requires that the slope c′(x) can
be computed at every iteration. This may be difficult and/or costly, especially when the
function c(x) is complicated.

1.3 Secant Method in One Variable
Motivated by a desire to eliminate the explicit calculation of the slope, one can consider
approximating it at xk by the secant

c′(xk)≈ B = c(xk)− c(xk−1)

xk− xk−1 ≡ �c

�x
. (1.14)

Notice that this approximation is constructed using two previous iterations but requires
values only for the constraint function c(x). This expression can be rewritten to give the
so-called secant condition

B�x =�c, (1.15)

where B is the (scalar) secant approximation to the slope. Using this approximation, it then
follows that the Newton iteration (1.6) is replaced by the secant iteration

x̄ = x− B−1c(x)= x+ p, (1.16)
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Figure 1.2. Secant method for root finding.

which is often written as

xk+1 = xk− xk− xk−1

c(xk)− c(xk−1)
c(xk). (1.17)

Figure 1.2 illustrates a secant iteration applied to Example 1.1 described in the pre-
vious section.

Clearly, the virtue of the secant method is that it does not require calculation of the
slope c′(xk). While this may be advantageous when derivatives are difficult to compute,
there is a downside! The secant method is superlinearly convergent, which, in general, is
not as fast as the quadratically convergent Newton algorithm. Thus, we can expect conver-
gence will require more iterations, even though the cost per iteration is less. A distinguish-
ing feature of the secant method is that the slope is approximated using information from
previous iterates in lieu of a direct evaluation. This is the simplest example of a so-called
quasi-Newton method.

1.4 Newton’s Method for Minimization in One Variable
Now let us suppose we want to compute the value x∗ such that the nonlinear objective
function F(x∗) is a minimum. The basic notion of Newton’s method for root finding is
to approximate the nonlinear constraint function c(x) by a simpler model (i.e., linear) and
then compute the root for the linear model. If we are to extend this philosophy to opti-
mization, we must construct an approximate model of the objective function. Just as in the
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development of (1.5), let us approximate F(x) by the first three terms in a Taylor series
expansion about the current point x :

F(x̄)= F(x)+ F ′(x)(x̄− x)+ 1

2
(x̄− x)F ′′(x)(x̄− x). (1.18)

Notice that we cannot use a linear model for the objective because a linear function does
not have a finite minimum point. In contrast, a quadratic approximation to F(x) is the
simplest approximation that does have a minimum. Now for x̄ to be a minimum of the
quadratic (1.18), we must have

d F

dx̄
≡ F ′(x̄)= 0= F ′(x)+ F ′′(x)(x̄− x). (1.19)

Solving for the new point yields

x̄ = x− [F ′′(x)]−1F ′(x). (1.20)

The derivation has been motivated by minimizing F(x). Is this equivalent to solving the
slope condition F ′(x)= 0? It would appear that the iterative optimization sequence defined
by (1.20) is the same as the iterative root-finding sequence defined by (1.6), provided we
replace c(x) by F ′(x). Clearly, a quadratic model for the objective function (1.18) produces
a linear model for the slope F ′(x). However, the condition F ′(x) = 0 defines only a sta-
tionary point, which can be a minimum, a maximum, or a point of inflection. Apparently
what is missing is information about the curvature of the function, which would determine
whether it is concave up, concave down, or neither.

Figure 1.3 illustrates a typical situation. In the illustration, there are two points
with zero slopes; however, there is only one minimum point. The minimum point is dis-

Figure 1.3. Minimization in one variable.
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tinguished from the maximum by the algebraic sign of the second derivative F ′′(x). For-
mally, we have

Necessary Conditions:

F ′(x∗)= 0, (1.21)

F ′′(x∗) ≥ 0; (1.22)

Sufficient Conditions:

F ′(x∗)= 0, (1.23)

F ′′(x∗) > 0. (1.24)

Note that the sufficient conditions require that F ′′(x∗) > 0, defining a strong local
minimizer in contrast to a weak local minimizer, which may have F ′′(x∗) = 0. It is also
important to observe that these conditions define a local rather than a global minimizer.

1.5 Newton’s Method in Several Variables
The preceding sections have addressed problems involving a single variable. In this section,
let us consider generalizing the discussion to functions of many variables. In particular, let
us consider how to find the n-vector xT = (x1, . . . , xn) such that

c(x)=
 c1(x)

...
cm(x)

= 0. (1.25)

For the present, let us assume that the number of constraints and variables is the same, i.e.,
m = n. Just as in one variable, a linear approximation to the constraint functions analogous
to (1.5) is given by

c(x)= c(x)+G(x−x), (1.26)

where the Jacobian matrix G is defined by

G≡ ∂c
∂x
=



∂c1
∂x1

∂c1
∂x2

. . . ∂c1
∂xn

∂c2
∂x1

∂c2
∂x2

. . .
∂c2
∂xn

...

∂cm
∂x1

∂cm
∂x2

. . .
∂cm
∂xn


. (1.27)

By convention, the m rows of G correspond to constraints and the n columns to variables.
As in one variable, if we require that c(x)= 0 in (1.26), we can solve the linear system

Gp=−c (1.28)
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for the search direction p, which leads to an iteration of the form

x= x+p. (1.29)

Thus, each Newton iteration requires a linear approximation to the nonlinear con-
straints c, followed by a step from x to the solution of the linearized constraints at x. Figure
1.4 illustrates a typical situation when n = m = 2. It is important to remark that the multi-
dimensional version of Newton’s method shares all of the properties of its one-dimensional
counterpart. Specifically, the method is quadratically convergent provided it is within a
region of convergence, and it may diverge unless appropriate globalization strategies are
employed. Furthermore, in order to solve (1.28) it is necessary that the Jacobian G be non-
singular, which is analogous to requiring that c′(x) �= 0 in the univariate case. And, finally,
it is necessary to actually compute G, which can be costly.

Figure 1.4. Newton’s method in two variables.

1.6 Unconstrained Optimization
Let us now consider the multidimensional unconstrained minimization problem. Suppose
we want to find the n-vector xT = (x1, . . . , xn) such that the function F(x)= F(x1, . . . , xn) is
a minimum. Just as in the univariate case (1.18), let us approximate F(x) by the first three
terms in a Taylor series expansion about the point x:

F(x)= F(x)+gT(x)(x−x)+ 1

2
(x−x)TH(x)(x−x). (1.30)
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The Taylor series expansion involves the n-dimensional gradient vector

g(x)≡∇x F =


∂F
∂x1

...

∂F
∂xn

 (1.31)

and the symmetric n×n Hessian matrix

H≡∇2
x x F =



∂2 F
∂x2

1

∂2 F
∂x1∂x2

. . . ∂2 F
∂x1∂xn

∂2 F
∂x2∂x1

∂2 F
∂x2

2
. . . ∂2 F

∂x2∂xn

...

∂2 F
∂xn∂x1

∂2 F
∂xn∂x2

. . . ∂2 F
∂x2

n


. (1.32)

It is common to define the search direction p= x−x and then rewrite (1.30) as

F(x)= F(x)+gTp+ 1

2
pTHp. (1.33)

The scalar term gTp is referred to as the directional derivative along p and the scalar term
pTHp is called the curvature or second directional derivative in the direction p.

It is instructive to examine the behavior of the series (1.33). First, let us suppose
that the expansion is about the minimum point x∗. Now if x∗ is a local minimum, then the
objective function must be larger at all neighboring points, that is, F(x) > F(x∗). In order
for this to be true, the slope in all directions must be zero, that is, (g∗)Tp= 0, which implies
we must have

g(x∗)=
 g1(x∗)

...
gn(x∗)

= 0. (1.34)

This is just the multidimensional analogue of the condition (1.21). Furthermore, if the
function curves up in all directions, the point x∗ is called a strong local minimum and the
third term in the expansion (1.33) must be positive:

pTH∗p > 0. (1.35)

A matrix1 that satisfies this condition is said to be positive definite. If there are some
directions with zero curvature, i.e., pTH∗p≥ 0, then H∗ is said to be positive semidefinite. If
there are directions with both positive and negative curvature, the matrix is called indefinite.
In summary, we have

1H∗ ≡H(x∗) (not the conjugate transpose, as in some texts).
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Necessary Conditions:

g(x∗)= 0, (1.36)

pTH∗p ≥ 0; (1.37)

Sufficient Conditions:

g(x∗)= 0, (1.38)

pTH∗p > 0. (1.39)

The preceding discussion was motivated by an examination of the Taylor series about
the minimum point x∗. Let us now consider the same quadratic model about an arbitrary
point x. Then it makes sense to choose a new point x such that the gradient at x is zero. The
resulting linear approximation to the gradient is just

g= 0= g+Hp, (1.40)

which can be solved to yield the Newton search direction

p=−H−1g. (1.41)

Just as before, the Newton iteration is defined by (1.29). Since this iteration is based on
finding a zero of the gradient vector, there is no guarantee that the step will move toward a
local minimum rather than a stationary point or maximum. To preclude this, we must insist
that the step be downhill, which requires satisfying the so-called descent condition

gTp < 0. (1.42)

It is interesting to note that, if we use the Newton direction (1.41), the descent condition
becomes

gTp=−gTH−1g < 0, (1.43)

which can be true only if the Hessian is positive definite, i.e., (1.35) holds.

1.7 Recursive Updates
Regardless of whether Newton’s method is used for solving nonlinear equations, as in
Section 1.5, or for optimization, as described in Section 1.6, it is necessary to compute
derivative information. In particular, one must compute either the Jacobian matrix (1.27)
or the Hessian matrix (1.32). For many applications, this can be a costly computational
burden. Quasi-Newton methods attempt to construct this information recursively. A brief
overview of the most important recursive updates is included, although a more complete
discussion can be found in [71], [99], and [82].

The basic idea of a recursive update is to construct a new estimate of the Jacobian or
Hessian using information from previous iterates. Most well-known recursive updates are
of the form

B= B+R(�c,�x), (1.44)



1.7. Recursive Updates 11

where the new estimate B is computed from the old estimate B. Typically, this calculation
involves a low-rank modification R(�c,�x) that can be computed from the previous step:

�c= ck− ck−1, (1.45)

�x= xk −xk−1. (1.46)

The usual way to construct the update is to insist that the secant condition

B�x=�c (1.47)

hold and then construct an approximation B that is “close” to the previous estimate B. In
Section 1.3, the simplest form of this condition (1.15) led to the secant method. In fact, the
generalization of this formula, proposed in 1965 by Broyden [50], is

B= B+ (�c−B�x) (�x)T

(�x)T�x
, (1.48)

which is referred to as the secant or Broyden update. The recursive formula constructs a
rank-one modification that satisfies the secant condition and minimizes the Frobenius norm
between the estimates.

When a quasi-Newton method is used to approximate the Hessian matrix, as required
for minimization, one cannot simply replace �c with �g in the secant update. In particular,
the matrix B constructed using (1.48) is not symmetric. However, there is a rank-one update
that does maintain symmetry, known as the symmetric rank-one (SR1) update:

B= B+ (�g−B�x)(�g−B�x)T

(�g−B�x)T�x
, (1.49)

where �g ≡ gk −gk−1. While the SR1 update does preserve symmetry, it does not neces-
sarily maintain a positive definite approximation. In contrast, the update

B= B+ �g(�g)T

(�g)T�x
− B�x(�x)TB

(�x)TB�x
(1.50)

is a rank-two positive definite secant update provided (�x)T�g > 0 is enforced at each
iteration. This update was discovered independently by Broyden [51], Fletcher [81], Gold-
farb [103], and Shanno [159] in 1970 and is known as the BFGS update.

The effective computational implementation of a quasi-Newton update introduces a
number of additional considerations. When solving nonlinear equations, the search direc-
tion from (1.28) is p = −G−1c, and for optimization problems the search direction given
by (1.41) is p=−H−1g. Since the search direction calculation involves the matrix inverse
(either G−1 or H−1), one apparent simplification is to apply the recursive update directly
to the inverse. In this case, the search direction can be computed simply by computing the
matrix-vector product. This approach was proposed by Broyden for nonlinear equations,
but has been considerably less successful in practice than the update given by (1.48), and
is known as “Broyden’s bad update.” For unconstrained minimization, let us make the sub-
stitutions �x→�g, �g→�x, and B→ B−1 in (1.50). By computing the inverse of the
resulting expression, one obtains

B= B+ (�g−B�x)(�g)T+�g(�g−B�x)T

(�g)T�x
−σ�g(�g)T, (1.51)
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where

σ = (�g−B�x)T�x

(�gT�x)2
.

This so-called inverse positive definite secant update is referred to as the DFP update for
its discoverers Davidon [68] and Fletcher and Powell [85].

Even though many recursive updates can be applied directly to the inverse matrices,
most practical implementations do not use this approach. When the matrices G and/or H
are singular, the inverse matrices do not exist. Consequently, it is usually preferable to work
directly with G and H. There are at least three issues that must be addressed by an effective
implementation, namely efficiency, numerical conditioning, and storage. The solution of
a dense linear system, such as (1.28) or (1.40), requires O(n3) operations, compared with
the O(n2) operations needed to compute the matrix-vector product (1.41). However, this
penalty can be avoided by implementing the update in “factored form.” For example, the
(positive definite) Hessian matrix can be written in terms of its Cholesky factorization as
H= RRT. Since the recursive update formulas represent low-rank modifications to H, it is
possible to derive low-rank modifications to the factors R. By updating the matrices in fac-
tored form, the cost of computing the search direction can be reduced to O(n2) operations,
just as when the inverse is recurred directly. Furthermore, when the matrix factorizations
are available, it is also possible to deal with rank deficiencies in a more direct fashion. Fi-
nally, when storage is an issue, the matrix at iteration k can be represented as the sum of L
quasi-Newton updates to the original estimate B0 in the form

Bk = B0+
L∑

i=1

ui uT
i −

L∑
i=1

vi vT
i , (1.52)

where the vectors ui and vi denote information from iteration i . If the initial estimate B0
requires relatively little storage (e.g., is diagonal), then all operations involving the matrix
Bk at iteration k can be performed without explicitly forming the (dense) matrix Bk . This
technique, called a limited memory update, requires only storing the vectors u and v over
the previous L iterations.

We have motivated the use of a recursive update as a way to construct Jacobian and/or
Hessian information. However, we have not discussed how fast an iterative sequence will
converge when the recursive update is used instead of the exact information. All of the
methods that use a recursive update exhibit superlinear convergence provided the matrices
are nonsingular. In general, superlinear convergence is not as fast as quadratic convergence.
One way to measure the rate of convergence is to compare the behavior of a Newton method
and a quasi-Newton method on a quadratic function of n variables. Newton’s method will
terminate in one step, assuming finite-precision arithmetic errors are negligible. In contrast,
a quasi-Newton method will terminate in at most n steps, provided the steplength α is
chosen at each iteration to minimize the value of the objective function at the new point
F(x)= F(x+αp). The process of adjusting α is called a line search and will be discussed
in Section 1.11.

1.8 Equality-Constrained Optimization
The preceding sections describe how Newton’s method can be applied either to optimize
an objective function F(x) or to satisfy a set of constraints c(x)= 0. Suppose now that we
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want to do both, that is, choose the variables x to minimize

F(x) (1.53)

subject to the m ≤ n constraints
c(x)= 0. (1.54)

The classical approach is to define the Lagrangian

L(x,λ)= F(x)−λTc(x)= F(x)−
m∑

i=1

λi ci (x), (1.55)

where λ is an m-vector of Lagrange multipliers.2

In a manner analogous to the unconstrained case, optimality requires that derivatives
with respect to both x and λ be zero. More precisely, necessary conditions for the point
(x∗,λ∗) to be an optimum are

∇x L(x∗,λ∗)= 0, (1.56)

∇λL(x∗,λ∗)= 0. (1.57)

The gradient of L with respect to x is

∇x L = g−GTλ=∇F−
m∑

i=1

λi∇ci (1.58)

and the gradient of L with respect to λ is

∇λL =−c(x). (1.59)

Just as in the unconstrained case, these conditions do not distinguish between a point that
is a minimum, a maximum, or simply a stationary point. As before, we require conditions
on the curvature of the objective. Let us define the Hessian of the Lagrangian to be

HL =∇2
x x L =∇2

x x F−
m∑

i=1

λi∇2
x xci . (1.60)

Then a sufficient condition is that
vTHLv > 0 (1.61)

for any vector v in the constraint tangent space. If one compares (1.35) with (1.61), an
important difference emerges. For the unconstrained case, we require that the curvature be
positive in all directions p. However, (1.61) applies only to directions v in the constraint
tangent space.

2Some authors define L = F+ωTc, where ω=−λ, in which case corresponding changes must be made
when interpreting the arithmetic sign of the multipliers.
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Figure 1.5. Equality-constrained example.

Example 1.2 EQUALITY CONSTRAINED MINIMIZATION. To fully appreciate the
meaning of these conditions, consider the simple example problem with two variables and
one constraint illustrated in Figure 1.5. Let us minimize

F(x)= x2
1 + x2

2

subject to the constraint
c(x)= x1+ x2−2= 0.

The solution is at x∗ = (1,1). Now for this example, the Jacobian is just G=∇cT =
(1,1), which is a vector orthogonal to the constraint. Consequently, if we choose vT =
(−a,a) for some constant a �= 0, the vector v is tangent to the constraint, which can be
readily verified since Gv= (1)(−a)+(1)(a)= 0. At x∗, the gradient is a linear combination
of the constraint gradients; i.e., (1.58) becomes

g−GTλ=
[

2
2

]
−
[

1
1

]
2= 0.

Furthermore, from (1.61), the curvature

vTHLv= [−a,a]

[
2 0
0 2

][−a
a

]
= 4a2

is clearly positive.
Notice that, at the optimal solution, the gradient vector is orthogonal to the constraint

surface, or equivalently that the projection of the gradient vector onto the constraint surface
is zero. A second point is also illustrated in Figure 1.5, demonstrating that the projection of
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the gradient is nonzero at the suboptimal point. Apparently, then, there is a matrix Z that
projects the gradient onto the constraint surface. This implies that an equivalent form of
the necessary condition (1.56) is to require that the projected gradient be zero, i.e.,

ZTg= 0. (1.62)

In a similar fashion, one can define an equivalent form of the sufficient condition (1.61) in
terms of the projected Hessian matrix

ZTHLZ. (1.63)

In other words, we require the projected Hessian matrix (1.63) to be positive definite. No-
tice that the projection matrix Z has n rows and nd = n−m columns. We refer to the
quantity nd as the number of degrees of freedom. Observe also that the projected gradient
(1.62) is a vector of length nd and the projected Hessian (1.63) is nd ×nd . In general, the
choice of Z is not unique, although for the example problem one can choose any scalar
multiple of ZT = (−1,1).

1.8.1 Newton’s Method

Let us now apply Newton’s method to find the values of (x,λ) such that the necessary
conditions (1.56) and (1.57) are satisfied. Proceeding formally to construct a Taylor series
expansion analogous to (1.26), the expansion about (x,λ) for the functions (1.58) and (1.59)
is just

0= g−GTλ+HL (x−x)−GT(λ−λ), (1.64)

0=−c−G(x−x). (1.65)

After simplification, these equations lead to the linear system analogous to that given by
(1.28), which is called the Kuhn–Tucker (KT) or Karush–Kuhn–Tucker (KKT) system:[

HL GT

G 0

][ −p

λ

]
=
[

g

c

]
, (1.66)

where p is the search direction for a step x= x+p and λ is the vector of Lagrange multipli-
ers at the new point. Notice that the system is written in terms of the change in the variables,
i.e., p = x−x, but does not involve the change in the multipliers, i.e., λ−λ. Instead, it is
preferable to explicitly eliminate the term GTλ, which appears in the Taylor series approx-
imation (1.64). Thus, in this instance, Newton’s method is based on a linear approximation
to the constraints and a linear approximation to the gradients. As in the unconstrained op-
timization case, a linear approximation to the gradient is equivalent to making a quadratic
model for the quantity being optimized. It is important to note that the quadratic approx-
imation is made to the Lagrangian (1.55) and not just the objective function F . Because
of the underlying quadratic-linear model, Newton’s method will converge in one step for a
quadratic objective with linear equality constraints.

Although the derivation of the KKT system (1.66) was motivated by a Taylor series
expansion, an alternative motivation is to choose p to minimize the quadratic objective

gTp+ 1

2
pTHp (1.67)
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subject to the linear constraints
Gp=−c. (1.68)

It is straightforward to demonstrate that the optimality conditions for this quadratic-linear
optimization subproblem are given by the KKT system (1.66).

1.9 Inequality-Constrained Optimization
Section 1.8 introduced the equality-constrained optimization problem. In this section, we
consider a problem with inequality constraints. Suppose that we want to choose the vari-
ables x to minimize

F(x) (1.69)

subject to the m inequality constraints

c(x)≥ 0. (1.70)

In contrast to equality-constrained problems, which require m ≤ n, the number of inequality
constraints can exceed the number of variables. A point that satisfies the constraints is
said to be feasible and the collection of all feasible points is called the feasible region.
Conversely, points in the infeasible region violate one or more of the constraints.

Inequality-constrained problems are characterized by a fundamental concept. Specif-
ically, at the solution x∗,

1. some of the constraints will be satisfied as equalities, that is,

ci (x∗)= 0 for i ∈A, (1.71)

where A is called the active set, and

2. some constraints will be strictly satisfied, that is,

ci (x∗) > 0 for i ∈A′, (1.72)

where A′ is called the inactive set.

Thus, the total set of constraints is partitioned into two subsets, namely the active and inac-
tive constraints. Clearly, the active constraints can be treated using the methods described
in Section 1.8. Obviously, an inequality-constrained optimization algorithm needs some
mechanism to identify the active constraints. This mechanism is referred to as an active set
strategy. Fortunately, there is an additional necessary condition for inequality-constrained
problems that is essential to active set strategies. Specifically, at the solution, the algebraic
sign of the Lagrange multipliers must be correct; that is, we must have

λ∗i ≥ 0 for i ∈A. (1.73)

To illustrate the impact of inequality constraints, let us consider two examples that
are modifications of Example 1.2 presented in Section 1.8.
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Figure 1.6. Inequality-constrained examples.

Example 1.3 INEQUALITY MINIMIZATION—INACTIVE CONSTRAINT. The left side
of Figure 1.6 illustrates the following problem: Minimize

F(x)= x2
1 + x2

2

subject to the constraint
c(x)= 2− x1− x2 ≥ 0.

The gradient and Jacobian are given by

g=
[

2x1
2x2

]
, G= [−1 −1

]
.

Now at the point xT = (1,1), the optimality conditions are

0= g−GTλ=
[

2
2

]
−
[−1
−1

]
[−2]

and, since λ=−2 < 0, the constraint should be deleted from the active set. The solution is
xT = (0,0).

Example 1.4 INEQUALITY MINIMIZATION—ACTIVE CONSTRAINT. On the other
hand, if the sense of the inequality is reversed, we must minimize

F(x)= x2
1 + x2

2

subject to the inequality
c(x)= x1+ x2−2≥ 0.

This problem is illustrated on the right side of Figure 1.6. At the point xT = (1,1), the
Lagrange multiplier λ= 2> 0. Consequently, the constraint is active and cannot be deleted.
The solution is xT = (1,1).
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1.10 Quadratic Programming
An important special form of optimization problem is referred to as the quadratic program-
ming (QP) problem. A QP problem is characterized by

• a quadratic objective

F(x)= gTx+ 1

2
xTHx (1.74)

• and linear constraints

Ax= a, (1.75)

Bx ≥ b, (1.76)

where H is the positive definite Hessian matrix.
Let us now outline an active set method for solving this QP problem using the con-

cepts introduced in Sections 1.8 and 1.9. Assume that an estimate of the active set A0 is
given in addition to a feasible point x0. A QP algorithm proceeds as follows:

1. Compute the minimum of the quadratic objective subject to the constraints in the
active set estimate A treated as equalities, i.e., solve the KKT system (1.66).

2. Take the largest possible step in the direction p that does not violate any inactive
inequalities, that is,

x= x+αp, (1.77)

where the steplength 0 ≤ α ≤ 1 is chosen to maintain feasibility with respect to the
inactive inequality constraints.

3. If the step is restricted, i.e., α < 1, then

• add the limiting inequality to the active set A and return to step 1;

• otherwise, take the full step (α = 1) and check the sign of the Lagrange multi-
pliers:

– if all of the inequalities have positive multipliers, terminate the algorithm;
– otherwise, delete the inequality with the most negative λ from the active

set and return to step 1.

Notice that step 1 requires the solution of the KKT system (1.66) corresponding to
the set of active constraints defined by A. In particular, (1.66) becomes

H AT B̃
T

A 0 0

B̃ 0 0



−p

η

λ

=


g

a

b̃

 , (1.78)

where the vector b̃ denotes the subset of the vector b corresponding to the active inequal-
ity constraints and B̃ is the corresponding Jacobian matrix for the constraints in A. The
Lagrange multipliers corresponding to the equality constraints are denoted by η. For the
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purposes of this discussion, it suffices to say that any reasonable method for solving (1.78)
can be used. However, in practice it is extremely important that this solution be computed
in an efficient and numerically stable way. This is especially true because every time the
active set changes in step 3, it is necessary to solve a different KKT system to compute
the new step. This is because each time the active set changes, the matrix B̃ is altered
by adding or deleting a row. Most efficient QP implementations compute the new step by
modifying the previously computed solution and the associated matrix factorizations. In
general, the computational expense of the QP problem is dominated by the linear algebra
and one should not use a “brute force” solution to the KKT system! While space precludes
a more detailed discussion of this subject, the interested reader should consult the book by
Gill, Murray, and Wright [100]. An approach that is particularly efficient for large, sparse
applications will be described in Section 2.3.

It should also be apparent that the number of QP iterations is determined by the initial
active set A0. If the initial active set is correct, i.e., A0 = A∗, then the QP algorithm will
compute the solution in one iteration. Conversely, many QP iterations may be required
if the initial active set differs substantially from the final one. Additional complications
can arise when the Hessian matrix H is indefinite because the possibility of an unbounded
solution exists. Furthermore, when a multiplier λk ≈ 0, considerable care must be exercised
when deleting a constraint in step 3.

As stated, the QP algorithm requires a feasible initial point x0, which may require a
special “phase-1” procedure in the software. It is also worth noting that when H = 0, the
objective is linear and the optimization problem is referred to as a linear programming or
LP problem. In this case, the active set algorithm described is equivalent to the simplex
method proposed by Dantzig [67] in 1947. However, it is important to note that a unique
solution to a linear program will have n active constraints, whereas there may be many
degrees of freedom at the solution of a quadratic program.

Example 1.5 QUADRATIC PROGRAM. To illustrate how a QP algorithm works, let
us consider minimizing

F(x)= x2
1 + x2

2

subject to the constraints

c1(x)= x1+ x2−2≥ 0,

c2(x)= 4− x1− 2

3
x2 ≥ 0.

This problem is illustrated in Figure 1.7. Table 1.2 summarizes the QP steps assum-
ing the iteration begins at xT = (4,0) with A0 = {c2}. The first step requires solving the
KKT system (1.78) evaluated at the point xT = (4,0), that is,

2 0 −1

0 2 − 2
3

−1 − 2
3 0



−p1

−p2

λ̄2

=


8

0

0

 .

After this step, the new point is at x̄1 = x1+ p1 = 2.76923, and x̄2 = x2+ p2 = 1.84615.
Since the Lagrange multiplier is negative at the new point, constraint c2 can be deleted
from the active set.
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Figure 1.7. QP example.

Table 1.2. QP iterations.

Iteration x1 x2 Active Set A
0 4 0 A0 = {c2}
1 2.76923 1.84615 Delete c2 (λ2 =−5.53846).
2 1.2 0.8 Add c1 (α = 0.566667).
3 1 1 A∗ = {c1}

The second QP step begins at xT = (2.76923,1.84615) with no constraints active, i.e.,
A1 = {∅}. The new step is computed from the KKT system[

2 0

0 2

][ −p1

−p2

]
=
[

5.53846

3.69230

]
.

However, in this case, it is not possible to take a full step because the first constraint would
be violated. Instead, one finds x= x+αp with α = 0.566667, to give

x=
[

1.2

0.8

]
=
[

2.76923

1.84615

]
−0.566667

[
2.76923

1.84615

]
.

In general, the length of the step is given by the simple linear prediction

α =min

[−ci (x)

pT∇ci

]
> 0 for i ∈A′. (1.79)

Essentially, one must compute the largest step that will not violate any of the (currently)
inactive inequality constraints.
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Since the second QP iteration terminates by encountering the first constraint c1, it
must be added to the active set so that A2 = {c1}. Once again the new step is computed
from the KKT system, which in this case is just

2 0 1

0 2 1

1 1 0



−p1

−p2

λ̄1

=


2.4

1.6

0

 .

After computing the new point, the solution is given by x∗ = (1,1), and the final active set
is A∗ = {c1}, with optimal Lagrange multipliers λ∗ = (2,0).

1.11 Globalization Strategies

1.11.1 Merit Functions

To this point, the development has stressed the application of Newton’s method. How-
ever, even for the simplest one-dimensional applications described in Section 1.2, Newton’s
method has deficiencies. Methods for correcting the difficulties with Newton’s method are
referred to as globalization strategies. There are two primary roles performed by a global-
ization strategy, namely,

1. detecting a problem with the (unmodified) Newton’s method and

2. correcting the deficiency.

It should be emphasized that the goal of all globalization strategies is to do nothing! Clearly,
near a solution it is desirable to retain the quadratic convergence of a Newton step and,
consequently, it is imperative that modifications introduced by the globalization process
not impede the ultimate behavior.

Referring to (1.28) and (1.29), all Newton iterations are based on linearizations of
the form

Gp=−c (1.80)

for the search direction p, which leads to an iteration of the form

x= x+p. (1.81)

If Newton’s method is working properly, the sequence of iterates {x(k)} should converge
to the solution x∗. In practice, of course, the solution x∗ is unknown, and we must detect
whether the sequence is converging properly using information that is available. The most
common way to measure progress is to assign some merit function, M , to each iterate x(k)

and then insist that
M(x(k+1)) < M(x(k)). (1.82)

This is one approach for detecting when the Newton sequence is working. When Newton’s
method is used for unconstrained optimization, an obvious merit function is just M(x) =
F(x). When Newton’s method is used to find the root of many functions, as in (1.80),
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assigning a single value to quantify “progress” is no longer quite so obvious. The most
commonly used merit function for nonlinear equations is

M(x)= 1

2
cT(x)c(x). (1.83)

If the only purpose for constructing a merit function is to quantify progress in the iterative
sequence, then any other norm is also suitable; e.g., we could use

M(x)= ‖c‖1 =
m∑

i=1

|ci |,

M(x)= ‖c‖2 =
(

m∑
i=1

c2
i

) 1
2

,

or

M(x)= ‖c‖∞ = m
max
i=1

|ci |.

Choosing a merit function for constrained optimization is still more problematic, for
it is necessary to somehow balance the (often) conflicting goals of reducing the objective
function while satisfying the constraints. To this point, we have motivated the discussion
of a merit function as an artifice to “fix” Newton’s method when it is not converging. An
alternative approach is to construct some other function P , whose unconstrained minimum
either is the desired constrained solution x∗ or is related to it in a known way. Thus, we
might consider solving a sequence of unconstrained problems whose solutions approach
the desired constrained optimum. This point of view, which is fundamental to so-called
penalty function methods, will be discussed in Section 1.14. One possible candidate is the
quadratic penalty function

P(x,ρ)= F(x)+ ρ

2
cT(x)c(x), (1.84)

where ρ is called the penalty weight or penalty parameter. When this penalty function
is minimized for successively larger values of the penalty weight ρ, it can be shown that
the unconstrained minimizers approach the constrained solution. Unfortunately, from a
computational viewpoint, this is unattractive since, as the parameter ρ→∞, the successive
unconstrained optimization problems become harder and harder to solve. An alternative,
which avoids this ill-conditioning, is the so-called augmented Lagrangian function formed
by combining the Lagrangian (1.55) with a constraint penalty of the form (1.83) to yield

P(x,λ,ρ)= L(x,λ)+ ρ

2
cT(x)c(x)= F(x)−λTc(x)+ ρ

2
cT(x)c(x). (1.85)

It can be shown that the unconstrained minimum of this function is equal to the constrained
minimum x∗ for a finite value of the parameter ρ. Unfortunately, in practice, choosing
a “good” value for the penalty weight is nontrivial. If ρ is too large, the unconstrained
optimization problem is ill-conditioned and, consequently, very difficult to solve. If ρ is
too small, the unconstrained minimum of the augmented Lagrangian may be unbounded
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and/or the problem may be ill-conditioned. On the other hand, some of these drawbacks
are not as critical when the augmented Lagrangian is used only to measure progress as part
of a globalization strategy. Thus, we are led to the notion of computing the Newton step p
in the usual way and then measuring progress by insisting that

M(x(k+1),λ(k+1),ρ) < M(x(k),λ(k),ρ), (1.86)

where the merit function M(x,λ,ρ)= P(x,λ,ρ). In summary, a merit function can be used
to quantitatively decide whether or not Newton’s method is working.

1.11.2 Line-Search Methods

Assuming for the moment that a merit function is used as an indicator of progress, how
does one alter Newton’s method when necessary? One approach is to alter the magnitude
of the step using a line-search method. A second approach is to change both the magnitude
and the direction using a trust-region method. The basic notion of a line-search method is
to replace the Newton step (1.81) with

x= x+αp. (1.87)

Using this expression, it then follows that the merit function can be written as a function of
the single variable α:

M(x)= M(x+αp)= M(α). (1.88)

Furthermore, it is reasonable to choose the steplength α such that M(α) is approximately
minimized. Most modern line-search implementations begin with the full Newton step,
i.e., α(0) = 1. Then estimates are computed until a steplength α(k) is found that satisfies a
sufficient decrease condition given by the Goldstein–Armijo condition

0 <−κ1α
(k) M ′(0)≤ M(0)−M(α(k))≤−κ2α

(k) M ′(0). (1.89)

M ′(0)= (∇M(0))Tp is the direction derivative at α = 0, with the constants κ1 and κ2 satis-
fying 0 < κ1 ≤ κ2 < 1. Typical values for the constants are κ1 = 10−4 and κ2 = 0.9, and do
not require an “accurate” minimization of M . Nevertheless, most line-search implemen-
tations are quite sophisticated and use quadratic and/or cubic polynomial interpolation in
conjunction with some type of safeguarding procedure. Furthermore, special-purpose line-
search procedures are often employed for different merit functions; e.g., see Murray and
Wright [136]. In fact, we have already described two applications that may be viewed as
special-purpose line-search algorithms. First, if a quasi-Newton update is used to construct
the Hessian, an “exact” line search will produce termination after n steps on a quadratic
function. Second, when solving a quadratic program, the steplength given by (1.79) is ac-
tually the minimum of the quadratic function restricted such that inactive inequalities are
not violated.

Example 1.6 NEWTON METHOD WITH LINE SEARCH. To illustrate how Newton’s
method works when a line-search strategy is incorporated, let us consider the simple non-
linear system

c(x)=
[

1− x1

10(x2− x2
1)

]
= 0.
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Table 1.3. Newton’s method with line search.

Iter. x1 x2 α M(x)
0 −1.2000 1.0000 −− 12.100

1 −1.0743 0.72336 0.57157×10−1 11.425

2 −0.94553 0.47352 0.62059×10−1 10.734

3 −0.81340 0.25221 0.67917×10−1 10.025

4 −0.67732 0.61558×10−1 0.75040×10−1 9.2952

5 −0.53662 −0.95719×10−1 0.83883×10−1 8.5411

6 −0.39041 −0.21613 0.95147×10−1 7.7580
7 −0.23751 −0.29499 0.10997 6.9398

8 −0.76248×10−1 −0.32580 0.13031 6.0775

9 0.66751×10−1 −0.30355 0.13287 5.1787
10 0.22101 −0.23204 0.16529 4.2483

11 0.36706 −0.11482 0.18748 3.3142

12 0.55206 0.93929×10−1 0.29229 2.3230

13 1.0000 0.79935 1.0000 2.0131

14 1.0000 1.0000 1.0000 0.12658×10−18

Table 1.4. Newton’s method without line search.

Iter. x1 x2 α M(x)

0 −1.2000 1.0000 −− 12.100
1 1.0000 −3.8400 1.0000 1171.3

2 1.0000 1.0000 1.0000 0.85927×10−14

If the merit function M(x) (1.83) is used to monitor progress and the steplength α is ad-
justed using a line search with polynomial interpolation, one obtains the iteration history
summarized in Table 1.3. Notice that every iteration produces a reduction in the merit
function as it must. However, in order to achieve this monotonic behavior, it is necessary
to modify the steplength on nearly all iterations. Quadratic convergence is observed only
during the final few iterations.

It is interesting to compare the behavior of Newton’s method, which has a line-search
globalization procedure, to that of an unmodified Newton algorithm. Table 1.4 summarizes
the iterations when Newton’s method is applied without a line search. Notice that all steps
have α = 1. Furthermore, observe that the first step produced a large increase in the con-
straint error as measured by the merit function M . Nevertheless, in this case, the unmodified
Newton method was significantly more efficient than the approach with a line search. For
this example, the line search is not only unnecessary but also inefficient. This suggests two
questions. First, do we need a globalization strategy? Clearly, the answer is yes. Second,
is a line search with merit function the most efficient strategy? Perhaps not. The numerical
results suggest that there is considerable room for improvement provided a mechanism can
be devised that is sufficiently robust.
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1.11.3 Trust-Region Methods

A line-search globalization strategy computes the search direction p and then adjusts the
steplength parameter α in order to define the iteration (1.87). A second alternative is to
adjust both the magnitude and direction of the vector p. Treating the current point x as
fixed, suppose that we want to choose the variables p to minimize

F(x+p)≈ F(x)+gTp+ 1

2
pTHp (1.90)

subject to the constraint
1

2
pTp≤ δ2. (1.91)

We assume that we can trust the prediction F(x+p) as long as the points lie within the
region defined by the trust radius δ. Proceeding formally to define the Lagrangian for this
problem, one obtains

LT (p,τ )= F(x)+gTp+ 1

2
pTHp− τ

[
δ2− 1

2
pTp

]
, (1.92)

where τ is the Lagrange multiplier associated with the trust-region inequality constraint.
Now the corresponding necessary condition is just

∇p LT (p,τ )= g+Hp+ τp= g+ [H+ τ I]p= 0. (1.93)

There are two possible solutions to this problem. If the trust-radius constraint is inactive,
then τ = 0 and the search direction p is just the unmodified Newton direction. On the other
hand, if the trust-radius constraint is active, ‖p‖ = δ and the multiplier τ > 0. In fact, the
trust radius δ and the multiplier τ are implicitly (and inversely) related to each other—when
δ is large, τ is small, and vice versa. Traditional trust-region methods maintain a current
estimate of the trust radius δ and adjust the parameter τ such that the constraint ‖p‖ = δ

is approximately satisfied. An alternative is to view the parameter τ as a way to construct
a modified Hessian matrix H+ τ I. This interpretation was suggested by Levenberg [131]
for nonlinear least squares (NLS) problems, and we shall often refer to τ as the Levenberg
parameter. Notice that as τ becomes large, the search direction approaches the gradient
direction. Table 1.5 summarizes the limiting behavior of these quantities.

Table 1.5. Trust-region behavior.

τ →∞ τ → 0

δ→ 0 δ→∞
p∝−g p→−H−1g

‖p‖→ 0 ‖p‖→ ‖H−1g‖

Although the trust-region approach has been introduced as a globalization technique
for an unconstrained optimization problem, the basic idea is far more general. The trust-
region concepts can be extended to constrained optimization problems as well as, obvi-
ously, to least squares and root-solving applications. Other definitions of the trust region
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itself using alternative norms have been suggested. Furthermore, constrained applications
have been formulated with more than one trust region to reflect the conflicting aims of
constraint satisfaction and objective function reduction. Finally, it should be emphasized
that trust-region concepts are often used in conjunction with other globalization ideas. For
example, a common way to modify the trust radius from one iteration to the next is to
compare the values of the predicted and actual reduction in a suitable merit function.

1.11.4 Filters

When solving a constrained optimization problem, it is necessary to introduce some quan-
titative method for deciding that a Newton iterate is working. One approach for achieving
this is to introduce a merit function that combines the conflicting goals of constraint satis-
faction and objective function reduction. However, merit functions must explicitly assign
some relative weight to each conflicting goal, and choosing the correct penalty weight is
often difficult. This dilemma was illustrated by the results summarized in Tables 1.3 and
1.4. Recently, Fletcher and Leyffer [84] have introduced an approach that will accept a
Newton step if either the objective function or the constraint violation is decreased. The
filter approach recognizes that there are two conflicting aims in nonlinear programming.
The first is to minimize the objective function, that is, choose x to minimize

F(x). (1.94)

The second is to choose x to minimize the constraint violation

v[c(x)], (1.95)

where the violation can be measured using any suitable norm. Fletcher and Leyffer define
v [c(x)]≡ ‖̃c‖1, where c̃k = min(0,ck), for inequalities of the form ck ≥ 0. The basic idea
is to compare information from the current iteration to information from previous iterates
and then “filter” out the bad iterates.

To formalize this, denote the values of the objective and constraint violation at the
point x(k) by

{F (k),v(k)} ≡ {F(x(k)),v[c(x(k))]}. (1.96)

When comparing the information at two different points x(k) and x( j ), a pair {F (k),v(k)} is
said to dominate another pair {F ( j ),v( j )} if and only if both F (k) ≤ F ( j ) and v(k) ≤ v( j ).
Using this definition, we can then define a filter as a list of pairs

F =


F (1),v(1)

F (2),v(2)

...
F (K ),v(K )

 (1.97)

such that no pair dominates any other. A new point {F (�),v(�)} is said to be acceptable for
inclusion in the filter if it is not dominated by any point in the filter.

Example 1.7 FILTER GLOBALIZATION. To illustrate how this procedure works, let
us revisit Example 1.6, posed as the following optimization problem: Minimize

F(x)= (1− x1)2
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subject to
c(x)= 10(x2− x2

1)= 0.

Table 1.6 summarizes the behavior of a filter algorithm using the same sequence of iterates
as in Table 1.4. The problem is illustrated in Figure 1.8. The iteration begins at xT =
(−1.2,1), and the first filter entry is (F (1),v(1)) = (4.84,4.4). The dark shaded region in
Figure 1.8 defines points that would be rejected by the filter because both the objective
function and constraint violation would be worse than the first filter entry values. The
second iteration at the point xT = (1,−3.84) is accepted by the filter because the objective
function is better even though the constraint violation is worse. This point is added to
the filter, thereby defining a new “unacceptable” region, which is the union of the regions
defined by each point in the filter (i.e., the dark and light shaded regions). The final iterate
does not violate the regions defined by either of the filter entries and is accepted as the
solution.

Observe that the filter provides only a mechanism for accepting or rejecting an iter-
ate. It does not suggest how to correct the step if a point is rejected by the filter. Fletcher

Table 1.6. Filter iteration summary.

Iter. x1 x2 F(x) v [c(x)]

0 −1.2000 1.0000 4.84 4.4

1 1.0000 −3.8400 0 48.4

2 1.0000 1.0000 0 0

Figure 1.8. NLP filter.
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and Leyffer use the filter in conjunction with a trust-region approach. On the other hand,
a line-search technique that simply reduces the steplength is also an acceptable method for
correcting the iterate. Practical implementation of the filter mechanism also must preclude
a sequence of points that becomes unbounded in either F(x) or v [c(x)]. A generous over-
estimate of the upper bound on F(x) can be included as an additional “northwest corner”
entry in the filter. Similarly, an absolute upper limit on the constraint violation can be in-
cluded as a “southeast corner” entry in the filter. Computation of these extreme values is
readily accommodated by including the value of the largest Lagrange multiplier for each
iterate in the list of saved information. The amount of information saved in the filter list is
usually rather small because, when a new entry {F (�),v(�)} is added, all points dominated
by the new entry are deleted from the filter.

1.12 Nonlinear Programming
The general nonlinear programming (NLP) problem can be stated as follows: Find the
n-vector xT = (x1, . . . , xn) to minimize the scalar objective function

F(x) (1.98)

subject to the m constraints
cL ≤ c(x)≤ cU (1.99)

and the simple bounds
xL ≤ x≤ xU . (1.100)

Equality constraints can be imposed by setting cL = cU .
The KKT necessary conditions for x∗ to be an optimal point require that

• x∗ be feasible, i.e., (1.99) and (1.100) are satisfied;

• the Lagrange multipliers λ corresponding to (1.99) and ν corresponding to (1.100)
satisfy

g=GTλ+ ν; (1.101)

• the Lagrange multipliers for the inequalities be nonpositive for active upper bounds,
zero for strictly satisfied constraints,
nonnegative for active lower bounds;

• the Jacobian G̃ corresponding to the active constraints have full row rank (the con-
straint qualification test).

The constraint qualification test implies that the gradients of the active constraints are
linearly independent, and as such is often referred to as linear independence constraint
qualification and abbreviated as LIQC. A weaker condition than LIQC is referred to as
Mangasarian–Fromovitz constraint qualification or MFQC. In the simplest setting with
only inequalities c(x)≥ 0, it ensures the existence of a direction along which, to first order,
all active constraints strictly increase, i.e. there exists a vector p such that G̃p > 0.
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1.13 An SQP Algorithm
Let us now outline the basic steps of a sequential quadratic programming or SQP method
for solving the general NLP problem. SQP methods are among the most widely used
algorithms for solving general NLPs, and there are many variations of the basic approach.
The method described is implemented in the SOCS [38] software and is similar to the
algorithm employed by the NPSOL [96] software. For additional information on SQP
methods, see, for example, Fletcher [82] and Gill, Murray, and Wright [99].

The basic approach described in Section 1.8 was to introduce a quadratic approxi-
mation to the Lagrangian and a linear approximation to the constraints. This development
led to (1.67) and (1.68). An identical approach is followed here. Assume that the iteration
begins at the point (x,λ,ν). The fundamental idea is to solve the following QP subproblem:

Compute p to minimize a quadratic approximation to the Lagrangian

gTp+ 1

2
pTHp (1.102)

subject to the linear approximation to the constraints

bL ≤
[

Gp
p

]
≤ bU (1.103)

with bound vectors defined by

bL =
[

cL − c
xL −x

]
, bU =

[
cU − c
xU −x

]
. (1.104)

The solution of this QP subproblem defines more than just the search direction p.
In particular, the quadratic program determines an estimate of the active set of constraints
and an estimate of the corresponding Lagrange multipliers λ̂ and ν̂. Thus, it is possible to
define search directions for the multipliers

�λ≡ λ̂−λ, (1.105)

�ν ≡ ν̂− ν. (1.106)

Finally, the QP solution can be used to construct information needed to compute a merit
function. A linear prediction for the value of the constraints is given by

s≡Gp+ c. (1.107)

Assuming we begin the iteration with an estimate for the slack variables s, then it follows
that

�s≡ s− s=Gp+ (c− s). (1.108)

The term (c− s) has intentionally been isolated in this expression because it measures the
“deviation from linearity” in the constraints c. Notice that if the constraints c(x) are linear
functions of the variables x, then the term (c− s)= 0. Now the augmented search direction
formed by collecting these expressions is given by

x
λ

ν

s

=
 x
λ

ν

s

+α

 p
�λ

�ν

�s

 . (1.109)
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As before, the scalar α defines the steplength. Observe that when a full Newton step is
taken (α = 1), the new NLP Lagrange multipliers are just the QP multipliers, i.e., λ = λ̂
and ν = ν̂.

Like all Newton methods, it is necessary to incorporate some type of globalization
strategy. To this end, Gill et al. [95] suggest a modified form of the augmented Lagrangian
merit function (1.85) given by

M(x,λ,s)= F−λT(c− s)+ 1

2
(c− s)T�(c− s), (1.110)

where� is a diagonal matrix of penalty weights. They also prove convergence for an SQP
algorithm using this merit function, provided the SQP subproblem has a solution. This
requires bounds on the derivatives and condition number of the Hessian matrix. Thus,
the steplength α must be chosen to satisfy a sufficient decrease condition of the form
(1.89). Most robust implementations incorporate a safeguarded line-search algorithm using
quadratic and/or cubic polynomial interpolation. In addition, it is necessary that the penalty
weights � be chosen such that

M ′(0)≤−1

2
pTHp. (1.111)

As a practical matter, this single condition does not uniquely define all of the penalty
weights in the matrix �, and so a minimum norm estimate is used. Estimates for the
slack variables s are also needed to construct the slack direction (1.108), and these quan-
tities can be computed by minimizing M as a function of s before taking the step. We
postpone details of these calculations to the next chapter.

Example 1.8 SQP METHOD. To illustrate the behavior of an SQP method, let us
minimize

F(x)= x2
1 + x2

2+ log(x1x2) (1.112)

subject to the constraint
c1(x)= x1x2 ≥ 1 (1.113)

with bounds

0≤ x1 ≤ 10, (1.114)

0≤ x2 ≤ 10. (1.115)

Assume that x(0) = (0.5,2)T is an initial guess for the solution.

Figure 1.9 illustrates the iteration history when the SQP algorithm implemented in
SOCS is applied to this problem. Notice that it is not possible to evaluate the objective
function at the first predicted point (1,0). This is considered a “function error” by the
SOCS software, and the response in the line search is to reduce the steplength. In this case,
α = 9.04543273×10−2 produces the point (0.545227,1.81909). Subsequent steps proceed
to the solution at (1,1).

1.14 Interior-Point Methods
Section 1.11 described using a penalty function as part of globalization strategy for New-
ton’s method. The fundamental idea is to construct a function whose unconstrained min-
imum either is the desired constrained solution x∗ or is related to it in a known way. Let
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Figure 1.9. NLP example.

us focus on a particular penalty function method referred to interchangeably as a barrier
method or interior-point method.

In order to illustrate the primary features let us first consider a simple example pro-
posed by Powell [146]. For this example in two variables (x1, x2), the objective is to mini-
mize x2 subject to the constraints

x1 cos

(
2kπ

m

)
+ x2 sin

(
2kπ

m

)
≥−1 (1.116)

for k = 1,2, . . . ,m. A solution is at (0,−1) and the suggested initial guess is x(0) = (.8, .5).
This is a linear programming problem since both the objective function and the constraints
are linear functions of the variables.

To understand how an optimization algorithm would behave on a problem like this
it is instructive to consider a physical analogy. One can view the constraints as “fences,”
and the objective function as a plane surface in two dimensions. The path followed by a
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Figure 1.10. Ball rolling downhill inside fences.

ball rolling downhill inside the fenced region is illustrated in Figure 1.10. It is clear that
the ball will roll downhill until it encounters a fence, and then it will follow one fence until
it encounters another. Ultimately the ball will stop at the lowest point within the fenced
region and will lie on one of the boundaries. Viewed mathematically, at the solution some
of the constraints will be strictly feasible, i.e.,

x1 cos

(
2kπ

m

)
+ x2 sin

(
2kπ

m

)
>−1,

and the remainder will be satisfied as equalities, i.e.,

x1 cos

(
2kπ

m

)
+ x2 sin

(
2kπ

m

)
=−1.

Constraints that are strictly feasible are said to be inactive (cf. (1.72)) and the others are
said to be active (cf. (1.72)). An obvious computational hurdle is to correctly identify
which constraints are active and which are inactive. In this physical example at each fence
“corner” the active set changes. Clearly the number of constraints m will alter the difficulty
of this linear programming problem.
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The active set method discussed in Section 1.10 solves a sequence of equality con-
strained problems. In contrast, penalty function methods replace the constrained optimiza-
tion problem by a sequence of unconstrained problems, and as such were referred to as se-
quential unconstrained minimization techniques (SUMT) by Fiacco and McCormick [79].
Thus, we can minimize the function

β(x,µ)= x2−µ

m∑
k=1

lnbk(x), (1.117)

where

bk (x)= x1 cos

(
2kπ

m

)
+ x2 sin

(
2kπ

m

)
+1. (1.118)

Notice that the term lnbk(x) becomes large if the constraints bk(x) are near zero, and conse-
quently serves as a “barrier” to the minimization. Thus, when minimizing β(x,µ) iterates
will be driven away from the constraint boundary at bk(x)= 0. The influence of the barrier
term is controlled by the parameterµ called the barrier parameter, and the function β(x,µ)
is called the log-barrier or simply barrier function.

How should the barrier parameter be chosen? Since we would like to approximate
the original constrained solution we would like to have the barrier parameter µ be “small.”
Figure 1.11 illustrates the active set method when compared to the barrier method when the
value of µ= 10−3. There are two important observations here. First, the path for the barrier
method and the active set method are nearly the same. Thus, by starting with a small value
for µ we will replicate the undesirable properties of an active set method. Second, while
the “downhill” direction is well defined for the barrier objective, there is little information
horizontally. In fact, since the contours are nearly parallel to the x1-axis almost any value
for x1 will yield the same objective. In other words, the unconstrained barrier objective is
nearly singular!

Figure 1.11. Active set versus barrier method with small µ.

On the other hand suppose we choose a “large” value for µ and then minimize the
barrier function. The solution to this problem serves as a good initial guess for a second
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Figure 1.12. Barrier method steps.

minimization with a smaller value of µ. Figure 1.12 illustrates the contours of the log-
barrier function for this example when m = 20. The contours are plotted for four different
values of the barrier parameter, namely µ = 1, .1, .01, .001. The figure also illustrates the
steps taken as we progress from one barrier minimizer to another. Notice when the barrier
parameter is large (µ= 1) the contours of the log-barrier function are almost circular about
the minimum point, whereas they become progressively more severe as µ is reduced. What
is more important is that the sequence of iterates tends to approach the solution along a path
that is “orthogonal” to the constraints instead of “tangential” to them. This observation
illustrates the barrier parameter reduction strategy. We first minimize the barrier function
with a “large” value of µ. The solution to this problem then serves as an initial guess for
another barrier minimization with a smaller value of µ. In fact, by solving a sequence of
unconstrained problems, it can be shown that the unconstrained solution points approach
the constrained solution as µ goes to zero. Furthermore, notice that the unconstrained
minimizers in Figure 1.12 all lie inside the feasible region; hence the method is called
an interior-point algorithm. For obvious reasons the trajectory followed by the iterates is
referred to as the central path and is illustrated in Figure 1.13.

It should be noted that the logarithmic barrier function (1.117) is not the only choice
for a penalty function. For example, Fiacco and McCormick [79] also suggest another
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Figure 1.13. Interior-point algorithm.

interior-point penalty function

P(x,µ)= F(x)+µ2
m∑

k=1

1

ck(x)
(1.119)

for treating inequality constraints ck(x) ≥ 0. Furthermore, the quadratic penalty function
introduced in (1.84) can be extended to inequality constraints

P(x,µ)= F(x)+ 1

2µ

m∑
k=1

{min[0,ck(x)]}2 . (1.120)

When (1.120) is minimized for a sequence of penalty weights µ→ 0, the unconstrained
minimizers approach the solution from outside the feasible region, and thus it is referred
to as an exterior point penalty function. Unfortunately, the Hessian matrix is both discon-
tinuous and ill-conditioned as µ→ 0, and consequently the computational effectiveness is
significantly degraded.

Early implementations of interior-point methods applied standard unconstrained min-
imization techniques to the barrier objective (1.117). Unfortunately, there are a number of
subtle issues that can significantly degrade the computational performance of a naive barrier
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implementation. In particular, some care must be exercised when computing the iterates
to avoid ill-conditioning for small values of µ, and an approach that accurately solves the
underlying linear equations will be presented in Section 2.11. For efficiency we do not
accurately minimize the barrier function before reducing µ and robustness is enhanced by
a number of globalization techniques.

1.15 Mathematical Program with Complementarity
Conditions

Many practical problems require modeling disjunctive behavior. Suppose, we have a model
that is represented by three sets of variables x, y, and z. Furthermore suppose some of the
variables (x and y) have a complementarity relationship such that either one or both must
be at its bound. Formally, we can state this complementarity relationship by requiring that

xk = 0 OR yk = 0,

x≥ 0, y≥ 0

for all k variables in the set. This complementarity relationship is usually denoted

0≤ x⊥ y≥ 0. (1.121)

There are several equivalent ways to impose the complementarity relationship:

xTy= 0, x≥ 0, y≥ 0, (1.122a)

xk yk = 0 ∀k, x≥ 0, y≥ 0, (1.122b)

xk yk ≤ 0 ∀k, x≥ 0, y≥ 0. (1.122c)

A mathematical program with complementarity conditions (MPCC) requires finding
the variables (x,y,z) to minimize

F(x,y,z) (1.123a)

subject to the constraints

b(x,y,z)= 0, (1.123b)

c(x,y,z)≥ 0, (1.123c)

0≤ x⊥ y≥ 0. (1.123d)

Now, an important property of the MPCC (1.123a)–(1.123d) is that it can be viewed
as a bilevel optimization problem, that is, an optimization problem within an optimization
problem. Specifically the solution to the MPCC (1.123a)–(1.123d) is equivalent to finding
the variables (x,y,z) to minimize

F(x,y,z) (1.124a)

subject to the constraints

b(x,y,z)= 0, (1.124b)

c(x,y,z)≥ 0, (1.124c)

x≥ 0, (1.124d)

y= arg

{
min

ŷ
xTŷ : ŷ≥ 0

}
. (1.124e)
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Observe that (1.124e) requires solving the inner level optimization problem for the vari-
ables ŷ that minimize

xTŷ (1.125a)

subject to the constraints
ŷ≥ 0 (1.125b)

treating x as fixed. In other words the variables ŷ are constrained to satisfy the optimal-
ity conditions for the inner level optimization problem. When viewed in this manner the
KKT optimality conditions for the inner level problem are referred to as equilibrium con-
ditions, and the overall problem is referred to as a mathematical program with equilibrium
constraints (MPEC). Observe that the inner level problem (1.125a)–(1.125b) in this de-
velopment is just a linear programming problem in the variables ŷ. More general forms
for the inner level problem are possible leading to different equilibrium conditions. Con-
sequently these problems are often referred to as mathematical programs with variational
inequalities.

1.15.1 The Signum or Sign Operator

Suppose the problem functions involve the signum or sign function given by

sgn[ f (x)]=


1 if f (x) > 0,
−1 if f (x) < 0,

0 if f (x)= 0.

(1.126)

This disjunctive behavior can be modeled by introducing an additional variable y, where

y = sgn[ f (x)]. (1.127)

It then follows that for a fixed value of x one can compute y to minimize the objective

− f (x)y (1.128a)

subject to the constraints
−1≤ y ≤ 1. (1.128b)

Since (1.128a)–(1.128b) is just an NLP in the single variable y, the Lagrangian (1.55) is

L(y)=− f (x)y− p(y+1)−q(1− y), (1.129a)

where p and q are the Lagrange multipliers. It then follows that the necessary conditions
for optimality are just

− f (x)− p+q = 0, (1.129b)

p(y+1)= 0, (1.129c)

q(1− y)= 0, (1.129d)

p ≥ 0, (1.129e)

q ≥ 0. (1.129f)
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The first optimality condition (1.129b) defines a stationary point of the Lagrangian ∇y L =
0, and the complementarity conditions are given by (1.129c) and (1.129d). Observe that
the complementarity conditions (1.129c) and (1.129d), which correspond to (1.122b), can
also be written as

0≤ p ⊥ (y+1)≥ 0, (1.130)

0≤ q ⊥ (1− y)≥ 0. (1.131)

1.15.2 The Absolute Value Operator

Suppose the problem functions involve the absolute value operation | f (x)|. To model this
discontinuous behavior one can introduce two variables where the variable

z = | f (x)| = f (x)y (1.132)

and the second variable y = sgn[ f (x)] is chosen as before to minimize the objective

− f (x)y (1.133a)

subject to the constraints
−1≤ y ≤ 1. (1.133b)

After using (1.129b)–(1.129f) and eliminating the variable y one obtains

z = p+q , (1.133c)

f (x)= p−q , (1.133d)

0≤ p ⊥ q ≥ 0. (1.133e)

1.15.3 The Maximum Value Operator

When the problem functions involve the maximum value operation max[ f (x),a] for some
constant a, the discontinuous behavior can be modeled by defining the variable

z =max[ f (x),a]= f (x)+ [a− f (x)]y, (1.134)

where the second variable y is chosen to minimize the objective

[ f (x)−a]y (1.135a)

subject to the constraints
0≤ y ≤ 1. (1.135b)

As before (1.135a)–(1.135b) is an NLP in the single variable y, with the Lagrangian given
by

L(y)= [ f (x)−a]y− py−q(1− y), (1.136a)

where p and q are the Lagrange multipliers. It then follows that the necessary conditions
for optimality are just

[ f (x)−a]− p+q = 0, (1.136b)

py = 0, (1.136c)

q(1− y)= 0, (1.136d)

p ≥ 0, (1.136e)

q ≥ 0. (1.136f)
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Here the complementarity conditions can be written as

0≤ p ⊥ y ≥ 0,

0≤ q ⊥ (1− y)≥ 0.

1.15.4 The Minimum Value Operator

Similarly when problem functions involve the minimum value operation min[ f (x),a] for
some constant a, the discontinuous behavior can be modeled by writing the variable

z =min[ f (x),a]= f (x)+ [ f (x)−a]y, (1.137)

where the second variable y is chosen to minimize the objective

[ f (x)−a]y (1.138a)

subject to the constraints
−1≤ y ≤ 0. (1.138b)

In this case the Lagrangian is given by

L(y)= [ f (x)−a]y− p(y+1)−q(−y), (1.139a)

where p and q are the Lagrange multipliers. It then follows that the necessary conditions
for optimality are just

[ f (x)−a]− p+q = 0, (1.139b)

p(y+1)= 0, (1.139c)

q(−y)= 0, (1.139d)

p ≥ 0, (1.139e)

q ≥ 0. (1.139f)

Here the complementarity conditions can be written as

0≤ p ⊥ (1+ y)≥ 0,

0≤ q ⊥ (−y)≥ 0.

1.15.5 Solving an MPEC

The examples presented in the previous sections are all directed toward a single goal—
the formulation of an MPEC as a standard NLP. The key notion is to explicitly specify
the necessary conditions for the lower level optimization problem as constraints for the
“outer” NLP. For example when dealing with the signum function, three new variables
were introduced, namely (y, p,q), in addition to the constraints (1.129b)–(1.129f). At first,
it might appear that with appropriate reformulation an MPEC can be treated as a standard
NLP, using any standard algorithm. Unfortunately, the NLP constraints violate the linear
independence constraint qualification (LIQC) test, as well as the weaker Mangasarian–
Fromovitz constraint qualification (MFQC). A number of different strategies have been
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investigated to deal with this lack of regularity (cf. [7]). Since the constraint Jacobian is
rank deficient and detecting rank deficiency is problematic, the solution schemes share a
common theme, which is to solve a “slightly” perturbed problem. Thus one can modify the
form of (1.122a) to xTy= ε, or replace (1.122b) with xk yk = ε, and similarly for (1.122b)
enforce xk yk ≤ ε. An effective alternative is to move the complementarity condition from
the constraints into the NLP objective using an exact penalty function.

1.16 What Can Go Wrong
The material in this chapter has been presented to give the reader an understanding of how
a method should work in practice. The discussion is designed to help users efficiently
use high-quality optimization software to solve practical problems. However, in practice,
things do go wrong! In this section, we describe a number of common difficulties that
can be encountered and suggest remedial action to correct the deficiencies. For ease of
presentation, it is convenient to discuss the difficulties individually. Of course, real appli-
cations may involve more than a single difficulty and the user must be prepared to correct
all problems before obtaining satisfactory performance from optimization software.

1.16.1 Infeasible Constraints

One of the most common difficulties encountered occurs when the NLP problem has infea-
sible constraints. To be more precise, infeasible constraints have no solution.

Example 1.9 INFEASIBLE CONSTRAINTS. For example, the following constraints
have no feasible region:

c1(x) = x2
1 x2−1 ≥ 0,

c2(x) = x2 ≤ − 1
10 .

(1.140)

When general-purpose NLP software is applied to such a problem, it is likely that
one or more of the following symptoms will be observed:

• the QP subproblem has no solution, which can occur if the linearized constraints
have no solution;

• many NLP iterations produce very little progress;

• the penalty parameters become very large, or the barrier parameter becomes small;

• the condition number of the projected Hessian matrix becomes large; or

• the Lagrange multipliers become large.

Although most robust software will attempt to “gracefully” detect this situation, ulti-
mately the only remedy is to reformulate the problem!

1.16.2 Rank-Deficient Constraints

In contrast to the previous situation, it is possible that the constraints are consistent; that
is, they do have a solution. However, at the solution, the Jacobian matrix may be either
ill-conditioned or rank deficient.
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Example 1.10 RANK-DEFICIENT CONSTRAINTS. For an example originally sug-
gested by Kuhn and Tucker [126], consider minimizing

F(x)= (x1−2)2+ x2
2 (1.141)

subject to the constraints

c1(x) = x1 ≥ 0,

c2(x) = x2 ≥ 0,

c3(x) = (1− x1)3− x2 ≥ 0.

(1.142)

The solution to this problem is x∗ = (1,0)T and, clearly, c(x∗)= 0. However, at the solution,
the active set is A∗ = {c2,c3} and the Jacobian matrix corresponding to these constraints is
rank deficient, i.e.,

G̃=
[

0 1

−3(1− x1)2 −1

]
=
[

0 1

0 −1

]
. (1.143)

This example violates the linear independent constraint qualification test.

When general-purpose NLP software is applied to such a problem, it is likely that
one or more of the following symptoms will be observed:

• many NLP iterations produce very little progress;

• the penalty parameters become very large or the barrier parameter becomes very
small;

• the Lagrange multipliers become large; or

• the rank deficiency in G̃ is detected.

Unfortunately, detecting rank deficiency in the Jacobian is not a straightforward nu-
merical task! Consequently, it is quite common to confuse this difficulty with inconsistent
constraints. Again, the remedy is to reformulate the problem!

1.16.3 Constraint Redundancy

A third type of difficulty can occur when the problem formulation contains constraints that
are redundant. Thus, although the constraints have a solution, they may be unnecessary to
the problem formulation. The following two examples illustrate the situation.

Example 1.11 REDUNDANCY (FULL-RANK). Minimize

F(x)= x2
1 + x2

2 (1.144)

subject to the constraint
c1(x)= x1− x2 = 0. (1.145)

In this case, the unconstrained solution is x∗ = (0,0)T, and the constraint is trivially satis-
fied. Constraint c1 can be eliminated from the formulation without changing the answer.
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Example 1.12 REDUNDANCY (RANK-DEFICIENT). Minimize

F(x)= (x1−2)2+ x2
2+ x2

3 (1.146)

subject to the constraints

c1(x) = x1+ x2−1 = 0,

c2(x) = 2x1+2x2−2 = 0.
(1.147)

In this case, constraint c2 = 2c1 and, clearly, one of the constraints is redundant. Note also
that the Jacobian matrix G̃ is rank deficient.

Symptoms indicating redundancy such as in Example 1.11 include

• Lagrange multipliers near zero and

• difficulty detecting the active set.

On the other hand, constraint redundancy such as in Example 1.12 is likely to exhibit
symptoms similar to the rank-deficient cases discussed previously. Obviously, the remedy
is to reformulate the problem and eliminate the redundant constraints!

1.16.4 Discontinuities

Perhaps the single biggest obstacle encountered in the practical application of NLP meth-
ods is the presence of discontinuous behavior. All of the numerical methods described
assume that the objective and constraint functions are continuous and differentiable. When
discontinuities are present in the problem functions, the standard quadratic/linear models
that form the basis for most NLP methods are no longer appropriate. In fact, the KKT
necessary conditions do not apply!

Unfortunately, in practice, there are many common examples of discontinuous be-
havior. Typical sources include

• branching caused by IF tests in code;

• absolute value, max, and min functions;

• linear interpolation of tabular data; and

• “internal” iteration loops, e.g., adaptive quadrature, root finding.

The most common symptoms of discontinuous functions are

• slow convergence or divergence,

• small steps (α ≈ 0) in the line search, and

• possible ill-conditioning of the Hessian matrix.
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Example 1.13 TREATING ABSOLUTE VALUES.

Bad Formulation

Find (x , y) to minimize

|x |

subject to

y− x2 = 1.

Good Formulation

Find (x1, x2, y) to minimize

x1+ x2

subject to

y− (x1− x2)2 = 1,

x1 ≥ 0,

x2 ≥ 0.

The “trick” motivated by the MPEC formulation (1.133c)–(1.133e) is to replace x →
(x1− x2) and then observe that |x | → (x1+ x2). The optimal solution for the preferred
formulation is x∗ = (0,0,1). As expected, the preferred formulation is solved by SOCS in
47 evaluations. In contrast, the original formulation requires 117 function evaluations and
terminates with a small step warning. A more realistic illustration of this difficulty will be
presented in Example 6.17. Although complementarity is not explicitly enforced in this ex-
ample in general it may be necessary to augment the objective with a term ρx1x2 to ensure
that 0≤ x1 ⊥ x2 ≥ 0.

Example 1.14 MINIMAX PROBLEMS. Minimizing maximum values (minimax prob-
lems).

Bad Formulation

Find (x1, x2) to minimize

max
k
|yk−dk|

for k = 1,2,3, where

yk = x1+ x2k,

d = (1,1.5,1.2).

Good Formulation

Find (x1, x2,s) to minimize

s

for k = 1,2,3, where

yk−dk− s ≤ 0,

yk−dk+ s ≥ 0.

The trick here is to introduce the slack variable s as an absolute bound on the quantities
being minimized, i.e., |yk − dk| ≤ s. The absolute value function is then eliminated since
−s ≤ yk − dk ≤ s can be rewritten as two inequality constraints. The optimal solution for
the preferred formulation is x∗ = (1.1,0.1,0.2). As expected, the preferred formulation is
solved by SOCS in 30 evaluations. In contrast, the original formulation terminates with a
small step warning after 271 evaluations at the point x∗ = (1.09963,0.100148).

In subsequent chapters, a great deal of attention will be given to the correct formu-
lation of optimal control applications such that discontinuous behavior can be avoided. In
fact, Section 4.12 is devoted entirely to one such application. Nevertheless, it is worth
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Figure 1.14. The effects of noise.

mentioning that specific remedial action for these problems includes

• recoding and/or reformulating to eliminate branching, absolute value, max, and min
problems (cf. Examples 1.13 and 1.14);

• interpolation or approximation of tabular data using functions with continuity through
second derivatives (cf. Example 6.4);

• avoiding the use of variable-step, variable-order integration when optimizing; and

• reformulation of “internal” iterations (e.g., Kepler’s equation) using additional “ex-
ternal” NLP constraints (cf. Example 6.6).

Because discontinuous behavior plays such a major role in the success or failure of
an NLP application, it is worthwhile to understand the effects of “noise” on the Newton
iteration. Figure 1.14 illustrates a typical Newton iteration in the presence of two types of
noise. Let us assume that we are trying to solve a constraint c(x)= 0. However, because
of errors in the function evaluation, what the Newton method “sees” is the contaminated
result c(x)+ ε. Because the intent is to drive the constraint to zero, ultimately the value
will be “swamped” by the noise ε and we expect that the iteration will not converge! This
situation is shown in the left portion of Figure 1.14. On the other hand, suppose that the
value of the constraint is correct but the slope is contaminated by noise as illustrated in the
right portion of Figure 1.14. Thus, instead of computing the true slope c′(x), the Newton
iterate actually uses the value c′(x)+ ε. In this case, we can expect the iteration to locate
a solution, but at a degraded rate of convergence. We can carry this analysis further by
viewing optimization as equivalent to solving ∇x L = 0. Then, by analogy, if the gradient
is contaminated by noise, ∇x L+ ε, the iteration will not converge, because ultimately the
true gradient will be dominated by the noise. On the other hand, if the Hessian information
is noisy, ∇2

x x L+ ε, we expect the rate of convergence to be degraded. It is worth noting
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that an approximation to the slope (e.g., secant or quasi-Newton) in the absence of noise
changes the Newton iterates in a similar fashion.

1.16.5 Scaling

Scaling affects everything! Poor scaling can make a good algorithm bad. Scaling changes
the convergence rate, termination tests, and numerical conditioning. The most common
way to scale a problem is to introduce variable scaling of the form

x̃k = uk xk + rk (1.148)

for k = 1, . . . ,n. In this expression, the scaled variables x̃k are related to the unscaled
variables by the variable scale weights uk and shifts rk . In like fashion, the objective and
constraints are commonly scaled using

c̃k =wkck , (1.149)

F̃ =w0 F (1.150)

for k = 1, . . . ,m. The intent is to let the optimization algorithm work with the “well-scaled”
quantities x̃ , c̃, and F̃ in order to improve the performance of the algorithm. Unfortunately,
it is not at all clear what it means to be well scaled!

Nevertheless, conventional wisdom suggests that some attempt should be made to
construct a well-scaled problem and, consequently, we give the following hints (not rules)
for good scaling:

• normalize the independent variables to have the same “range,” e.g.,

0≤ x̃k ≤ 1;

• normalize the dependent functions to have the same magnitude, i.e.,

F ≈ c1 ≈ c2 ≈ ·· · ≈ cm ≈ 1;

• normalize the rows and columns of the Jacobian to be of the same magnitude;

• scale the dependent functions so that the Lagrange multipliers are one:

|λ1| ≈ |λ2| ≈ · · · ≈ |λm | ≈ 1;

• scale the problem so that the condition number of the projected Hessian matrix is
close to one;

• scale the problem so that the condition number of the KKT matrix (1.66) is close to
one.

Constructing an automatic computational procedure that will meet all of these goals is
probably not possible. Furthermore, even if a strategy could be devised that produces “good
scaling” at one point, say x for nonlinear functions, this may be “bad scaling” at another
point x. As a practical matter in the SOCS software, we attempt to produce a well-scaled
Jacobian at the user-supplied initial point, but also allow the user to override this scaling
by input. Details of the approach are deferred to Section 4.8. For more helpful discussion
on this subject, the reader is referred to [99, Chapter 8].
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1.16.6 Nonunique Solution

For most of the difficulties presented an optimization algorithm will either fail to produce
a solution and/or struggle to find one. But what if the problem formulation has too many
solutions?

Example 1.15 NONUNIQUE SOLUTION. Minimize

F(x)= (x1− x2)2. (1.151)

In this case, there are an infinite number of solutions corresponding to points on the line
x1 = x2. Everywhere on this line the objective function F = 0 and the gradient g = 0;
however, clearly the sufficient condition (1.61) is violated.

The projected Hessian matrix must be positive definite only in the neighborhood of
the solution, and even a well-posed problem may encounter an indefinite or negative def-
inite projected Hessian during intermediate iterations. Consequently most computational
algorithms try to “fix” the problem by making the Hessian approximation positive def-
inite. Using a positive definite quasi-Newton update such as the BFGS (1.50) and/or a
trust-region strategy (1.93) are two such “fixes.” Unfortunately when the algorithm uses
this strategy it may converge with no indication of trouble. However, if the iterations are
repeated with a different initial guess, it is quite likely that a different solution will be com-
puted. In fact, there may be no obvious symptoms of difficulty reported by the software
unless the user happens to notice nonrepeatability in the solution! Detecting the difficulty
and then correcting it requires user insight. Example 6.11 illustrates this situation.

1.17 Derivative Approximation by Finite Differences
Derivative information is an important ingredient in all optimization algorithms, and con-
sequently it is useful to review one of the most prevalent methods for computing these
quantities. Consider the Taylor series expansion about the point x

f (x+ δ)= f (x)+ f ′(x)δ+ 1

2
f ′′(x)δ2+·· · , (1.152)

where the perturbation size δ > 0. Dividing through by δ yields

f ′(x)= f (x+ δ)− f (x)

δ
− δ

2
f ′′(x) . . .

= f (x+ δ)− f (x)

δ
+O(δ). (1.153)

The terms denoted by O(δ) are said to be of order δ. If the O(δ) terms are ignored, one
obtains the forward difference approximation

f ′(x)≈ f (x+ δ)− f (x)

δ
. (1.154)

Because the Taylor series expansion is truncated after the first term, it is common to refer
to

ηT =O(δ)≈ δ

2
| f ′′(x)| (1.155)
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as the truncation error. An estimate for the truncation error is provided by the magnitude
of the first ignored term in the expansion, δ

2 | f ′′(x)|. This is considered a first order approx-
imation, because δ appears to the first power, and in general an approximation is said to
have order k if δk appears in the truncation error. On a digital computer the difference ap-
proximation (1.154) must be evaluated using finite precision arithmetic, which introduces
a second source of error. It is referred to as roundoff or cancellation error and can be
approximated by

η′1 =
2εa

δ
, (1.156)

where εa is an estimate of the absolute function precision. For the sake of reference a
number of common finite difference approximations are summarized in Table 1.7.

Table 1.7. Finite difference derivative approximations.

FIRST ORDER (FORWARD DIFFERENCE) FIRST DERIVATIVE: (η′1 = 2εa
δ )

f ′ = 1

δ

[
f (x+ δ)− f (x)

]
. (1.157)

SECOND ORDER (CENTRAL DIFFERENCE) FIRST DERIVATIVE: (η′2 = εa
δ )

f ′ = 1

2δ

[
f (x+ δ)− f (x− δ)

]
. (1.158)

FOURTH ORDER FIRST DERIVATIVE: (η′4 = 3εa
2δ )

f ′ = 1

12δ

[− f (x+2δ)+8 f (x+ δ)−8 f (x− δ)+ f (x−2δ)
]

. (1.159)

SECOND ORDER SECOND DERIVATIVE: (η′′2 = 4εa
δ2 )

f ′′ = 1

δ2

[
f (x+ δ)−2 f (x)+ f (x− δ)

]
. (1.160)

FOURTH ORDER SECOND DERIVATIVE: (η′′4 = 16εa
3δ2 )

f ′′ = 1

12δ2

[− f (x+2δ)+16 f (x+ δ)−30 f (x)+16 f (x− δ)− f (x−2δ)
]

. (1.161)

SECOND ORDER THIRD DERIVATIVE: (η′′′2 = 3εa
δ3 )

f ′′′ = 1

2δ3

[− f (x−2δ)+2 f (x− δ)−2 f (x+ δ)+ f (x+2δ)
]

. (1.162)

A reasonable choice for the perturbation size δ can be computed by using the finite
difference error estimates. An estimate for the total finite difference error in the case of a
forward difference first derivative is

η = ηT +η′1 =
δ

2
| f ′′(x)|+ 2εa

δ
. (1.163)
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This error is minimized by choosing

δ∗1 = 2
√

εa

| f ′′(x)| . (1.164)

In a similar fashion the error in a central difference first derivative is approximated by

η = δ2

6
| f ′′′(x)|+ εa

δ
, (1.165)

which can be minimized by setting

δ∗2 =
(

3εa

| f ′′′(x)|
) 1

3

. (1.166)

At first blush, making use of these expressions in a computational algorithm appears
problematic. If the goal is to estimate a first derivative using the forward difference formula
(1.157), according to (1.164) an estimate for the second derivative f ′′(x) is also needed!
Similarly if the goal is to construct a central difference first derivative using (1.158), one
needs a third derivative in order to minimize the error according to (1.166). Furthermore
these estimates change as the point x changes. Fortunately for most practical applications
a “good” estimate for the perturbation size usually suffices. It is reasonable to compute the
optimal perturbation size only at a “typical” value for x rather than at every optimization
iterate. In the SOCS software, the perturbation size is estimated at the initial iterate x (0),
and thereafter held fixed for subsequent iterations unless there is some other indication of
suspicious behavior.

Suppose we are trying to compute a central difference first derivative using (1.158).
How does one compute the third derivative f ′′′(x) needed in (1.166)? Fortunately a finite
difference approximation to f ′′′(x) is given by (1.162) for some perturbation size, say h.
This estimate requires evaluating the function at four perturbed points in addition to the
nominal. Now, the third derivative approximation has error in it which is related to the
trial perturbation h. So, after evaluating f ′′′(x) using the trial perturbation, a new estimate
for the trial perturbation can be computed. Typically, this process is repeated only once
or twice, before an acceptable accuracy is obtained in the finite difference third derivative
f ′′′(x). Finally, the third derivative can be used to construct the optimal central difference
perturbation from (1.166). Gill, Murray, and Wright [99, Chapter 8] describe an algorithm
for constructing forward difference perturbation size estimates, which can be extended to
accommodate central difference estimates. It should be emphasized that one first computes
the third derivative using a sequence of trial perturbations, and only then is an estimate
for the first derivative perturbation (1.166) constructed. As described, the procedure is ap-
plicable for computing derivatives of a single function with respect to a single variable.
Extending the approach to many variables, that is, for constructing partial derivatives, is
trivial and will be discussed in Section 2.2. In contrast, when differentiating many func-
tions using the same finite difference perturbation, there may well be some loss of accuracy
in the approximate derivatives.

1.17.1 Difference Estimates in Differential Equations

In addition to their use within a nonlinear optimization algorithm, finite difference deriva-
tive estimates may appear in another context. Suppose the function f (x) represents a phys-
ical quantity defined in the region xL ≤ x ≤ xU . The mathematical description for a phys-
ical process typically involves derivatives, e.g., f ′(x). One way to treat this situation is to
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Table 1.8. Difference estimates in differential equations.

Second Order (Three Point) First Derivative

f ′1 = 1
2δ

[−3 f1+4 f2− f3
]

,

f ′k = 1
2δ

[
fk+1− fk−1

]
, k = 2, . . . , (n−1),

f ′n = 1
2δ

[
fn−2−4 fn−1+3 fn

]
.

Fourth Order (Five Point) First Derivative

f ′1 = 1
12δ

[−25 f1+48 f2−36 f3+16 f4−3 f5
]

,

f ′2 = 1
12δ

[−3 f1−10 f2+18 f3−6 f4+ f5
]

,

f ′k = 1
12δ

[− fk+2 +8 fk+1−8 fk−1+ fk−2
]

, k = 3, . . . , (n−2),

f ′n−1 = 1
12δ

[− fn−4+6 fn−3−18 fn−2+10 fn−1+3 fn
]

,

f ′n = 1
12δ

[+3 fn−4−16 fn−3+36 fn−2−48 fn−1+25 fn
]

.

Second Order (Three Point) Second Derivative

f ′′1 = 1
δ2

[
f1−2 f2+ f3

]
,

f ′′k = 1
δ2

[
fk−1−2 fk + fk+1

]
, k = 2, . . . , (n−1),

f ′′n = 1
δ2

[
fn−2−2 fn−1+ fn

]
.

Fourth Order (Five Point) Second Derivative

f ′′1 = 1
12δ2

[
45 f1−154 f2+214 f3−156 f4+61 f5−10 f6

]
,

f ′′2 = 1
12δ2

[
10 f1−15 f2−4 f3+14 f4−6 f5+ f6

]
,

f ′′k = 1
12δ2

[− fk−2 +16 fk−1−30 fk +16 fk+1− fk+2
]

, k = 3, . . . , (n−2),

f ′′n−1 = 1
12δ2

[
fn−5−6 fn−4+14 fn−3−4 fn−2−15 fn−1+10 fn

]
,

f ′′n = 1
12δ2

[−10 fn−5+61 fn−4−156 fn−3+214 fn−2−154 fn−1+45 fn
]

.

introduce a spatial discretization with n “lines,” i.e.,

xk = (k−1)δ+ xL , δ = xU − xL

n−1
, k = 1, . . . ,n. (1.167)

If we denote the function values at these points by fk = f (xk), then it is tempting to use
the difference estimates given in Table 1.7 with one slight modification. Specifically one
must construct derivative estimates at the endpoints without utilizing values outside of the
region. For example a naive application of the central difference approximation

f ′(x1)= 1

2δ

[
f2− f0

]
(1.168)

requires the value f0 = f (xL− δ). This is not desirable since the physical process may not
be defined outside the region. To account for this, the difference approximations must be
altered to utilize information strictly interior to the region xL ≤ x ≤ xU . It is straightforward
to construct a polynomial interpolant for the nearest interior points xL ≤ xk ≤ xU and then
differentiate the interpolating polynomial. For the sake of reference Table 1.8 summarizes
the more commonly used formulas.





Chapter 2

Large, Sparse Nonlinear
Programming

2.1 Overview: Large, Sparse NLP Issues
Chapter 1 presents background on nonlinear programming (NLP) methods that are appli-
cable to most problems. In this chapter, we will focus on NLP methods that are appropriate
for problems that are both large and sparse. To set the stage for what follows, it is useful to
define what we mean by large and sparse. The definition of “large” is closely tied with the
tools available for solving linear systems of equations. For our purposes, we will consider
a problem “small” if the underlying linear systems can be solved using a dense, direct ma-
trix factorization. Solving a dense linear system using a direct factorization requires O(n3)
arithmetic operations. Thus, for today’s computers, this suggests that the problem size is
probably limited to matrices of order n ≈ 1000. If the linear equations are solved using
methods that exploit sparsity in the matrices but still use direct matrix factorizations, then
with current computer hardware, the upper limit on the size of the problem is n ≈ 106. This
problem is considered “large” and is the focus of methods in this book. Although some
of the NLP methods can be extended, as a rule we will not address “huge” problems for
which n > 106. Typically, linear systems of this size are solved by iterative (as opposed to
direct) methods. The second discriminator of interest concerns matrix sparsity. A matrix is
said to be “sparse” when many of the elements are zero. For most applications of interest,
the number of nonzero elements in the Hessian matrix H and Jacobian matrix G is less
than 1%.

Many of the techniques described in Chapter 1 extend, without change, to large,
sparse problems. On the other hand, there are some techniques that cannot be used for
large, sparse applications. In this chapter, we will focus on those issues that are unique to
the large, sparse NLP problem.

The first item concerns how to calculate Jacobian and Hessian information for large,
sparse problems. All of the Newton-based methods described in Chapter 1 rely on the
availability of first and second derivative information. For most practical applications, first
derivatives are computed using finite difference approximations. Unfortunately, a single fi-
nite difference gradient evaluation can require n additional function evaluations, and when
n is large, this computational cost can be excessive. Furthermore, computing second deriva-
tives by naive extensions of the methods described in Chapter 1 becomes unattractive for
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a number of reasons. First, maintaining a sparse quasi-Newton approximation that is also
positive definite appears unpromising. Second, even if we accept an approximation that is
indefinite, one can expect to spend O(n) iterations before a “good” Hessian approximation
is constructed—and if n is large, the number of iterations can be excessive! To overcome
these drawbacks, current research has focused on pointwise quasi-Newton updates [124],
[125] and limited memory updates. Another alternative is to abandon the quasi-Newton
approach altogether and construct this information using sparse finite differences. This
technique will be explained in the next section.

The second major item addressed in this chapter concerns how to efficiently construct
a Newton step when the underlying matrices are large and sparse. We first concentrate on
a sparse QP algorithm and present a detailed description of the method. We then address
how the method can be extended to the important sparse nonlinear least squares problem.
We conclude with a discussion of a sparse interior-point (barrier) algorithm.

2.2 Sparse Finite Differences
2.2.1 Background

In general, let us define the first derivatives of a set of υ functions qi (x) with respect to n
variables x by the υ×n matrix

D≡


(∇q1)�
(∇q2)�

...
(∇qυ)�

= ∂q
∂x

. (2.1)

It will also be of interest to compute second derivatives of a linear combination of the
functions. In particular, we define the second derivatives of the function

�(x)=
υ∑

i=1

ωi qi(x) (2.2)

with respect to n variables x by the n×n matrix

E≡∇2�(x)=
υ∑

i=1

ωi∇2qi (x). (2.3)

The notion of sparse finite differencing was introduced by Curtis, Powell, and Reid [65].
They proposed that the columns of D be partitioned into subsets (index sets) �k such that
each subset has at most one nonzero element per row. Then define the perturbation direction
vector by

�k =
∑
j∈�k

δ j e j , (2.4)

where δ j is the perturbation size for variable j and e j is a unit vector in direction j . Using
this partitioning, it can be demonstrated that the central difference estimates of the first
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derivatives for i = 1, . . . ,υ and j ∈ �k are

Di j ≈ 1

2δ j
[qi(x+�k)−qi(x−�k )]. (2.5)

In a similar fashion, second derivative estimates for i ∈ �k and j ∈ �� are

Ei j ≈ 1

δiδ j
[�(x+�k+��)+�(x)−�(x+�k )−�(x+��)] (2.6)

and

Eii ≈ 1

δ2
i

[�(x+�k)+�(x−�k)−2�(x)]. (2.7)

Denote the total number of index sets �k needed to span the columns of D by γ . Now
observe that by using the same index sets for the first and second derivatives, it is possible
to compute

1. central difference first derivatives using 2γ perturbations and

2. first and second derivatives using γ (γ +3)/2 perturbations.

Since a function evaluation can be costly, it is clear that the number of index sets γ de-
termines the cost of constructing this derivative information. It can be demonstrated that
the maximum number of nonzeros in any row of D is a lower bound on the number γ .
Coleman and Moré [64] have also shown that computing the smallest number of index
sets is a graph-coloring problem. For most applications, acceptable approximations to the
minimum number of index sets can be achieved using the “greedy algorithm” suggested
by Curtis, Powell, and Reid [65]. Regardless of how the index sets are constructed, the
important point is that for the optimal control problems of interest, γ � n. In simple terms,
the number of perturbations is much smaller than the number of variables.

There are two computational issues that should be emphasized with regard to a sparse
differencing implementation. First, from direct inspection of (2.3), it might appear that stor-
age is needed for all of the individual Hessian matrices ∇2qi (x). This is not true! In fact,
the calculations can be organized such that the summation is done first, thereby making it
necessary to store only the result. Second, this procedure uses a single perturbation size
to construct difference approximations for many functions. As such, choosing the “best”
perturbation to balance truncation and roundoff errors as described in Section 1.17 for all
of the functions is a compromise, and some inaccuracy can be expected. Nevertheless, for
well-scaled functions, this is not a significant issue, especially because the central differ-
ence gradient information given by (2.5) is O(δ2).

2.2.2 Sparse Hessian Using Gradient Differences

Equations (2.6) and (2.7) provide a means to compute an approximation to the sparse Hes-
sian directly from the function values �(x). On the other hand if gradients are readily
available, this information can be used to construct the Hessian as proposed by Coleman,
Garbow, and Moré [63]. Since the approximate Hessian E is a symmetric matrix of order
n, the goal is to obtain a set of vectors �1,�2, . . . ,�γ such that E is uniquely determined
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by the products E�1,E�2, . . . ,E�γ . Thus a forward difference estimate in the direction
�k is expressed as

E�k =∇2�(x)�k = ∇�(x+�k)−∇�(x) (2.8)

and a central difference estimate is given by

E�k = ∇2�(x)�k = 1

2

[
∇�(x+�k)−∇�(x−�k)

]
. (2.9)

Given a sparsity pattern for the symmetric matrix E, they determine a symmetric permu-
tation of E and a partition of the columns of E (i.e., the index sets), consistent with deter-
mination of E by a lower triangular substitution method. Two techniques for constructing
the index sets are implemented in their software, namely a direct method and an indirect
method. Their computational experience (cf. [63]) suggests the indirect method yields a
smaller number of index sets γ , whereas the direct method produces more accurate Hes-
sian approximations.

2.2.3 Sparse Differences in Nonlinear Programming

When a finite difference method is used to construct the Jacobian, it is natural to identify
the constraint functions as the quantities being differentiated in (2.1). In other words,

q=
[

c
F

]
(2.10)

and

D=
[

G
gT

]
. (2.11)

It is also natural to define
ωT = (−λ1, . . . ,−λm ,1), (2.12)

where λk are the Lagrange multipliers with υ = m+1, so that (2.2)

�(x)=
υ∑

i=1

ωi qi (x)= F−
m∑

i=1

λi ci (x)= L(x,λ) (2.13)

is the Lagrangian for the NLP problem. Clearly, it follows that the Hessian of the La-
grangian H= E, where E is given by (2.3).

2.3 Sparse QP Subproblem
The efficient solution of the sparse QP subproblem can be achieved using a method pro-
posed by Gill et al. [97, 98]. In general, the calculation of a step in a QP subproblem
requires the solution of the KKT system (1.66) as described in Sections 1.8 and 1.10. For
convenience, recall that the QP subproblem (1.102)–(1.103) is as follows:

Compute p to minimize a quadratic approximation to the Lagrangian

gTp+ 1

2
pTHp (2.14)
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subject to the linear approximation to the constraints

bL ≤
[

Gp
p

]
≤ bU (2.15)

with bound vectors defined by

bL =
[

cL − c
xL −x

]
, bU =

[
cU − c
xU −x

]
. (2.16)

First, the QP subproblem (2.14)–(2.15) is restated in the following standard form:

Compute p̃ to minimize

g̃Tp̃+ 1

2
p̃TH̃p̃ (2.17)

subject to the linear equality constraints

G̃p̃= b̃ (2.18)

and simple bounds
p̃L ≤ p̃ ≤ p̃U . (2.19)

Notice that this formulation involves only simple bounds (2.19) and equalities (2.18). This
transformation can be accomplished by introducing slack variables, sk . For example, a
general inequality constraint of the form aT

k x ≥ bk is replaced by the equality constraint
aT

k x+ sk = bk and the bound sk ≤ 0. Notice that we have introduced the tilde notation to
indicate that the original variables have been augmented to include the slacks. Observe
that in this formulation, when a slack variable is “fixed” on an upper or lower bound, it
is equivalent to the original inequality being in the active set. Thus, for a particular QP
iteration, the search direction in the “free” variables can be computed by solving the KKT
system (1.66), which in this case is H̃ f G̃

T
f

G̃ f 0

 −p̃ f

λ̃

= [ g̃ f

0

]
. (2.20)

We have used the f subscript to denote quantities corresponding to the “free” variables,
and assume the iteration begins at a feasible point so that b̃ = 0. Let us define the large,
sparse symmetric indefinite KKT matrix by

K0 =
 H̃ f G̃

T
f

G̃ f 0

 . (2.21)

If the initial estimate of the active set is correct, the solution of the KKT system de-
fines the solution of the QP problem. However, in general, it will be necessary to change
the active set and solve a series of equality-constrained problems. In [97, 98], it is demon-
strated that the solution to a problem with a new active set can be obtained by the symmetric
addition of a row and column to the original K0, with a corresponding augmentation of the
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right-hand side. In fact, after k iterations, the KKT system is of dimension n0+ k and has
the form [

K0 U

UT V

][
y

z

]
=
[

f0

w

]
, (2.22)

where U is n0× k and V is k× k. The initial right-hand side of (2.20) is denoted by the
n0-vector f0. The k-vector w defines the additions to the right-hand side to reflect changes
in the active set.

The fundamental feature of the method is that the system (2.22) can be solved using
factorizations of K0 and C, the k× k Schur-complement of K0:

C≡ V−UTK−1
0 U. (2.23)

Using the Schur-complement, the values for y and z are computed by solving in turn

K0v0 = f0, (2.24)

Cz= w−UTv0, (2.25)

K0y= f−Uz. (2.26)

Thus, each QP iteration requires one solve with the factorization of K0 and one solve with
the factorization of C. The solve for v0 needs to be done only once at the first iteration. Each
change in the active set adds a new row and column to C. It is relatively straightforward
to update both C and its factorization to accommodate the change. It is important to keep
C small enough to maintain a stable, dense factorization. This is achieved by refactoring
the entire KKT matrix whenever k > 100. In general, the penalty for refactoring may be
substantial. However, when the QP algorithm is used within the general NLP algorithm, it
is possible to exploit previous estimates of the active set to give the QP algorithm a “warm
start.” In fact, as the NLP algorithm approaches a solution, it is expected that the active set
will be correctly identified and the resulting number of iterations k for the QP subproblem
will become small.

The Schur-complement method derives its efficiency from two facts. First, the KKT
matrix is factored only once using a very efficient multifrontal algorithm [4]. This software
solves Ax = b for x, where A is an n×n real symmetric indefinite sparse matrix. Since A
is symmetric, it can be factored as A = LDLT, where L is a unit lower-triangular matrix
and D is a block-diagonal matrix composed solely of 1×1 and 2×2 blocks. Since A is not
necessarily positive definite, pivoting to preserve stability is required. The package uses
the threshold-pivoting generalization of Bunch and Kaufman with 2×2 block pivoting for
sparse symmetric indefinite matrices. The software requires storage for the nonzero ele-
ments in the lower-triangular portion of the matrix and a work array. Second, subsequent
changes to the QP active set can be computed using a solve with the previously factored
KKT matrix and a solve with the small, dense Schur-complement matrix. Since the fac-
torization of the KKT matrix is significantly more expensive than the solve operation, the
overall method is quite effective. The algorithm is described in [32].

2.4 Merit Function
When a QP algorithm is used to approximate a general nonlinearly constrained problem,
it may be necessary to adjust the steplength α in order to achieve “sufficient reduction”
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in a merit function as discussed in Section 1.11. The merit function we use is a modified
version of (1.110), which was proposed by Gill et al. in [95]. It is related to the function
given by Rockafellar in [151]:

M(x,λ,ν,s, t)= F−λT(c− s)− νT(x− t)

+ 1

2
(c− s)T�(c− s)+ 1

2
(x− t)T�(x− t). (2.27)

The diagonal penalty matrices are defined by �ii = θi and �ii = ξi for θi > 0 and ξi > 0.
The merit function is written to explicitly include terms for the bounds that were not present
in the original formulation (1.110) [95]. For this merit function, the slack variables s and t
at the beginning of a step are defined by

si =


cLi if cLi > ci −λi/θi ,

ci −λi/θi if cLi ≤ ci −λi/θi ≤ cUi ,

cUi if ci −λi/θi > cUi ;

(2.28)

ti =


xLi if xLi > xi − νi/ξi ,

xi − νi/ξi if xLi ≤ xi − νi/ξi ≤ xUi ,

xUi if xi − νi/ξi > xUi .

(2.29)

These expressions for the slack variables yield a minimum value for the merit function M
for given values of the variables x,λ,ν and penalty weights subject to the bounds on the
slacks. The search direction in the real variables x is augmented to permit the multipliers
and the slack variables to vary according to

x
λ

ν

s
t

=


x
λ

ν

s
t

+α


p
�λ

�ν

�s
�t

 . (2.30)

The multiplier search directions, �λ and �ν, are defined using the QP multipliers λ̂
and ν̂ according to

�λ≡ λ̂−λ (2.31)

and
�ν ≡ ν̂− ν. (2.32)

As in (1.107), the predicted slack variables are just

s=Gp+ c= s+�s. (2.33)

Using this expression, the slack-vector step analogous to (1.108) is just

�s=Gp+ (c− s). (2.34)
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A similar technique defines the bound slack-vector search direction

�t= p+ (x− t). (2.35)

Note that when a full step is taken (α = 1), the updated estimates for the Lagrange multi-
pliers λ and ν are just the QP estimates λ̂ and ν̂. The slack variables s and t are just the
linear estimates of the constraints. The terms (c− s) and (x− t) in the merit function are
measures of the deviation from linearity. In [95], Gill et al. prove global convergence for
an SQP algorithm that uses this merit function, provided the QP subproblem has a solution,
which requires bounds on the derivatives and Hessian condition number.

It is also necessary to define the penalty weights � and �. In [95], it is shown that
convergence of the method assumes the weights are chosen such that

M ′
0 ≤−

1

2
pTHp, (2.36)

where M ′
0 denotes the directional derivative of the merit function (2.27) with respect to the

steplength α evaluated at α = 0. To achieve this, let us define the vector

�i =
{

θi −ψ0 if 1≤ i ≤ m,
ξi−m −ψ0 if m < i ≤ (m+n),

where ψ0 > 0 is a strictly positive “threshold.” Since (2.36) provides a single condition for
the (m+n) penalty parameters, we make the choice unique by minimizing the norm ‖�‖2.
This yields

� = a(a�a)−1ς , (2.37)

where

ai =
{

(ci − si )2 if 1≤ i ≤ m,
(xi−m − ti−m )2 if m < i ≤ (m+n),

and

ς =−1

2
pTHp+ λ̂T

�s+ ν̂T�t−2(�λ)T(c− s)−2(�ν)T(x− t)

−ψ0(c− s)T(c− s)−ψ0(x− t)T(x− t).

Typically, the threshold parameter ψ0 is set to machine precision and increased only if the
minimum norm solution is zero. In essence, then, the penalty weights are chosen to be as
small as possible consistent with the descent condition (2.36).

2.5 Hessian Approximation
A positive definite Hessian matrix ensures that the solution to the QP subproblem is unique
and also makes it possible to compute� and� to satisfy the descent condition (2.36). For
NLP applications, the Hessian of the Lagrangian is

HL = ∇2
x F−

m∑
i=1

λi∇2
x ci . (2.38)



2.5. Hessian Approximation 59

An approximation to HL can be constructed using the methods described in Section 2.2;
however, in general, it is not positive definite. (This does not imply that a finite difference
approximation is poor, since the true Hessian may also be indefinite.) In fact, it is necessary
only that the reduced Hessian of the Lagrangian be positive definite at the solution with the
correct active set of constraints. Similar restrictions are required at x �= x∗ to ensure that
each QP subproblem has a solution. Consequently, for the QP subproblem, we use the
modified matrix

H=HL + τ (|σ |+1)I. (2.39)

The parameter τ is chosen such that 0 ≤ τ ≤ 1 and is normalized using the Gerschgorin
bound for the most negative eigenvalue of HL , i.e.,

σ = min
1≤i≤n

hii −
n∑

i �= j

|hi j |
 . (2.40)

hi j is used to denote the nonzero elements of HL . An approach for modifying an approxi-
mation to the Hessian for least squares problems by the matrix τ̄ I was originally suggested
by Levenberg [131] and, because of this similarity, we refer to τ as the Levenberg param-
eter. As a practical matter, normalization, using the Gerschgorin bound, is useful even
though the accuracy of the Gerschgorin estimate is not critical. It is also instructive to
recall the trust-region interpretation of the parameter as defined by (1.93).

The proper choice for the Levenberg parameter τ can greatly affect the performance
of the NLP algorithm. A fast rate of convergence can be obtained only when τ = 0 and
the correct active set has been identified. On the other hand, if τ = 1, in order to guarantee
a positive definite Hessian, the search direction p is significantly biased toward a gradient
direction and convergence is degraded. A strategy similar to that used for adjusting a trust
region (cf. [82]) is employed by the algorithm to maintain a current value for the Levenberg
parameter τ and adjust it from iteration to iteration. The inertia (i.e., the number of positive,
negative, and zero eigenvalues) of the related KKT matrix (2.21) is used to infer that the
reduced Hessian is positive definite. Using results from Gould [104], Gill et al. [97, 98]
show that the reduced Hessian will be positive definite if the inertia of K0 (2.21) is

In(K0)= (n f ,m,0), (2.41)

where n f is the number of rows in H̃ f and m is the number of rows in G̃ f . Basically, the
philosophy is to reduce the Levenberg parameter when the predicted reduction in the merit
function agrees with the actual reduction and increase the parameter when the agreement
is poor. The process is accelerated by making the change in τ proportional to the observed
rate of change in the gradient of the Lagrangian. To be more precise, at iteration k, three
quantities are computed, namely

1. the actual reduction
!1 = M(k−1)−M (k), (2.42)

2. the predicted reduction

!2 = M (k−1)− M̃ (k) =−M ′
0−

1

2
pTHp, (2.43)

where M̃ (k) is the predicted value of the merit function, and
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3. the rate of change in the norm of the gradient of the Lagrangian

!3 = ‖ϑ (k)‖∞
‖ϑ (k−1)‖∞

, (2.44)

where the error in the gradient of the Lagrangian is

ϑ = g−GTλ− ν. (2.45)

Then, if !1 ≤ 0.25!2, the actual behavior is much worse than predicted, so bias the step
toward the gradient by setting τ (k+1) = min(2τ (k),1). On the other hand, if !1 ≥ 0.75!2,
then the actual behavior is sufficiently close to predicted, so bias the step toward a New-
ton direction by setting τ (k+1) = τ (k) min(0.5,!3). It is important to note that this strategy
does not ensure that the reduced Hessian is positive definite. In fact, it may be necessary
to supersede this adaptive adjustment and increase τ (k+1) whenever the inertia of the KKT
matrix is incorrect. The inertia is easily computed as a byproduct of the symmetric indefi-
nite factorization by counting the number of positive and negative elements in the diagonal
matrix (with a positive and negative contribution coming from each 2 × 2 block).

2.6 Sparse SQP Algorithm
2.6.1 Minimization Process

Let us now summarize the steps in the algorithm. The iteration begins at the point x, with
k = 1, and proceeds as follows:

1. Gradient Evaluation. Evaluate gradient information g and G and then

(a) evaluate the error in the gradient of the Lagrangian from (2.45);

(b) terminate if the KKT conditions are satisfied;

(c) compute HL from (2.38); if this is the first iteration, go to step 2; otherwise

(d) Levenberg modification:

i. compute the rate of change in the norm of the gradient of the Lagrangian
from (2.44);

ii. if !1 ≤ 0.25!2, then set τ (k) =min(2τ (k−1),1); otherwise
iii. if !1 ≥ 0.75!2, then set τ (k) = τ (k−1) min(0.5,!3).

2. Search Direction. Construct the optimization search direction:

(a) compute H from (2.39);

(b) compute p by solving the QP subproblem (2.14)–(2.15);

(c) Inertia control: if inertia of K is incorrect and

i. if τ (k) < 1, then set τ (k) ←min(10τ (k),1) and return to step 2(a);
ii. if τ (k) = 1 and H �= I, then set τ (k) = 0 and H= I and return to step 2(a);

iii. if H= I, then QP constraints are locally inconsistent—terminate the min-
imization process and attempt to locate a feasible point for the nonlinear
constraints;
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(d) compute �λ and �ν from (2.31) and (2.32);

(e) compute �s and �t from (2.34) and (2.35);

(f) compute penalty parameters to satisfy (2.36); and

(g) initialize α = 1.

3. Prediction:

(a) compute the predicted point for the variables, the multipliers, and the slacks
from (2.30);

(b) evaluate the constraints c= c(x) at the predicted point.

4. Line Search. Evaluate the merit function M(x,λ,ν,s, t)= M̄ and

(a) if the merit function M̄ is “sufficiently” less than M , then x is an improved
point—terminate the line search and go to step 5;

(b) else change the steplength α to reduce M and return to step 3.

5. Update. Update all quantities and set k = k+1;

(a) compute the actual reduction from (2.42);

(b) compute the predicted reduction from (2.43), where M̃ (k) is the predicted value
of the merit function; and

(c) return to step 1.

The steps outlined describe the fundamental elements of the optimization process;
however, a number of points deserve additional clarification. First, note that the algorithm
requires a line search in the direction defined by (2.30) with the steplength α adjusted to
reduce the merit function. Adjusting the value of the steplength α, as required in step
4(b), is accomplished using a line-search procedure that constructs a quadratic and cubic
model of the merit function. The reduction is considered “sufficient” when M(α)−M(0)<
κ1αM ′(0). Instead of (1.89), the Wolfe rule, M ′(α) < κ2M ′(0) for 0 < κ1 < κ2 < 1, is
imposed to prevent steplengths from becoming too small.

In order to evaluate the Hessian matrix (2.38), an estimate of the Lagrange multipliers
is needed. The values obtained by solving the QP problem with H= I are used for the first
iteration and, thereafter, the values λ from (2.30) are used. Note that, at the very first
iteration, two QP subproblems are solved—one to compute first order multiplier estimates
and the second to compute the step. Furthermore, for the very first iteration, the multiplier
search directions are �λ = 0 and �ν = 0, so that the multipliers will be initialized to the
QP estimates λ = λ = λ̂ and ν = ν = ν̂. The multipliers are reset in a similar fashion,
after a defective QP subproblem is encountered, in step 2(c)iii. The subject of defective
subproblems will be covered in Section 2.7. The Levenberg parameter τ in (2.39) and
the penalty weights θi and ξi in (2.27) are initialized to zero and, consequently, the merit
function is initially just the Lagrangian.
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2.6.2 Algorithm Strategy

The basic algorithm described above has been implemented in FORTRAN as part of the
SOCS library and is documented in [29]. In the software, the preceding approach is re-
ferred to as strategy M since the iterates follow a path from the initial point to the solution.
However, in practice it may be desirable and/or more efficient to first locate a feasible point.
Consequently, the software provides four different algorithm strategies:

M Minimize. Beginning at x0, solve a sequence of quadratic programs until the solution
x∗ is found.

FM Find a Feasible point and then Minimize. Beginning at x0, solve a sequence of
quadratic programs to locate a feasible point x f and then, beginning from x f , solve
a sequence of quadratic programs until the solution x∗ is found.

FME Find a Feasible point and then Minimize subject to Equalities. Beginning at x0, solve
a sequence of quadratic programs to locate a feasible point x f and then, beginning
from x f , solve a sequence of quadratic programs while maintaining feasible equali-
ties until the solution x∗ is found.

F Find a Feasible point. Beginning at x0, solve a sequence of quadratic programs to
locate a feasible point x f .

The default strategy in the software is FM since computational experience suggests that it
is more robust and efficient. Details on the FME strategy can be found in [32]. The fourth
strategy, F, to locate a feasible point only, is also useful when debugging a new problem
formulation.

2.7 Defective Subproblems
The fundamental step in the optimization algorithm requires the solution of a QP subprob-
lem. In Section 1.16, we discussed a number of things that can go wrong that will prevent
the solution of the subproblem. In particular, the QP subproblem can be defective because

1. the linear constraints (2.15) are inconsistent (i.e., have no solution);

2. the Jacobian matrix G is rank deficient;

3. the linear constraints (2.15) are redundant or extraneous, which can correspond to
Lagrange multipliers that are zero at the solution;

4. the quadratic objective (2.14) is unbounded in the null space of the active constraints.

Unfortunately, because the QP problem is a subproblem within the overall NLP, it is not al-
ways obvious how to determine the cause of the difficulty. In particular, the QP subproblem
may be defective locally simply because the quadratic/linear model does not approximate
the nonlinear behavior. On the other hand, the QP subproblem may be defective because
the original NLP problem is inherently ill-posed. Regardless of the cause of the defective
QP subproblem, the overall algorithm behavior can be significantly impacted. In particular,
a defective QP subproblem often produces a large increase in the solution time because
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1. there is a large amount of fill caused by pivoting for stability in the sparse linear
algebra software, which makes the sparse method act like a dense method;

2. there are many iterations in the QP subproblem, which, in turn, necessitates the fac-
torization of a large, dense Schur-complement matrix and/or repeated KKT sparse
matrix factorizations.

In order to avoid these detrimental effects, the strategy employed by the NLP algo-
rithm has been constructed to minimize the impact of a defective QP subproblem. The first
premise in designing the NLP strategy is to segregate difficulties caused by the constraints
from difficulties caused by the objective function. The second basic premise is to design an
NLP strategy that will eliminate a defective subproblem rather than solve an ill-conditioned
system. This philosophy has been implemented in the default FM strategy. Specifically, we
find a feasible point first. During this phase, difficulties that could be attributed to the ob-
jective function, Lagrange multipliers, and Hessian matrix are ignored. Instead, difficulties
are attributed solely to the constraints during this phase. After a feasible point has been
located with a full-rank Jacobian, it is assumed that the constraints are OK. Thus, during
the optimization phase, defects related to the objective function are treated. The primary
mechanism for dealing with a defective QP subproblem during the optimization process
was the Levenberg Hessian modification technique. In particular, note that in step 2(c)i of
the algorithm, first the Levenberg parameter is increased. If that fails, in step 2(c)ii, the
Hessian is reset to the identity matrix. Only after the above two steps fail is it concluded
that the defect in the QP subproblem must be caused by the constraints, and an attempt is
made to locate a (nearby) feasible point.

It is worth noting that a defective subproblem is not something unique to SQP meth-
ods. In fact, all of the globalization strategies discussed in Section 1.11 can be considered
remedies for a defective subproblem. However, it is curious that the remedies we will dis-
cuss are computationally attractive for large, sparse problems, but are generally not used
for small, dense applications!

2.8 Feasible Point Strategy
2.8.1 QP Subproblem

Finding a point that is feasible with respect to the constraints is the first phase in either the
FM or FME strategy and is often used when attempting to deal with a defective problem.
The approach employed is to take a series of steps of the form given by (1.87) with the
search direction computed to solve a least distance program (LDP). This can be accom-
plished if we impose the requirement that the search direction have minimum norm, i.e.,
‖p‖2. The primary method for computing the search direction is to minimize

1

2
pTp (2.46)

subject to the linear constraints

bL ≤
[

Gp
p

]
≤ bU . (2.47)
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For problems with no inequality constraints, the LDP search direction is equivalent to

p=−G#b, (2.48)

where G# is the pseudoinverse of G and can be viewed as a generalization of the basic
Newton step (1.28).

However, as previously suggested, it is possible to encounter a defective subproblem
and, in this case, it is useful to construct the search direction from a problem that has a
solution even if the Jacobian is singular and/or the linear constraints are inconsistent. Thus,
the relaxation method requires finding the augmented set of variables (p,u) to minimize

1

2
pTp+ ρ

2
uTu (2.49)

subject to the linear constraints

bL ≤
[

Gp+u
p

]
≤ bU , (2.50)

where the constant ρ� 0. Typically, ρ = 106. Notice that, by adding the residual or slack
variables u, the linear equations (2.50) always have a solution. Although the size of the QP
problem has been increased, both the Hessian and Jacobian for the augmented problem are
sparse. Although the condition number of the KKT matrix for the relaxation QP problem is
O(ρ2), an accurate solution can often be obtained using a few steps of iterative refinement.
It is interesting that the notion of adding variables is not usually considered attractive for
dense problems because the associated linear algebra cost becomes excessive. However,
when sparse matrix techniques are employed, this technique is, in fact, quite reasonable.

Since the solution of this subproblem is based on a linear model of the constraint
functions, it may be necessary to adjust the steplength α in (1.87) to produce a reduction
in the constraint error. Specifically, a line search is used to adjust α to achieve “sufficient
decrease” (1.89) in the constraint violation merit function as defined by

Mv (x)=
m∑

i=1

χ2 (cLi ,ci ,cUi )+
n∑

i=1

χ2 (xLi , xi , xUi ) (2.51)

with χ(l, y,u)≡max[0, l− y, y−u].

2.8.2 Feasible Point Strategy

The overall strategy for locating a feasible point can now be described. Beginning at the
point x, with the “primary strategy,” the procedure is as follows:

1. Gradient Evaluation. Evaluate the constraints and Jacobian. Terminate if the con-
straints are feasible.

2. Search Direction. Compute search direction:

(a) if (primary strategy), solve the QP subproblem (2.46)–(2.47), and

i. if QP solution is possible, then go to step 3; otherwise
ii. change to relaxation strategy and go to step 2(b);

(b) if (relaxation strategy), solve the QP subproblem (2.49)–(2.50).
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3. Line Search. Choose the steplength α to reduce the constraint violation Mv(x) given
by (2.51). If relaxation strategy is used, do an accurate line search.

4. Strategy Modification:

(a) if the primary strategy is being used, then return to step 1;

(b) if the relaxation strategy is being used and if α = 1, then switch to primary
strategy and return to step 1.

This overall algorithm gives priority to the primary method for computing the search di-
rection. If the primary strategy fails, then presumably there is something defective with the
QP subproblem and the relaxation strategy is used. If a switch to the relaxation strategy is
made, then subsequent steps use this approach and perform an accurate line search. When
full-length steps are taken with the relaxation strategy (i.e., α = 1), the primary strategy
is again invoked. This logic is motivated by the fact that the relaxation step with α = 1
is “approximately” a Newton step and, therefore, it is worthwhile to switch back to the
primary (LDP) step. Although this strategy is somewhat ad hoc, it has been quite effective
in practice.

Detecting failure of the primary strategy in step 2(a) is based on a number of factors.
Specifically, the primary strategy is abandoned whenever

1. the amount of “fill” in the sparse linear system exceeds expectations (implying an
ill-conditioned linear system), or

2. the condition number of the KKT matrix is large, or

3. the inertia of the KKT matrix is incorrect, or

4. the number of QP iterations is excessive.

2.8.3 An Illustration

Example 2.1. The performance of the feasible point algorithm is illustrated on an ex-
ample derived from an ill-conditioned two-point boundary value problem (BVP) (Burgers’
equation). The basic problem is to solve

ẏ1 = y2,

ẏ2 = ε−1 y1y2,

0 ≤ y1(t)

subject to the boundary conditions y1(0) = 2tanh(ε−1) and y1(1) = 0. For this illustra-
tion, the parameter ε = 10−3. The continuous problem is replaced by a discrete ap-
proximation with M = 50 grid points. Thus, it is required to compute the values of
xT = (y1(0), y2(0), . . . , y1(1), y2(1)) such that the constraints

c(x)= y j+1−y j −
h

2

[
ẏ j+1+ ẏ j

]= 0
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for j = 1, . . . , (M−1) are satisfied in addition to the boundary conditions. For this example,
the iterations began with a linear initial guess between the boundary conditions

yk = y(0)+ (k−1)

(M−1)

[
y(1)−y(0)

]
for k = 1, . . . , M with y2(0)=−2ε−1[1− tanh(ε−1)] and y2(1)=−2ε−1. We defer details
of the discretization process to subsequent chapters and simply view this as a system of
nonlinear equations to be solved by proper choice of the variables x.

The behavior of the algorithm is summarized in Table 2.1. At the first iteration,
an attempt to compute the search direction using the primary least distance programming
method (ldp) failed, and the relaxation (r) strategy was used. A step of length α= 1 reduced
the constraint error ‖c‖ from 97.3976 to 1.83373. Since a full Newton step was used, the
second iteration began with the primary ldp strategy, which also failed, forcing the use
of the relaxation method. For the second iteration, the steplength α was 0.317 (which is
not a Newton step) and, consequently, the relaxation strategy was employed for iteration
3. At iteration 6, an attempt was made to switch back to the primary strategy, but again it
was unsuccessful. Finally, at iteration 9, it was possible to return to the primary strategy,
which was then used for all subsequent iterations. Notice that the condition number of the
symmetric indefinite KKT system is rather moderate at the solution, even though it is very
large for some of the early iterations.

Table 2.1. Burgers’ equation example.

Iter. Method KKT Cond. α ‖c‖
1 ldp r 0.48×10+12 1.000 97.3976

2 ldp r 0.54×10+11 0.317 1.83373

3 r 0.26×10+13 0.149 1.31122

4 r 0.38×10+13 0.149 1.16142

5 r 0.31×10+13 1.000 1.02214

6 ldp r 0.22×10+12 0.46×10−1 0.337310

7 r 0.16×10+13 0.35×10−1 0.323168

8 r 0.16×10+13 1.000 0.308115

9 ldp 0.14×10+09 0.37×10−2 0.182173

10 ldp 0.27×10+08 0.10×10−1 0.181395

11 ldp 0.50×10+06 0.88×10−1 0.179771

12 ldp 0.15×10+06 0.457 0.165503

13 ldp 0.78×10+05 1.000 0.892×10−1

14 ldp 0.69×10+05 1.000 0.251×10−1

15 ldp 0.69×10+05 1.000 0.748×10−4

16 ldp 0.69×10+05 1.000 0.212×10−8
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2.9 Computational Experience
2.9.1 Large, Sparse Test Problems

The NLP algorithm described has been tested on problems derived from optimal control
and data-fitting applications. An extensive collection of test results for trajectory optimiza-
tion and optimal control problems is found in [37]. The test set includes simple quadratic
programs, nonlinear root solving, and poorly posed problems. Also included are exam-
ples with a wide range in the number of degrees of freedom and function nonlinearity. All
problems in the test set

1. exhibit a banded sparsity pattern for the Jacobian and Hessian and

2. have some active constraints (i.e., no unconstrained problems).

With regard to the first attribute, all problems have some nonzero elements that are not
along the diagonal (i.e., they are not separable). On the other hand, none of the problems is
characterized by matrices with truly random structure. In general, the results described in
[30] are very positive and, consequently, it seems worthwhile to understand the reasons for
this promising behavior.

The calculation and treatment of the Hessian matrix are fundamental to the observed
performance of the algorithm. As stated, the basic algorithm requires that the Hessian
matrix HL be computed from (2.38). Observe that the evaluation of HL requires an estimate
for both the variables and the Lagrange multipliers, i.e., (x,λ). Since the accuracy of the
Hessian is affected by the accuracy of the multipliers, it seems desirable to use an NLP
strategy that tends to produce “accurate” values for λ. The default FM strategy, which first
locates a feasible point and then stays “near” the constraints, presumably benefits from
multiplier estimates λ that are more accurate near the constraints.

A summary of the results for the test problem set in [30] is given in Figure 2.1.
All 109 problems were run using the three optimization strategies (M, FM, FME). The
algorithm performance was measured in terms of the number of function evaluations (the
number of times f (x) and c(x) are evaluated) and the solution time. For each test problem,
a first-, second-, and third-place strategy has been selected, where the first-place strategy
required the smallest number of function evaluations. If a particular strategy failed to solve
the problem, this was counted as a failure. It is clear from Figure 2.1 that strategy FM was
in first place over 63% of the time. Furthermore, FM was either the best or second-best
strategy nearly 89% of the time. Finally, notice that strategy FM solved all 109 problems
(no failures). For all but 7 cases, the least number of function evaluations corresponds to
the shortest solution time. Consequently, comparing strategies based on run time leads to
the same conclusions. These results clearly indicate why strategy FM has been selected as
the default. We note that for 3 problems, there are no degrees of freedom, in which case F
is the only possible strategy and these cases were eliminated from the comparison.

There are at least three alternatives for computing the Hessian matrix. For some ap-
plications, it is possible to evaluate the relevant matrices analytically. Unfortunately, this
is often cumbersome. For all of the test results in [30], the sparse finite difference approxi-
mations described in Section 2.2 were used. Additional information on sparse differencing
is given in [35]. The third alternative, which is often effective for small, dense problems, is
to use a quasi-Newton approximation to the Hessian. In general, the errors introduced by
finite difference approximations are far smaller than those for quasi-Newton estimates and,
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Figure 2.1. Strategy comparison.

for all practical purposes, one can consider the first two alternatives to be “exact.” Probably
the most significant advantage of methods with an exact Hessian is that ultimately one can
expect quadratic convergence. The adaptive Levenberg strategy described in (2.42)–(2.45)
is designed so that ultimately τ = 0 and H=HL in the QP subproblem.

2.9.2 Small, Dense Test Problems

Although the strategy described was developed to accommodate sparse NLP applications,
it is interesting to consider whether the same techniques may also be worthwhile for small,
dense problems. One significant feature developed for large, sparse problems is the Lev-
enberg modification technique, which permits using the exact Hessian without altering the
matrix sparsity. A second feature is the default FM strategy, which first locates a feasible
point. In contrast to the large, sparse case, for small, dense problems it is common to use
a quasi-Newton approximation for the Hessian matrix. One possible approximation is the
SR1 formula given by (1.49). The update formula requires the change in position given
by �x = x− x. For the SR1 update, it is appropriate to use �g = ∇x L(x)−∇x L(x). If
the denominator is zero, making the SR1 correction undefined, we simply skip the update.
Now recall that the SR1 recursive estimate is symmetric but not necessarily positive defi-
nite. Since the reduced Hessian must be positive definite at the solution, the most common
approximation is the BFGS update formula (1.50). In this case, it is possible to keep the
entire approximate Hessian positive definite (thereby ensuring the reduced Hessian is pos-
itive definite) provided the update also is constructed such that �xT�g > 0. We make
an attempt to satisfy this condition by adjusting the Lagrange multiplier estimates used to
construct the gradient difference �g. If this fails, the update is skipped. Thus, there are
two alternative approaches for incorporating a recursive estimate into the NLP framework
described. Since the update generated by the SR1 formula is symmetric, but indefinite, one
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might expect to generate a “more accurate” approximation to the Hessian HL . However,
as in the case of an exact Hessian, it will be necessary to modify the approximation using
the Levenberg strategy. In contrast, the BFGS update will not require any modification
to maintain positive definiteness. Nevertheless, the BFGS approximation may not be an
accurate estimate for an indefinite Hessian.

Table 2.2 summarizes the results of these different strategies on a set of small, dense
test problems. The test set given in [108] consists of 68 test problems, nearly all of them
found in the collection by Hock and Schittkowski [114]. The NLP algorithm described was
used with three different methods to construct the Hessian. Both the FM and M strategies
were employed. Finally, the NPSOL [96] algorithm was used as a benchmark. The base-
line strategy referred to as SR1-FM incorporates the SR1 update in conjunction with the
FM option. All results in Table 2.2 are relative—thus, the second column labeled FDH-FM
compares the results for a finite difference Hessian and FM option to the baseline SR1-FM
performance. The number of function evaluations (including finite difference perturba-
tions) is the quantitative measure used to assess algorithm performance. By definition, all
computed quantities (objective and constraints) are evaluated on a single function evalua-
tion. Thus, when comparing FDH-FM and SR1-FM (reading down the second column of
the table), one finds that better results were obtained on 9 problems out of 68, where “bet-
ter” means that the solution was obtained with fewer function evaluations. Worse results
were obtained on 48 of the 68 problems using the FDH-FM option and 3 cases were the
same. The FDH-FM option also failed on 1 problem that was solved by the baseline and
did not solve any more problems than the baseline. Both options failed to find a solution
in 7 cases. The final row in the table presents the average percentage change in the num-
ber of function evaluations. Thus, on average, the FDH-FM option required 70.89% more
function evaluations to obtain a solution than the SR1-FM option. It should be noted that a
“failure” can occur because of either an algorithmic factor (e.g., maximum iterations) or a
problem characteristic (e.g., no solution exists).

Table 2.2. Dense test summary.

Algor. FDH-FM BFGS-FM SR1-M FDH-M BFGS-M NPSOL

Better 9 19 19 7 25 25
Worse 48 25 13 51 33 34

Same 3 15 28 2 7 1
Fail 1 2 1 1 4 2

Solve 0 0 1 1 0 3
Both 7 7 6 6 7 4

% � 70.89 22.48 2.016 69.83 22.82 16.88

An analysis of the results in Table 2.2 suggests a number of trends. First, the use of a
finite difference Hessian approximation for small, dense problems is much more expensive
than a recursive quasi-Newton method. Second, the SR1 update seems to be somewhat
better on average than the BFGS update. Presumably this is because the SR1 update yields
a better approximation to the Hessian because it does not require positive definiteness.
Third, although there is a slight benefit to the FM strategy in comparison to the M strategy,
the advantage is not nearly as significant as it is for large, sparse applications. One can
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speculate that since a recursive Hessian estimate is poor during early iterations, there is
no particular advantage to having “good” multiplier estimates. Finally, it is interesting to
note that the results in the last two columns comparing NPSOL with the BFGS-M strategy
are quite similar, which is to be expected since they employ nearly identical methods. The
minor differences in performance are undoubtedly due to different line-search algorithms
and other subtle implementation issues.

2.10 Nonlinear Least Squares
2.10.1 Background

In contrast to the general NLP problem as defined by (1.98)–(1.100) in Section 1.12, the
nonlinear least squares (NLS) problem is characterized by an objective function

F(x)= 1

2
rT(x)r(x)= 1

2

�∑
i=1

r2
i , (2.52)

where r(x) is an �-vector of residuals. As for the general NLP, it is necessary to find an
n-vector x to minimize F(x) while satisfying the constraints (1.99) and bounds (1.100).
The �×n residual Jacobian matrix R is defined by

RT = [∇r1, . . . ,∇r�] (2.53)

and the gradient vector is

g= RTr=
�∑

i=1

ri∇ri . (2.54)

And finally, the Hessian of the Lagrangian is given by

HL(x,λ)=
�∑

i=1

ri∇2ri −
m∑

i=1

λi∇2ci +RTR (2.55)

≡ V+RTR. (2.56)

The matrix RTR is referred to as the normal matrix and we shall refer to the matrix V as
the residual Hessian.

2.10.2 Sparse Least Squares

Having derived the appropriate expressions for the gradient and Hessian of the least squares
objective function, one obvious approach is to simply use these quantities as required within
the framework of a general NLP problem. Unfortunately, there are a number of well-known
difficulties that are related to the normal matrix RTR. First, it is quite possible that the
Hessian HL may be dense even when the residual Jacobian R is sparse. For example, this
can occur when there is one dense row in R. Even if the Hessian is not completely dense, in
general, formation of the normal matrix introduces “fill” into an otherwise sparse problem.
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Second, it is well known that the normal matrix approach is subject to ill-conditioning even
for small, dense problems. In particular, formation of RTR is prone to cancellation, and the
condition number of RTR is the square of the condition number of R. It is for this reason
that the use of the normal matrix is not recommended.

For linearly constrained, linear least squares problems, the augmented matrix of par-
ticular significance is

D̃=
[

G̃
R

]
, (2.57)

where G̃ is the nd × n Jacobian of the active constraints and bounds. For small, dense
problems the preferred solution technique (cf. [127]) is to introduce an orthogonal decom-
position for (2.57) without forming the normal matrix. Furthermore the solution is unique
if D̃ has rank n. Conversely, as example (5.6) illustrates, the linear least squares problem
has no unique solution when the number of degrees of freedom nd = n− m̂ exceeds the
number of residuals �. Unfortunately, these techniques do not readily generalize to large,
sparse systems when it is necessary to repeatedly modify the active set (and, therefore, the
factorization). A survey of the various alternatives is found in [110]. In order to amelio-
rate the difficulties associated with the normal matrix, while maintaining the benefits of
the general sparse NLP Schur-complement method, a “sparse tableau” approach has been
adopted.

In general, the objective function is approximated by a quadratic model of the form

gTp+ 1

2
pTHp.

Combining (2.14) with (2.56), let us proceed formally to “complete the square” and derive
an alternative representation for the term

pTHp= pT
[
V+RTR

]
p

= pTVp+pTRTRp

= pTVp+pTRTRp+pTRTRp−pTRTRp

= pTVp+pTRTw+wTRp−wTw

= [p,w]T

[
V RT

R −I

][
p

w

]
. (2.58)

Notice that in the last two lines, we have introduced � new variables w= Rp.
As in the general NLP problem, it is necessary that the QP subproblem be well-posed.

Consequently, to correct a defective QP subproblem, the residual Hessian is modified:

V= V+ τ (|σ |+1)I, (2.59)

where σ is the Gerschgorin bound for the most negative eigenvalue of V. Notice that it is
not necessary to modify the entire Hessian matrix for the augmented problem but simply the
portion that can contribute to directions of negative curvature. However, since the artificial
variables w are introduced, the inertia test (2.41) must become

In(K0)= (n f − �,m+ �,0) (2.60)

to account for the artificial directions.
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We then solve an augmented subproblem for the variables qT= [p,w]T, i.e., minimize

1

2
[p,w]T

[
V RT

R −I

][
p

w

]
+gTp (2.61)

subject to

bL ≤
[

G 0

I 0

][
p

w

]
≤ bU . (2.62)

An alternative form for the augmented problem is suggested in [14] and [16] that re-
quires the explicit introduction of the constraints w= Rp. However, the technique defined
by (2.61) and (2.62) is more compact than the approach in [14] and still avoids formation of
the normal matrix. As for the general NLP problem, we choose the Levenberg parameter,
0≤ τ ≤ 1, such that the projected Hessian of the augmented problem is positive definite. We
modify the Levenberg parameter at each iteration such that ultimately τ → 0. Observe that
for linear residuals and constraints, the residual Hessian V= 0 and, consequently, |σ | = 0.
Thus, in the linear case, no modification is necessary unless R is rank deficient. Further-
more, for linearly constrained problems with small residuals at the solution as ‖r‖ → 0,
|σ | → 0, so the modification to the Hessian is “small” even when the Levenberg parameter
τ �= 0. Finally, for large residual problems, i.e., even when ‖r∗‖ �= 0, the accelerated trust-
region strategy used for the general NLP method adjusts the modification τ → 0, which
ultimately leads to quadratic convergence.

2.10.3 Residual Hessian

Because NLS problems require the residual Hessian V, a number of special techniques have
been developed specifically for this purpose. One approach is to construct a quasi-Newton
approximation for V itself rather than the full Hessian H. Inserting the definition of the
least squares Hessian (2.56) into the secant equation (1.47) gives

B�x= (V+RTR)�x=�g. (2.63)

Rearranging this expression leads to

V�x=�g−RTR�x≡�g#. (2.64)

The idea of using an SR1 update (1.49) to construct a quasi-Newton approximation to V
was proposed in [10] and [11]. Dennis, Gay, and Welsch [70] suggest a similar technique
in which the DFP update (1.51) is used and the quantity

�g# ≡ (R−R)
T
r. (2.65)

Other variations have also been suggested and these methods are generally quite effective
for dense least squares problems, especially when ‖r∗‖� 0.

A finite difference method can also be used to construct gradient information for
NLS problems. Since both the residual Jacobian and the constraint Jacobian are needed,
the quantities being differentiated in (2.1) are defined as

q=
[

c
r

]
, (2.66)
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and then it follows that

D=
[

G
R

]
. (2.67)

It is also natural to define

ωT = (−λ1, . . . ,−λm ,r1, . . . ,r�), (2.68)

where λk are the Lagrange multipliers with υ = m+ �, so that (2.2) becomes

�(x)=
υ∑

i=1

ωi qi (x)=−
m∑

i=1

λi ci (x)+
�∑

i=1

[ri ]ri (x). (2.69)

It should be recalled that elements of ω are not perturbed during the finite difference op-
eration. To emphasize this, we have written the second term above as [ri ]ri (x) since the
quantities [ri ] do not change during the perturbations. Then it follows that the residual Hes-
sian V=E, where E is given by (2.3). This technique plays an important role in large-scale
parameter estimation as discussed in Section 5.4.

2.11 Barrier Algorithm
2.11.1 External Format

For simplicity in presentation, in this section we temporarily drop the notational conven-
tions used elsewhere in the book. The general NLP problem was defined in Section 1.12
and for convenience can be restated using slightly different notation as follows.

Determine the set of n variables to minimize the nonlinear function F

F(x) (2.70)

subject to mC nonlinear constraints

a≤ a(x)≤ a (2.71)

and mB simple variable bounds
x ≤ x≤ x. (2.72)

This is referred to as the external format of the problem. Equality constraints or fixed
variables are specified by setting the lower and upper limits to the same value. One-sided
constraints or bounds can be specified as lower or upper bounds by using an “infinite” value
for the unconstrained side of the inequalities. When solving a series of related problems
it also may be convenient to ignore specified constraints or bounds. With this generality
in mind, denote the set of indices of subscripts corresponding to nonignored or included
equality constraints by E and the subset of constraints themselves by

aE = aE (x)= aE .

Denote the set of indices for included inequality constraints by I and the inequality con-
straints by

aI ≤ aI (x)≤ aI .
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Similarly, denote the subset of the nFX simple bounds that are not ignored and that fix
variables as

xF = xF = xF
and the subset of included simple bounds on the nF free variables as

xA ≤ xA ≤ xA.

The relevant dimensions of the problem, as they may appear later, are

n total number of variables
nFX number of fixed variables
nF number of free variables, also the number of included inequality simple

bounds
mC total number of nonlinear constraints
mE number of included equality constraints
mI number of included inequality constraints
mB total number of simple bounds

Note that the dimensions as seen by the external format are always denoted in a sans
serif font. In contrast, dimensions (and variables) of the problem transformed to internal
form will be given in a conventional mathematics font.

2.11.2 Internal Format

The external problem format is converted to an internal form that is more convenient for
algorithm description. The transformation to internal form includes the following steps.

• Eliminate all constraints marked as ignored or having infinite bounds on both sides.
(Further transformations take place only on constraints that are really part of the
problem.)

• Eliminate all fixed variables. Only the free variables x = xA appear explicitly.

• Introduce one slack variable for each nonlinear inequality constraint to transform the
inequality constraint into an equality constraint. Thus the inequality constraint

ak ≤ ak(x)≤ ak

is replaced by a nonlinear equality constraint

ck(x)≡ ak(x)− sk = 0,

and the simple bound
ak ≤ sk ≤ ak .

There are mI slack variables, which we denote by s.

• Replace two-sided bounds by one-sided bounds. In doing so, eliminate one-sided
bounds when the limit is ±∞. The naming convention for the bounds that are not
eliminated is as follows. Denote by B1 the subset of indices corresponding to the
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nF inequality simple bounds when a finite lower bound is given. The similar subset
when a finite upper bound appears is B2. The corresponding subsets of the bounds
on slack variables (or of the nonlinear inequality constraints) are B3 and B4. Each
slack variable appears in one or two one-sided simple bounds.

• Modify the form of the problem so that all bounds are simple positivity bounds.

The NLP transformed to internal format is as follows:

Minimize the function

F(y)≡ F(x) (2.73)

of the n = nF+mI variables

y≡
(

x
s

)
(2.74)

subject to the m E =mE+mI nonlinear equality constraints

c(y)≡
(

aE (x)−aE
aI (x)− s

)
= 0 (2.75)

and the m B linear bounds

b(y)≡


(
x−xA

)
B1(

xA−x
)
B2(

s−aI
)
B3(

aI − s
)
B4

≥ 0. (2.76)

The relevant dimensions of the problem in the internal format are:

n ≡ nF+mI total number of internal variables
m E ≡mE+mI number of nonlinear equality constraints
m B ≡ |B1|+ |B2|+ |B3|+ |B4| number of simple positivity bounds

There are a number of features of the transformed problem (2.73)–(2.76) that deserve
comment in light of the developments to follow. Observe that the equality constraints (2.75)
may be nonlinear functions of the variables y, whereas the inequality constraints (2.76) are
strictly linear functions of y. This property makes it straightforward to construct an initial
guess y(0) that is strictly feasible with respect to the inequalities b(y(0)) > 0. Furthermore,
the method to be described constructs iterates that maintain feasibility b(y(k)) > 0 for all
k. However, this also implies that the original (external format) inequalities (2.71) may not
be strictly feasible until a solution is found. Consequently, let us refer to the approach as
an infeasible barrier method. With the problem transformed to the internal format (2.73)–
(2.76) let us now proceed to develop the details of the interior-point algorithm.
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2.11.3 Definitions

The Lagrangian for the internal format NLP is defined as

L(y,η,λ)= F(y)−ηTc(y)−λTb(y), (2.77)

where η is the m E -vector of Lagrange multipliers corresponding to the equality constraints,
and λ is the m B-vector of Lagrange multipliers corresponding to the inequality (bound)
constraints. The gradient of the Lagrangian is given by

∇y L(y,η,λ)= g−CTη−BTλ, (2.78)

where the gradient of the objective is just

g=∇y F(y)=
(∇x F(x)

0

)
, (2.79)

and the mE ×n Jacobian of equalities is

C≡
(

AE 0
AI −I

)
, (2.80)

with the m B ×n Jacobian of the bounds given by

B≡
 IB1 0
−IB2 0

0 IB3

0 −IB4

 . (2.81)

The matrices IB2 , IB4 , IB1 , and IB3 are rectangular submatrices of an identity matrix, each
row having a single nonzero entry of 1.

The Hessian of the Lagrangian is given by

∇2
yy L(y,η,λ)= ∇2

yy F(y)−
mE∑
k=1

ηk∇2
yyck(y)−

m B∑
k=1

λk∇2
yybk(y) (2.82)

= ∇2
yy F(y)−

mE∑
k=1

ηk∇2
yyck(y) (2.83)

=
(

HL 0
0 0

)
, (2.84)

where

HL ≡∇2
x x F(x)−

mE∑
k=1

ηk∇2
x xck(x). (2.85)

When the projected Hessian is not positive definite consider a modified Hessian matrix that
is defined as

W=
(

H 0
0 0

)
=
(

HL + τ (|σ |+1)I 0
0 0

)
, (2.86)
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where 0 ≤ τ ≤ 1 is a Levenberg parameter and σ is the Gerschgorin bound for the most
negative eigenvalue of HL .

Let us denote the solution to (2.73)–(2.76) by (y∗,η∗,λ∗). The solution is character-
ized by the following:

1. Feasibility. c(y∗)= 0 and b(y∗)≥ 0.

2. Constraint Qualification. The gradients of all constraints active at y∗ are linearly in-
dependent.

3. First Order KKT Condition. The point (y∗,η∗,λ∗) is a stationary point of the La-
grangian, i.e., ∇y L = 0, which means

g−CTη−BTλ= 0 (2.87)

and

λ∗k ≥ 0, λkbk = 0 (2.88)

for k = 1, . . . ,m B .

4. Strict Complementarity. λ∗k > 0 if bk = 0 for k = 1, . . . ,m B .

5. Second Order KKT Condition. The projected Hessian of the Lagrangian ZTW∗Z is
positive definite, where Z is a basis for the null space of the Jacobian of the con-
straints that are equal to zero at y∗, and W∗ ≡W(y∗,η∗,λ∗).

2.11.4 Logarithmic Barrier Function

The interior-point approach is based on the definition of the logarithmic barrier function

β(y,µ)= F(y)−µ

m B∑
k=1

lnbk(y), (2.89)

where µ is called the barrier parameter. Fiacco and McCormick [79] showed that the
original constrained problem (2.73)–(2.76) could be replaced by a sequence of problems for
successively smaller values of the barrier parameterµ. A classical primal-barrier approach
would solve a sequence of equality constrained problems, namely minimize

β(y,µ) (2.90)

subject to the equalities
c(y)= 0. (2.91)

The necessary optimality conditions for the barrier subproblem (2.90)–(2.91) can be stated
in terms of the barrier Lagrangian

Lβ (y,ηµ,µ)= β(y,µ)−ηT
µc(y). (2.92)



78 Chapter 2. Large, Sparse Nonlinear Programming

The gradient of the barrier Lagrangian is given by

∇y Lβ =∇yβ−CTηµ (2.93)

= g−µBTD−1
b e−CTηµ (2.94)

= g−BTπb−CTηµ, (2.95)

where Db is a diagonal matrix

Db = Diag(b1,b2, . . . ,bmB ), (2.96)

and e is a vector of ones. Observe that the components of the vector

πb = µD−1
b e (2.97)

are just (πb)k = µ/bk .
The classical approach is to solve a sequence of equality constrained problems (2.90)–

(2.91) for successively smaller barrier parameters µ. Ill-conditioning in the solution pro-
cess is reduced by solving a sequence of problems rather than just beginning with a small
value for µ as illustrated in the example (1.116). Let us denote the local minimizer by yµ.
Then it follows that the necessary conditions∇y Lβ = 0 and ∇ηLβ = 0 are just

g−BTπb−CTηµ = 0, (2.98)

c(yµ)= 0. (2.99)

Furthermore, it can be shown that

lim
µ→0

yµ = y∗, (2.100)

lim
µ→0

ηµ = η∗, (2.101)

lim
µ→0

πb = λ∗, (2.102)

where (y∗,η∗,λ∗) is the solution of the original inequality-constrained problem (2.73)–
(2.76). This limiting behavior can be exploited to form a modified set of necessary condi-
tions for the unknown quantities (y,η,λ). In particular if we treat (yµ,ηµ,πb) as estimates
for the true values (y∗,η∗,λ∗) and explicitly include the condition (2.102), we obtain the
modified primal-dual necessary conditions

�µ ≡
g−CTη−BTλ

c
Db(λ−πb)

= 0. (2.103)

The conditions in the last row of (2.103) often written as

bk(y)λk −µ= 0 (2.104)

for k = 1, . . . ,m B are referred to as the “centering” or “approximate complementarity”
conditions, since as µ→ 0, the centering condition (2.104) approaches the complemen-
tarity condition bk(y)λk = 0. Like other primal-dual methods (e.g., [173], [88], [87]), this
condition is explicitly included here in contrast to a classical approach based solely on
(2.98)–(2.99).
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2.11.5 Computing a Search Direction

The equations (2.103) form a nonlinear system of equations�µ= 0 in the variables (y,η,λ).
A Taylor series expansion about the current point leads to the Newton equations for the
modified primal-dual necessary conditions

W�y−CT�η−BT�λ=−(g−CTη−BTλ); (2.105)

∇cT
k (y)�y=−ck(y), k = 1, . . . ,mE ; (2.106)

λk∇bT
k (y)�y+bk(y)�λk =−(bk(y)λk−µ), k = 1, . . . ,m B , (2.107)

where W is the Hessian matrix defined by (2.86). Rewriting these equations yields the
following unsymmetric primal-dual KKT system: W CT BT

C 0 0
DλB 0 −Db

 �y
−�η

−�λ

=−
g−CTη−BTλ

c
Db (λ−πb)

 , (2.108)

where Dλ = Diag(λ1,λ2, . . . ,λm B ).
In principle the unsymmetric system (2.108) can be solved for the Newton step; how-

ever, for large, sparse linear systems it may be preferable to solve a KKT system that is
scaled so that it is symmetric. Here consider using both row and column scaling. Let us
apply scaling only to the third block row and the third block column of (2.108). Scale
the rows of the coefficient matrix by the diagonal matrix Dr = Diag(r1,r2, . . . ,rm B ). Scale
the columns (or the variables) by the diagonal matrix Dv = Diag(v1,v2, . . . ,vmB ). Thus
application of the scaling matrices to (2.108) yieldsI 0 0

0 I 0
0 0 Dr

 W CT BT

C 0 0
DλB 0 −Db

I 0 0
0 I 0
0 0 Dv

I 0 0
0 I 0
0 0 D−1

v

 �y
−�η

−�λ


=−

I 0 0
0 I 0
0 0 Dr

g−CTη−BTλ

c
Db(λ−πb)

 . (2.109)

Multiplying (2.109) through by the scaling matrices gives the symmetric primal-dual
KKT system W CT BTDv

C 0 0
Dr DλB 0 −Dr DbDv

 �y
−�η

−D−1
v �λ

=−
g−CTη−BTλ

c
Dr Db(λ−πb)

 . (2.110)

There are a number of possible ways to choose the matrices Dr and Dv such that the
resulting KKT system is symmetric. In order to achieve symmetry of the KKT system we
must have Dv = Dr Dλ, implying that

rkλk = vk (2.111)

for k = 1, . . . ,m B . Here consider three choices of diagonal entries for Dr and Dv that
satisfy (2.111). One alternative is to choose{

rk = 1
λk

,
vk = 1,

(2.112)
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which leads to

BT
k�y− bk(y)

λk
(−�λk)=−bk(y)

λk
(λ−πb)k . (2.113)

Note that the lower-right diagonal block entry of the KKT matrix is bk (y)
λk

. Unfortunately,
for inactive inequality constraints λk → 0, leading to an entry that becomes infinite. A
second alternative is {

rk = 1,
vk = λk ,

(2.114)

which leads to

λkBT
k�y−bk(y)λk

(
−�λk

λk

)
=−bk(y)(λ−πb)k . (2.115)

In this case, the lower-right diagonal block entry is bk (y)λk and the lower left block entry
is λkBT

k . This situation may also cause difficulties for inactive inequalities, since both of
the above entries approach zero as µ→ 0. Finally, consider{

rk = 1√
λk

,

vk =√λk ,
(2.116)

which leads to √
λkBT

k�y−bk(y)

(
−�λk√

λk

)
=−bk(y)√

λk
(λ−πb)k . (2.117)

In this case, the lower-right diagonal block entry is bk(y), which should be well behaved. It
is for this reason that (2.116) is the preferred scaling technique.

Further simplification is possible by choosing the row and column scaling matrices
Dv =Dr = I. By eliminating �λ from (2.108) one obtains the condensed primal-dual KKT
system (

W+BTDb
−1DλB CT

C 0

)(
�y
−�η

)
=−

(
g−CTη−BTπb

c

)
, (2.118)

where
�λ=−Db

−1DλB�y−λ+πb. (2.119)

A Newton iteration requires solving either the linear system (2.110) or (2.118) for
the search direction (�y,�η,�λ). These sparse symmetric indefinite linear systems can
be solved efficiently using the same multifrontal algorithm [4] described in Section 2.3.
This technique also provides the inertia of the system (2.110) given as a triple defining the
number of positive, negative, and zero eigenvalues, respectively. It can be shown that if

In(K)= (n,m,0), (2.120)

where K is the matrix on the left-hand side of (2.110), then the projected Hessian matrix
ZTWZ is positive definite as required by the necessary conditions. The Levenberg param-
eter τ in (2.86) can be adjusted to obtain the correct inertia using the procedure described
in Section 2.5 and [17]. This creates a well-defined subproblem for the NLP. It is shown in



2.11. Barrier Algorithm 81

the next section that the above inertia requirements on the barrier method KKT matrix are
consistent with the optimality requirements for the original problem.

The search direction computed is a linear prediction for the nonlinear behavior, and
as such may not satisfy the inequality constraints b(y) ≥ 0 and λ ≥ 0. However, both of
these conditions are linear functions of the variables, and consequently we can modify the
length of the step such that these conditions are met. Specifically, using a linear estimate
for the boundary, i.e., b(y)= 0, the steplength is given by

σy =min
k

[
−bk(y)

∇bT
k (y)�y

]
, (2.121)

where the minimization is over all constraints in the downhill direction, that is, for all k
such that bT

k (y)�y< 0. In a similar fashion the length of the step in the multipliers must be
changed so that λ≥ 0. Again, making a linear estimate for the boundary at λ= 0 one finds

σλ =min
k

[−λk

�λk

]
(2.122)

for all k such that �λk < 0. Now, a full length step as defined by the scalars σy and σλ
corresponds to a move to the boundary of the feasible region. In order to maintain strict
feasibility it is necessary to take some fraction of this step. Following the approach in Gay,
Overton, and Wright [88] let us define a fraction of the full step according to

ϕ = 1−min(.01,100µ2). (2.123)

Thus, a “pad” has been introduced that ensures all subproblem iterates remain strictly fea-
sible. Note that because the format of the problem has only linear inequalities this com-
putation is particularly simple. In contrast, a formulation that permits nonlinear inequality
constraints to appear directly in the barrier function would require a more complex line-
search procedure to guarantee the nonlinear constraints remain feasible.

In keeping with most primal-dual methods [173], we attempt to use different step-
lengths in the primal variables y and the dual variables η and λ. Specifically, consider a
correction of the form y

η

λ

=
y
η

λ

+α

 �y
γ�η

γ�λ

 . (2.124)

Different primal and dual step scaling is defined by setting α = α̂, where

α̂ =min(1,ϕσy), (2.125)

γ = 1

α̂
min(1,ϕσλ). (2.126)

The primal and dual steps have the same scaling when

α = α̃ =min(1,ϕσy ,ϕσλ), (2.127)

with γ = 1, and in this case the step is just a multiple of the Newton step. Clearly it is de-
sirable to take a Newton step when converging to a solution. Furthermore a scalar multiple
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of the Newton step must provide local improvement on the KKT conditions. On the other
hand computational experience suggests using different primal-dual scaling may improve
efficiency. Consequently we first try to use the scaled primal-dual step. If an acceptable
point is obtained with α(0) = α̂ and γ �= 1, it is accepted. If the point is not accepted, we
force the same scaling by setting α(0) = α̃ with γ = 1 and then choose subsequent steps so
that α(k) ≤ α̂ based on some globalization strategy.

2.11.6 Inertia Requirements for the Barrier KKT System

Using terminology from an active set method, one can show that the barrier algorithm
asymptotically requires the Hessian positive definiteness properties indicated by optimality
theory. The analysis also provides some insight into the workings of the interior-point
method.

First, consider an active set method. When an active set SQP method solves a QP
subproblem, inequalities go in and out of the active set (and the KKT matrix) until the
correct active set, say

Â≡
(

AE
ÂI

)
, (2.128)

is identified. We know that optimality conditions require only that the projected Hessian
ZTHZ be positive definite, where Z is a basis for the null space of Â, and H is the modified
Hessian of the Lagrangian with respect to the original problem variables. Note that the
Hessian may need to be modified as in [32] even when ZTHZ is positive definite. This is
because the initial active set may result in a projected Hessian that extends outside ZTHZ.

Now, consider an interior-point algorithm. The questions under consideration are the
following:

• How does the KKT system change from one iteration to the next?

• Asymptotically, what ensures that the interior-point method does not require more
than ZTHZ to be positive definite?

Note that the only part of the interior-point KKT matrix in (2.118) that changes during
the iterations is the BTDb

−1DλB portion of the Hessian. The hope is that it changes in a way
such that only ZTHZ need be positive definite near a solution. In (2.118), the matrix M ≡
W+BTDb

−1DλB becomes the Hessian of the barrier Lagrangian∇2
yyβ =W+µBTDb

−2B
when bk(y)λk = µ, k = 1, . . . ,m B . Also, the upper block of the right-hand-side vector in
(2.118) becomes the gradient of the barrier Lagrangian (2.95) when bk(y)λk = µ, k =
1, . . . ,m B .

Consider the positive definiteness requirements for M that are imposed by the interior-
point method. The inertia requirements for the interior-point KKT system imply that
NTMN is positive definite, where N is the null space of the C matrix in (2.118). For
any

y≡
(

x
s

)
,

we have
yT(W+BTDb

−1DλB)y= xTHx+ sT(BTDb
−1DλB)s . (2.129)
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Suppose y is a vector in the null space N. Then, from the definition of C we have

s= AIx . (2.130)

Now, positive definiteness requirements for the interior-point method can be exam-
ined by considering the two types of vectors y that can be in the null space N. First, assume
that x belongs to Z, the null space of Â. In this case, the optimality conditions ensure
that xTHx > 0. Since the entries in Db and Dλ are positive, the second term in (2.129) is
nonnegative. Thus, the right-hand side of (2.129) is positive and these null space vectors
follow the optimality theory.

Next, suppose that y ∈ N but x does not belong to Z. Since y ∈ N, we must have
AEx = 0 and ŝ = ÂIx �= 0. The definition of B, combined with λ̂ > 0, b̂(y) → 0, and
ŝ �= 0, ensures that the second term in (2.129) will become more positive than any negative
value for xTHx. Thus, the Hessian positive definiteness requirements for the interior-point
method asymptotically match those for the QP theory.

2.11.7 Filter Globalization

The role of a globalization strategy within the context of a line-search method is essentially
to decide whether to accept or reject a particular step. Presumably, the point (y,η,λ) defined
by (2.124) should be accepted if something “good” happens, and otherwise rejected. Many
approaches have been proposed for the step acceptance criteria. One obvious technique is
to monitor the error in the KKT conditions, i.e., the right-hand side of (2.108)

‖�µ‖ ≡
∥∥∥∥∥∥

g−CTη−BTλ

c
Db(λ−πb)

∥∥∥∥∥∥∞ . (2.131)

Unfortunately, it is well known that reducing ‖�µ‖ does not necessarily correspond to find-
ing a minimizer of β(y,µ). Gay, Overton, and Wright [88] define an augmented Lagrangian
merit function corresponding to the equality constrained barrier subproblem (2.90)–(2.91),
and use a “watchdog” technique to force descent while monitoring ‖�µ‖. Forsgren and
Gill [87] propose an alternate merit function. However, both of these techniques require
the computation of penalty weights, a task that can prove to be problematic. Instead let us
consider use of a filter (cf. Section 1.11.4) as an alternative to constructing a merit function.
We apply the nonlinear filter as a globalization strategy for the equality constrained barrier
subproblem. In particular, for fixed µ we would like to do the following:

Minimize

β(y,µ)= F(y)−µ

m B∑
k=1

lnbk(y) (2.132)

and minimize ∥∥∥∥ c(y)
Db(λ−πb)

∥∥∥∥∞ . (2.133)

Denote the values of the objective and constraint violation at the point (y(k),λ(k)) by{
β (k),v(k)

}
≡
{
β(y(k),µ),

∥∥∥∥ c(y(k))
Db(λ(k)−πb)

∥∥∥∥∞
}

. (2.134)
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When comparing the information at two different points (y(k),λ(k)) and (y( j ),λ( j )), a pair{
β (k),v(k)

}
is said to dominate another pair

{
β ( j ),v( j )

}
if and only if both β(k) ≤ β( j ) and

v(k) ≤ v( j ). Using this definition we can then define a filter as a list of pairs

F =


β(1),v(1)

β(2),v(2)

...
β (K ),v(K )

 (2.135)

such that no pair dominates any other. A new point
{
β(�),v(�)

}
is said to be acceptable

for inclusion in the filter if it is not dominated by any point in the filter. Conversely, if a
new point

{
β(�),v(�)

}
is dominated by any point in the filter, it is not acceptable. Thus, if a

trial point produces an improvement in either the objective or the constraint violation over
previous iterates, it is accepted. In keeping with [84], two special entries are included in
the filter corresponding to the “northwest” and the “southeast” corners. For the northwest
corner, the filter includes {βN W ,0}, where βN W is a liberal estimate for the upper bound
on the objective function. At the southeast corner, an entry {−∞,cmax} is included, where
cmax is an upper bound on the absolute constraint violation. An estimate for cmax must
be specified by the user, and may be reduced if necessary to ensure convergence of the
algorithm. It is important to note that the filter globalization strategy is used within a
single barrier subproblem. When the barrier parameter is changed, the filter is restarted.
Consequently, we are comparing only iterates with the same value for the barrier parameter.

We would like to choose the steplength α(k) such that the new point given by (2.124)
is “acceptable” to the filter. If the point is accepted, the information is used to augment
the filter for subsequent iterations. If the point is not accepted, we utilize a special line-
search strategy that forces step contraction, i.e., α(k) < α(k−1), in order to find a point that
is acceptable for inclusion in the filter. This step contraction is utilized only when the
primal-dual step scaling is equal, i.e., γ = 1 in (2.124).

In contrast to a traditional line search, a filter has two different quantities that deter-
mine acceptance. Consequently, we compute two different estimates for the steplength—
one chosen to reduce the objective, and one chosen to reduce the constraint error. Since
∇yβ = g−BTπb, the slope of the barrier function evaluated at α = 0 is

β ′0 = (�y)T∇yβ = gT�y− (B�y)Tπb. (2.136)

Let us assume that the current iterate ᾱ ≡ α(k) has been rejected by the filter. Three pieces
of information are available: the function and slope at α = 0 and the function value at ᾱ.
For a standard merit function, it is common to estimate the new step as the minimizer of a
polynomial model that interpolates the known information. However, Murray and Wright
[136] suggest a model of the following form:

q(α)= a+bα+ cα2−µ ln(d−α), (2.137)

where the constant d defines the location of the known singularity in the objective. Clearly,
one can choose d = σy from (2.121) and then compute the remaining coefficients a,b,c
so the quadratic log barrier model (2.137) interpolates the known data. Thus, by requiring
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q(0)= β(0)= β0, q(ᾱ)= β(ᾱ)= β̄, and q ′(0)= β ′0, one obtains

a = β0+µ ln(d); (2.138)

b = β ′0−µ/d; (2.139)

c = 1

ᾱ2

[
β̄−a−bᾱ+µ ln(d− ᾱ)

]
. (2.140)

From this information, the minimizer of the quadratic log barrier model (2.137) is

α∗q =


1
4c

[
2cd−b−√(b+2cd)2+8µc

]
if c �= 0 and β ′0 < 0,

d+ µ
b if c = 0 and β ′0 < 0,

0 if β ′0 > 0.

(2.141)

As a second alternative, we would like to choose a steplength to reduce the constraint
violation (2.133). For simplicity in constructing the steplength, let us model the violation
by

φ(α)= 1

2

[
cTc+ (Db(λ−πb))T(Db(λ−πb))

]
. (2.142)

The behavior by a quadratic model can be approximated by

q(α)= a+bα+ cα2 (2.143)

and the model coefficients can be computed to interpolate the function and slope at α = 0
as well as the function value at ᾱ. After simplification one finds that the step that minimizes
the constraint violation is

α∗v =
ᾱ2φ0[

φ̄−φ0+2ᾱφ0
] . (2.144)

As with any line search it is necessary to introduce some heuristics that safeguard the
procedure. The basic goal is to choose the largest step when both models predict a step,
use one of the models if possible, and resort to bisection otherwise. This philosophy can
be implemented as follows:

α∗ =


max

[
α∗v ,α∗q ,κ2ᾱ

]
if 0 < α∗v < κ1ᾱ and 0 < α∗q < κ1ᾱ,

max
[
α∗v ,κ2ᾱ

]
if 0 < α∗v < κ1ᾱ and 0= α∗q or α∗q > κ1ᾱ ,

max
[
α∗q ,κ2ᾱ

]
if 0 < α∗q < κ1ᾱ and 0= α∗v or α∗v > κ1ᾱ ,

max
[
ᾱ/2,κ2ᾱ

]
otherwise.

(2.145)

Typically, we choose the constants κ1 = .99 and κ2 = 1
10 . The computed value α∗ from

(2.145) provides an estimate for the steplength α(k) in (2.124) which will construct a strictly
contracting sequence until finding a point that is acceptable to the filter. Computational
experience suggests that the line search seldom requires more than one or two steps.

It should be noted that the approximate complementarity equations (2.104) appear in
the filter. The solution of (2.108) is guaranteed to have the properties of a solution to the
barrier KKT system only if the approximate complementarity equations are satisfied. Thus,
filter convergence theory [83] can be relied on only when (2.104) is satisfied.
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2.11.8 Barrier Parameter Update Strategy

An important practical matter when implementing a barrier method is the choice for the
barrier parameter µ. Clearly, µ must converge to zero, in order that yµ→ y∗. Typical early
implementations of interior-point methods, as described in Fiacco and McCormick [79],
calculate the solution to the barrier subproblem very accurately. Recent computational
experience suggests that not only is this unnecessary, but it is computationally expensive.
Instead, the preferred technique is to simply get “close” to the central path and then reduce
the barrier parameter. Obviously, some quantitative definition of “close” is required, and
we have adopted the approach in Gay, Overton, and Wright [88]. Specifically, we will
consider a point “close” to the central path if

‖�µ‖< min[κµ,εc] , (2.146)

where (2.131) defines the error in the KKT conditions, and εc is a user-specified central
path tolerance. Typically, εc = κ = 10. We will use this relation to decide when the barrier
parameter should be reduced.

Let us now describe the procedure for updating the barrier parameter estimate. The
following test is applied after completing every step and is essentially a modified version
of the procedure described in [88] for computing the new barrier parameter µ̂:

if (α ≥ .1) and ‖�µ‖< min[κµ,εc] then

µ̂=
{

10µ2 if µ < 10−4,
µ/10 if µ ≥ 10−4,

(2.147)

elseif µ unchanged for Nu iterations

µ̂= .9µ. (2.148)

The philosophy of the procedure is to aggressively reduce the barrier parameter when
it appears promising to do so, based on the observed behavior of the KKT error ‖�µ‖.
Conversely, if it appears that progress is slow and the barrier parameter is unchanged after
Nu iterations, a modest reduction is made. Typically, we use Nu = 10 and εc = κ = 10.

2.11.9 Initialization

A fundamental property of the barrier algorithm is that the sequence of iterates remain
strictly feasible with respect to the bounds (2.76) and inequalities λ ≥ 0, as required by
(2.88). In this section, we describe how to initialize the interior-point method. The primal
variables y are simply reset to lie strictly within their bounds as a part of the transformation
to internal format (2.74). However, in general, good values for the dual variables (η,λ) and
the related barrier parameter µ are not available. There are a number of possibilities and
we suggest three options.

Option 1. Suppose values for y and µ are known and the corresponding gradient
information is also available. In this case, we can choose to use the central path estimate

λ= µD−1
b e (2.149)
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and then compute estimates η̃ for the multipliers η to minimize the error in the KKT con-
ditions (2.87), i.e., minimize

‖g−CTη̃−BTλ‖ = ‖CTη̃− (g−µBTD−1
b e)‖. (2.150)

This is an overdetermined linear least squares problem. Since b> 0, it is clear from (2.149)
that λ> 0 (provided µ > 0). On the other hand, we cannot expect that λ is a good approx-
imation to the optimal multipliers λ∗ unless y is “near” the central path.

Option 2. A second possible approach is to use the central path estimate (2.149) for
λ and the gradient information at y and then compute estimates µ̃ and η̃ to minimize

‖g−CTη̃−BTλ‖ =
∥∥∥∥(CT BTD−1

b e
)(η̃

µ̃

)
−g

∥∥∥∥ . (2.151)

Unfortunately, the value of µ̃ that solves this linear least squares problem may not be
positive. So, if the computed estimate µ̃ < µL , where µL = max(µ�,‖c‖∞/κ̄) for a user-
specified value µ�, we set µ=µL and recompute using Option 1. The constant κ̄ is chosen
slightly larger than κ (say κ̄ = 11).

Option 3. The third possibility is to compute estimates µ̃, η̃, and λ̃ to minimize∥∥∥∥g−CTη̃−BTλ̃

Dbλ̃− µ̃e

∥∥∥∥=
∥∥∥∥∥∥
(

CT BT 0
0 Db −e

) η̃λ̃
µ̃

−(g
0

)∥∥∥∥∥∥ . (2.152)

As with Option 2, if the computed solution µ̃ < µL , where µL = max(µ�,‖c‖∞/κ̄), then
we set µ = µL and recompute using Option 1. Otherwise, we use µ̃ and simply truncate
the multipliers λk =max(εm , λ̃k), where εm is machine precision, to ensure they are strictly
positive.

All three initialization options require the solution of a sparse linear least squares
problem. The multifrontal algorithm [4] used for solving the KKT system can also be used
to construct the minimum norm solution of the linear least squares problem

‖Ax−b‖. (2.153)

Since the multifrontal method performs a symmetric factorization, if we assume A is full
rank, then we can solve (

I AT

A 0

)(
x
−r

)
=
(

0
b

)
(2.154)

in the underdetermined case and (
I A

AT 0

)(
r
x

)
=
(

b
0

)
(2.155)

when the system is overdetermined.

2.11.10 Outline of the Primary Algorithm

The preceding sections described the main features of the interior-point algorithm. Let us
now outline the main algorithmic operations. The primary algorithm proceeds as follows:
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1. Initialization: Compute external to internal transformation; (2.73)–(2.76), define
sparsity of B, C, W, permutations, etc. Evaluate function and gradient information
at the initial point.

2. Multiplier and Barrier Parameter Initialization: Compute initial values for η, λ,
and µ using (2.150), (2.151), or (2.152).

3. Gradient Evaluation and Convergence Tests: Evaluate gradients and then check
error in KKT conditions (2.131). Terminate if ‖�µ‖ ≤ ε and µ≤ ε for a tolerance ε
(go to step 9).

4. Step Calculations:

(a) Compute log-barrier function. Initialize filter if necessary.

(b) Iteration print. Hessian evaluation.

(c) Levenberg modification.

(d) Barrier parameter update using (2.147) or (2.148). Restart filter when µ changes.

(e) Multiplier reset. If ‖η‖∞ is too large, then recompute multipliers using (2.151),
and, if this fails, using (2.150). If they are still too large, terminate (go to step
9).

5. Search Direction: Solve the KKT system (2.110) or (2.118) and (2.119) and modify
the Hessian (2.86) by adjusting the Levenberg parameter if necessary.

6. Step Calculations: Compute the step scaling (2.121), (2.122), and (2.123).

7. Line Search:

(a) Compute predicted point (2.124) and then evaluate functions and log-barrier
function.

(b) Check point against filter—if acceptable, then update filter (2.135) and go on;
otherwise reduce α using (2.145) and repeat.

8. Update Information: Set y← y, η← η, and λ← λ, etc. Return to step 3.

9. Barrier Algorithm Termination.

2.11.11 Computational Experience

First, let us revisit the Powell example (1.116) introduced previously. Figure 2.2 illustrates
the example for m = 20 with εc = 10−2. Notice that the central path is a vertical line in the
x1x2-space. For the sake of illustration a number of points on the central path have been
computed accurately, that is, by accurately solving the equality constrained subproblem,
and the results are summarized in Table 2.3. Observe that as µ→ 0 the computed values
approach a solution at (0,−1) more and more accurately.

The iteration history followed by the interior-point algorithm is presented in Table 2.4
and is shown in Figure 2.2. Note that 12 iterations were required to compute the solution.
If the number of constraints in this simple example are increased, it can be used to illustrate
another important aspect of interior-point methods. Table 2.5 presents a comparison of the
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Figure 2.2. Interior-point algorithm behavior.

Table 2.3. Central path.

µ x1 x2

1 .443143×10−16 −.992604×10−1

10−1 −.326292×10−10 −.658967

10−2 −.687390×10−9 −.983966

10−3 −.159620×10−11 −.998951

10−4 .865020×10−6 −.999900

10−5 .353902×10−5 −.999990

10−6 .220346×10−3 −.999999

interior-point method with the sparse SQP method presented in Section 2.6, which employs
an active set strategy. In particular, we present the number of iterations needed to obtain
a solution for three different sized problems. Observe that the number of iterations grows
substantially for the active set method, whereas the barrier method computes the solution
in nearly the same number of iterations.
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Table 2.4. Interior-point iteration history.

x1 x2 ‖�µ‖ µ

.800000 .500000 .441090 10−1

.817167 .294690 .200266 10−1

.717009 −.333391 .113042 10−1

.275835 −.763470 9.703972×10−2 10−1

.299099×10−1 −.659337 5.747828×10−2 10−1

−.350958×10−2 −.658608 9.259092×10−2 10−2

−.254854×10−2 −.942010 2.195237×10−2 10−2

−.496161×10−3 −.999420 1.244132×10−2 10−3

−.468141×10−3 −.998461 1.379102×10−3 10−4

−.406328×10−3 −.999949 1.096671×10−4 10−5

−.370598×10−3 −.999990 1.011066×10−5 10−9

−.370515×10−3 −1.00000 1.925492×10−9 10−9

Table 2.5. Iteration comparison.

Constraints Barrier Iterations QP Iterations

20 12 11

200 12 65

2000 13 593

One final observation with regard to barrier methods is illustrated by this simple
example. At the solution the limiting constraint (1.116) takes the form

x1 cos
(π

2

)
+ x2 sin

(π
2

)
= x2 ≥−1. (2.156)

Observe from Figure 2.2 that when x2 = −1, there are many points on the limiting con-
straint with the same value for the objective function. In other words, for this exam-
ple, the optimal solution point is not unique, even though the optimal objective value
is. An active set method such as the simplex algorithm would compute a solution with
two active constraints, whereas the optimal solution computed by the barrier algorithm at
(−.370515× 10−3,−1) has only one limiting constraint. Thus, the barrier method which
does not utilize an active set has computed a solution on the optimal facet, whereas an
active-set method would compute a solution that is at a vertex.



Chapter 3

Optimal Control Preliminaries

3.1 The Transcription Method
The preceding chapters focus on methods for solving NLP problems. In the remainder of
the book, we turn our attention to the optimal control problem. An NLP problem is charac-
terized by a finite set of variables x and constraints c. In contrast, optimal control problems
can involve continuous functions such as y(t) and u(t). It will be convenient to view the op-
timal control problem as an infinite-dimensional extension of an NLP problem. However,
practical methods for solving optimal control problems require Newton-based iterations
with a finite set of variables and constraints. This goal can be achieved by transcribing or
converting the infinite-dimensional problem into a finite-dimensional approximation.

Thus, the transcription method has three fundamental steps:

1. convert the dynamic system into a problem with a finite set of variables; then

2. solve the finite-dimensional problem using a parameter optimization method (i.e.,
the NLP subproblem); and then

3. assess the accuracy of the finite-dimensional approximation and if necessary repeat
the transcription and optimization steps.

We will begin the discussion by focusing on the first step in the process, namely identifying
the NLP variables, constraints, and objective function for common applications. In simple
terms, we will focus on how to convert an optimal control problem into an NLP problem.

3.2 Dynamic Systems
A dynamic system is usually characterized mathematically by a set of ordinary differential
equations (ODEs). Specifically, the dynamics are described for tI ≤ t ≤ tF by a system of
ny ODEs

91
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ẏ=


ẏ1
ẏ2
...

ẏny

=


f1[y1(t), . . . , yny (t), t]
f2[y1(t), . . . , yny (t), t]

...
fny [y1(t), . . . , yny (t), t]

= f[y(t), t]. (3.1)

For many applications, the variable t is time and it is common to associate the independent
variable with a time scale. Of course, mathematically there is no need to make such an as-
sumption and it is perfectly reasonable to define the independent variable in any meaningful
way. The system (3.1) is referred to as an explicit first order ODE system.

Example 3.1 ODE EXAMPLE. Consider the following simple system of differential
equations:

ẏ1 = y2, (3.2)

ẏ2 =−y1 (3.3)

defined on the region 0 ≤ t ≤ tF . It is easy to verify that this system of two first order
differential equations is equivalent to the single second order system p̈(t)+ p(t) = 0 by
identifying p(t)= y1(t). Now the solution to this system is

y1(t)= α sin(t+β), (3.4)

y2(t)= α cos(t+β), (3.5)

where α and β are arbitrary constants. Since there are two arbitrary constants one can
impose two side conditions, but how we do this determines the nature of the ODE.

First, suppose the side conditions are imposed at the initial time

y1(0)= c1, y2(0)= c2, (3.6)

where c1 and c2 are specified constants. Then from (3.4)–(3.5)

c1 = α sinβ, (3.7)

c2 = α cosβ, (3.8)

which defines the values for β = tan−1 c1
c2

and α = c1/sinβ. The solution is unique for all
values of c1 and c2, and this is referred to as an initial value problem (IVP) because the
side conditions are imposed at the initial time. In general for an IVP, one is given a set of
initial values for the dependent variables y(tI ), called the initial conditions, and one must
determine the values at some other point tF .

In contrast, for the boundary value problem, one must determine the dependent vari-
ables such that they have specified values at two or more points, say tI and tF . The con-
ditions that define the dependent variables are called boundary conditions. So instead of
(3.6), suppose the side conditions are imposed at both the initial and final times

y1(0)= c1, y1(tF )= c2. (3.9)

If we choose tF = π and c1 = 0, then from (3.4) we must have

y1(0)= α sin(β)= 0, (3.10)

y1(π)= α sin(π+β)= c2. (3.11)
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But sin(β)=−sin(π+β), which leads to the conditions

α sinβ = 0, (3.12)

−α sinβ = c2. (3.13)

Clearly if c2 �= 0, there is no solution! On the other hand if c2 = 0 and β = 0, the value of
α is arbitrary, and there are an infinite number of solutions! Finally, if we choose tF �= π ,
then a unique solution can be found. To recapitulate, for the same system of differential
equations (3.2)–(3.3), different boundary conditions produce dramatically different results.
In contrast to the IVP, for a BVP anything is possible! Although most optimal control
problems are BVPs, a number of concepts are usually introduced in the initial value setting.

When the independent variable t does not appear explicitly in the right-hand-side
functions, that is, f = f[y(t)], the equations are called an autonomous system. Since a
nonautonomous system of ODEs can be transformed into an autonomous form by intro-
ducing a new variable, say YT = (y, t)T, and a new right-hand side, say FT = (f,1)T, it is
sometimes convenient to simply write ẏ= f(y) without loss of generality.

BVPs are often classified by the manner in which the boundary conditions are stated.
In general, for a two-point BVP the initial and final conditions are given by

ψ
[
y(tI ),y(tF )

]= 0. (3.14)

The boundary conditions are said to be linear when they can be written as

BI y(tI )+BF y(tF )= b, (3.15)

where the matrices BI and BF and vector b are constant. A boundary condition is said to
be separated if it involves either y(tI ) or y(tF ), but not both. Thus for a problem with linear
boundary conditions, if row k of BI has nonzero values and row k of BF is entirely zero,
the boundary conditions are both linear and separable. For example, the linear, separable
boundary conditions (3.9) can be written using (3.15) as[

1 0
0 0

][
y1(0)
y2(0)

]
+
[

0 0
1 0

][
y1(tF )
y2(tF )

]
=
[

c1
c2

]
. (3.16)

For an IVP there is a well-defined sense of direction; that is, it makes perfect sense
to propagate forward in time. This is not the case for a BVP, and indeed solution methods
for the latter are global, rather than local, in nature.

3.3 Shooting Method
Example 3.2 SHOOTING BOUNDARY VALUE PROBLEM. To illustrate the basic con-

cepts, let us consider the simple dynamics:

dy

dt
= y.

Clearly, the analytic solution to the IVP is given by

y = y(tI )et−tI .
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Figure 3.1. Shooting method.

However, suppose we want to find y(tI ) ≡ yI such that y(tF ) = b, where b is a specified
value. This is called a two-point BVP. In particular, using the transcription formulation, it
is clear that we can formulate the problem in terms of the single (NLP) variable x ≡ yI .
Then it is necessary to solve the single constraint

c(x)= y(tF )−b

= yI etF−tI −b

= xetF−tI −b

= 0

by adjusting the variable x . Figure 3.1 illustrates the problem.

The approach described is referred to as the shooting method and is one of the sim-
plest techniques for solving a BVP. An early practical application of the method required
that a cannon be aimed such that the cannonball hit its target, hence explaining the color-
ful name. Of course, the method is not limited to just a single variable and constraint. In
general, the shooting method can be summarized as follows:

1. guess initial conditions x= y(tI );

2. propagate the differential equations from tI to tF , i.e., “shoot”;

3. evaluate the error in the boundary conditions c(x)= y(tF )−b;
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4. use an NLP to adjust the variables x to satisfy the constraints c(x) = 0, i.e., repeat
steps 1–3.

From a practical standpoint, the shooting method is widely used primarily because the tran-
scribed problem has a small number of variables. Clearly, the number of iteration variables
is equal to the number of differential equations. Consequently, any stable implementation
of Newton’s method is a viable candidate as the iterative technique. Unfortunately, the
shooting method also suffers from one major disadvantage. In particular, a small change in
the initial condition can produce a very large change in the final conditions. This “tail wag-
ging the dog” effect can result in constraints c(x) that are very nonlinear and, hence, very
difficult to solve. The nonlinearity also makes it difficult to construct an accurate estimate
of the Jacobian matrix that is needed for a Newton iteration. It should be emphasized that
this nonlinear behavior in the boundary conditions can be caused by differential equations
that are either nonlinear or stiff (or both). Although a discussion of stiffness is deferred
temporarily, it should be clear that Example 3.2 would be much harder to solve if we re-
placed the linear differential equation ẏ = y by the linear differential equation ẏ = 20y. A
more realistic illustration of the shooting method is presented in Example 6.6.

3.4 Multiple Shooting Method
Example 3.3 MULTIPLE SHOOTING EXAMPLE. In order to reduce the sensitivity

present in a shooting method, one approach is to simply break the problem into shorter
steps, i.e., don’t shoot as far. Thus, we might consider a “first step” for tI ≤ t ≤ t2 and a
“second step” for t2 ≤ t ≤ tF . For simplicity, let us assume that t2 = 1

2 (tF + tI ). Since the
problem has now been broken into two shorter steps, we must guess a value for y at the
midpoint in order to start the second step. Furthermore, we must add a constraint to force
continuity between the two steps, i.e.,

ŷ1 = y2,

where y(t−2 )≡ y−2 = ŷ1 denotes the value at the end of the first step and y2 ≡ y(t+2 )= y+2
denotes the value at the beginning of the second step. As a result of this interval splitting,
the transcribed problem now has two variables, xT ≡ [yI , y2]. Furthermore, we must now
solve the two constraints[

c1(x)

c2(x)

]
=
[

y2− ŷ1

y(tF )−b

]
=
[

x2− x1e(t2−tI )

x2e(tF−t2)−b

]
=
[

0

0

]
.

Figure 3.2 illustrates the problem.

The approach described is called multiple shooting [55, 123] and the constraints en-
forcing continuity are called defect constraints or, simply, defects. Let us generalize the
method as follows: compute the unknown initial values y(tI )= yI such that the boundary
condition

0= ψ[y(tF ), tF ] (3.17)

holds for some value of tF > tI that satisfies the ODE system (3.1). The fundamental idea
of multiple shooting is to break the trajectory into shorter pieces or segments. Thus, we
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Figure 3.2. Multiple shooting method.

break the time domain into smaller intervals of the form

tI = t1 < t2 < · · ·< tM = tF . (3.18)

Let us denote yk for k = 1, . . . , (M − 1) as the initial value for the dynamic variable at
the beginning of segment k. For segment k we can propagate (integrate) the differential
equations (3.1) from tk to the end of the segment at tk+1. Denote the result of this integration
by ŷk . Collecting all segments, let us define a set of NLP variables

xT = (y1,y2, . . . ,yM−1
)

. (3.19)

Now we also must ensure that the segments join at the boundaries; consequently, we impose
the constraints

c(x)=


y2− ŷ1
y3− ŷ2

...
ψ [̂yM , tF ]

= 0. (3.20)

One obvious result of the multiple shooting approach is an increase in the size of the prob-
lem that the Newton iteration must solve. Additional variables and constraints are intro-
duced for each shooting segment. In particular, the number of NLP variables and con-
straints for a multiple shooting application is n = ny(M − 1), where ny is the number of
dynamic variables y and (M−1) is the number of segments. Fortunately, the Jacobian ma-
trix, which is needed to compute the Newton search direction, is sparse. In particular, only
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(M − 1)n2
y elements in G are nonzero out of a possible [(M − 1)ny]2. Thus, the percent-

age of nonzeros is proportional to 1/(M−1), indicating that the matrix gets sparser as the
number of intervals grows. This sparsity is a direct consequence of the multiple shooting
formulation, since variables early in the trajectory do not change constraints later in the
trajectory. In fact, Jacobian sparsity is the mathematical consequence of uncoupling be-
tween the multiple shooting segments. For the simple case described, the Jacobian matrix
is banded with ny×ny blocks along the diagonal, and the very efficient methods described
in Section 2.3 can be used. It is important to note that the multiple shooting segments are
introduced strictly for numerical reasons. A more complete discussion of sparsity is pre-
sented in Section 4.6. Example 6.7 describes a practical application of multiple shooting to
an orbit transfer problem.

An interesting benefit of the multiple shooting algorithm is the ability to exploit a
parallel processor. The method is sometimes called parallel shooting because the simula-
tion of each segment can be implemented on an individual processor. This technique was
explored for a trajectory optimization application [34] and remains an intriguing prospect
for multiple shooting methods in general.

3.5 Initial Value Problems
In the preceding sections, both the shooting and multiple shooting methods require “prop-
agation” of a set of differential equations. For the simple motivational examples, it was
possible to analytically propagate the solution from tI to tF . However, in general, analytic
propagation is not feasible and numerical methods must be employed. The numerical so-
lution of the IVP for ODEs is fundamental to most optimal control methods. The problem
can be stated as follows: compute the value of y(tF ) for some value of tI < tF that satisfies
(3.1) with the known initial value y(tI )= yI . Numerical methods for solving the ODE IVP
are relatively mature in comparison to the other fields in optimal control.

Most schemes can be classified as one-step methods or multistep methods. Let us
begin the discussion with one-step methods. Our goal is to construct an expression over a
single step from ti to ti+1, where hi is referred to as the integration stepsize for step i . We
denote the value of the vector y at ti by y(ti ) ≡ yi . Proceeding formally to integrate (3.1)
yields

yi+1 = yi +
∫ ti+1

ti
ẏdt

= yi +
∫ ti+1

ti
f(y, t)dt . (3.21)

To evaluate the integral, first let us subdivide the integration step into K subintervals

τ j = ti +hiρ j (3.22)

with

0≤ ρ1 ≤ ρ2 ≤ ·· · ≤ ρK ≤ 1

for 1≤ j ≤ K . With this subdivided interval, we now apply a quadrature formula within a
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quadrature formula. Specifically, we have∫ ti+1

ti
f(y, t)dt ≈ hi

K∑
j=1

β ĵ f j , (3.23)

where f̂ j ≡ f(τ j , ŷ j ). Notice that this approximation requires values for the variables y at
the intermediate points τ j , i.e., ŷ(τ j )≡ ŷ j . Consequently, we construct these intermediate
values using the second expression∫ τ j

ti
f(y, t)dt ≈ hi

K∑
�=1

α j�f� (3.24)

for 1≤ j ≤ K .
Collecting results, we obtain a popular family of one-step methods called the K -stage

Runge–Kutta scheme:

yi+1 = yi +hi

K∑
j=1

β j fi j , (3.25)

where

fi j = f

[(
yi +hi

K∑
�=1

α j�fi�

)
,
(
ti +hiρ j

)]
(3.26)

for 1≤ j ≤ K . K is referred to as the “stage.” In these expressions, {ρ j ,β j ,α j�} are known
constants with 0 ≤ ρ1 ≤ ρ2 ≤ ·· · ≤ ρK ≤ 1. A convenient way to define the coefficients is
to use the so-called Butcher array

ρ1 α11 . . . α1K
...

...
...

ρK αK 1 . . . αK K

β1 . . . βK

.

The schemes are called explicit if α j� = 0 for l ≥ j and implicit otherwise. Four common
examples of K -stage Runge–Kutta schemes are summarized below:

Euler Method (explicit, K = 1)
0 0

1
.

Common Representation:
yi+1 = yi +hi fi . (3.27)

Classical Runge–Kutta Method (explicit, K = 4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

.
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Common Representation:

k1 = hi fi , (3.28)

k2 = hi f
(

yi +
1

2
k1, ti + hi

2

)
, (3.29)

k3 = hi f
(

yi +
1

2
k2, ti + hi

2

)
, (3.30)

k4 = hi f(yi +k3, ti+1), (3.31)

yi+1 = yi +
1

6
(k1+2k2+2k3+k4) . (3.32)

Trapezoidal Method (implicit, K = 2)

0 0 0
1 1/2 1/2

1/2 1/2
.

Common Representation:

yi+1 = yi +
hi

2
(fi + fi+1) . (3.33)

Hermite–Simpson Method (implicit, K = 3)

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

.

Common Representation:

y= 1

2
(yi +yi+1)+ hi

8
(fi − fi+1), (3.34)

f= fi

(
y, ti + hi

2

)
, (3.35)

yi+1 = yi +
hi

6

(
fi +4f+ fi+1

)
. (3.36)

The Runge–Kutta scheme (3.25)–(3.26) is often motivated in another way. Suppose
we consider approximating the solution of the ODE (3.1) by a function ỹ(t). As an approx-
imation, let us use a polynomial of degree K (order K +1) over each step ti ≤ t ≤ ti+1:

ỹ(t)= a0+a1(t− ti )+·· ·+aK (t− ti )
K (3.37)

with the coefficients (a0,a1, . . . ,aK ) chosen such that the approximation matches at the
beginning of the step ti , that is,

ỹ(ti )= yi , (3.38)
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and has derivatives that match at the points (3.22):

d ỹ(τ j )

dt
= f[y(τ j ),τ j ]. (3.39)

The conditions (3.39) are called collocation conditions and the resulting method is referred
to as a collocation method. Thus, the Runge–Kutta scheme (3.25)–(3.26) is a collocation
method [2], and the solution produced by the method is a piecewise polynomial. While the
polynomial representation (3.37) (called a monomial representation) has been introduced
for simplicity in this discussion, in practice we will use an equivalent but computationally
preferable form called a B-spline representation.

The collocation schemes of particular interest for the remainder of the book, namely
(3.33) and (3.36), are both Lobatto methods. More precisely, the trapezoidal method is
a Lobatto IIIA method of order 2, and the Hermite–Simpson method is a Lobatto IIIA
method of order 4 [107, p. 75]. For a Lobatto method, the endpoints of the interval are also
collocation points, and consequently ρ1 = 0 and ρK = 1. The trapezoidal method is based
on a quadratic interpolation polynomial. The three coefficients (a0,a1,a2) are constructed
such that the function matches at the beginning of the interval (3.38) and the slope matches
at the beginning and end of the interval (3.39). For the Hermite–Simpson scheme, the four
coefficients (a0,a1,a2,a3) defining a cubic interpolant are defined by matching the function
at the beginning of the interval and the slope at the beginning, midpoint, and end of the
interval. A unique property of Lobatto methods is that mesh points are also collocation
points. In contrast, Gauss schemes impose the collocation conditions strictly interior to the
interval, that is, ρ1 > 0 and ρK < 1. The simplest Gauss collocation scheme is the midpoint
rule:

yi+1 = yi +hi f
[

1

2
(yi+1+yi ), ti +

hi

2

]
. (3.40)

A Radau method imposes the collocation condition at only one end of the interval, specif-
ically ρ1 > 0 and ρK = 1. The simplest Radau collocation scheme is the backward Euler
method:

yi+1 = yi +hi fi+1. (3.41)

An obvious appeal of an explicit scheme is that the computation of each integration
step can be performed without iteration; that is, given the value yi at the time ti , the value
yi+1 at the new time ti+1 follows directly from available values of the right-hand-side func-
tions f. In contrast, for an implicit method, the unknown value yi+1 appears nonlinearly;
e.g., the trapezoidal method requires

0= yi+1−yi −
hi

2

[
f(yi+1, ti+1)+ f(yi , ti )

]≡ ζ i . (3.42)

Consequently, to compute yi+1, given the values ti+1, yi , ti , and f[yi , ti ], requires solving
the nonlinear expression (3.42) to drive the defect ζ i to zero. The iterations required to
solve this equation are called corrector iterations. An initial guess to begin the iteration
is usually provided by the so-called predictor step. There is considerable latitude in the
choice of predictor and corrector schemes. For some well-behaved differential equations, a
single predictor and corrector step is adequate. In contrast, it may be necessary to perform
multiple corrector iterations, e.g., using Newton’s method, especially when the differential
equations are stiff . To illustrate this, suppose that the dynamic behavior is described by
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two types of variables, namely y(t) and u(t). Instead of (3.1), the system dynamics are
described by

ẏ= f[y(t),u(t), t],

εu̇= g[y(t),u(t), t], (3.43)

where ε is a “small” parameter. Within a very small region 0≤ t ≤ tε , the solution displays
a rapidly changing behavior and, thereafter, the second equation can effectively be replaced
by its limiting form3

0= g[y(t),u(t), t]. (3.44)

The resulting system given by

ẏ= f[y(t),u(t), t], (3.45)

0= g[y(t),u(t), t] (3.46)

is called a semiexplicit differential-algebraic equation (DAE). In modern control theory,
the differential variables y(t) are called state variables and the algebraic variables u(t)
are called control variables. The system is semiexplicit because the differential variables
appear explicitly (on the left-hand side), whereas the algebraic variables appear implicitly
in f and g. The original stiff system of ODEs (3.43) is referred to as a singular perturbation
problem and in the limit approaches a DAE system.

Example 3.4 VAN DER POL’S EQUATION. An example of a singular perturbation
problem that arises in electrical circuits is given in second order form by

ε z̈+ (z2−1)ż+ z = 0. (3.47)

For a modest value of the parameter ε = 1, the second order system can be rewritten as

ẏ1 = y2, (3.48)

ẏ2 = (1− y2
1)y2− y1 (3.49)

by identifying y1 = z and y2 = ż. Now observe that the first two terms in (3.47)

ε z̈+ (z2−1)ż = d

dt

[
ε ż+

(
z3

3
− z

)]
,

so if we identify the quantity in brackets as

y = ε ż+
(

z3

3
− z

)
and set u = z, we can also write

ẏ =−u, (3.50)

εu̇ = y−
(

u3

3
−u

)
, (3.51)

3Strictly speaking gu (3.59) must be uniformly negative definite.
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which is the singular perturbation format (3.43). Clearly, when the parameter ε = 0 one
obtains the DAE system

ẏ =−u, (3.52)

0= y−
(

u3

3
−u

)
. (3.53)

The second class of integration schemes are termed multistep methods and have the
general form

yi+k =
k−1∑
j=0

α j yi+ j +h
k∑

j=0

β j fi+ j , (3.54)

where α j and β j are known constants. If βk = 0, then the method is explicit; otherwise, it is
implicit. The Adams schemes are members of the multistep class that are based on approx-
imating the functions f(t) by interpolating polynomials. The Adams–Bashforth method is
an explicit multistep method [5], whereas the Adams–Moulton method is implicit [135].
Multistep methods must address three issues that we have not discussed for single-step
methods. First, as written, the method requires information at (k − 1) previous points.
Clearly, this implies some method must be used to start the process, and one common tech-
nique is to take one or more steps with a one-step method (e.g., Euler). Second, as written,
the multistep formula assumes the stepsize h is a fixed value. When the stepsize is allowed
to vary, careful implementation is necessary to ensure that the calculation of the coefficients
is both efficient and well-conditioned. Finally, similar remarks apply when the number of
steps k (i.e., the order) of the method is changed.

Regardless of whether a one-step or multistep method is used, a successful imple-
mentation must address the accuracy of the solution. How well does the discrete solution
yi for i = 1,2, . . . , M , produced by the integration scheme, agree with the “real” answer
y(t)? All well-implemented schemes have some mechanism for adjusting the integration
stepsize and/or order to control the integration error. The reader is urged to consult the
works of Dahlquist and Björk [66], Stoer and Bulirsch [163], Hindmarsh [113], Shampine
and Gordon [158], Hairer, Norsett, and Wanner [106], and Gear [89] for additional in-
formation. It is also worth noting that a great deal of discussion has been given to the
distinction between explicit and implicit methods. Indeed, it is often tempting to use an
explicit method simply because it is more easily implemented (and understood?). How-
ever, the optimal control problem is a BVP, not an IVP, and, to quote Ascher, Mattheij, and
Russell [2, p. 69],

. . . for a boundary value problem . . . any scheme becomes effectively, im-
plicit. Thus, the distinction between explicit and implicit initial value schemes
becomes less important in the BVP context.

Methods for solving IVPs when dealing with a system of DAEs have appeared more
recently. For a semiexplicit DAE system such as (3.45)–(3.46), it is tempting to try to
“eliminate” the algebraic (control) variables in order to use a more standard method for
solving ODEs. Proceeding formally to solve (3.46) one can write

u(t)= G−1[y, t], (3.55)
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where G−1 is used to denote the inverse of the function g. When this value is substituted
into (3.45), one obtains the nonlinear differential equation

ẏ= f[y,G−1[y, t], t], (3.56)

which is amenable to solution using any of the ODE techniques described above.
When analytic elimination is impossible, one alternative is to introduce a nonlinear

iterative technique (e.g., Newton’s method) that must be executed at every integration step.
Consider solving the equations

0= g[yk ,uk , tk] (3.57)

for the variables uk given the variables yk , tk . Applying (1.28) and (1.29), we obtain the
iteration

uk = uk−g−1
u g, (3.58)

where

gu =



∂g1
∂u1

∂g1
∂u2

. . .
∂g1
∂um

∂g2
∂u1

∂g2
∂u2

. . .
∂g2
∂um

...
. . .

∂gm
∂u1

∂gm
∂u2

. . .
∂gm
∂um


. (3.59)

At least in principle, we could repeat the iteration (3.58) until the equations (3.57) are
satisfied. This approach is not only very time-consuming, but it can conflict with logic
used to control integration error in the dynamic variables y. If an implicit method is used
for solving the ODEs, this “elimination” iteration must be performed within each corrector
iteration; in other words, it becomes an iteration within an iteration. In simple terms, this is
usually not the way to solve the problem! However, this discussion does provide one useful
piece of information, namely, that successful application of Newton’s method requires that
g−1

u can be computed, i.e., that gu has full rank.
A word of caution must be interjected at this point. In order to eliminate the variables

in the manner presented here, the inverse operation must exist and uniquely define the alge-
braic variables. However, it is not hard to construct a setting that precludes this operation.
For example, suppose the matrix gu is rank deficient. In this case, the algebraic constraint
does not uniquely specify all of the degrees of freedom, and we could expect some subset
(or subspace) of the variables to be undefined. Furthermore, it is not hard to imagine a
situation where the rank deficiency in this inverse operation changes with time—full rank
in some regions and rank deficient in others.

Instead of using (3.46) to eliminate the control, let us take a slightly different ap-
proach. Now if g(t)= 0 must be satisfied over some range of time, then we also expect that
the first derivative ġ= 0. Therefore, let us differentiate (3.46) with respect to t yielding

0= gy ẏ+gu u̇+gt (3.60)

= gyf[y,u]+gu u̇+gt , (3.61)
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where (3.61) follows by substituting the expression for ẏ from (3.45). Now if gu is nonsin-
gular, we can solve (3.61) for u̇ and replace the original DAE system (3.45)–(3.46) with

ẏ= f[y(t),u(t), t], (3.62)

u̇=−g−1
u

[
gyf[y,u]+gt

]
. (3.63)

This is now just a system of differential equations in the new dynamic variables zT = (y,u).
If gu is nonsingular, we say the system (3.45)–(3.46) is an index-one DAE. On the other
hand, if gu is rank deficient, we can differentiate (3.60) a second time and repeat the pro-
cess. If an ODE results, we say the DAE has index two. It should also be clear that each
differentiation may determine some (but not all) of the algebraic variables. In general, the
DAE index is the minimum number of times that all or part of the original system must be
differentiated with respect to t in order to explicitly determine the algebraic variable. A
more complete definition of the DAE index can be found in Brenan, Campbell, and Pet-
zold [48]. For obvious reasons, the process just described is called index reduction. It does
provide one (not necessarily good) technique for solving DAEs. The example described in
Section 4.12 illustrates the use of index reduction.

The first general technique for solving DAEs was proposed by Gear [90] and uses a
backward differentiation formula (BDF) in a linear multistep method. The algebraic vari-
ables u(t) are treated the same as the differential variables y(t). The method was originally
proposed for the semiexplicit index-one system described by (3.45)–(3.46) and soon ex-
tended to the fully implicit form

F [ż,z, t]= 0, (3.64)

where z= (y,u). The basic idea of the BDF approach is to replace the derivative ż by the
derivative of the polynomial that interpolates the solution computed over the preceding k
steps. The simplest example is the implicit Euler method, which replaces (3.64) with

F
[

zi − zi−1

hi
,zi , ti

]
= 0. (3.65)

The resulting nonlinear system in the unknowns zi is usually solved by some form of New-
ton’s method at each time step ti . The widely used production code DASSL, developed by
Petzold [140, 141], essentially uses a variable-stepsize, variable-order implementation of
the BDF formulas. The method is appropriate for index-one DAEs with consistent initial
conditions. Current research into the solution of DAEs with higher index (≥ 2) has re-
newed interest in one-step methods, specifically, the implicit Runge–Kutta (IRK) schemes
described for ODEs. RADAU5 [107] implements an IRK method for problems of this type.
A discussion of methods for solving DAEs can be found in the books by Brenan, Campbell,
and Petzold [48] and Hairer and Wanner [107].

Throughout the book, we have adopted the semiexplicit definition of a DAE as given
by (3.45)–(3.46). It is worth noting that a fully implicit form such as (3.64) can be converted
to the semiexplicit form by simply writing

ẏ= u(t), (3.66)

0= F
[
y,u, t

]
. (3.67)

However, as a rule of thumb [48], if the original implicit system (3.64) has index ν, then
the semiexplicit form has index ν+1.
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Example 3.5 DAES ARE NOT ODES. As a final note consider the very simple DAE

ẏ = u, (3.68)

0= y− t . (3.69)

Clearly the solution is y(t)= t and u(t)= 1. Furthermore it is not necessary to specify any
initial or final conditions! The problem is uniquely specified as it stands. In fact if one tries
to specify y(0)= y0, there is no solution if y0 �= 0.

3.6 Boundary Value Example
Example 3.6 PUTTING EXAMPLE. To motivate the BVP, Alessandrini [1] describes

a problem as follows:

Suppose that Arnold Palmer is on the 18th green at Pebble Beach. He needs to
sink this putt to beat Jack Nicklaus and walk away with the $1,000,000 grand
prize. What should he do? Solve a BVP! By modeling the surface of the green,
Arnie sets up the equations of motion of his golf ball.

In [1] the acceleration acting on the golf ball is given by

z̈=−gk+ gn3n−µkgn3
ż
‖ż‖ ,

where the geometry of the green is modeled using a paraboloid with a minimum at (10,5)
given by

z3 = S(z1, z2)= (z1−10)2

125
+ (z2−5)2

125
−1, (3.70)

where the normal force is in the direction defined by

n= N
‖N‖ , N=

(
− ∂S

∂z1
,− ∂S

∂z2
,1
)

.

For this example, distance is given in feet, the constant g= 32.174 ft/sec2 is the acceleration
of gravity, and the constant µk = 0.2 is called the kinetic coefficient of friction.

Now since the dynamics are described by a second order differential equation, we
can construct an equivalent first order system by introducing new state variables p= (z, ż).
The dynamics are then described by the first order system

ṗ1 = p4, (3.71)

ṗ2 = p5, (3.72)

ṗ3 = p6, (3.73)

ṗ4 = gn1n3−µkgn3
p4

s
, (3.74)

ṗ5 = gn2n3−µkgn3
p5

s
, (3.75)

ṗ6 = gn3n3−µkgn3
p6

s
− g, (3.76)
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where s =
√

p2
4+ p2

5+ p2
6 is the speed of the ball. The geometry has been defined such that

the ball is located at z = (p1, p2, p3) = (0,0,0) and the hole is located at zH = (20,0,0).
In [1], the problem is formulated as a two-point BVP with four variables x = (ż(0), tF )
representing the initial velocity imparted when the golf club strikes the ball and the duration
of the putt. Obviously, to win $1,000,000, Arnold Palmer hopes the final position of the ball
is in the hole, thus producing three boundary conditions z(tF ) = zH . Since there are four
variables and only three conditions, Alessandrini suggests that the final boundary condition
should be either ‖ż(tF )‖ = 0 or ‖ż(tF )‖ ≤ sF , where sF is the maximum final speed.

Unfortunately, neither of the proposed boundary conditions is entirely satisfactory.
If we use the first suggestion ‖ż(tF )‖ = s = 0, then, clearly, (3.74)–(3.76) have a singular-
ity at the solution! Obviously, this will cause difficulties when the numerical integration
procedure attempts to evaluate the ODE at the final time tF . On the other hand, suppose
the second alternative is used and the integration is terminated when 0 < s ≤ sF . This will
avoid the singularity at the solution. However, the solution is not unique since there are
many possible putts that will yield s ≤ sF and it is not clear how to choose the value sF .

There is a second, less obvious, difficulty with the original formulation that was
pointed out by R. Vanderbei. Since the surface of the green is given by (3.70), it follows
that the vertical position of the center of mass for the golf ball while on the green is just

p3 = ( p1−10)2

125
+ (p2−5)2

125
−1+ rb, (3.77)

where rb is the radius of the ball. Differentiating, we find that

ṗ3 = 2

125
( p1−10) ṗ1+ 2

125
(p2−5) ṗ2

= 2

125
( p1−10)p4+ 2

125
(p2−5) p5 = p6. (3.78)

When this equation is differentiated a second time, the resulting expression for ṗ6 is not
consistent with (3.76) unless the surface of the green given by (3.70) is a plane. Essentially,
the formulation in [1] is “too simple” to produce a well-posed numerical problem!

A better approach is to model the motion of the golf ball in two different regions,
namely on the green and in the hole. While the ball is on the green, the motion can be
defined by four state variables y= (p1, p2, p4, p5) and the differential equations

ẏ1 = y3, (3.79)

ẏ2 = y4, (3.80)

ẏ3 = gn1n3−µk gn3
y3

s
, (3.81)

ẏ4 = gn2n3−µk gn3
y4

s
. (3.82)

By using (3.78) to compute p6, the speed of the ball s =
√

y2
1+ y2

2+ p2
6(y). One also finds

that

N=
[
− 2

125
(y1−10),− 2

125
(y2−5),1

]
.

Thus, all of the quantities in the system (3.79)–(3.82) are completely specified by the four
elements in y. If we assume that the hole has a diameter of 4.25 in and the ball has a
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diameter of 1.68 in, then, when the distance from the center of the ball to the center of the
hole is greater than 1.29 in, the ball is on the green. The location of the hole is just yH =
(20,0). Thus, mathematically, when ‖y(t)−yH‖≥ RH , where RH = (4.25/2−1.68/2)/12,
the ball is rolling on the green and the dynamics are given by (3.79)–(3.82).

On the other hand, when the golf ball is inside the hole, there is no frictional force
term, and the surface geometry constraint is not needed. Consequently, inside the hole, the
complete dynamics are described by six (not four) state variables and

ẏ1 = y4, (3.83)

ẏ2 = y5, (3.84)

ẏ3 = y6, (3.85)

ẏ4 = 0, (3.86)

ẏ5 = 0, (3.87)

ẏ6 =−g. (3.88)

Since the time when the ball leaves the green is unknown, we must introduce an additional
variable t2, where t2 < tF , and an additional constraint ‖y(t2)− yH‖ = RH . Furthermore,

as long as
√

(y1(tF )−20)2+ y2
2(tF )≤ RH , the ball is in the hole at the end of the trajectory.

However, the final state is still not uniquely defined. Although there are other possibilities,
it seems reasonable to minimize the horizontal velocity at the final time, i.e., minimize
ẏ2

1 + ẏ2
2. To summarize, the four NLP variables xT = (ẏ(0), t2, tF ) must be chosen to satisfy

the two NLP constraints

‖y(t2)−yH‖ = RH , (3.89)√
(y1(tF )−20)2+ y2

2(tF ) ≤ RH (3.90)

and minimize the objective
F(x)= ẏ2

1 + ẏ2
2. (3.91)

Figure 3.3 illustrates two (local) solutions to the problem. It is interesting that the long-
time solution takes tF = 4.46564 sec with an optimal objective value F∗ = 0.1865527926,
whereas the short-time solution, which takes tF = 2.93612 sec, yields an almost identical
objective value of F∗ = 0.1865528358.

Figure 3.3. Putting example.
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3.7 Dynamic Modeling Hierarchy
The golf-putting example described in the previous section suggests that it may be neces-
sary to break a problem into one or more pieces in order to correctly model the physical
situation. In the putting example, it made sense to do this because the differential equations
were different on and off the green. In fact, in general, it is convenient to view a dynamic
trajectory as made up of a collection of phases. Specifically, let us define a phase as a por-
tion of a trajectory in which the system of DAEs remains unchanged. Conversely, different
sets of DAEs must be in different phases.

The complete description of a problem may require one or more phases. When nec-
essary, phases may be linked together by linkage conditions. For the golf-putting example,
the first phase (on the green) was linked to the second phase (in the hole) by forcing con-
tinuity in the position and velocity across the phase boundary. A phase terminates at an
event. Thus, for the golf-putting example, phase 1 was terminated at the boundary time t2
by the event condition or criterion ‖y(t2)−yH‖ = RH . Although it is common for phases
to occur sequentially in time, this is not always the case. Rather, a phase should be viewed
as a fundamental building block that defines a “chunk” of the dynamics that is needed to
construct a complete problem description. In fact, multiphase trajectories with nontrivial
linkage conditions permit very complex problem definitions.

Now to reiterate, we have stated that

1. the DAEs must be unchanged within a phase and

2. different sets of DAEs must be in different phases.

However, this does not imply that the DAEs must change across a phase boundary. In other
words, a phase may be introduced strictly for numerical reasons, as opposed to modeling
different physical phenomena. In particular, multiple shooting segments may (or may not)
be treated as phases. Furthermore, within a phase, we have a spectrum of possibilities:

1. the phase may have a single multiple shooting segment and a multiple number of
integration steps;

2. the phase may be subdivided into a limited number of multiple shooting segments
(e.g., 5), with multiple integration steps per segment; or

3. the number of multiple shooting segments may be equal to the number of integration
steps (i.e., one step per segment).

Traditionally, the first approach is what we have described as the shooting method and the
second what we have described as multiple shooting. Although the remainder of the book
will concentrate on the third approach, it is often useful to recall this modeling hierarchy.

3.8 Function Generator
3.8.1 Description

The whole focus of this chapter has been to present different methods for transcribing
a continuous problem described by DAEs into a finite-dimensional problem that can be
solved using an NLP algorithm. In fact, we have described different ways to construct a
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function generator for the NLP algorithm. The input to the function generator is the set of
NLP variables x. The purpose of the function generator is to compute the constraints c(x)
and objective function F(x) by using one of the transcription methods we have outlined. If
it is not possible to compute this information, the function generator can communicate this
status by setting a function error flag. Thus, the output of the function generator is either the
requested constraint and objective function values or a flag indicating that this information
cannot be computed. In fact, it is often convenient to view the function generator as a giant
subroutine or “black box.” Figure 3.4 illustrates this concept.

Figure 3.4. Function generator.

3.8.2 NLP Considerations

Section 1.16 described a number of considerations that should be addressed in order to
construct a problem that is well-posed and amenable to solution by an NLP algorithm.
How do those goals relate to the formulation of an optimal control problem? Clearly, a
major goal is to construct a function generator, i.e., select a transcription method that is
noise free. However, before proceeding any further, it is important to clarify the distinction
between consistency and accuracy. To be more precise

• a consistent function generator executes the same sequence of arithmetic operations
for all values of x;

• an accurate function generator computes accurate approximations to the dynamics
ż= f(z, t).

Thus, an adaptive quadrature method, which implements a sophisticated variable-order
and/or stepsize technique, will appear as “noise” to the NLP algorithm. This approach
is accurate, but it is not consistent! In contrast, a fixed number of steps with an explicit
integration method is a consistent process, but it is not necessarily accurate.
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To fully appreciate the importance of this matter, it is worth reviewing our approach.
Recall that we intend to choose the NLP variables x to optimize an NLP objective function
F(x) and satisfy a set of NLP constraints defined by the functions c(x). Newton’s method
requires first and second derivative information, i.e., the Jacobian and Hessian matrices.
When the NLP functions are computed by a function generator, it is clear that we must dif-
ferentiate the function generator in order to supply the requisite Jacobian and Hessian. The
most common approach to computing gradients is via finite difference approximations as
described in Section 2.2. A forward difference approximation to column j of the Jacobian
matrix G is

G. j = 1

δ j

[
c(x+� j )− c(x)

]
, (3.92)

where the vector � j = δ j e j and e j is a unit vector in direction j . From (2.5), a central
difference approximation is

G. j = 1

2δ j

[
c(x+� j )− c(x−� j )

]
. (3.93)

In order to calculate gradient information this way, it is necessary to integrate the differ-
ential equations for each perturbation. Consequently, at least n trajectories are required to
evaluate a finite difference gradient, and this information may be required for each NLP
iteration. A less common alternative to finite difference gradients is to integrate the so-
called variational equations. For this technique, described in Section 3.9.4, an additional
differential equation is introduced for each derivative and the augmented system of differ-
ential equations must be solved along with the state equations. Unfortunately, the varia-
tional equations must be derived for each application and, consequently, are used far less
in general-purpose software.

While the cost of computing derivatives by finite differences is a matter of practi-
cal concern, a more important issue is the accuracy of the gradient information. Forward
difference estimates are of order δ, whereas central difference estimates are O(δ2). Of
course, the more accurate central difference estimates are twice as expensive as forward
difference gradients. Typically, numerical implementations use forward difference esti-
mates until nearly converged and then switch to the more accurate derivatives for conver-
gence. While techniques for selecting the finite difference perturbation size might seem
to be critical to accurate gradient evaluation, a number of effective methods are available
to deal with this matter [99]. A more crucial matter is the interaction between the gradi-
ent computations and the underlying numerical interpolation and integration algorithms.
A complete discussion of the matter is given in Section 3.9. We have already discussed
how linear interpolation of tabular data can introduce gradient errors. However, it should
be emphasized that sophisticated predictor-corrector variable-step, variable-order numer-
ical integration algorithms also introduce “noise” into the gradients. Why? Because the
evaluation of a perturbed trajectory is not consistent with the nominal trajectory. Thus,
while these sophisticated techniques enhance the efficiency of the integration, they degrade
the efficiency of the optimization. In fact, a simple fixed-step, fixed-order integrator may
yield better overall efficiency in the optimization because the gradient information is more
accurate. Two integration methods that are suitable for use inside the function generator
are described in Brenan [47], Gear and Vu [91], and Vu [170]. Another approach, referred
to as internal differentiation, will be described in Section 3.9.3.
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Another issue arises in the context of an optimal control application when the final
time tF is defined implicitly by a boundary or event condition instead of explicitly. In this
case, we are not asking to integrate from tI to tF but rather from tI until ψ[y(tF ), tF ]= 0.
Most numerical integration schemes interpolate the solution to locate the final point. On
the other hand, if the final point is found by iteration (e.g., using a root-finding method), the
net effect is to introduce noise into the external Jacobian evaluations. A better alternative
is to simply add an extra variable and constraint to the overall NLP problem and avoid the
use of an “internal” iteration.

In order to avoid the aforementioned difficulties, the approach we will describe in
the next chapter does two things. First, we select a transcription method with one integra-
tion step per multiple shooting segment. This ensures the function generator is consistent.
Second, we will treat the solution accuracy outside the NLP problem.

3.9 Dynamic System Differentiation
Let us consider a slightly more general definition of the dynamics than given in (3.1),
namely

ẏ= f[y,p, t], (3.94)

where y is the n dimension state vector, and p is an m dimension vector of parameters. The
initial conditions at the fixed initial time tI are

ψ[yI ,p, tI ]= 0, (3.95)

where the initial state y(tI ) is denoted as yI . Now the solution to (3.94) is a function of the
n+m variables

x= [yI ,p
]

(3.96)

as well as time t . Let us denote this solution by y(x, t). In order to solve a BVP it is
necessary to compute derivatives of this ODE solution with respect to the variables x, and
clearly the numerical integration and differentiation processes interact. The goal of this
section is how to deal effectively with this interaction.

3.9.1 Simple Example

To illustrate the alternatives first consider the simple ODE

ẏ = y2 (3.97)

with initial condition y(tI )= yI at the initial time t = tI = 0. The analytic solution to the
IVP is given by

y∗(t)= −yI

yI t−1
. (3.98)

Suppose we want to choose yI to satisfy the boundary condition

c(yI )= y∗F −a =
[ −yI

yI tF −1

]
−a = 0. (3.99)
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Clearly the analytic solution to this simple BVP is just

y∗I =
a

1+atF
. (3.100)

The derivative of the boundary condition (3.99) with respect to the variable yI is just

c′ = (yI tF −1)−2 . (3.101)

Let us now consider an approximate solution to the dynamic system and subdivide the
domain into M steps, where h = tF

M . A simple Euler integration leads to the approximation

yi+1 = yi +h f (yi) (3.102)

for i = 1, . . . , M−1. Now if the formula is applied recursively with y1 = yI , one finds

y2 = y1+hy2
1,

y3 = y2+hy2
2,

...

yM = yM−1+hy2
M−1. (3.103)

Differentiating (3.103) yields the derivative of the boundary condition when the dynamics
are computed using the Euler approximation

y′2 = 1+2hy1,

y′3 = y ′2+2hy2y′2,

...

c′E = y ′M . (3.104)

Clearly the (exact) derivative of the approximate dynamics given by (3.104) is not the same
as the (exact) derivative of the true solution given by (3.101).

Now, let us consider solving this very simple BVP in four different ways. For all
cases treating the initial condition yI as the iteration variable x let us use a simple Newton
iteration scheme (1.11)

x (k+1) = x (k)− c[x (k)]

c′[x (k)]
, (3.105)

and for simplicity let us choose tF = aF = 1. With these values the true solution from
(3.100) is x∗ = 1

2 , and so let us begin the iteration with x (1) = .6.

Example 3.7 ANALYTIC ODE SOLUTION, ANALYTIC DERIVATIVE. First let us
consider solving the single constraint (3.99) using the Newton iteration (3.105). For the
derivative we use the exact expression given by (3.101). Table 3.1 presents the error be-
tween the true solution |x̄− y∗I | and the current iterate, as well as the error in the constraint
|c(x)|. As expected the iteration converges quadratically to the correct solution.
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Table 3.1. BVP iteration: analytic ODE solution, analytic derivative.

k |x (k)− y∗I | |c(x)|
1 0.100 0.500
2 0.200×10−1 0.833×10−1

3 0.800×10−3 0.321×10−2

4 0.128×10−5 0.512×10−5

5 0.328×10−11 0.131×10−10

6 0.00 0.00

Example 3.8 DISCRETIZED ODE SOLUTION, ANALYTIC DERIVATIVE OF DISCRE-
TIZATION. For realistic problems it is seldom possible to express the ODE solution in
closed form as in (3.98). So let us repeat the experiment using the discretized approxi-
mation to the solution given by (3.103). A derivative is needed for the Newton iteration
(3.105), and this is given by (3.104). Table 3.2 summarizes the iteration history for dis-
cretizations with 10, 100, and 1000 grid points, respectively. Since the Newton iteration
uses the exact derivative of the discretization, quadratic convergence of the iterates is still
observed. However, now the accuracy of the solution when compared to y∗I is dictated by
the number of grid points.

Table 3.2. BVP iteration: discretized ODE solution with analytic derivative of
discretization.

M 10 100 1000

k |x (k)− y∗I | |c(x)| |x (k)− y∗I | |c(x)| |x(k)− y∗I | |c(x)|
1 0.100 0.200 0.100 0.459 0.100 0.496
2 0.474×10−1 0.138×10−1 0.217×10−1 0.708×10−1 0.202×10−1 0.820×10−1

3 0.432×10−1 0.761×10−4 0.483×10−2 0.230×10−2 0.120×10−2 0.310×10−2

4 0.432×10−1 0.236×10−8 0.424×10−2 0.257×10−5 0.425×10−3 0.478×10−5

5 0.432×10−1 0.222×10−15 0.424×10−2 0.325×10−11 0.423×10−3 0.114×10−10

6 0.432×10−1 0.00 0.424×10−2 −0.666×10−15 0.423×10−3 −0.167×10−14

7 0.424×10−2 0.444×10−15 0.423×10−3 0.888×10−15

8 0.424×10−2 0.00 0.423×10−3 0.00

Example 3.9 DISCRETIZED ODE SOLUTION, FINITE DIFFERENCE DERIVATIVE

OF DISCRETIZATION. The results illustrated in Example 3.8 demonstrate rapid conver-
gence of the BVP iteration provided exact (analytic) derivatives of the ODE discretization
are used. What if finite difference derivatives are used instead? So let us repeat the experi-
ment using the discretized approximation to the solution given by (3.103). However, let us
use the forward difference derivative

c′ ≈ yM [x (k)+ δ]− yM[x (k)]

δ
(3.106)

with δ = 10−3 for the Newton iteration (3.105) instead of the exact expression given by
(3.104). Table 3.3 summarizes the iteration history for discretizations with 10, 100, and
1000 grid points, respectively. Since the Newton iteration uses the forward difference ap-
proximation to the derivative of the discretization, convergence of the iterates is degraded
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somewhat when compared to Example 3.8. Nevertheless, the overall behavior compares
favorably in all other respects.

Table 3.3. BVP iteration: discretized ODE solution with finite difference deriva-
tive of discretization.

M 10 100 1000

k |x (k)− y∗I | |c(x)| |x (k)− y∗I | |c(x)| |x(k)− y∗I | |c(x)|
1 0.100 0.200 0.100 0.459 0.100 0.496
2 0.474×10−1 0.140×10−1 0.219×10−1 0.716×10−1 0.204×10−1 0.829×10−1

3 0.432×10−1 0.972×10−4 0.487×10−2 0.248×10−2 0.125×10−2 0.332×10−2

4 0.432×10−1 0.133×10−6 0.424×10−2 0.774×10−5 0.426×10−3 0.121×10−4

5 0.432×10−1 0.176×10−9 0.424×10−2 0.149×10−7 0.423×10−3 0.242×10−7

6 0.432×10−1 0.233×10−12 0.424×10−2 0.285×10−10 0.423×10−3 0.481×10−10

7 0.432×10−1 0.222×10−15 0.424×10−2 0.540×10−13 0.423×10−3 0.888×10−13

8 0.432×10−1 0.00 0.424×10−2 0.00 0.423×10−3 0.933×10−14

9 0.423×10−3 −0.233×10−14

10 0.423×10−3 0.222×10−15

11 0.423×10−3 0.00

Example 3.10 DISCRETIZED ODE SOLUTION, ANALYTIC DERIVATIVE OF EXACT

SOLUTION. As a final experiment let us consider solving the discretized ODE problem
using the analytic (exact) derivative of the true solution (3.101). Table 3.4 summarizes the
iteration history for discretizations with 10, 100, and 1000 grid points, respectively. It might
be expected that the analytic derivative should approximate the derivative of the discretiza-
tion, especially as M →∞. In fact the BVP iteration converges rapidly for M = 1000.
However, the analytic derivative (3.101) is not the derivative of the discrete approximation
(3.103), and for small values of M the BVP iteration does not converge at all!

Table 3.4. BVP iteration: discretized ODE solution, analytic derivative of exact solution.

M 10 100 1000

k |x (k)− y∗I | |c(x)| |x (k)− y∗I | |c(x)| |x (k)− y∗I | |c(x)|
1 0.100 0.200 0.100 0.459 0.100 0.496

2 0.680×10−1 0.836×10−1 0.266×10−1 0.914×10−1 0.207×10−1 0.843×10−1

3 0.524×10−1 0.304×10−1 0.611×10−2 0.734×10−2 0.132×10−2 0.360×10−2

4 0.463×10−1 0.102×10−1 0.432×10−2 0.306×10−3 0.428×10−3 0.205×10−4

5 0.442×10−1 0.333×10−2 0.424×10−2 0.117×10−4 0.423×10−3 0.795×10−7

6 0.435×10−1 0.107×10−2 0.424×10−2 0.446×10−6 0.423×10−3 0.308×10−9

7 0.433×10−1 0.344×10−3 0.424×10−2 0.170×10−7 0.423×10−3 0.120×10−11

8 0.432×10−1 0.110×10−3 0.424×10−2 0.647×10−9 0.423×10−3 0.488×10−14

9 0.432×10−1 0.353×10−4 0.424×10−2 0.246×10−10 0.423×10−3 −0.167×10−14

10 0.432×10−1 0.113×10−4 0.424×10−2 0.939×10−12 0.423×10−3 0.888×10−15

11 0.432×10−1 0.362×10−5 0.424×10−2 0.344×10−13 0.423×10−3 0.00
12 0.432×10−1 0.116×10−5 0.424×10−2 0.00
...

100 0.432×10−1 0.222×10−15
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3.9.2 Discretization versus Differentiation

When solving a BVP it is necessary to address two distinct numerical tasks. Specifically
a discretization and/or quadrature technique is needed to solve the differential equations
(3.94). Furthermore to solve the BVP it is also necessary to compute derivatives of the
boundary conditions. But which comes first? The previous examples suggest that it is
important to

• first discretize the ODE and then

• compute derivatives of the discretization.

Conversely, reversing the order of these operations as illustrated by Example 3.10 is both
contraindicated and counterproductive! It is worth noting that similar observations can be
found in Gill, Murray, and Wright [99, pp. 266–267]. This illustrates a principle we refer
to as discretize then optimize which will be revisited in Section 4.12.

What is less obvious is an explanation of this behavior. The key notion illustrated
here is the concept of a consistent function generator. In all four examples the evaluation
of the ODE solution is performed consistently—that is, with the same number of additions,
subtractions, multiplications, and divisions—regardless of what value the iteration variable
x takes on. For Examples 3.7, 3.8, and 3.9 the Newton iteration used the derivative of the
function generator. For Example 3.10—which behaves poorly—the Newton iteration did
not use the derivative of the function generator. It is important that

• the function generator be consistent and

• the iterative process use derivatives of the function generator.

Does this preclude the use of adaptive quadrature procedures for numerical integration error
control? Not necessarily, as we shall see in the next section.

3.9.3 External and Internal Differentiation

The examples in the preceding section illustrate different techniques for computing deriva-
tives of the ODE solution y(x, tF ) with respect to the variables x. More precisely we are
interested in constructing the matrix

G(tF )= ∂y(tF )

∂x
=



∂y1(tF )
∂x1

∂y1(tF )
∂x2

. . .
∂y1(tF )
∂xn+m

∂y2(tF )
∂x1

∂y2(tF )
∂x2

. . .
∂y2(tF )
∂xn+m

...
. . .

∂yn(tF )
∂x1

∂yn(tF )
∂x2

∂yn(tF )
∂xn+m


. (3.107)

If we define perturbation vectors

δT
k = [0, . . . ,0,δk ,0, . . . ,0]T (3.108)
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for k = 1,2, . . . , (n+m), then a forward difference approximation to column k is of the form

G∗,k(tF )≈ 1

δk

[
y(x+ δk , tF )−y(x, tF )

]
. (3.109)

The computational implementation of (3.109) is deceptively simple and is referred to as
external differentiation. The basic algorithm is as follows:

External Differentiation

Nominal Point Compute y(x, tF )
Integrate the ODEs (3.94) from tI to tF with initial conditions x

Perturbations For k = 1, . . . , (n+m)
· Set x= x+ δk
· Compute y(x, tF ) . . . Integrate the ODEs (3.94) from tI to tF
with initial conditions x
· Construct G∗,k(tF ) from (3.109)

In effect this approach wraps a “loop” around the numerical integration of the ODE system.
Since there are many effective software packages for solving the IVP this approach is very
appealing because the dynamic simulation can be treated as a “black box.” It is a serial
process, in effect simulating each perturbation one at a time. Unfortunately the approach is
not consistent. To control integration error sophisticated software may alter the number of
integration steps and/or the order of the method. In particular, there is no reason to expect
that the integration history will be consistent for all of the perturbations.

Instead of integrating the perturbed trajectories one at a time, let us consider doing
all of them at the same time. To do so, define an augmented system of ODEs by making
(1+n+m) copies of (3.94)

żk = f[zk ,qk , t] for k = 0,1, . . . , (n+m). (3.110)

By construction the augmented system (3.110) involves n(1+n+m) differential variables;
i.e., z is the n(1+n+m)-dimensional vector zT = (zT

0 , . . . ,zT
n+m)= (yT, . . . ,yT). However,

now define the initial conditions for this augmented system as



z0(tI )
z1(tI )

...
zn(tI )

zn+1(tI )
...

zn+m (tI )


=



yI
yI + δ1̂e1

...
yI + δn̂en

yI
...

yI


, (3.111)

where the n-vector êk has a one in row k and zero elsewhere. In a similar fashion we define
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the parameter vector 

q0
q1
...

qn
qn+1

...
qn+m


=



p
p
...
p

p+ δn+1̃en+1
...

p+ δn+m ẽn+m


, (3.112)

where the m-vector ẽk has a one in row k − n and zero elsewhere. In particular if the
augmented system is propagated from tI to the final time tF , we find that

z0(tF )
z1(tF )

...
zn+m(tF )

=


y(x, tF )
y(x+ δ1, tF )

...
y(x+ δn+m , tF )

 . (3.113)

Observe that all of the vectors needed to compute the matrix G(tF ) as given by (3.109)
are available at the final point in (3.113). Hairer, Norsett, and Wanner [106] refer to this
as a “stepsize freeze” technique for internal differentiation. The original idea for internal
differentiation was proposed by Bock [43] using a slightly different implementation.

Internal Differentiation

Propagation Compute y(x, tF ), . . . ,y(x+ δn+m , tF )
Integrate the augmented ODE system (3.110) from tI to tF with
· initial conditions (3.111)
· and parameter values (3.112)

Derivative Evaluation For k = 1, . . . , (n+m)
· Construct G∗,k(tF ) from (3.109) and (3.113)

There are three additional points that deserve comment. First, although internal differen-
tiation was described using forward differences, clearly the approach is applicable to any
of the higher-order methods outlined in Section 1.17. Second, the same techniques for
choosing an optimal perturbation size, e.g., (1.166), can be applied in this setting. Finally,
although the initial and final times tI and tF were assumed fixed in the discussion, variable
time applications can also be treated. Specifically, a problem with variable initial and/or
final time can be converted to one on the fixed domain 0≤ τ ≤ 1 by introducing the trans-
formation

t = tI + (tF − tI )τ . (3.114)

Example 3.11 BRUSSELATOR PROBLEM. To demonstrate the difference between ex-
ternal and internal differentiation let us consider the Brusselator problem with dynamics
given by the ODEs

ẏ1 = 1+ y2
1 y2−4y1, y1(0)= 1.5, (3.115)

ẏ2 = 3y1− y2
1 y2, y2(0)= y2I (3.116)
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for 0≤ t ≤ 20. For the sake of illustration let us compute forward difference approximations
to

∂y2(t)

∂y2I

∣∣∣∣
t=20

= 1

δ

{
y2(20)[y2I + δ]− y2(20)[y2I ]

}
(3.117)

for different values of the initial condition y2I = 2.90,2.91, . . .,3.09,3.1. The finite dif-
ference perturbation size is chosen to be δ = |y2I |× 10−3. The ODEs were solved using
a variable-step, eighth order Dormand–Prince Runge–Kutta integrator DOP853 [107] for
three different values of the absolute and relative error tolerances, δA = δR = 1×10−4,1×
10−6,1×10−8. The results were computed using external and internal differentiation, and
are illustrated in Figure 3.5. The left-hand column in the figure illustrates the results for
external differentiation and the right-hand column presents the corresponding derivatives
computed by internal differentiation. Each row in the figure corresponds to a different in-
tegration tolerance. As the nominal initial value for y2I changes smoothly from a small to
large value, one intuitively expects the derivative to change accordingly. Indeed, this con-
sistent behavior is observed for the internal derivatives. In contrast, the external derivatives
shown in the left-hand column change erratically. Furthermore when using internal dif-
ferentiation, the derivative values appear consistent regardless of whether a large or small
numerical integration tolerance is used. In contrast, the integration tolerance must be very
tight to compute a reasonable derivative estimate using external derivatives.

An explanation of this behavior is afforded by examining the details of one particular
case at y2I = 2.91. Specifically the details of external and internal differentiation are given
in Tables 3.5 and 3.6, respectively. In Table 3.5 the nominal trajectory required 31 inte-
gration steps, with 484 evaluations of the right-hand-side functions f(y, t). However, the
positive perturbation required 30 integration steps, with 461 right-hand-side evaluations.
Even though both the nominal and perturbed trajectories satisfy the relative integration er-
ror tolerance, the trajectories are clearly inconsistent. The same sequence of arithmetic
operations was not performed on the nominal and perturbed trajectories. When the finite
difference derivative is calculated as shown in (3.119) this inconsistent behavior is accen-
tuated leading to the value−1.4344680. In contrast for internal differentiation the nominal
and perturbed trajectories have the same number of steps and right-hand-side evaluations
as shown in Table 3.6. The finite difference derivative computations given in (3.120) lead
to the value −0.13319669. A consistent function generator yields a consistent derivative!

3.9.4 Variational Derivatives

Generalizing the techniques in the previous section, let us consider computing the deriva-
tives of the state at time t with respect to the variables x. Specifically define the n× (n+m)
matrix of variational derivatives

G(t)= ∂y(t)

∂x
=



∂y1(t )
∂x1

∂y1(t )
∂x2

. . .
∂y1(t )
∂xn+m

∂y2(t )
∂x1

∂y2(t )
∂x2

. . .
∂y2(t )
∂xn+m

...
. . .

∂yn(t )
∂x1

∂yn(t )
∂x2

∂yn(t )
∂xn+m


. (3.118)



3.9. Dynamic System Differentiation 119

Figure 3.5. Differentiation: external (left) versus internal (right).
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Table 3.5. External differentiation behavior at y2I = 2.91.

y2(0) NSTEPS NRHSFE y2(20)

2.91000000000000 31 484 4.605741850415169
2.91003162277660 30 461 4.605696488553900

∂y2(t)

∂y2I

∣∣∣∣
t=20

= 4.605696488553900−4.605741850415169

2.91003162277660−2.91000000000000
=−1.4344680 (3.119)

Table 3.6. Internal differentiation behavior at y2I = 2.91.

y2(0) NSTEPS NRHSFE y2(20)

2.91000000000000 31 1485/3= 495 4.607480645589384
2.91003162277660 * * 4.607476433540143

∂y2(t)

∂y2I

∣∣∣∣
t=20

= 4.607476433540143−4.607480645589384

2.91003162277660−2.91000000000000
=−0.13319669 (3.120)

Differentiating (3.94) leads to the variational differential equations

Ġ= fy[y(t),p, t]G+ fp[y(t),p, t], (3.121)

where

fy[y(t),p, t]=



∂ f1
∂y1

∂ f1
∂y2

. . .
∂ f1
∂yn

∂ f2
∂y1

∂ f2
∂y2

. . .
∂ f2
∂yn

...
. . .

∂ fn
∂y1

∂ fn
∂y2

∂ fn
∂yn


(3.122)

and

fp[y(t),p, t]=



∂ f1
∂p1

∂ f1
∂p2

. . .
∂ f1
∂pm

∂ f2
∂p1

∂ f2
∂p2

. . .
∂ f2
∂pm

...
. . .

∂ fn
∂p1

∂ fn
∂p2

∂ fn
∂pm


. (3.123)
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In general the initial conditions for (3.121) are

G(tI )= ∂ψ(tI )

∂x
=



∂ψ1(tI )
∂x1

∂ψ1(tI )
∂x2

. . .
∂ψ1(tI )
∂xn+m

∂ψ2(tI )
∂x1

∂ψ2(tI )
∂x2

. . .
∂ψ2(tI )
∂xn+m

...
. . .

∂ψn (tI )
∂x1

∂ψn (tI )
∂x2

∂ψn(tI )
∂xn+m


. (3.124)

However, when the initial conditions (3.95) take the simple form

y(tI )= yI , (3.125)

then the initial conditions for the variational equations are just

G(tI )=
[

I 0
0 0

]
. (3.126)





Chapter 4

The Optimal Control Problem

4.1 Introduction
4.1.1 Dynamic Constraints

The optimal control problem may be interpreted as an extension of the NLP problem to
an infinite number of variables. For fundamental background in the associated calculus of
variations, the reader should refer to Bliss [42]. First, let us consider a simple problem with
a single phase and no path constraints. Specifically, suppose we must choose the control
functions u(t) to minimize

J = φ
[
y(tF ), tF

]
(4.1)

subject to the state equations
ẏ= f[y(t),u(t)] (4.2)

and the boundary conditions
ψ[y(tF ),u(tF ), tF ]= 0, (4.3)

where the initial conditions y(tI )= yI are given at the fixed initial time tI and the final time
tF is free. This is a very simplified version of the problem (called an autonomous system)
that will be addressed later in the chapter. We have intentionally chosen a problem with only
equality constraints. However, in contrast to the discussion in Chapters 1 and 2, we now
have two types of constraints. The equality constraint (4.2) may be viewed as “continuous”
since it must be satisfied over the entire interval tI ≤ t ≤ tF , whereas the equality (4.3) may
be viewed as “discrete” since it is imposed at the specific time tF . In a manner analogous to
the definition of the Lagrangian function (1.55), we form an augmented performance index

Ĵ =
[
φ+ νTψ

]
tF
−
∫ tF

tI

λT(t) {ẏ− f[y(t),u(t)]}dt . (4.4)

Notice that, in addition to the Lagrange multipliers ν for the discrete constraints, we also
have multipliers λ(t), referred to as adjoint or costate variables for the continuous (dif-
ferential equation) constraints. In the finite-dimensional case, the necessary conditions for
a constrained optimum (1.56) and (1.57) were obtained by setting the first derivatives of

123



124 Chapter 4. The Optimal Control Problem

the Lagrangian to zero. In this setting, the analogous operation is to set the first variation
δ Ĵ = 0. It is convenient to define the Hamiltonian

H = λT(t)f[y(t),u(t)] (4.5)

and the auxiliary function
%= φ+ νTψ . (4.6)

The necessary conditions, referred to as the Euler–Lagrange equations, which result from
setting the first variation to zero, in addition to (4.2) and (4.3), are

λ̇=−HT
y , (4.7)

called the adjoint equations,
0=HT

u , (4.8)

called the control equations, and

λ(tF )= �T
y

∣∣∣
t=tF

, (4.9)

0= (%t + H )|t=tF
, (4.10)

called the transversality conditions. In these expressions, the partial derivatives Hy , Hu ,
and �y are considered row vectors, i.e., Hy ≡ (∂H/∂y1, . . . ,∂H/∂yn). The control equa-
tions (4.8) are a simplified statement of the Pontryagin maximum principle [145]. A more
general expression is

u= arg min
u∈U

H , (4.11)

where U defines the domain of feasible controls. Note that the algebraic sign has been
changed such that (4.11) is really a “minimum” principle in order to be consistent with the
algebraic sign conventions used elsewhere, even though, in the original reference [145],
Pontryagin derived a “maximum” principle. The maximum principle states that the control
variable must be chosen to optimize the Hamiltonian (at every instant in time) subject to
limitations on the control imposed by state and control path constraints. In essence, the
maximum principle is a constrained optimization problem in the variables u(t) at all values
of t . The complete set of necessary conditions consists of a DAE system (4.2), (4.7), and
(4.8) with boundary conditions at both tI and tF (4.9), (4.10), and (4.3). This is often
referred to as a two-point boundary value problem. A more extensive presentation of this
material can be found in Bryson and Ho [54].

4.1.2 Algebraic Equality Constraints

Generalizing the problem in the previous section, let us assume that we impose algebraic
path constraints of the form

0= g[y(t),u(t), t] (4.12)

in addition to the other conditions (4.2), (4.3). The treatment of this path constraint depends
on the matrix of partial derivatives gu (3.59). Two possibilities exist. If the matrix gu is
full rank, then the system of differential and algebraic equations (4.2), (4.12) is a DAE of
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index one, and (4.12) is termed a control variable equality constraint. For this case, the
Hamiltonian (4.5) is replaced by

H = λTf+µTg, (4.13)

which will result in modification to both the adjoint equations (4.7) and the control equa-
tions (4.8).

The second possibility is that the matrix gu is rank deficient. In this case, we can dif-
ferentiate (4.12) with respect to t and reduce the index of the DAE as discussed in Section
3.5 (cf. (3.60)–(3.63)). The result is a new path-constraint function g′, which is mathemat-
ically equivalent provided that the original constraint is imposed at some point on the path,
say 0= g[y(tI ),u(tI ), tI ]. For this new path function, again the matrix g′u may be full rank
or rank deficient. If the matrix is full rank, the original DAE system is said to have index
two and this is referred to as a state variable constraint of order one. In the full-rank case,
we may redefine the Hamiltonian using g′ in place of g. Of course, if the matrix g′u is rank
deficient, the process must be repeated. This is referred to as index reduction in the DAE
literature [2, 48]. It is important to note that index reduction may be difficult to perform and
imposition of a high index path constraint may be prone to numerical error. This technique
is illustrated in Example 6.14 for a multibody mechanism.

4.1.3 Singular Arcs

In the preceding section we addressed the DAE system

ẏ= f[y,u, t], (4.14)

0= g[y,u, t], (4.15)

which can appear when path constraints are imposed on the optimal control problem. How-
ever, even in the absence of path constraints, the necessary conditions (4.2), (4.7), and (4.8)
lead to the DAE system

ẏ= f[y,u, t], (4.16)

λ̇=−HT
y , (4.17)

0=HT
u . (4.18)

When viewed in this fashion, the differential variables are (y,λ) and the algebraic
variables are u. Because it is a DAE system, one expects the algebraic condition to define
the algebraic variables. Thus, one expects the optimality condition 0 = HT

u to define the
control variable provided the matrix Huu is nonsingular. However, if Huu is a singular
matrix, the control u is not uniquely defined by the optimality condition. This situation
is referred to as a singular arc, and the analysis of this problem involves techniques quite
similar to those discussed above for path constraints. Furthermore, singular arc problems
are not just mathematical curiosities since Huu is singular whenever H [y,u, t] is a linear
function of u, which can occur for linear ODEs with no path constraints. The famous
sounding rocket problem proposed by Robert Goddard in 1919 [165] contains a singular
arc. Recent work in periodic optimal flight [160, 152] and the analysis of wind shear during
landing [9] (cf. Example 6.10) involves formulations with singular arcs.
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4.1.4 Algebraic Inequality Constraints

The preceding sections have addressed the treatment of equality path constraints. Let us
now consider inequality path constraints of the form

0≤ g[y(t),u(t), t]. (4.19)

Unlike an equality constraint, which must be satisfied for all tI ≤ t ≤ tF , inequality con-
straints may either be active (0= g) or inactive (0 < g) at each instant in time. In essence,
the time domain is partitioned into constrained and unconstrained subarcs. During the un-
constrained arcs, the necessary conditions are given by (4.2), (4.7), and (4.8), whereas the
conditions with modified Hamiltonian (4.13) are applicable in the constrained arcs. Thus,
the imposition of inequality constraints presents three major complications. First, the num-
ber of constrained subarcs present in the optimal solution is not known a priori. Second,
the location of the junction points when the transition from constrained to unconstrained
(and vice versa) occurs is unknown. Finally, at the junction points, it is possible that both
the control variables u and the adjoint variables λ are discontinuous. Additional jump con-
ditions, which are essentially boundary conditions imposed at the junction points, must be
satisfied. Thus, what was a two-point BVP may become a multipoint BVP when inequal-
ities are imposed. For a more complete discussion of this subject, the reader is referred to
the tutorial by Pesch [139] and the text by Bryson and Ho [54].

4.2 Necessary Conditions for the Discrete Problem
To conclude the discussion, let us reemphasize the relationship between optimal control
and NLP problems with a simple example. Suppose we must choose the control functions
u(t) to minimize

J = φ
[
y(tF ), tF

]
(4.20)

subject to the state equations
ẏ= f[y(t),u(t)]. (4.21)

Let us assume that the initial and final times tI and tF are fixed and the initial conditions
y(tI )= yI are given. Let us define NLP variables

xT = (u1,y2,u2,y3,u3, . . . ,yM ,uM ) (4.22)

as the values of the state and control evaluated at t1, t2, . . . , tM , where tk+1 = tk + h with
h = tF/M . Now

ẏ≈ yk+1−yk

h
. (4.23)

Let us substitute this approximation into (4.21), thereby defining the NLP (defect) con-
straints

ck(x)≡ ζ k = yk+1−yk−hf(yk ,uk)= 0 (4.24)

for k = 1, . . . , M −1 and NLP objective function

F(x)= φ(yM ). (4.25)
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The problem defined by (4.22), (4.24), and (4.25) is an NLP. From (1.55), the La-
grangian is

L(x,λ)= F(x)−λTc(x)= φ(yM )

−
M−1∑
k=1

λ�k
[
yk+1−yk−hf(yk ,uk )

]
. (4.26)

The necessary conditions for this problem follow directly from the definitions (1.58) and
(1.59):

∂L

∂λk
= yk+1−yk−hf(yk ,uk)= 0, (4.27)

∂L

∂yk
= (λk −λk−1)+hλ�k

∂f
∂yk

= 0, (4.28)

∂L

∂uk
= hλ�k

∂f
∂uk

= 0, (4.29)

∂L

∂yM
=−λM−1+ ∂φ

∂yM
= 0. (4.30)

Now let us consider the limiting form of this problem as M →∞ and h → 0. Clearly,
in the limit, equation (4.27) becomes the state equation (4.2), equation (4.28) becomes the
adjoint equation (4.7), equation (4.29) becomes the control equation (4.8), and equation
(4.30) becomes the transversality condition (4.9). Essentially, we have demonstrated that
the KKT NLP necessary conditions approach the optimal control necessary conditions as
the number of variables grows. The NLP Lagrange multipliers can be interpreted as dis-
crete approximations to the optimal control adjoint variables which will be discussed more
extensively in Section 4.11. While this discussion is of theoretical importance, it also sug-
gests a number of ideas that are the basis of modern numerical methods. In particular,
if the analysis is extended to inequality-constrained problems, it is apparent that the task
of identifying the NLP active set is equivalent to defining constrained subarcs and junc-
tion points in the optimal control setting. Early results on this transcription process can be
found in Canon, Cullum, and Polak [61], Polak [143], and Tabak and Kuo [164]. Since the
most common type of transcription employs collocation [109], the terms “collocation” and
“transcription” are often used synonymously. More recently, interest has focused on using
alternative methods of discretization [77, 112, 168]. O. von Stryk [167] presents results
using a Hermite approximation for the state variables and a linear control approximation,
which leads to discrete approximations that are scalar multiples of those presented here.

Figure 4.1 illustrates the situation and Table 4.1 summarizes some of the major sim-
ilarities between the discrete and continuous formulations of the problem.

4.3 Direct versus Indirect Methods
When describing methods for solving optimal control problems, a technique is often clas-
sified as either a direct method or an indirect method. The distinction between a di-
rect method and an indirect method was first introduced in Section 1.4 when consider-
ing the minimization of a univariate function. A direct method constructs a sequence of
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Variables

�����������������������������������������������������
��������������������������������������������������������������������������������������������������������
[y(t),u(t)] x= [y1,u1, . . . ,yM ,uM

]� .

Constraints

ẏ= f[y(t),u(t), t] yk+1 = yk +
hk

2
(fk + fk+1)

Figure 4.1. Discretization methods.

Table 4.1. Discrete versus continuous formulation.

Discrete Continuous

(y1,y2, . . . ,yM ) NLP variables y(t) State variables

(u1,u2, . . . ,uM ) NLP variables u(t) Control variables

ζ k = 0 Defect constraints ẏ= f(y,u, t) State equations

(λ1,λ2, . . . ,λM ) Lagrange multipliers λ(t) Adjoint variables

points x1, x2, . . . , x∗ such that the objective function is minimized and typically F(x1) >
F(x2) > · · · > F(x∗). An indirect method attempts to find a root of the necessary condi-
tion F ′(x)= 0. At least in principle, the direct method need only compare values for the
objective function. In contrast, the indirect method must compute the slope F ′(x) and then
decide if it is sufficiently close to zero. In essence, an indirect method attempts to locate
a root of the necessary conditions. A direct method attempts to find a minimum of the
objective (or Lagrangian) function.

How does this categorization extend to the optimal control setting? An indirect
method attempts to solve the optimal control necessary conditions (4.2), (4.3), (4.7), (4.8),
(4.9), and (4.10). Thus, for an indirect method, it is necessary to explicitly derive the ad-
joint equations, the control equations, and all of the transversality conditions. In contrast, a
direct method does not require explicit derivation and construction of the necessary condi-
tions. A direct method does not construct the adjoint equations (4.7), the control equations
(4.8), or any of the transversality (boundary) conditions (4.9)–(4.10). It is also important
to emphasize that there is no correlation between the method used to solve the problem
and the formulation. For example, one may consider applying a multiple shooting solu-
tion technique to either an indirect or a direct formulation. A survey of the more common
approaches can be found in [18].
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So why not use the indirect method? There are at least three major difficulties that
detract from an indirect method in practice.

1. The user must compute the quantities Hy , Hu , etc., that appear in the defining equa-
tions (4.7)–(4.10). Unfortunately, this operation requires an intelligent user with at
least some knowledge of optimal control theory. Furthermore, even if the user is fa-
miliar with the requisite theoretical background, it may be very difficult to construct
these expressions for complicated black box applications. Finally, the approach is
not flexible, since each time a new problem is posed, a new derivation of the relevant
derivatives is called for!

2. If the problem description includes path inequalities (4.19), it is necessary to make
an a priori estimate of the constrained-arc sequence. Unfortunately, this can be
quite difficult. In fact, if the number of constrained subarcs is unknown, then the
number of iteration variables is also unknown. Furthermore, the sequence of con-
strained/unconstrained arcs is unknown, which makes it extremely difficult to impose
the correct junction conditions and, thereby, define the arc boundaries.

3. Finally, the basic method is not robust. One difficulty is that the user must guess
values for the adjoint variables λ, which, because they are not physical quantities, is
very nonintuitive! Even with a reasonable guess for the adjoint variables, the numer-
ical solution of the adjoint equations can be very ill-conditioned! The sensitivity of
the indirect method has been recognized for some time. Computational experience
with the technique in the late 1960s is summarized by Bryson and Ho [54, p. 214]:

The main difficulty with these methods is getting started; i.e., finding a
first estimate of the unspecified conditions at one end that produces a solu-
tion reasonably close to the specified conditions at the other end. The rea-
son for this peculiar difficulty is the extremal solutions are often very sen-
sitive to small changes in the unspecified boundary conditions. . . . Since
the system equations and the Euler–Lagrange equations are coupled to-
gether, it is not unusual for the numerical integration, with poorly guessed
initial conditions, to produce “wild” trajectories in the state space. These
trajectories may be so wild that values of x(t) and/or λ(t) exceed the nu-
merical range of the computer!

Section 4.12 presents an application that dramatically illustrates many of these issues.
However, because of the practical difficulties with an indirect formulation, the remainder
of the book will focus on direct methods.

4.4 General Formulation
An optimal control problem can be formulated as a collection of N phases as described
in Section 3.7. In general, the independent variable t for phase k is defined in the region
t (k)
I ≤ t ≤ t (k)

F . For many applications, the independent variable t is time and the phases are

sequential, that is, t (k+1)
I = t (k)

F . However, neither of these assumptions is required. Within
phase k, the dynamics of the system are described by a set of dynamic variables

z=
[

y(k)(t)
u(k)(t)

]
(4.31)
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made up of the n(k)
y state variables and the n(k)

u control variables, respectively. In addition,

the dynamics may incorporate the n(k)
p parameters p(k) that are independent of t .

Typically, the dynamics of the system are defined by a set of ODEs written in explicit
form, which are referred to as the state equations,

ẏ(k) = f(k)[y(k)(t),u(k)(t),p(k), t], (4.32)

where y(k) is the n(k)
y dimension state vector. In addition, the solution must satisfy algebraic

path constraints of the form

g(k)
L ≤ g(k)[y(k)(t),u(k)(t),p(k), t] ≤ g(k)

U , (4.33)

where g(k) is a vector of size n(k)
g , as well as simple bounds on the state variables

y(k)
L ≤ y(k)(t) ≤ y(k)

U (4.34)

and control variables
u(k)

L ≤ u(k)(t) ≤ u(k)
U . (4.35)

Note that an equality constraint can be imposed if the upper and lower bounds are equal,
e.g., [g(k)

L ] j = [g(k)
U ] j for some j . This approach is consistent with our general formulation

of the NLP problem as described in Section 1.12. Note that by definition, a state variable
is a differentiated variable that appears on the left-hand side of the differential equation
(4.32). In contrast, a control variable is an algebraic variable. Although this terminology
is convenient for most purposes, there is often some ambiguity present when constructing
a mathematical model of a physical system. For example, in multibody dynamics, it is
common to model some physical “states” by algebraic variables. Example 6.18 presents an
application in chemical kinetics with algebraic variables that can be viewed as both states
and controls.

The phases are linked by boundary conditions of the form

ψ L ≤ ψ
[

y(1)(t (1)
I ),u(1)(t (1)

I ),p(1), t (1)
I ,

y(1)(t (1)
F ),u(1)(t (1)

F ),p(1), t (1)
F ,

y(2)(t (2)
I ),u(2)(t (2)

I ),p(2), t (2)
I ,

y(2)(t (2)
F ),u(2)(t (2)

F ),p(2), t (2)
F , (4.36)

. . .

y(N)(t (N)
I ),u(N)(t (N)

I ),p(N), t (N)
I ,

y(N)(t (N)
F ),u(N)(t (N)

F ),p(N), t (N)
F

]
≤ ψU .

In spite of its daunting appearance, (4.36) has a rather simple interpretation. Basically, the
boundary conditions allow the value of the dynamic variables at the beginning and end of
any phase to be related to each other. For example, we might have an expression of the
form

0= y(1)
1

[
t(1)
F

]
− cos

[
y(3)

2 (t (3)
I )
]

,
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which requires the value of the first state variable at the end of phase 1 to equal the cosine
of the second state at the beginning of phase 3.

Finally, it may be convenient to evaluate expressions of the form∫ t (k)
F

t (k)
I

w(k)
[
y(k)(t),u(k)(t),p(k), t

]
dt , (4.37)

which involve the quadrature functions w(k). Collectively, we refer to those functions eval-
uated during the phase, namely

F(k)(t)=
 f(k)[y(k)(t),u(k)(t),p(k), t]

g(k)[y(k)(t),u(k)(t),p(k), t]
w(k)[y(k)(t),u(k)(t),p(k), t]

 , (4.38)

as the vector of continuous functions. Similarly, functions evaluated at specific points, such
as the boundary conditions ψ(·), are referred to as point functions.

The basic optimal control problem is to determine the n(k)
u -dimensional control vec-

tors u(k)(t) and parameters p(k) to minimize the performance index

J = φ
[

y(1)(t (1)
I ),u(1)(t (1)

I ),p(1), t (1)
I ,

y(1)(t (1)
F ),u(1)(t (1)

F ),p(1), t (1)
F ,

y(2)(t (2)
I ),u(2)(t (2)

I ),p(2), t (2)
I ,

y(2)(t (2)
F ),u(2)(t (2)

F ),p(2), t (2)
F ,

. . . (4.39)

y(N)(t (N)
I ),u(N)(t (N)

I ),p(N), t (N)
I ,

y(N)(t (N)
F ),u(N)(t (N)

F ),p(N), t (N)
F

]
+

N∑
j=1

{∫ t ( j )
F

t ( j )
I

w( j )
[
y( j )(t),u( j )(t),p( j ), t

]
dt

}
.

Notice that, like the boundary conditions, the objective function may depend on quantities
computed in each of the N phases. Furthermore, the objective function includes contribu-
tions evaluated at the phase boundaries (point functions) and over the phase (quadrature
functions). As written, (4.39) is known as the problem of Bolza. When the function φ ≡ 0
in the objective, we refer to this as the problem of Lagrange or, if there are no integral
terms w( j ) ≡ 0, the optimization is termed the problem of Mayer. It is worth noting that
it is relatively straightforward to pose the problem in an alternative form if desirable. For
example, suppose the problem is stated in the Lagrange form with a performance index

J =
∫ tF

tI

w
[
y(t),u(t),p, t

]
dt . (4.40)

By introducing an additional state variable, say yn+1, and the differential equation

ẏn+1 =w[y(t),u(t),p, t] (4.41)
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with initial condition yn+1(tI ) = 0, it is possible to replace the original objective function
(4.40) with

J = φ[y(tF )]= yn+1(tF ). (4.42)

In fact, for notational simplicity, it is common to define the optimal control problem in the
Mayer form. On the other hand, it may not be desirable to make this transformation for
computational reasons because adding a state variable yn+1 increases the size of the NLP
subproblem after discretization. For this reason, the SOCS [38] software implementation
treats problems stated in Bolza, Lagrange, or Mayer form. Efficient treatment of quadrature
equations will be discussed in Section 4.9.

For clarity, we drop the phase-dependent notation from the remaining discussion;
however, it is important to remember that many complex problem descriptions require dif-
ferent dynamics and/or constraints within each phase, and the approach accommodates this
requirement.

4.5 Direct Transcription Formulation
The fundamental ingredients required for solving the optimal control problem by direct
transcription are now in place. In Section 3.5, we introduced a number of methods for
solving IVPs. All approaches divide the phase duration (for a single phase) into ns seg-
ments or intervals

tI = t1 < t2 < · · ·< tM = tF , (4.43)

where the points are referred to as node, mesh, or grid points. Define the number of mesh
points as M ≡ ns + 1. As before, we use yk ≡ y(tk) to indicate the value of the state
variable at a grid point. However, the methods for solving the IVP described in Section 3.5
did not involve algebraic (control) variables. To extend the methods to control problems,
let us denote the control at a grid point by uk ≡ u(tk ). In addition, some discretization
schemes require values for the control variable at the midpoint of an interval, and we denote
this quantity by uk ≡ u(t) with t = 1

2 (tk + tk−1). To be consistent, we also denote fk ≡
f
[
y(tk),u(tk ),p, tk

]
. It should be emphasized that the subscript k refers to a grid point

within a phase.
The basic notion is now quite simple. Let us treat the values of the state and control

variables as a set of NLP variables. The differential equations will be replaced by a finite
set of defect constraints. As a result of the transcription, the optimal control constraints
(4.32)–(4.33) are replaced by the NLP constraints

cL ≤ c(x)≤ cU , (4.44)

where
c(x)= [ζ 1,ζ 2, . . . ,ζM−1,ψ I ,ψ F ,g1,g2, . . . ,gM

]�
(4.45)

with
cL =

[
0, . . . ,0,gL , . . . ,gL

]�
(4.46)

and a corresponding definition of cU . The first nyns equality constraints require that the
defect vectors from each of the ns segments be zero, thereby approximately satisfying
the differential equations (4.32). The boundary conditions are enforced directly by the
equality constraints on ψ and the nonlinear path constraints are imposed at the grid points.
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Note that nonlinear equality path constraints are enforced by setting cL = cU . In a similar
fashion, the state and control variable bounds (4.34) and (4.35) become simple bounds
on the NLP variables. The path constraints and variable bounds are always imposed at
the grid points for all discretization schemes. For the Hermite–Simpson and Runge–Kutta
discretization methods, the path constraints and variable bounds are also imposed at the
interval midpoints.

For the sake of reference, let us summarize the variables and constraints for each of
the Runge–Kutta schemes introduced in Section 3.5.

Euler Method

Variables:
xT = (y1,u1, . . . ,yM ,uM ). (4.47)

Defects:
ζ k = yk+1−yk −hkfk . (4.48)

Classical Runge–Kutta Method

Variables:
xT = (y1,u1,u2, . . . ,uM ,yM ,uM ). (4.49)

Defects:

ζ k = yk+1−yk−
1

6
(k1+2k2+2k3+k4) , (4.50)

where

k1 = hk fk , (4.51)

k2 = hk f
(

yk+
1

2
k1,uk+1, tk + hk

2

)
, (4.52)

k3 = hk f
(

yk+
1

2
k2,uk+1, tk + hk

2

)
, (4.53)

k4 = hk f(yk +k3,uk+1, tk+1). (4.54)

Trapezoidal Method

Variables:
xT = (y1,u1, . . . ,yM ,uM ). (4.55)

Defects:

ζ k = yk+1−yk −
hk

2
(fk+ fk+1) . (4.56)

Hermite–Simpson Method

Variables:
xT = (y1,u1,u2, . . . ,uM ,yM ,uM ). (4.57)
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Defects:

ζ k = yk+1−yk−
hk

6

(
fk+4fk+1+ fk+1

)
, (4.58)

where

yk+1 =
1

2
(yk+yk+1)+ hk

8
(fk − fk+1), (4.59)

fk+1 = f
(

yk+1,uk+1, tk + hk

2

)
. (4.60)

For simplicity, we have presented all of the schemes assuming that the phase duration
is fixed. Of course, in general, the duration of a phase may be variable and it is worthwhile
discussing how this changes the discretization. First, the set of NLP variables must be aug-
mented to include the variable time(s) tI and/or tF . Second, we must alter the discretization
defined by (4.43) using the transformation (3.114) such that the stepsize is

hk = (τk+1− τk)(tF − tI )= (τk+1− τk)�t =�τk�t , (4.61)

where �t ≡ (tF − tI ) and �τk ≡ (τk+1− τk) with constants 0 ≤ τk ≤ 1 chosen so that the
grid points are located at fixed fractions of the total phase duration. Thus, in essence, as
the times tI and/or tF change, an “accordion”-like grid-point distribution results. Observe
that this approach will produce a consistent function generator as described in Section 3.8.
Finally, it should also be clear that the set of NLP variables can be augmented to include
the parameters p if they are part of the problem description.

4.6 NLP Considerations—Sparsity
4.6.1 Background

In the preceding section, an NLP problem was constructed by discretization of an optimal
control problem. In order to solve this NLP problem using any of the methods described
in Chapters 1 and 2, it will be necessary to construct the first and second derivatives of the
NLP constraints and objective function. With the exception of the boundary conditions, the
major portion of the Jacobian matrix is defined as

Gi j = Change in defect constraint on segment i

Change in optimization variable at grid point j
.

This matrix will have m rows, where m is the total number of defect constraints, and n
columns, where n is the total number of optimization variables. Now as a result of the
discretization process, it should be clear that changing a variable at a grid point affects only
the nearby constraints. Thus, the derivatives of many of the constraints with respect to the
variable are zero. Figure 4.2 illustrates the situation for a simple discretization with 11 grid
points. When the variable at grid point 6 is changed, the function connecting points 5 and 6
is altered, as is the function connecting points 6 and 7. However, the remaining portion of
the curve is unchanged. In fact, the multiple shooting method described in Section 3.4 was
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Figure 4.2. Transcription sensitivity.

introduced as a way to deal with the “tail wagging the dog” problem found in the simple
shooting method (Section 3.3). In essence, reduced sensitivity in the BVP manifests itself
mathematically as sparsity in the Jacobian matrix. The whole focus of this section is on
how to construct the sparse Jacobian and Hessian matrices efficiently for the transcribed
problem.

Example 4.1 LINEAR TANGENT STEERING. In order to motivate the development of
the general method, it is convenient to present a simple example problem. Let us consider
a problem with four states and one control described by the following state equations:

ẏ1 = y3, (4.62)

ẏ2 = y4, (4.63)

ẏ3 = a cosu, (4.64)

ẏ4 = a sinu. (4.65)

The goal is to minimize the time required for a vehicle to move from a fixed initial state to
a terminal position by choosing the control u(t). In this particular case, the problem has an
analytic solution referred to as “linear tangent steering” [54]. This also is of considerable
practical interest since it is a simplified version of the steering algorithm used by many
launch vehicles, including the space shuttle.
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4.6.2 Standard Approach

For the sake of comparison, let us begin with the standard direct transcription approach to
this problem. The usual technique is to treat the values of the state and control at discrete
times as optimization variables, thus leading to the definition

xT = (tF ,y1,u1, . . . ,yM ,uM ) (4.66)

of the NLP variables. The ODEs

ẏ= f
[
y,u, t

]
(4.67)

are then approximated by the NLP constraints

0= yk+1−yk −
hk

2

[
fk+1+ fk

]≡ c(x) (4.68)

for k = 1, . . . , M −1. This approximation describes a trapezoidal discretization for M grid
points. The Jacobian matrix for the resulting NLP problem is then defined by

G≡ ∂c
∂x

. (4.69)

When a finite difference method is used to construct the Jacobian, it is natural to identify
the constraint functions as the quantities being differentiated in (2.1). In other words, for
the standard approach,

q=
[

c
F

]
(4.70)

and

D=
[

G
(∇F)T

]
. (4.71)

It is also natural to define

ωT = (−λ1, . . . ,−λM−1,1), (4.72)

where λk are the Lagrange multipliers, so that (2.2)

�(x)=
m∑

i=1

ωi qi (x)= F−
M−1∑
i=1

λi ci (x)= L(x,λ) (4.73)

is the Lagrangian for the NLP problem. Clearly, it follows that the Hessian of the La-
grangian H = E, where E is given by (2.3). For the linear tangent steering example prob-
lem, with M = 10 grid points, the number of NLP variables is n = M(ny + nu)+ 1= 51,
where ny = 4 is the number of states and nu = 1 is the number of controls. The num-
ber of NLP constraints is m = (M − 1)ny = 36 and the number of index sets is γ =
2 ∗ (ny + nu)+ 1 = 11. Using the notation struct(G) to denote the structure of G, the
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resulting sparse Jacobian is of the form

struct(G)= . (4.74)

4.6.3 Discretization Separability

Examination of the expression for the trapezoidal defect (4.68) suggests that it may be
desirable to simply group the terms by grid point, i.e.,

0= yk+1−yk −
hk

2

[
fk+1+ fk

]
=
[

yk+1−
hk

2
fk+1

]
+
[
−yk −

hk

2
fk

]
. (4.75)

In so doing it is possible to write the NLP constraints as

c(x)= Bq(x), (4.76)

where

B=


I I

I I

. . .

I I

 (4.77)
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and

q(x)=



−y1− h1
2 f1

y2− h1
2 f2

−y2− h2
2 f2

y3− h2
2 f3

...

−yM−1− hM−1
2 fM−1

yM − hM−1
2 fM



. (4.78)

It is then possible to construct sparse difference estimates for the matrix

D≡ ∂q
∂x

(4.79)

and then construct the NLP Jacobian using

G≡ ∂c
∂x
= BD. (4.80)

The reason for writing the equations in this manner becomes clear when examining the
structure of the matrix D:

struct(D)= . (4.81)
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Notice that the matrix D has approximately half as many nonzero elements per row as
the matrix G. Consequently, the number of index sets needed to construct D is γ = 6,
as compared to γ = 11 for the standard approach. Thus, by exploiting separability, the
Jacobian computation cost has been reduced by nearly a factor of two, and the Hessian cost
is reduced by nearly a factor of three.

4.6.4 Right-Hand-Side Sparsity (Trapezoidal)

The computation savings observed by exploiting separability suggest further benefit may
accrue by grouping terms and also isolating the linear terms, that is,

0= yk+1−yk −
hk

2

[
fk+1+ fk

]
= [yk+1−yk

]− 1

2
�τk[�t fk+1]− 1

2
�τk[�t fk ], (4.82)

where, in view of transformation (3.114), hk = (τk+1 − τk )(tF − tI ) = (τk+1 − τk)�t =
�τk�t with �τk ≡ (τk+1−τk) for 0≤ τk ≤ 1. Using this construction, the NLP constraints
are

c(x)= Ax+Bq(x), (4.83)

where the constant matrices A and B are given by

A=
 0 −I 0 I

−I 0 I
...

. . .

 (4.84)

and

B=−1

2


�τ1I �τ1I

�τ2I �τ2I
. . .

�τM−1I �τM−1I

 (4.85)

with the nonlinear relationships isolated in the vector

q=


�t f1

�t f2

...

�t fM

 . (4.86)
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As before, we can construct sparse finite difference estimates for the matrix

D≡ ∂q
∂x
=



∂
∂tF

(�t f1)

∂
∂tF

(�t f2)

...

∂
∂tF

(�t fM )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�t ∂f1
∂x1

�t ∂f2
∂x2

. . .

�t ∂fM

∂xM


(4.87)

and then form the NLP Jacobian

G= A+BD. (4.88)

An important aspect of this construction now becomes evident. Notice that the matrix
D in (4.87) involves partial derivatives of the right-hand-side functions f with respect to the
state and control, all evaluated at the same grid point. In particular, let us define the nonzero
pattern

struct

(
∂fk

∂xk

)
= struct

(
∂fk

∂yk

∣∣∣∣ ∂fk

∂uk

)
(4.89)

as the sparsity template. The nonzero pattern defined by the sparsity template appears
repeatedly in the matrix D at every grid point introduced by the discretization method. For
the linear tangent steering example, the right-hand-side sparsity template is of the form

struct

(
∂f
∂y

∣∣∣∣ ∂f
∂u

)
=
 0 0 x 0

0 0 0 x
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0
0
x
x

 . (4.90)

Of course, in general, this right-hand-side sparsity template is problem dependent since
it is defined by the functional form of the right-hand sides of the state equations (4.67).
From a practical point of view, there are a number of alternatives for specifying the right-
hand-side sparsity. One approach is to simply require the analyst to supply this information
when defining the functions f. A second alternative is to construct the information using
some type of automatic differentiation of the user-provided software. The third approach,
which is used in the implementation of our software [38], is to numerically construct the
right-hand-side template using random perturbations about random nominal points.

Regardless of the approach used to construct the sparsity template, this information
can be used to considerable advantage when constructing the matrix D. For our linear
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tangent steering example,

struct(D)= . (4.91)

Comparing (4.81) with (4.91), it is clear that the repeated dense blocks along the diagonal
in (4.81) have been replaced with repeated blocks with the right-hand-side sparsity tem-
plate. The net result is that the matrix D can now be computed with γ = 2 index sets. To
recapitulate, for this linear tangent steering example, one finds the following results:

Dense Sparse Reduction (%)
Number of index sets, γ 11 2 −81.8%
Perturbations per Jacobian/Hessian 77 5 −93.5%

4.6.5 Hermite–Simpson (Compressed) (HSC)

In the previous section, the development focused on exploiting sparsity when the differen-
tial equations are approximated using a trapezoidal discretization that is second order, i.e.,
O(h2). To accurately represent the solution, it may be desirable to use a discretization of
higher order.

The discretization most widely used in the direct transcription algorithm is Hermite–
Simpson, which is of order four, i.e., O(h4). For this method, the defect constraints are
given by

0= yk+1−yk −
hk

6

[
fk+1+4fk+1+ fk

]
, (4.92)
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where

fk+1 = f
[

yk+1,uk+1, tk + hk

2

]
, (4.93)

yk+1 =
1

2
(yk+1+yk)+ hk

8
(fk − fk+1) (4.94)

with hk =�τk�t . In order to emphasize the implicit nature of this method, it is instructive
to substitute (4.93) and (4.94) into (4.92), yielding

0= yk+1−yk −
hk

6

{
fk+1+4f

[
1

2
(yk+1+yk )+ hk

8
(fk − fk+1),uk+1, tk+ hk

2

]
+ fk

}
.

(4.95)
We shall refer to this as the compressed form of the Hermite–Simpson method because
the Hermite interpolant (4.94) is used to locally eliminate the midpoint state. For this
discretization, the NLP variables are

xT =
(

tF ,y1,u1, u2 , . . . , uM ,yM ,uM

)
. (4.96)

Notice that the values for the control variable at the interval midpoints uk are introduced as
NLP variables, while the corresponding values for the state are not NLP variables.

Proceeding in a manner analogous to the trapezoidal method, the NLP constraints
can be written as

c(x)= Ax+Bq(x), (4.97)

where

q≡



�t
(

f2+4f2+ f1

)
�t
(

f3+4f3+ f2

)
...

�t
(

fM +4fM + fM−1

)


. (4.98)

Let us define
vk =�t

(
fk+1+4fk+1+ fk

)
. (4.99)

The derivative matrix is then given by

D≡ ∂q
∂x

=



∂
∂tF

(v1)
∂
∂tF

(v2)

...
∂
∂tF

(vM−1)

∣∣∣∣∣∣∣∣∣∣∣∣

∂v1
∂x1

∂v1
∂u2

∂v1
∂x2

∂v2
∂x2

∂v2
∂u3

∂v2
∂x3

. . .

∂vM−1

∂xM


. (4.100)
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As in the previous section, it is tempting to construct a template for the repeated
sparse blocks in the matrix D. In this case, the sparsity template is

struct

(
∂vk

∂xk

∣∣∣∣ ∂vk

∂uk+1

∣∣∣∣ ∂vk

∂xk+1

)
=
 0 0 x 0

0 0 0 x
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
x
x
x
x

∣∣∣∣∣∣∣
x
x
x
x

∣∣∣∣∣∣∣
0 0 x 0
0 0 0 x
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
x
x
x
x

 .

(4.101)
For the linear tangent steering example, we find that

struct(D)= . (4.102)

It is now worth comparing these results with the trapezoidal method described in the previ-
ous section. First, notice that the template (4.101) has more nonzeros than the trapezoidal
template (4.90). This can be attributed to the fact that the function v in (4.99) is a nonlin-
ear combination of the right-hand-side functions f. Second, notice that it is not possible
to uncouple the neighboring grid-point evaluations as was done when constructing (4.81).
This leads to repeated blocks in (4.102) that are more than twice as wide as those in the
trapezoidal method. The net result is that the HSC discretization requires γ = 6, whereas
the trapezoidal method needs only γ = 2.

4.6.6 Hermite–Simpson (Separated) (HSS)

An apparent shortcoming of the compressed form of the Hermite–Simpson discretization is
the fact that sparsity in the right-hand side of the differential equations is not fully exploited.
Essentially, this is due to the local elimination of the state variable at the midpoint of each
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interval, i.e., at tk+hk/2, which implicitly couples neighboring grid points. This difficulty
can be avoided by explicitly introducing the local elimination variables and constraints.
Thus, instead of (4.92), the discretization constraints without local compression are

0= yk+1−
1

2
(yk+1+yk)− hk

8
(fk − fk+1) (Hermite), (4.103)

0= yk+1−yk −
hk

6

[
fk+1+4fk+1+ fk

]
(Simpson). (4.104)

The first constraint defines the Hermite interpolant for the state at the interval midpoint,
while the second constraint enforces the Simpson quadrature over the interval. It is also
necessary to introduce additional NLP variables, namely the state variables at the midpoint
of each interval, leading to the augmented set

xT =
(

tF ,y1,u1, y2 , u2 ,y2,u2, . . . , yM , uM ,yM ,uM

)
. (4.105)

As before, the NLP constraints are

c(x)= Ax+Bq(x), (4.106)

where A and B are constant matrices and

q=



�t f1

�t f2

�t f2

...

�t fM−1

�t fM

�t fM



. (4.107)

Thus, by increasing the number of NLP variables and constraints, the sparsity properties of
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the trapezoidal method have been retained and we find

struct(D)= . (4.108)

It is not surprising that the separated Hermite–Simpson formulation requires γ = 2 in-
dex sets just like the trapezoidal, which is clear when comparing (4.108) with (4.91). In
effect, this formulation has introduced additional variables and constraints at the interval
midpoints.

4.6.7 K-Stage Runge–Kutta Schemes

All of the discretizations described are particular examples of K -stage Runge–Kutta schemes
introduced in Section 3.5. It is worthwhile to outline how the sparsity-exploiting techniques
can be extended. In general, the K -stage Runge–Kutta scheme (3.25)–(3.26) can be written
as

yk+1 = yk +hk

K∑
j=1

β j fkj , (4.109)

where

ykj = yk +hk

K∑
�=1

α j�fk�, (4.110)

fkj = f
[
ykj ,ukj , tkj

]
, (4.111)

ukj = u
(
tkj
)

, (4.112)

tkj = tk+hkρ j (4.113)

for 1 ≤ j ≤ K . The variables at the grid points (yk ,uk) are termed global since they must
be determined simultaneously over the entire interval tI ≤ t ≤ tF . The other variables,
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namely (ykj ,ukj ), are local to the interval tk ≤ t ≤ tk+1. The usual approach is to eliminate
the local variables—a process called parameter condensation. For the Hermite–Simpson
method, which is a three-stage implicit Runge–Kutta scheme, the parameter-condensation
process yields the NLP constraints (4.95). Unfortunately, the local elimination process
is undesirable when sparsity considerations are introduced. Thus, in general, to exploit
sparsity for K -stage Runge–Kutta schemes, one should introduce

1. the local variables (ykj ,ukj ) as additional NLP variables and

2. the local elimination conditions (4.110) as additional NLP constraints.

4.6.8 General Approach

In the preceding sections, it has been demonstrated that the discrete approximation to the
differential equations can be formulated to exploit sparsity in the problem differential equa-
tions. Although the discussion has focused on the constraints derived from the ODEs, the
concepts extend in a natural way to all of the problem functions in the NLP problem. Thus,
for path-constrained optimal control problems written in the semiexplicit form

ẏ= f
[
y,u,p, t

]
,

g� ≤ g
[
y,u,p, t

] ≤ gu ,

the key notion is to write the complete set of transcribed NLP functions as[
c(x)
F(x)

]
= Ax+Bq(x), (4.114)

where A and B are constant matrices and q involves the nonlinear functions at grid points.
Then it is necessary to construct the sparsity template for all of the continuous functions
(4.38), that is,

T = struct


∂f
∂y
∂g
∂y
∂w
∂y

∣∣∣∣∣∣∣∣∣∣∣

∂f
∂u
∂g
∂u
∂w
∂u

∣∣∣∣∣∣∣∣∣∣

∂f
∂p
∂g
∂p
∂w
∂p

 . (4.115)

Similar information for the nonlinear boundary functionsψ can also be incorporated. From
the sparsity template information, it is possible to construct the sparsity for the matrix D
and compute the finite difference index sets. The first derivative information needed to
solve the NLP can then be computed from[

G
(∇F)T

]
= A+BD. (4.116)

It is also easy to demonstrate that the sparsity pattern for the NLP Hessian is a subset of the
sparsity for the matrix (BD)T(BD), which can also be constructed from the known sparsity
of D. It follows from (4.114) that the Lagrangian is

L(x,λ)=
[
−λT,1

][ c
F

]
=
[
−λT,1

]
Ax+

[
−λT,1

]
Bq= σ Tx+ωTq. (4.117)
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Since there is no second derivative contribution from the linear term σ Tx, it is then straight-
forward to compute the actual Hessian matrix using the sparse differencing formulas (2.6)
and (2.7) with ωT = [−λT,1]B.

Additional computational efficiency can be achieved by exploiting separability in
the problem formulation. This subject will be revisited in Section 5.4. At this point it
should be emphasized that the potential benefits that accrue from exploiting sparsity in the
right-hand sides cannot be achieved with methods that integrate the DAEs over multiple
steps. Unfortunately, when a standard initial value method is used to integrate a coupled
set of DAEs, in general the repeated blocks will be dense, not sparse. So, for example,
a multiple shooting algorithm would require as many perturbations as there are state and
control variables. In contrast, for the transcription method it is quite common for γ �
ny+nu! More information on this subject can be found in [40].

4.6.9 Performance Issues

The preceding sections have described an approach for exploiting sparsity to reduce the
cost of constructing finite difference derivatives. However, the approach does introduce an
issue that can significantly affect the computational performance of the mesh-refinement
process. We temporarily defer the discussion of how mesh refinement is achieved to Section
4.7. In particular, when comparing the HSC form to the HSS form, it is not readily obvious
which discretization is better. Both are fourth order methods, i.e., O(h4). In general, the
number of index sets for the HSS form will be less than for the HSC form, i.e., γs ≤ γc.
However, in order to reduce the cost of computing derivatives, it is necessary to introduce
additional NLP variables and constraints, thereby increasing the size of the NLP problem,
i.e., ns > nc. Thus, it is fundamental to assess the performance penalty associated with a
larger NLP versus the performance benefit associated with reduced derivative costs. To this
end, let us consider the following model for total cost per NLP iteration:

T = (Finite differences)+ (Linear algebra)

= 1

2
Nrγ (γ +3)Tr + cnb

≈ c1 Mγ (γ +3)Tr + c2Mb.

Essentially, the total cost per iteration of an NLP is treated as the sum of two terms. The
first term is attributed to the cost of computing sparse finite difference derivative approx-
imations. As such, it depends on the number of index sets γ , the number of times the
right-hand-side functions are evaluated Nr , and the corresponding right-hand-side evalua-
tion time Tr . The second term is attributed to the operations performed by the NLP algo-
rithm and, as such, is related to the size of the problem n. This cost model can be rewritten
in terms of the common parameter M , which is the number of grid points. Clearly, this
formula depends on problem-specific quantities and the discretization method. Let us de-
note the cost per NLP iteration for the HSS method by Ts . Similarly, let Tc denote the time
for the HSC form. Now it is clear that, as the grid becomes large, M →∞ and the linear
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algebra cost will dominate. Thus, for large grids, the HSC method is preferable because
the problem size will be smaller. In fact, we can find a crossover grid size M∗ such that
Ts = Tc. Then, during the mesh-refinement process,

• use HSS when M < M∗ and

• use HSC when M > M∗.

Numerical tests on a set of 50 mesh-refinement problems suggest that the exponent b ≈
1.9. These performance tradeoffs are illustrated in Figure 4.3. To be more precise, the
50 problems were run with a value of b = 1.9 and the total solution time was recorded.
Then the same set of problems was run with different values for b. The change in the
total solution time with respect to the reference value at b = 1.9 is plotted as a * in Figure
4.3. The percentage change in the number of function evaluations (relative to the reference
value at b = 1.9) is plotted with a solid line. Thus, by choosing b = 1.9, the best overall
algorithm performed was obtained while keeping the number of right-hand-side evaluations
small. Examples 6.13 and 6.14 describe applications with computationally expensive right-
hand-side evaluations, where the HSS discretization is clearly preferable.

Figure 4.3. Discretization tradeoffs.
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4.6.10 Performance Highlights

Obviously the problem sparsity will dictate how effective the method is when compared
to a standard approach. This section describes how the techniques perform on a particular
application that can significantly exploit these properties.

Example 4.2 HEAT EQUATION. An example describing the optimal control of a heat-
ing process is presented by Heinkenschloss [111]. It can be viewed as a simplified model
for the heating of a probe in a kiln. The temperature is described by the following nonlinear
parabolic partial differential equation (PDE):

q(x , t)= (a1+a2y)
∂y

∂ t
−a3

∂2y

∂x2
−a4

(
∂y

∂x

)2

−a4y
∂2 y

∂x2
(4.118)

with boundary conditions given by

(a3+a4y)
∂y

∂x

∣∣∣∣
x=0

= g
[
y(0, t)−u(t)

]
, (4.119)

(a3+a4y)
∂y

∂x

∣∣∣∣
x=1

= 0, (4.120)

y(x ,0)= yI (x). (4.121)

The boundary x = 1 is the inside of the probe and x = 0 is the outside, where the heat
source u(t) is applied. The goal is to minimize the deviation of the temperature from a
desired profile, as defined by the objective

φ = 1

2

∫ T

0

{[
y(1, t)− yd(t)

]2+γ u2(t)
}

dt , (4.122)

by choosing the control function subject to the simple bounds

uL ≤ u(t)≤ uU . (4.123)

For consistency with [111], we define the specified functions

yd (t)= 2− eρt , (4.124)

yI (x)= 2+ cos(πx), (4.125)

q(x , t)=
[
ρ(a1+2a2)+π2(a3+2a4)

]
eρt cos(πx)

−a4π
2e2ρt + (2a4π

2+ρa2)e2ρt cos2(πx) (4.126)

and parameter values

a1 = 4, a2 = 1, a3 = 4, a4 =−1, uU = 0.1,

ρ =−1, T = 0.5, γ = 10−3, g = 1, uL =−∞.

This distributed parameter optimal control problem can be cast as a lumped param-
eter control problem using the method of lines. The method of lines is an approach for
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converting a system of PDEs into a system of ODEs. In so doing, the methods of this book
become directly applicable. Let us consider a spatial discretization defined by

xi = i −1

N −1
(4.127)

for i = 0,1, . . . , N , N +1, where δ= 1/(N−1). Using this discretization, the partial deriva-
tives are approximated by

∂y

∂x
≈ 1

2δ
(yi+1− yi−1), (4.128)

∂2 y

∂x2 ≈
1

δ2 (yi+1−2yi+ yi−1). (4.129)

After substituting this approximation into the defining relationships and simplifying, one
obtains an optimal control problem with the state vector yT = (y1, . . . , yN ) and the control
vector vT = (u, y0, yN+1)= (v1,v2,v3). The state equations are

ẏ1 = 1

(a1+a2y1)

[
q1+ 1

δ2 (a3+a4y1)(y2−2y1+ v2)+a4

(
y2− v2

2δ

)2
]

, (4.130)

ẏi = 1

(a1+a2yi )

[
qi + 1

δ2
(a3+a4yi)(yi+1−2yi+ yi−1)+a4

(
yi+1− yi−1

2δ

)2
]
(4.131)

for i = 2, . . . , N −1 and

ẏN = 1

(a1+a2yN )

[
qN + 1

δ2
(a3+a4yN )(v3−2yN + yN−1)+a4

(
v3− yN−1

2δ

)2
]

.

(4.132)

The boundary conditions (4.119) and (4.120) become path constraints

0= g(y1− v1)− 1

2δ
(a3+a4y1)(y2− v2), (4.133)

0= 1

2δ
(a3+a4yN )(v3− yN−1) (4.134)

and the remaining condition (4.121) defines the initial condition for the states, i.e.,

yi (0)= yI (xi). (4.135)

Finally, the objective function is just

φ = 1

2

∫ T

0

{[
yN − yd

]2+γ v2
1

}
dt . (4.136)

For the results below, N = 50, and the state and path equations form a nonlinear index-one
DAE system. The optimal solution is illustrated in Figures 4.4 and 4.5. These results were
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Figure 4.4. Optimal temperature distribution.

Figure 4.5. Optimal control distribution.
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obtained after 5 mesh-refinement iterations (using the algorithm described in Section 4.7),
with 164 points in the final time-dependent grid. The final NLP problem involved 9181
variables, 9025 active constraints, and 156 degrees of freedom.

The impact of sparsity on the performance of the algorithm is summarized below:

Dense Sparse Reduction (%)
γs 53 4 −92.5%
γc 109 15 −86.2%
Func. eval. 42552 983 −97.7%
CPU time 1851.43 377.86 −79.6%

First, notice the dramatic reduction in the number of index sets γ for both HSS and HSC
discretization forms. This is due primarily to the right-hand-side sparsity template

T = struct


∂f
∂y
∂g
∂y
∂w
∂y

∣∣∣∣∣∣∣∣∣∣∣

∂f
∂u
∂g
∂u
∂w
∂u

= . (4.137)

The comparison is even more dramatic when considering the number of function evalua-
tions needed to solve the problem. If right-hand-side sparsity is not exploited, the number
of function evaluations is 42552. In comparison, by exploiting sparsity, the problem was
solved in 983 evaluations, for a reduction of 97.7%.

4.7 Mesh Refinement
To review, the transcription method has three fundamental steps:

Direct Transcription: Transcribe the optimal control problem into an NLP problem by
discretization.

Sparse NLP: Solve the sparse (SQP or barrier) NLP.

Mesh Refinement: Assess the accuracy of the approximation (i.e., the finite-dimen-
sional problem) and if necessary refine the discretization and then repeat the op-
timization steps.
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In fact, the approach can be considered an SNLP or sequential nonlinear program-
ming algorithm. Techniques for executing step 2 of the transcription method, that is, solv-
ing large, sparse NLP problems, are described in Chapter 2. Chapter 3 describes techniques
for transcribing the original control problem into a finite-dimensional NLP problem. In the
preceding sections, we described how to efficiently compute the sparse Jacobian and Hes-
sian matrices needed by the NLP algorithm. Let us now turn our attention to step 3 in the
transcription method, which is called mesh refinement or grid refinement.

4.7.1 Representing the Solution

The first step in the mesh-refinement process is to construct an approximation to the con-
tinuous solution from the information available at the solution of the NLP. Specifically, for
the state variable y(t), let us introduce the approximation

y(t)≈ ỹ(t)=
n1∑

i=1

γ i Di (t), (4.138)

where the functions Di (t) form a basis for C1 cubic B-splines with n1 = 2M , where M
is the number of mesh points. The coefficients γ i in the state variable representation are
uniquely defined by Hermite interpolation of the discrete solution. Specifically, we require
the spline approximation (4.138) to match the state at the grid points

ỹ(tk)= yk (4.139)

for k = 1, . . . , M . In addition, we force the derivative of the spline approximation to match
the right-hand side of the differential equations, that is, from (4.32),

d

dt
ỹ(tk)= fk (4.140)

for k = 1, . . . , M .
A similar technique can be used to construct an approximation for the control vari-

ables from the discrete data. Specifically, let us introduce the approximation

u(t)≈ ũ(t)=
n2∑

i=1

β iCi (t). (4.141)

When a trapezoidal discretization is used, the functions Ci (t) form a basis for C0 piecewise
linear B-splines with n2 = M . The coefficients β i in the control variable representation are
uniquely defined by interpolation of the discrete solution. Specifically, we require the spline
approximation (4.141) to match the control at the grid points

ũ(tk)= uk (4.142)

for k = 1, . . . , M . When a Hermite–Simpson solution is available, it is possible to use a
higher-order approximation for the control. In this case, the functions Ci (t) form a basis
for C0 quadratic B-splines with n2 = 2M − 1. The coefficients can be defined from the
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values at the grid points (4.142) as well as the values of the control at the midpoint of the
interval, that is,

ũ
[

(tk+1+ tk)

2

]
= uk+1 (4.143)

for k = 1, . . . , M −1.
It is convenient to collect the preceding results in terms of a common B-spline basis.

In particular, the continuous functions can be written as[
y(t)
u(t)

]
≈
[

ỹ(t)
ũ(t)

]
=

N∑
i=1

αi Bi (t), (4.144)

where the functions Bi(t) form a basis for C0 cubic B-splines with N = 3M − 2. It is
important to emphasize that, by construction, the state variables are C1 cubics and the con-
trol will be either C0 quadratic or linear functions, even though they are represented in the
space of C0 cubic B-splines. For a more complete discussion of B-spline approximation,
the reader should consult [69]. Is there a reason to prefer a polynomial representation over
some other form, such as rational function or Fourier series? Yes! Recall that an implicit
Runge–Kutta scheme is a collocation method. The interpolation conditions used to con-
struct the polynomial approximation (in B-spline form) are just the collocation conditions
(3.38)–(3.39).

4.7.2 Estimating the Discretization Error

The preceding section describes an approach for representing the functions ỹ(t) and ũ(t).
The fundamental question is how well these functions approximate the true solution y(t)
and u(t). To motivate the discussion, let us reconsider the simplified form of the problem
introduced in Section 4.1. Suppose we must choose the control functions u(t) to minimize
(4.1) subject to the state equations (4.2) and the boundary conditions (4.3). The initial
conditions y(tI )= yI are given at the fixed initial time tI , and the final time tF is free. As
stated, solving the necessary conditions is a two-point BVP in the variables y(t), u(t), and
λ(t). In fact, many of the refinement ideas we will discuss are motivated by boundary value
methods (cf. [2]).

A direct transcription method does not explicitly form the necessary conditions (4.7)–
(4.10). In fact, one of the major reasons direct transcription methods are popular is that it is
not necessary to derive expressions for Hy , Hu , and �y and it is not necessary to estimate
values for the adjoint variables λ(t). On the other hand, because the adjoint equations are
not available, they cannot be used to assess the accuracy of the solution. Consequently,
we choose to address a different measure of discretization error. Specifically, we assume
ũ(t) is correct (and optimal) and estimate the error between ỹ(t) and y(t). This is a subtle,
but very important, distinction, for it implies that optimality of the control history ũ(t) is
not checked when measuring the discretization error. The functions ũ(t) are constructed to
interpolate the discrete values uk as described in the previous section. The discrete values
uk are the solution of an NLP problem and satisfy the NLP (KKT) necessary conditions.
However, only in the limit as hk → 0 do the KKT conditions become equivalent to the
necessary conditions (4.7)–(4.10). Computational experience will be presented that tends
to corroborate the validity of this approach.
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Specifically, let us estimate the error in the state variables as a result of the discretiza-
tion (4.56) or (4.58). We restrict this analysis to the class of controls that can be represented
as C0 quadratic B-splines. This restriction in turn implies that one can expect to accurately
solve an optimal control problem provided

1. the optimal state variable y(t) is C1 and

2. the optimal control variable u(t) is C0

within the phase, i.e., for tI ≤ t ≤ tF . On the other hand, the solution to the optimal
control problem as posed in (4.32)–(4.35) may in fact require discontinuities in the control
and/or state derivatives. In particular, when the path constraints do not involve the control
variable explicitly, the optimal solution may contain corners. Similarly, when the control
appears linearly in the differential equations, bang-bang control solutions can be expected.
Consequently, if the transcription method described is applied to problems of this type,
some inaccuracy must be expected unless the locations of discontinuities are introduced
explicitly as phase boundaries. Thus, we will be satisfied with accurately solving problems
when the control is continuous and the state is differentiable. If this is not true, we will be
satisfied if the method “does something reasonable.”

When analyzing the behavior of an integration method, it is common to ascribe an or-
der of accuracy to the algorithm (cf. [66]). Typically, the solution of an ODE is represented
by an expansion of the form

y(t ,h)= y(t)+
∞∑

i=p

ci (t)hi . (4.145)

The global error at a point tk+1 is the difference between the computed solution yk+1 and
the exact solution y(tk+1). The local error is the difference between the computed solution
yk+1 and the solution of the differential equation that passes through the computed point
yk . For ODEs, typically if the global error is O(h p), then the local error is O(h p+1). Thus,
if the order of accuracy of a method is p, the local error for the method at step k is of the
form

εk ≈ ‖ckh p+1‖, (4.146)

where the coefficients ck typically depend on partial derivatives of the right-hand side
f[y(t),u(t), t]. The Hermite–Simpson discretization (4.58) is of order p = 4, while the
trapezoidal discretization (4.56) is of order p = 2.

The standard order analysis of a system of ODEs is modified when considering a
system of DAEs [48]. In particular, when one or more of the path constraints (4.33) is
active, the constrained arc is characterized by a DAE of the form

ẏ= f[y(t),u(t), t], (4.147)

0= g[y(t),u(t), t]. (4.148)

The index of a DAE is one measure of how singular the DAE is. It is known that
numerical methods may experience an order reduction when applied to a DAE. When a
path constraint becomes active, the index of the DAE may change, and there can be a cor-
responding change in the order of the method. As a result, for a path-constrained problem,
we must assume that (4.146) is replaced by

εk ≈ ‖ckh p−r+1‖, (4.149)
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where r is the order reduction. Thus, we expect that for some problems the index and hence
the order reduction will change as a function of time t . Unfortunately, in general, the index
of the DAE is unknown and, therefore, the order reduction is also not known.

There is a further problem in that the theory for IRK methods applied to DAEs usually
leads to different amounts of order reduction in different variables [48]. This is true for
both the trapezoidal and Hermite–Simpson methods [60, 118]. In addition, the difference
between the local and global errors can sometimes be greater than one. In a complex
optimization problem, the activation and deactivation of constraints cannot only change
the index but can change what the index of a particular variable is. We distinguish only
between the control and the state so that order reduction is always taken to be the largest
order reduction in all the state variables. In contrast to most traditional methods, let us
estimate the order reduction and use this information to improve the refinement process.
Consequently, it is not important to determine why the order is reduced but rather by how
much [25, 24].

To estimate the order reduction, we need to first estimate the discretization error on
a given mesh. There are a number of ways to do so. As previously stated, in estimating
the local error we assume that the computed control is correct. Consider a single interval
tk ≤ t ≤ tk +hk , that is, a single integration step. Suppose the NLP problem has produced
a spline solution ỹ(t) and ũ(t) to the ODEs (4.147). From (4.147),

y(tk+hk)= y(tk)+
∫ tk+hk

tk
ẏdt = y(tk)+

∫ tk+hk

tk
f
[
y,u, t

]
dt . (4.150)

Observe that this expression for y(tk +hk) involves the true value for both y and u, which
are unknown. Consequently, we may consider the approximation

ŷ(tk +hk)≡ y(tk)+
∫ tk+hk

tk
f
[̃
y(t), ũ(t), t

]
dt , (4.151)

where the spline solution ỹ(t) and ũ(t) appears in the integrand. A second alternative is the
expression

ŷ(tk +hk)≡ y(tk)+
∫ tk+hk

tk
f
[
y(t), ũ(t), t

]
dt , (4.152)

where the real solution y(t) and the spline approximation ũ(t) appear in the integrand.
With either (4.151) or (4.152), we can define the discretization error on the kth mesh

iteration as
ηk =max

i
{ai |̃yi (tk+hk)− ŷi(tk+hk)|} (4.153)

for i = 1, . . . ,n, where the weights ai are chosen to appropriately normalize the error.
However, our particular need for these estimates imposes certain special restrictions.

First, we want them to be part of a method that will be used on a wide variety of problems,
including some problems that are stiff. Second, we want to use the estimates on coarse
grids. Unfortunately, an estimate computed from (4.152) based on an explicit integrator
may be unstable on coarse grids. While (4.152) might be the most accurate, its compu-
tation would require an explicit integration of ẏ = f

[
y, ũ, t

]
on a possibly large grid with

tight error control. This is particularly unfortunate since both of the primary discretization
methods (trapezoidal and Hermite–Simpson) are implicit schemes with very good stability
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properties. These special requirements lead us to abandon (4.152) and focus on (4.151).
First, let us rewrite (4.151) as

ŷk+1 = yk+
∫ tk+hk

tk
f̃dt

= yk+
∫ tk+hk

tk

˙̃ydt−
∫ tk+hk

tk

˙̃ydt+
∫ tk+hk

tk
f̃dt

= yk+ ỹk+1− ỹk −
∫ tk+hk

tk
[ ˙̃y− f̃]dt .

By definition, there is no error at the beginning of the interval for a local error estimate, so
we can set yk = ỹk , which leads to

ỹk+1− ŷk+1 =
∫ tk+hk

tk
[ ˙̃y− f̃]dt .

Taking absolute values of each component, we then obtain the bound

∣∣̃yi,k+1− ŷi,k+1

∣∣= ∣∣∣∣∫ tk+hk

tk

[
˙̃yi − f̃i

]
dt

∣∣∣∣ ≤ ∫ tk+hk

tk
| ˙̃yi − f̃i |dt .

Therefore, let us define the absolute local error on a particular step by

ηi,k =
∫ tk+1

tk
|εi (s)|ds, (4.154)

where
ε(t)= ˙̃y(t)− f[̃y(t), ũ(t), t] (4.155)

defines the error in the differential equation as a function of t . Notice that the arguments
of the integrand use the spline approximations (4.144) for the state and control evaluated
at intermediate points in the interval. From this expression for the absolute error, we can
define the relative local error by

εk ≈max
i

ηi,k

(wi +1)
, (4.156)

where the scale weight

wi = M
max
k=1

[|ỹi,k |, | ˙̃yi,k |
]

(4.157)

defines the maximum value for the i th state variable or its derivative over the M grid points
in the phase. Notice that εk is the maximum relative error over all components i in the state
equations ẏ− f evaluated in the interval k.

The approximations (4.153) and (4.156) are similar; however, they differ in two re-
spects. The weightings are quite different. Also, (4.153) emphasizes the error in prediction,
which is typical with ODE integrators, while (4.156) emphasizes the error in solving the
equations. Since the latter is closer to the SOCS termination criteria, we will use (4.156)
in the ensuing algorithms.
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Now let us consider how to compute an estimate for the error ηk . Since this dis-
cretization error is essential for estimating the order reduction, we choose to construct an
accurate estimate for the integral (4.154). Because the spline approximations for the state
and control are used, the integral (4.154) can be evaluated using a standard quadrature
method. In particular, we compute the integral using a Romberg quadrature algorithm with
a tolerance close to machine precision.

4.7.3 Estimating the Order Reduction

In order to use the formula (4.149), it is necessary to know the order reduction r . We pro-
pose computing this quantity by comparing the behavior on two successive mesh-refinement
iterations. Specifically, assume that the current grid was obtained by subdividing the old
grid; that is, the current grid has more points than the old grid. Let us focus on the behavior
of a single variable on a single interval in the old grid as illustrated below:

θ = ch p−r+1 old grid

η = c
(

h
1+I

)p−r+1
current grid

Denote the discretization error on the old grid by θ . The error on an interval in the old grid
is then

θ = ch p−r+1, (4.158)

where p is the order of the discretization on the old grid and h is the stepsize for the interval.
If the interval on the old grid is subdivided by adding I points, the resulting discretization
error is

η = c

(
h

1+ I

)p−r+1

. (4.159)

If we assume the order reduction r and the constant c are the same on the old and current
grids, then we can solve (4.158) and (4.159) for these quantities.

Solving gives

r̂ = p+1− log(θ/η)

log(1+ I )
. (4.160)

Choosing an integer in the correct range, the estimated order reduction is given by

r =max
[
0,min(nint(r̂), p)

]
, (4.161)

where nint denotes the nearest integer. As a final practical matter, we assume that the order
reduction is the same for all I + 1 subdivisions of the old interval. Thus, if an interval on
the old grid was subdivided into three equal parts, we assume the order reduction is the
same over all three parts. Thus, the resolution of our order-reduction estimates is dictated
by the old, coarse grid.

To summarize, we compare the discretization errors for each interval on the old grid,
i.e., θk , with the corresponding discretization errors on the current grid. Because the current
grid is constructed by subdividing the old grid, we can then compute the estimated order
reduction for all intervals on the current grid.
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While (4.160) provides a formula for the observed order reduction, this estimate is
sensitive to the computed discretization error estimates η and θ . To appreciate the sensitiv-
ity, let us assume q , p are the orders of the Hermite–Simpson discretization on the old and
current grids. Generalizing the expression (4.160), define the function

Q(a,b)= q+1− log(a/b)

log(1+ I )
.

Notice that

Q(p1a, p2b)= Q(a,b)− log(p1/p2)

log(1+ I )
.

Here we are thinking of p1/p2 as the ratio in the computed discretization errors. Notice that
p1/p2 = 1.07 with I = 1 gives a reduction of 0.1, while p1/p2 = 1.15 gives a reduction
of 0.2. Thus, a change of 15% in the discretization error estimate could easily alter the
estimated value of r if it reduced, say, from 1.65 to 1.45. In order to deal with this sensitivity
in the mesh refinement, we have

1. computed the discretization errors using a very accurate quadrature method to eval-
uate (4.154) and

2. computed the weights (4.157) only once at the end of the first refinement iteration.

4.7.4 Constructing a New Mesh

The purpose of this section is to delineate an approach for constructing a new mesh using
information about the discretization error on a current mesh. We will use the terminology
“old grid” to refer to the previous refinement iteration, “current grid” to refer to the current
iteration, and “new grid” when describing the next iteration. Certainly the primary goal is
to create a new mesh with less discretization error than the current one. On the other hand,
simply adding a large number of points to the current grid increases the size of the NLP
problem to be solved, thereby causing a significant computational penalty. Briefly, then,
the goal is to reduce the discretization error as much as possible using a specified number
of new points.

To motivate the discussion, let us consider the simple example illustrated in Figure
4.6, which shows the discretization error and the stepsize as a function of the normalized
interval τ . Suppose that the old grid has five intervals (six grid points) and the largest
discretization error is in interval three. If interval three is subdivided by adding a grid point,
the corresponding discretization error should be reduced as illustrated by the dark shaded
region in Figure 4.6. Obviously, the process can be repeated, each time adding a point to
the interval with the largest discretization error. Thus, a new mesh can be constructed by
successively adding points to the intervals with the largest discretization errors.

In the preceding section, an approach was described for computing an error estimate
for each segment or interval in the current grid. By equating (4.149) with (4.156), we obtain

‖ck‖h p−rk+1 =max
i

ηi,k

(wi +1)
(4.162)

so that
‖ck‖ =max

i

ηi,k

(wi +1)h p−rk+1 . (4.163)
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Figure 4.6. Subdividing the grid.

Let us suppose we are going to subdivide the current grid; i.e., the new grid will contain the
current grid points. Let us define the integer Ik as the number of points to add to interval k,
so that from (4.149) and (4.163) we may write

εk ≈ ‖ck‖
(

h

1+ Ik

)p−rk+1

=max
i

ηi,k

(wi +1)

(
1

1+ Ik

)p−rk+1

(4.164)

for integers Ik ≥ 0. Specifically, if we add Ik points to interval k in the current mesh, this is
an approximation for the error on each of the 1+ Ik subintervals. Then the new mesh can
be constructed by choosing the set of integers Ik to minimize

φ(Ik )=max
k

εk (4.165)

and satisfy the constraints
ns∑

k=1

Ik ≤ M −1 (4.166)

and
Ik ≤ M1 (4.167)

for k = 1, . . . ,ns . Essentially, we want to minimize the maximum error over all of the
intervals in the current mesh by adding at most M−1 total points. In addition, the number
of points that are added to a single interval is limited to M1. This restriction is incorporated
in order to avoid an excessive number of subdivisions in a single interval. In fact, in our
computational implementation we terminate the mesh-refinement process when a single
interval has M1 points. Equations (4.165)–(4.167) define a nonlinear integer programming
problem.

This approach formalizes a number of reasonable properties for a mesh-refinement
procedure. When the errors on each interval of the current mesh are approximately the
same, i.e.,

ε1 ≈ ε2 ≈ ·· · ≈ ε, (4.168)
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we say that the error is equidistributed, where the average error

ε = 1

M

M∑
k=1

εk . (4.169)

In this case, the new mesh defined by the integer programming problem (4.165)–(4.167)
will simply subdivide each interval in the current mesh. On the other hand, the error for the
current mesh may be dominated by the error on a single interval α, i.e.,

εα � εk (4.170)

for k = 1, . . . ,ns with k �= α. In this case, the solution to (4.165)–(4.167) will require adding
as many as M1 points into interval α. Typically, we use M1 = 5.

4.7.5 The Mesh-Refinement Algorithm

Let us now summarize the procedure for mesh refinement. Denote the mesh-refinement
iteration number by jr . Assume the current grid has M points. The goal of the mesh-
refinement procedure is to select the number and location of the grid points in the new
mesh as well as the order of the new discretization. Typically, we begin with a low-order
discretization and switch to a high-order method at some point in the process. In our
software implementation, the default low/high-order pairs are trapezoidal and Hermite–
Simpson, respectively. The desired error tolerance is δ, and we would like the new mesh
to be constructed such that it has an error below this tolerance. In fact, when making
predictions, we would like the predicted errors to be “safely” below, say, δ̂= κδ, where 0<
κ < 1. Typically, we set κ = 1/10. The procedure begins with values for the discretization
error on all intervals in the current mesh, i.e., εk for k = 1, . . . ,ns , and we initialize Ik = 0.

Mesh-Refinement Algorithm

1. Construct Continuous Representation. Compute the cubic spline representation
(4.144) from the discrete solution x∗.

2. Estimate Discretization Error. Compute an estimate for the discretization error
εk in each segment of the current mesh, that is, evaluate (4.154) using Romberg
quadrature; compute the average error from (4.169).

3. Select Primary Order for New Mesh.

(a) If the error is equidistributed for the low-order method, increase the order; i.e.,
if p < 4 and εα ≤ 2ε, then set p = 4 and terminate.

(b) Otherwise, if ( p < 4) and jr > 2, then set p = 4 and terminate.

4. Estimate Order Reduction. Compare the current and old grids to compute rk from
(4.160) and (4.161).
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5. Construct New Mesh.

(a) Compute the interval α with maximum error, i.e.,

εα =max
k

εk . (4.171)

(b) Terminate if

• M ′ points have been added (M ′ ≥min[M1,κM])

and

• the error is within tolerance: εα ≤ δ and Iα = 0 or
• the predicted error is safely within tolerance: εα ≤ κδ and 0 < Iα < M1 or
• M−1 points have been added or
• M1 points have been added to a single interval.

(c) Add a point to interval α, i.e., Iα ← Iα+1.

(d) Update the predicted error for interval α from (4.164).

(e) Return to step 5(a).

Observe that early in the mesh-refinement process, when the discretization error esti-
mates are crude, we limit the growth so that the new mesh will have at most 2M−1 points.
The intent is to force a new NLP solution, which presumably will lead to better estimates of
the error. Furthermore, in step 5(b) of the procedure, when Iα �= 0, the error εα is predicted
(and presumably less reliable). In this case, we force it to be safely less than the tolerance
before stopping. In addition, the refinement is not terminated without adding a minimum
number of grid points. This is done to preclude a sequence of refinement iterations that add
only one or two points.

The procedure used to modify the order and size of the mesh is somewhat heuristic
and is designed to be efficient on most applications. Because the trapezoidal method is
both robust and efficient when computing sparse finite difference derivatives, the intent is
to solve the initial sparse NLP problem using a trapezoidal discretization. In fact, compu-
tational experience demonstrates the value of initiating the process with a coarse mesh and
low-order method. On a set of 49 optimal control test problems, on average, the strategy
requires 17.1% fewer evaluations of the right-hand-side functions f and g than a strategy
that begins with the Hermite–Simpson discretization. On the other hand, in the software
implementation (SOCS) [38], it is possible to specify the initial discretization, which may
be effective when the user can provide a good initial guess for the solution. If the discretiza-
tion error appears to be equidistributed, it is reasonable to switch to a higher-order method
(i.e., Hermite–Simpson). However, when the error is badly distributed, at least two different
discrete solutions are obtained before the order is increased. The default low-order (trape-
zoidal) and high-order (Hermite–Simpson) schemes are both IRK methods. The method
used for constructing a new mesh always results in a subdivision of the current mesh, which
has been found desirable in practice. The minimax approach to adding points is designed
to emphasize equidistributing the error when only a limited number of points are included
in the new grid.

Is mesh refinement necessary? The examples in Sections 6.1 and 7.1.8 demonstrate
just how important it is.
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4.7.6 Computational Experience

The mesh-refinement procedure was tested on a standard set of SOCS test problems. The
collection consists of 53 optimal control problems and/or BVPs with path constraints, var-
ious degrees of nonlinearity, and computational complexity. For comparison, the same
problems were solved using the old mesh-refinement strategy described in [39], which did
not estimate the order reduction. The results are summarized below.

Performance Summary (Old versus New)
Total time decrease (16601.63 versus 12956.20) −22%
Average time change (all problems) −0.23%
Maximum time increase (all problems) 109.31%
Minimum time decrease (all problems) −62.20%

Examination of the results suggests that for most problems, there was little difference in the
two techniques. However, since the total time for the test set was noticeably reduced, this
also suggests that there was very significant improvement on at least a few of the problems.
Clearly, for problems that do not exhibit any significant index reduction, little change can
be expected. On the other hand, for some “hard” problems, there is apparently a noticeable
improvement.

Example 4.3 ALP RIDER. To illustrate the method, let us consider a problem specif-
ically constructed to be hard. The system is defined by the following DAEs:

ẏ1 =−10y1+u1+u2,

ẏ2 =−2y2+u1+2u2,

ẏ3 =−3y3+5y4+u1−u2,

ẏ4 = 5y3−3y4+u1+3u2,

y2
1 + y2

2+ y2
3+ y2

4 ≥ 3 p(t ,3,12)+3 p(t ,6,10)+3p(t ,10,6)+8p(t ,15,4)+0.01,

where the exponential “peaks” p(t ,a,b)= e−b(t−a)2
. The system of differential equations

is stiff with eigenvalues {−10,−2,−3± 5i}. Notice also that the single state variable in-
equality path constraint is defined in terms of the peak functions. The system has boundary
conditions

yT(0)= [2,1,2,1],

yT(20)= [2,3,1,−2]

and the goal is to minimize the objective function

J (y,u)=
∫ 20

0
102(y2

1+ y2
2+ y2

3+ y2
4)+10−2(u2

1+u2
2)dt .

We refer to this as the Alp rider problem because the minimum value for the objective
function tends to force the state to ride the path constraint. Figure 4.7 illustrates the peaks
for the path-constraint function for this problem.

In fact, this problem is very similar to the path encountered by a terrain-following
aircraft. This is quite obvious in the solution illustrated in Figure 4.8, which demonstrates
peaks at the locations (3,6,10,15).
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Figure 4.7. Alp rider peaks.

Figure 4.8. Alp rider solution.

The Alp rider example required 11 mesh-refinement iterations, which are tabulated
in the rows of Table 4.2. For the results in this table, we initiated the algorithm with the
Hermite–Simpson discretization, although results for the default method are very similar.
The first iteration began with 21 equally spaced grid points (NPT) and was solved after 66
gradient evaluations (NGC) and 62 Hessian evaluations (NHC) for a total of 7529 function
evaluations (NFE), including finite difference perturbations. This solution required 308689
evaluations of the right-hand sides (NRHS) of the DAEs and produced a solution with a
discretization error (ERRODE) of 0.32×100, which was obtained in 0.22×102 sec. Using
the solution from the first iteration as an initial guess, the second solution, using 41 grid
points, was obtained after an additional 91 Hessian evaluations. Notice that it is necessary
to substantially increase the size of the mesh before the solution of the NLP problem is
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Table 4.2. Alp rider performance summary.

GRID NPT NGC NHC NFE NRHS ERRODE CPU (sec)
1 21 66 62 7529 308689 0.32×100 0.22×102

2 41 93 91 10969 888489 0.29×10−1 0.66×102

3 76 37 35 4244 640844 0.74×10−2 0.63×102

4 84 19 16 1993 332831 0.89×10−3 0.35×102

5 119 26 23 2833 671421 0.18×10−3 0.65×102

6 194 18 16 1964 760068 0.31×10−4 0.95×102

7 253 17 15 1844 931220 0.11×10−4 0.14×103

8 304 10 8 1004 609428 0.37×10−5 0.16×103

9 607 6 4 524 635612 0.35×10−6 0.54×103

10 785 5 3 404 633876 0.16×10−6 0.92×103

11 992 5 3 404 801132 0.29×10−7 0.14×104

992 302 276 33712 7213610 3543.81

obtained quickly; this suggests that the quadratic convergence region for this application is
very small. For comparison, the old refinement method [39] required 27370.44 sec, 2494
grid points, and 10 iterations to solve this problem. This substantial difference in computa-
tion time can be attributed to the size of the final mesh. In particular, the computational cost
of the NLP problem is related to the number of grid points and, since the final grid for the
old method is approximately 2.5 times as large, it is not surprising that the computational
cost for the old method is 7.7 times larger than for the new approach.

Figure 4.9 illustrates the behavior of the refinement algorithm on the Alp rider ex-
ample. The first iteration is shown with the darkest shading and the last iteration has the
lightest shading. Observe that the early refinement steps tend to cluster points near the
boundaries and peaks where the calculated discretization error is largest. The final mesh-
refinement iterations tend to have a more uniform distribution of error because the grid
points have been clustered in the appropriate regions.

Figure 4.9. Alp rider mesh-refinement history.
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4.8 Scaling
In Section 1.16, we discussed the importance of scaling an NLP problem in order to obtain
robust and rapid convergence to a solution. The special structure of the optimal control
problem can be exploited to improve the scaling of the underlying NLP subproblem. Many
of the trajectory problems (e.g., Example 6.1) discussed in the next chapter are formulated
using quantities with significant differences in the units for the state variables. For example,
some of the state variables represent angles ranging from −π to π , where others, like
altitude, may range from 0 to 106 ft. Thus, scaling is necessary to make the ranges of the
variables more uniform. While no scaling method is universally successful, the technique
presented is often helpful.

To make the analysis physically meaningful, we would like to choose scaling in the
control setting rather than the NLP setting. In other words, we would like to choose scaling
for the state variables and the control variables. Thus, for the purposes of this analysis,
let us assume that the scaling is the same over all grid points and temporarily drop the
grid-point notation. Rewriting the NLP variable scaling (1.148) in vector form and then
applying it to the control setting, we find[̃

y
ũ

]
=
[

Vy 0
0 Vu

][
y
u

]
+
[

ry
ru

]
, (4.172)

which relates the scaled state ỹ and control ũ to the unscaled quantities y and u. The ny ×
ny diagonal matrix Vy contains the state variable scale weights and the nu × nu diagonal
matrix Vu contains the control variable scale weights. The corresponding variable shifts
are defined by the vectors ry and ru .

In general, we impose defect constraints ζ = 0 and path constraints g = 0. Thus,
from (1.149) we expect

c̃=
[

W f 0
0 Wg

][
ζ

g

]
(4.173)

will relate the scaled constraints c̃ to the unscaled constraints ζ and g. Here W f is an
ny × ny diagonal matrix of differential equation constraint scale weights and Wg is an
ng×ng diagonal matrix of path-constraint scale weights.

The Jacobian matrix in the scaled quantities is given by

G̃=
[

W f 0
0 Wg

]
G
[

Vy 0
0 Vu

]−1

. (4.174)

Now all of the transcription methods (4.48), (4.50), (4.56), and (4.58) are of the form

ζ ∼ y−hkf. (4.175)

Thus, the unscaled Jacobian matrix has the form

G=
[

G f
Gg

]
∼


I−hk

∂f
∂y −hk

∂f
∂u

∂g
∂y

∂g
∂u

 . (4.176)
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But notice that as hk → 0, the rows of the Jacobian corresponding to the differential equa-
tions G f ∼ I. This implies that the conditioning of the Jacobian improves as the stepsize is
reduced. Furthermore, if we want to have the scaled Jacobian G̃ f ∼ I, we can set

W f = Vy (4.177)

in (4.174). In other words, if the state variable yk is to be scaled by the weight vk , then the
constraint ζk should also be scaled by the same weight. To achieve similar results for the
path constraints, the matrix Wg should be chosen so that the rows of Gg have norm one.
In other words, it may be desirable to replace the original path constraints with a scaled
expression of the form

0=Wgg[y(t),u(t), t]. (4.178)

It is worth noting that the matrix G (4.176) is closely related to the iteration matrix used in
the corrector iterations of many numerical integrators [48].

It now remains to choose the variable scaling to deal with the problem of units de-
scribed above. Ideally, we would like to choose the variable scales V and shifts r such that
the scaled quantities ỹ ∼ O(1) and lie in the interval [−0.5,+0.5]. When simple bounds
such as (4.34) are available, it is clear that

vk = 1

yU ,k− yL ,k
, (4.179)

rk = 1

2
− yU ,k

yU ,k− yL ,k
. (4.180)

When simple bounds are not part of the problem description, it is necessary to construct
equivalent information about the variable ranges.

In Section 1.16, it was also suggested that the objective function scale weights (1.150)
should be chosen so that the condition number of the KKT matrix (1.66) is close to one. A
crude estimate for the condition number can be constructed from the Gerschgorin bound
(2.40). Thus one can compute

' =max{|σL |, |σU |}, (4.181)

where σL and σU are the Gerschgorin estimates for the smallest and largest eigenvalues of
the Hessian HL . Then one can choose the objective scale in (1.150) to be

w0 = 1

'
. (4.182)

This objective scaling is computed only at NLP solutions, i.e., at the end of each mesh
refinement. To prevent excessive changes from one refinement iteration to the next, we use
the geometric mean of the estimates from the current and previous iterates.

Ultimately the scale weights must be chosen based on a set of heuristics, and in the
SOCS software, the automatic scaling procedure constructs the scale weights at the initial
point based on initial gradient estimates obtained when detecting problem sparsity and then
recomputes the scaling at the solution of each mesh-refinement problem. The technique
implements the following scaling heuristics:

Rule 1: Scale from a control perspective; e.g., state variable y4(t) has the same scale for
all grid points.
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Rule 2: Variable Scaling

1. Estimate the largest/smallest variable value from a

(a) user input upper/lower bound or if not available a

(b) user-specified initial guess.

2. Normalize and shift the variables (4.179)–(4.180). When (a) and (b) provide
no information default scaling to 1.

Rule 3: ODE Defect Scaling

1. Set ODE defect scaling to state variable scaling (4.177) or optionally

2. choose it to normalize the defect gradients.

Rule 4: Algebraic and Boundary Constraint Scaling

1. Estimate the largest/smallest constraint value from user input upper/lower bound.

2. Optionally, estimate and/or compute the Jacobian (4.176).

3. Normalize the constraint.

4. When bounds provide no information set scaling to 1.

Rule 5: Objective Scaling

1. Set the objective scaling to (4.182) or optionally to a

2. user-specified value.

4.9 Quadrature Equations
The general formulation of an optimal control problem may involve quadrature functions as
introduced in (4.37). The quadrature functions may appear either in the objective function
as in (4.40) or as integral constraints of the form

ψL ≤
∫ tF

tI

w
[
y(t),u(t),p, t

]
dt ≤ ψU . (4.183)

To simplify the discussion, let us focus on an optimal control problem stated in Lagrange
form, although all results are directly applicable when the integrated quantities are con-
straints. Recall that the Lagrange problem

min
u

J =
∫ tF

tI

w(y,u, t)dt , (4.184)

ẏ= f(y,u, t), (4.185)

yT(tI )= ψT
0 (4.186)
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can be restated as a Mayer problem of the form

min
u

J = yn+1(tF ), (4.187)

ẏ= f(y,u, t), (4.188)

ẏn+1 = w(y,u, t), (4.189)

yT(tI )= ψT
0, (4.190)

yn+1(tI )= 0. (4.191)

Clearly, the Mayer and Lagrange forms are mathematically equivalent, but are they com-
putationally comparable? The answer is no!

First, the number of state variables for the Mayer formulation is greater than the
number for the Lagrange formulation. Thus, when the state variable is discretized, the
number of NLP variables will be increased by Mnw , where nw is the number of quadrature
functions and M is the number of grid points. Since the size of the NLP is larger, one can
expect some degradation in the computation time relative to the Lagrange form.

The second (less obvious) reason concerns robustness. When the Lagrange formula-
tion is discretized, the original ODEs are approximated by defect constraints, ζ k = 0, such
as (4.56) and (4.58). In contrast, when the Mayer formulation is discretized, defect con-
straints are introduced for both the original ODEs (4.188) and the quadrature differential
equation (4.189). Thus, it may be more difficult for the NLP algorithm to solve both the
original ODE defects and the quadrature defect constraints. This effect is most noticeable
when the quadrature functions are nonlinear and/or the grid is coarse. In essence, the dis-
cretized version of the Lagrange problem is more “forgiving” than the discretized version
of the Mayer problem.

From a numerical standpoint, the key notion is to implicitly introduce the additional
state variable yn+1 without actually having it appear explicitly in the relevant expressions.
To see how this is achieved, let us construct the quadrature approximation when a trape-
zoidal discretization is employed:∫ tF

tI

w(y,u, t)dt = yn+1(tM ) (4.192)

=
M−1∑
k=1

�τk�t

2
[wk+1+wk]. (4.193)

Expression (4.193) is obtained by recursive application of the trapezoidal discretization,
e.g., (4.68), with the specified initial condition yn+1(tI ) = 0. The final expression can be
rewritten as ∫ tF

tI

w(y,u, t)dt = bTq, (4.194)

where the coefficient vector is

bT = 1

2

[
�τ1, (�τ2+�τ1), (�τ3+�τ2), . . . , (�τM−1+�τM−2),�τM−1

]
(4.195)

and the vector q has elements
qk =�t wk (4.196)
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for k = 1, . . . , M . Observe that the elements of q are functions of the original state and
control. Furthermore, the objective function can be computed from the original state and
control—yn+1 does not appear explicitly in any expression. Thus, we have constructed the
objective function in the form (4.114), where the last row of the matrix B is the vector bT.
In summary, all of the techniques described in Section 4.6 can be used to construct the NLP
Jacobian and Hessian matrices while exploiting sparsity in the quadrature functions w. It
should also be clear that the same approach can be used when the quadrature expressions
are computed using a Simpson discretization.

The treatment of quadrature equations must also be addressed in the mesh-refinement
process. Again, the goal is to implicitly form the relevant information without explicitly
introducing an additional state variable. If a Mayer formulation was used and an additional
state was introduced, there would be a contribution to the discretization error from (4.155)
of the form

ε(t)= ˙̃yn+1(t)−w[̃y(t), ũ(t), t], (4.197)

which must be evaluated in order to compute the integral (4.154). To eliminate the explicit
contribution of the additional state, we must construct ˙̃yn+1(t). This quantity can be easily
computed by simply interpolating the local information. When a trapezoidal quadrature is
used, a linear interpolant can be constructed through the values at the nearest grid points,
yn+1(tk) and yn+1(tk+1). Similarly, a cubic (Hermite) interpolant can be constructed by
also using the values of wn+1(tk) and wn+1(tk+1). In either case, this local interpolating
function provides the necessary information to evaluate the discretization error.

The treatment of quadrature equations that has been described

1. does not introduce an additional state variable yn+1(t) and

2. does not introduce additional defect constraints

3. but does adjust the mesh as though the additional state were introduced.

In essence the technique ensures that the discretization mesh is constructed such that all
continuous functions (4.38) are accurately represented. In fact we use the same approach
to guarantee accuracy in the algebraic equations (4.33).

Example 4.4 HYPERSENSITIVE CONTROL. Rao and Mease [148] present an exam-
ple that illustrates the importance of this approach. Rao and Mease refer to this as a “hyper-
sensitive” problem. It is extremely difficult to solve using an indirect method, and is equally
difficult when treated in the Mayer form. The problem is defined by a single differential
equation and is stated in Lagrange form:

min
u

J =
∫ tF

0

[
y2+u2

]
dt , (4.198)

ẏ =−y3+u, (4.199)

where y(0) = 1, y(tF ) = 1.5, and tF = 10000. The state variable history and the corre-
sponding distribution of stepsize are illustrated in Figure 4.10. The initial constant stepsize
is shown with a dotted line. Because of the dramatic change in the state variable near the
initial and final times, it is necessary to have a very small stepsize in these regions. The
SOCS iteration history, beginning with 25 equally spaced grid points, is summarized in
Table 4.3. Notice that the discretization error is reduced by 12 orders of magnitude by the
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Figure 4.10. Hypersensitive problem.

mesh-refinement procedure. When the problem is solved in Mayer form, the solution to
the very first NLP (with 25 grid points) requires over 1322 iterations and 7860 function
evaluations. This is 131 times more than the 60 function evaluations reported in line 1 of
Table 4.3.

Table 4.3. Hypersensitive problem performance summary.

GRID NPT NGC NHC NFE NRHS ERRODE CPU (sec)
1 25 14 2 60 1500 0.15×105 0.62×100

2 25 21 19 124 6076 0.37×103 0.15×101

3 49 11 9 63 6111 0.28×102 0.18×101

4 97 11 8 61 11773 0.49×101 0.29×101

5 109 29 27 585 126945 0.11×101 0.58×101

6 115 10 8 185 42365 0.13×100 0.25×101

7 121 8 6 144 34704 0.12×10−1 0.22×101

8 128 8 1 93 23715 0.96×10−3 0.18×101

9 137 5 1 60 16380 0.19×10−4 0.15×101

10 181 4 1 49 17689 0.55×10−6 0.16×101

11 229 4 1 49 22393 0.31×10−7 0.19×101

229 125 83 1473 309651 24.23
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4.10 Algebraic Variable Rate Constraints
For some problems it may be necessary to impose a constraint of the form

rL ≤du

dt
≤ rU (4.200)

over the entire phase, that is, for tI ≤ t ≤ tF and rL < rU . One technique for treating such
a constraint is to view the “real” control u(t) as a state variable. Then a new state variable
yn+1(t) and a new control um+1(t) can be introduced. If an additional differential equation

ẏn+1(t)= um+1(t) (4.201)

is also included, then um+1(t) represents the algebraic variable rate, and (4.200) can be
enforced by the simple bounds

rL ≤um+1(t)≤ rU . (4.202)

Since yn+1 is just the integral of the rate um+1, the original control u can be replaced
by the new state throughout the problem description. Now, just as with the treatment of
quadrature equations described in Section 4.9 the transformed problem seems equivalent
to the original. But are they computationally comparable? Again, the answer is no! In fact
this transformation shares the same shortcomings discussed for quadrature equations. In
particular the number of state variables is increased leading to a larger NLP problem after
discretization. Second, by introducing a new state and control, the index of the DAE system
of the transformed problem can be increased. Furthermore the new control appears linearly
and thus introduces the prospect of singular arcs. Example 6.10 illustrates this behavior.
Thus the transformed problem is often more difficult to solve. In order to overcome these
shortcomings it is worthwhile exploiting the special form of these constraints.

When using a trapezoidal discretization the control is a linear function of time in each
interval and the rate is given by

rL ≤u(tk+1)−u(tk)

hk
≤ rU , (4.203)

where

hk = (τk+1− τk)(tF − tI )= (τk+1− τk)�t =�τk�t , (4.204)

with �t ≡ (tF − tI ) and �τk ≡ (τk+1− τk) with constants 0≤ τk ≤ 1. Now the expression

rL ≤ uk+1−uk

�τk(tF − tI )
≤ rU (4.205)

can be written as

[�τk(tF − tI )]rL ≤uk+1−uk ≤ rU [�τk(tF − tI )], (4.206)
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which for M grid points, i.e., for k = 1, . . . , (M−1), become the linear constraints

0≤ uk+1−uk− [�τk(tF − tI )]rL , (4.207)

0≥ uk+1−uk− [�τk(tF − tI )]rU (4.208)

in the NLP variables uk , tF , tI .
When a Hermite–Simpson discretization is used, the control is a quadratic function

of time within each interval. Since the derivative of the interpolating quadratic is linear, the
extreme values occur at the ends of each interval. Thus from Table 1.8 we have

rL ≤ 1

hk

[−3uk+4ūk+1−uk+1
]≤ rU , (4.209)

rL ≤ 1

hk

[
uk −4ūk+1+3uk+1

]≤ rU , (4.210)

where ūk+1 = u(tk+hk/2). Rewriting leads to the four constraints

0≤−3uk+4ūk+1−uk+1−hkrL , (4.211)

0≥−3uk+4ūk+1−uk+1−hkrU , (4.212)

0≤ uk −4ūk+1+3uk+1−hkrL , (4.213)

0≥ uk −4ūk+1+3uk+1−hkrU , (4.214)

where hk =�τk(tF − tI ).
For the special case rL = rU , the two inequality constraints (4.207)–(4.208) are re-

placed by the single equality constraint

0= uk+1−uk − [�τk(tF − tI )]rL . (4.215)

Similarly for Hermite–Simpson the four inequality constraints (4.211)–(4.214) are replaced
by the two equality constraints

0= uk+1−uk− [�τk(tF − tI )]rL , (4.216)

0= ūk+1−uk− 1

2
[�τk(tF − tI )]rL . (4.217)

Regardless of which discretization is used, all of the rate constraint equations are linear
with respect to the optimization variables and consequently appear as an additional row of
the form aTx in (4.114). Furthermore, since the constraints are linear, first derivative infor-
mation can be computed without any additional finite difference index sets, and there is no
contribution to the Hessian matrix. Finally we should note one other important difference
when the problem is transformed and the rate um+1(t) is treated as a control variable. By
construction the rate is continuous across all grid points, that is, um+1(t−k )= um+1(t+k ). In
contrast, when the rates are constrained by either (4.207)–(4.208) or (4.211)–(4.214) the
control rate u̇ is not necessarily continuous across a grid point. In effect, the transformation
(4.201) imposes an additional degree of continuity on the original control u(t).

4.11 Estimating Adjoint Variables
A direct transcription or collocation method can be used to solve very general optimal con-
trol problems, and because a direct NLP algorithm is used there is no need to form adjoint
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equations when computing the solution. Nevertheless, in Section 4.2 it was demonstrated
that the Lagrange multipliers used by the NLP algorithm are related to the adjoint variables.
First recall the NLP problem formulation presented in Section 1.8. Suppose that we must
choose the n variables x to minimize

F(x) (4.218)

subject to the m ≤ n constraints
c(x)= 0. (4.219)

In this setting it is common to define the Lagrangian

L(x,α)= F(x)−αTc(x)= F(x)−
m∑

i=1

αi ci (x), (4.220)

where α is an m-vector of Lagrange multipliers.
In contrast for an infinite-dimensional problem suppose we must choose the control

functions u(t) to minimize

J =
∫ tF

tI

L[y(t),u(t)]dt (4.221)

subject to the DAE constraints

ẏ= f[y,u, t], (4.222)

0= g[y,u, t]. (4.223)

We form an augmented performance index in a manner analogous to the definition of the
Lagrangian function (4.220),

Ĵ =
∫ tF

tI

L[y(t),u(t)]dt−
∫ tF

tI

λT(t) {ẏ− f[y(t),u(t)]}dt

+
∫ tF

tI

µT(t)g[y(t),u(t)]dt . (4.224)

Observe that the differential-algebraic constraints (4.222)–(4.223) are adjoined to the ob-
jective function using the adjoint variables λ(t) and µ(t). Necessary conditions for the
NLP problem (4.218)–(4.219) are usually derived by setting the first derivative of the La-
grangian (4.220) to zero. By analogy necessary conditions for the optimal control problem
(4.221)–(4.223) are derived using the calculus of variations by setting the first variation of
the augmented performance index (4.224) to zero.

At this point it is worth calling attention to the different notational conventions
adopted for the NLP problem (4.218)–(4.219) and the optimal control problem (4.221)–
(4.223). In particular, in this section we use α to denote the Lagrange multipliers in order
to avoid confusion with the symbol λ for the adjoint variables. In (4.220) the NLP La-
grangian is denoted by the symbol L to avoid confusion with the integrand L in (4.221).
Furthermore the definition of the Lagrangian (4.220) has a negative sign for the term−αTc.
Bryson and Ho [54] write the second term of (4.224) with a positive sign by augmenting
the term λT(f− ẏ).

The relationship between the NLP Lagrange multipliers α and the adjoint variables
λ and µ has been a subject of considerable theoretical interest. If the differential equations
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are approximated using a simple Euler discretization, in Section 4.2 it was demonstrated
that λ→ α as the mesh size h → 0. When a Hermite–Simpson discretization is used both
von Stryk [167] and Enright and Conway [77] show that λ≈ 3

2α. Hager [105] investigates
the rate of convergence for various approximation schemes. A feature shared by many of
these analyses is that they provide estimates in the limit, that is, as h → 0. We have a
slightly different goal here, namely, to provide approximate values for the adjoint variables
constructed from the NLP Lagrange multipliers when the discretization mesh sizes are
finite and possibly unequal. Engelsone and Campbell [75] develop a number of important
results concerning the accuracy of these estimates.

4.11.1 Quadrature Approximation

Let us begin by considering methods for computing numerical approximations to an inte-
gral of the form ∫ tF

tI

p(t)g(t)dt . (4.225)

Let us discretize the problem by introducing M grid points that subdivide the domain into
(M−1) intervals according to

tI = t1 < t2 < · · ·< tM−1 < tM = tF (4.226)

and denote the steplengths by
hk = tk+1− tk . (4.227)

If we denote the values pk = p(tk ) and gk = g(tk), the trapezoidal approximation to the
integral is given by∫ tF

tI

p(t)g(t)dt =
M−1∑
k=1

hk

2

[
pk gk+ pk+1gk+1

]
(4.228)

=
[(

h1

2

)
p1

]
g1+

M−1∑
k=2

[(
hk−1+hk

2

)
pk

]
gk

+
[(

hM−1

2

)
pM

]
gM . (4.229)

If we denote the values at interval midpoints by pk+ 1
2
= p(tk + hk/2) and gk+ 1

2
= g(tk +

hk/2), then Simpson’s quadrature rule can be used to approximate the integral giving∫ tF

tI

p(t)g(t)dt =
M−1∑
k=1

hk

6

[
pkgk+4 pk+ 1

2
gk+ 1

2
+ pk+1gk+1

]
(4.230)

=
[(

h1

6

)
p1

]
g1+

M−1∑
k=1

[(
2hk

3

)
pk+ 1

2

]
gk+ 1

2

+
M−1∑
k=2

[(
hk−1+hk

6

)
pk

]
gk+

[(
hM−1

6

)
pM

]
gM . (4.231)
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4.11.2 Path Constraint Adjoints

Let us focus on the third term in (4.224). When a trapezoidal discretization is used the path
constraints (4.223) are enforced by imposing the NLP constraints

0= g[y(tk),u(tk), tk]= gk (4.232)

for k = 1, . . . , M . If a trapezoidal discretization is used, then from (4.229) and the definition
of the Lagrangian (4.220) we can write

∫ tF

tI

µ(t)g(t)dt =
[(

h1

2

)
µ1

]
g1+

M−1∑
k=2

[(
hk−1+hk

2

)
µk

]
gk

+
[(

hM−1

2

)
µM

]
gM (4.233)

=−α1g1−
M−1∑
k=2

αk gk−αM gM . (4.234)

Comparing terms in (4.233) and (4.234) we find that

µ1 =−
(

2

h1

)
α1, (4.235)

µk =−
(

2

hk−1+hk

)
αk , k = 2, . . . , M−1, (4.236)

µM =−
(

2

hM−1

)
αM . (4.237)

When a Hermite–Simpson discretization is used the path constraints (4.223) are en-
forced by imposing the NLP constraints at the grid points (4.232) and also at the midpoints

0= g[y(tk+ 1
2
),u(tk+ 1

2
), tk+ 1

2
]= gk+ 1

2
(4.238)

for k = 1, . . . , M − 1. If a Hermite–Simpson discretization is used, then from (4.231) and
the definition of the Lagrangian (4.220) we can write

∫ tF

tI

µ(t)g(t)dt =
[(

h1

6

)
µ1

]
g1+

M−1∑
k=1

[(
2hk

3

)
µk+ 1

2

]
gk+ 1

2

+
M−1∑
k=2

[(
hk−1+hk

6

)
µk

]
gk+

[(
hM−1

6

)
µM

]
gM

=−α1g1−
M−1∑
k=1

αk+ 1
2
gk+ 1

2
−

M−1∑
k=2

αk gk −αM gM . (4.239)
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Comparing terms we find that

µ1 =−
(

6

h1

)
α1, (4.240)

µk+ 1
2
=−

(
3

2hk

)
αk+ 1

2
, k = 1, . . . , M−1, (4.241)

µk =−
(

6

hk−1+hk

)
αk , k = 2, . . . , M−1, (4.242)

µM =−
(

6

hM−1

)
αM . (4.243)

4.11.3 Differential Constraint Adjoints

The technique used to construct adjoint approximations for the path constraints can also be
applied to compute the adjoint variables associated with the differential constraints (4.222).
If we replace the path constraint function g(t) with the differential constraint ẏ − f in
(4.230), we obtain

∫ tF

tI

λ(t)[ẏ− f ]dt =
M−1∑
k=1

hk

6

{
λk [ẏk− fk]+4λk+ 1

2
[ẏk+ 1

2
− fk+ 1

2
]

+ λk+1[ẏk+1− fk+1]

}
. (4.244)

However, since a Hermite–Simpson method is based on Hermite interpolation, by construc-
tion λk[ẏk − fk]= 0 at all grid points and this expression simplifies considerably:

∫ tF

tI

λ(t)[ẏ− f ]dt =
M−1∑
k=1

2hk

3
λk+ 1

2
[ẏk+ 1

2
− fk+ 1

2
]. (4.245)

The Hermite interpolant for the state variable can be written as

y(t)= (1−3δ2+2δ3)yk+ (3δ2−2δ3)yk+1

+ (hkδ−2hkδ
2+hkδ

3) fk + (−hkδ
2+hkδ

3) fk+1, (4.246)

where δ = (t − tk)/hk defines the location of the evaluation time relative to the beginning
of the interval. If this expression is first differentiated to obtain an expression for ẏ and
then evaluated at the midpoint tk+ 1

2
, we obtain

ẏk+ 1
2
= 3

2hk
yk+1− 3

2hk
yk − 1

4
fk+1− 1

4
fk . (4.247)
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This expression can be substituted into (4.245) to give∫ tF

tI

λ(t)[ẏ− f ]dt =
M−1∑
k=1

2hk

3
λk+ 1

2

[
ẏk+ 1

2
− fk+ 1

2

]

=
M−1∑
k=1

2hk

3
λk+ 1

2

[(
3

2hk
yk+1− 3

2hk
yk − 1

4
fk+1− 1

4
fk

)
− fk+ 1

2

]

=
M−1∑
k=1

λk+ 1
2

[
yk+1− yk− hk

6
( fk +4 fk+ 1

2
+ fk+1)

]
. (4.248)

Since the Hermite–Simpson method approximates the differential equations by satisfying
the defect constraints

yk+1− yk− hk

6
( fk +4 fk+ 1

2
+ fk+1)= 0 (4.249)

it follows immediately that the NLP multiplier and adjoint variable satisfy

λk+ 1
2
= αk+ 1

2
. (4.250)

4.11.4 Numerical Comparisons

Let us now illustrate the accuracy of the adjoint variable estimates on a series of example
problems. In order to verify the accuracy of the adjoint variables we need a “truth” model.
Consequently each example problem will be solved using two different techniques. First
the problem will be solved using the direct transcription method. This direct solution pro-
vides estimates for the adjoint variables. For comparison each problem is also solved using
an indirect transcription method. The indirect approach of course requires explicit solution
of both the state and adjoint equations in conjunction with the appropriate boundary condi-
tions. Mesh refinement was used for both solution techniques, and the requested accuracy
was 10−7 or approximately eight significant figures.

It is worth remarking that these examples demonstrate two philosophically distinct
approaches for solving optimal control problems. In the direct transcription approach, we
first discretize the differential equations and then solve a finite-dimensional NLP. We refer
to this as discretize then optimize. In contrast, if the optimality conditions (e.g., adjoint
equations) are derived first and then discretized, we refer to this as optimize then discretize.
A more complete discussion of this topic is presented in Section 4.12.

Example 4.5 LINEAR TANGENT STEERING. The first problem has an analytic solu-
tion and was introduced in Example 4.1. The goal is to minimize the objective

F =
∫ tF

0
dt = tF (4.251)

subject to the constraints

ẏ1 = y3, (4.252)

ẏ2 = y4, (4.253)

ẏ3 = a cosu, (4.254)

ẏ4 = a sinu, (4.255)
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where a = 100. The boundary conditions are given by

y1(0)= 0, (4.256)

y2(0)= 0, y2(tF )= 5, (4.257)

y3(0)= 0, y3(tF )= 45, (4.258)

y4(0)= 0, y4(tF )= 0. (4.259)

The Hamiltonian is

H = 1+λ1y3+λ2 y4+aλ3 cosu+aλ4 sinu (4.260)

with adjoint equations

λ̇1 = 0, (4.261)

λ̇2 = 0, (4.262)

λ̇3 =−λ1, (4.263)

λ̇4 =−λ2. (4.264)

The maximum principle defines the optimal control

Hu = 0=−λ3 sinu+λ4 cosu (4.265)

and the control variable is eliminated by virtue of the relations

cosu = −λ3√
λ2

3+λ2
4

,

sinu = −λ4√
λ2

3+λ2
4

.

The optimality conditions lead to the additional boundary conditions

λ1(tF )= 0, (4.266)

H (tF)= 0= 1+λ2y4+aλ3 cosu+aλ4 sinu. (4.267)

The optimal value of the objective function obtained by the direct method is F∗ =
0.5545737562. In Figure 4.11 the state variable history obtained using the direct method
is illustrated using a gray shading. The corresponding values of the state variables at the
grid points obtained from the indirect method are plotted with dots. Figure 4.12 presents a
comparison of the adjoint variables λ. Here we use the indirect method as a “truth model”
and illustrate the solution with a shaded region. The discrete adjoint estimates obtained
using the direct method described above are plotted over the shaded region as dots. In
Figure 4.13 the control computed by the direct method is shown as a shaded region and
the indirect control is plotted over with dots at the grid points and midpoints. It should
be noted that when SOCS is used to compute the solution using the indirect method the
values of the adjoint variables are available at the grid points. In contrast the discrete adjoint
estimates are computed at the interval midpoints. Furthermore the distribution of the grid



180 Chapter 4. The Optimal Control Problem

Figure 4.11. Linear tangent steering states (y1, y2, y3, y4).

Figure 4.12. Linear tangent steering adjoints (λ1,λ2,λ3,λ4).
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Figure 4.13. Linear tangent steering control.

points is different between the two solutions, the indirect method requiring Mi = 43 points,
whereas the direct solution required Md = 37 points and provided discrete adjoint estimates
at 36 interval midpoints. In order to present a quantitative assessment of the accuracy we
compute the error

εk+ 1
2
= λ̃(tk+hk/2)−λk+ 1

2
. (4.268)

In this equation the discrete adjoint estimates computed by the direct method are denoted by
λk+ 1

2
. For comparison, the corresponding values of the adjoint variables from the indirect

solution are denoted by λ̃(tk + hk/2). The latter values can be computed using Hermite
cubic spline interpolation since the SOCS indirect solution is a collocation method. We
also compute the maximum absolute error over all midpoints

ε =max
k
|εk+ 1

2
|. (4.269)

Figure 4.14 illustrates the normalized error εk+ 1
2
/ε in the discrete adjoint estimates for

each adjoint variable. For this particular example the maximum error ε is quite small for
all adjoint estimates.
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Figure 4.14. Linear tangent steering, error in discrete adjoint estimates.

Example 4.6 RAYLEIGH PROBLEM WITH CONTROL CONSTRAINTS. The second
example, which is described by Maurer and Augustin [133], illustrates a problem with path
constraints (4.223) that explicitly contain the control variables. The goal is to minimize the
objective

F =
∫ tF

0
(u2+ y2

1)dt (4.270)

subject to the constraints

ẏ1 = y2, (4.271)

ẏ2 =−y1+ y2(1.4− py2
2)+4u, (4.272)

0 ≥ u−1, (4.273)

0 ≥ −u−1 (4.274)

with boundary conditions

y1(0)= y2(0)=−5, y1(tF )= y2(tF )= 0. (4.275)

We fix tF = 4.5 and p = 0.14. Observe that the constraints (4.273) and (4.274) have been
written in the form c(y,u, t)≤ 0, which is the convention in [54]. The Hamiltonian is

H = u2+ y2
1+λ1(y2)+λ2[−y1+ y2(1.4− py2

2)+4u]+µ1(u−1)+µ2(−u−1) (4.276)
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with adjoint equations

λ̇1 = λ2−2y1, (4.277)

λ̇2 = 3 pλ2y2
2 −1.4λ2−λ1. (4.278)

The optimal control is

u(t)=


1, 0≤ t ≤ t1,
−2λ2, t1 ≤ t ≤ t2,

−1, t2 ≤ t ≤ t3,
−2λ2, t3 ≤ t ≤ tF

(4.279)

with optimal multipliers given by

µ1(t)=−2−4λ2(t), 0≤ t < t1, (4.280)

µ2(t)=−2+4λ2(t), t2 < t < t3. (4.281)

The switching structure is determined by the junction conditions

−2λ2(t1)= 1, −2λ2(t2)=−1, −2λ2(t3)=−1. (4.282)

As before in Figure 4.15 we plot the direct solution states using shading and overplot the
adjoint states. For the adjoints, the indirect values of λ are shaded and the discrete adjoint
estimates are overplotted with dots. Figure 4.16 clearly shows the four different solution
regions for the control. Because of the control constraint sign convention the optimal values
for the multipliers must be nonnegative, i.e., µ1(t)≥ 0 and µ2(t)≥ 0, so we have plotted the
quantity µ1(t)+µ2(t) to illustrate the results. The optimal value of the objective function
obtained by the direct method is F∗ = 44.72093882. The requested accuracy of 10−7 was
achieved using Md = 277 points for the direct solution and Mi = 292 points (with four
phases) for the indirect one. Figure 4.17 illustrates the normalized error εk+ 1

2
/ε in the

discrete adjoint estimates for each adjoint variable. For this example the discrete estimates
agree to approximately three figures as suggested by the maximum error ε.

Example 4.7 RAYLEIGH PROBLEM, MIXED STATE-CONTROL CONSTRAINTS. The
third example, also described by Maurer and Augustin [133], is characterized by a path
constraint that has both a state and control appearing explicitly. The goal is to minimize
the objective

F =
∫ tF

0
(u2+ y2

1)dt (4.283)

subject to the constraints

ẏ1 = y2, (4.284)

ẏ2 =−y1+ y2(1.4− py2
2)+4u, (4.285)

0 ≥ u+ y1

6
(4.286)

with boundary conditions
y1(0)= y2(0)=−5. (4.287)
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Figure 4.15. Rayleigh problem, states (y1, y2) and adjoints (λ1,λ2).

Figure 4.16. Rayleigh problem, control and µ1+µ2.
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Figure 4.17. Rayleigh problem, error in discrete adjoint estimates.

We fix tF = 4.5 and p = 0.14. The Hamiltonian is

H = u2+ y2
1+λ1(y2)+λ2[−y1+ y2(1.4− py2

2)+4u]+µ
(

u+ y1

6

)
(4.288)

with adjoint equations

λ̇1 = λ2−2y1− µ

6
, (4.289)

λ̇2 = 3 pλ2y2
2 −1.4λ2−λ1. (4.290)

The optimal control is

u(t)=


−y1/6, 0≤ t ≤ t1,
−2λ2, t1 ≤ t ≤ t2,

−y1/6, t2 ≤ t ≤ t3,
−2λ2, t3 ≤ t ≤ tF

(4.291)

with optimal multiplier given by

µ(t)=−2u−4λ2 = y1

3
−4λ2 (4.292)
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for 0≤ t ≤ t1 and t2 ≤ t ≤ t3. The switching structure is determined by the junction condi-
tions

µ(tk)= y1(tk)

3
−4λ2(tk)= 0 (4.293)

for k = 1,2,3. As before the state and differential adjoint variables are illustrated in Figure
4.18, and the control and path adjoints are shown in Figure 4.19. Again it is worth not-
ing that we have adhered to the algebraic sign convention of Bryson and Ho [54] for the
path constraint (4.286). The optimal value of the objective function obtained by the direct
method is F∗ = 44.80444449. It is interesting to note that the solution presented here has
two distinct boundary arcs, whereas the solution presented in [133] has only one boundary
arc. In fact our solution is slightly better (44.80444449 versus 44.80479861), which pre-
sumably can be attributed to the different switching structure. Curiously, we first solved the
problem using the direct method in order to determine a good guess for the indirect method
and thus were led to a switching structure with two boundary arcs! The requested accuracy
of 10−7 was achieved using Md = 191 points for the direct solution and Mi = 271 points
(with four phases) for the indirect one. As with the previous examples the normalized error
is illustrated in Figure 4.20, and it appears that the discrete adjoint estimates are accurate
to approximately three figures.

Figure 4.18. Rayleigh mixed constraint problem, states (y1, y2) and adjoints (λ1,λ2).
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Figure 4.19. Rayleigh mixed constraint problem, control and µ.

Example 4.8 VAN DER POL OSCILLATOR WITH STATE CONSTRAINT. Minimize
the objective

F =
∫ 5

0
(u2+ y2

1+ y2
2)dt (4.294)

subject to the constraints

ẏ1 = y2, (4.295)

ẏ2 = (1− y2
1)y2− y1+u, (4.296)

0 ≥ −y2+ p (4.297)

with boundary conditions

y1(0)=1, y2(0)= 0. (4.298)

Equation (4.296) is simply (3.49) augmented by the control variable u. We fix p = −0.4.
Equation (4.297) is a first order state constraint, so the Hamiltonian is

H = u2+ y2
1+ y2

2+λ1y2+λ2[(1− y2
1)y2− y1+u]+µ[−(1− y2

1)y2+ y1−u], (4.299)

where the first derivative of the path constraint ṡ =−ẏ2 =−(1− y2
1)y2+ y1−u appears in
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Figure 4.20. Rayleigh mixed constraint problem, error in discrete adjoint estimates.

H . The adjoint equations are

λ̇1 =−2y1+2y1y2λ2+λ2−µ(2y1y2+1), (4.300)

λ̇2 =−2y2−λ1+λ2(y2
1−1)+µ(1− y2

1). (4.301)

The optimal control is

u(t)=


−λ2/2, 0≤ t ≤ t1,

(y2
1−1)y2+ y1, t1 ≤ t ≤ t2,

−λ2/2, t2 ≤ t ≤ 5

(4.302)

with optimal multiplier given by

µ(t)=


0, 0≤ t ≤ t1,

2(y2
1−1)y2+2y1+λ2, t1 ≤ t ≤ t2,

0, t2 ≤ t ≤ 5.

(4.303)
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The switching structure is determined by the tangency condition

0= ṡ

=−ẏ2

=−(1− y2
1)y2+ y1−u

= (y2
1 −1)y2+ y1+λ2/2, (4.304)

which is enforced immediately before entering the boundary arc at t = t−1 and immediately
after leaving the boundary arc at point t = t+2 . The location of the exit point is also defined
by enforcing the switching condition µ(t−2 ) = 0. Observe that these conditions enforce
continuity in the control variable across the junction points, i.e., from (4.302)

u(t−1 )=−λ2/2= (y2
1−1)y2+ y1 = u(t+1 ),

u(t−2 )=(y2
1 −1)y2+ y1 =−λ2/2= u(t+2 ), (4.305)

and consequently lead to a jump discontinuity in the adjoint variable λ2 at the entry to
the boundary arc. The solutions are illustrated in Figures 4.21 and 4.22. First notice that
the state and control variable histories obtained by the direct and indirect methods agree
quite closely. The optimal value of the objective function obtained by the direct method

Figure 4.21. Van der Pol problem, states (y1, y2) and adjoints (λ1,λ2).
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Figure 4.22. Van der Pol problem, control and µ.

is F∗ = 2.953733191, and obviously both methods yield the same value. The requested
accuracy of 10−7 was achieved using Md = 180 points for the direct solution and Mi = 111
points (with three phases) for the indirect one. Furthermore, the adjoint variables λ agree
when the state constraint is not active. However, along the boundary arc it is clear that the
true value of λ2 differs significantly from the discrete adjoint estimate. Furthermore, the
true value of µ differs significantly from the discrete estimate. Nevertheless this behavior
can be easily explained. First, it is clear that on the boundary arc when t1≤ t ≤ t2 the adjoint
λ2 has no influence on either the optimal control u or the states. In this region λ2 can take
any value and not change the objective! Similarly the value of the multiplier µ(t) does
not appear in the optimal solution. The direct method can determine the solution entirely
from the state and control variables provided the algebraic sign of the adjoint µ(t) > 0 and
this information is consistent between the two methods! Thus even though the value of the
adjoint µ is wrong, the arithmetic sign is correct.

Although this ambiguity is somewhat disconcerting from a computational point of
view, it is true in general. In their original paper [52], Bryson, Denham, and Dreyfus
include an appendix entitled “Nonuniqueness of Influence Functions on a State Variable
Inequality Constraint Boundary.” In essence, they point out that the adjoint variables are not
uniquely defined when a state constraint is active. By convention, they impose continuity
in the adjoints at the exit from the state boundary. We have adhered to this convention when
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Figure 4.23. Van der Pol problem, error in discrete adjoint estimates.

we define our “truth” model. However, it is equally valid to impose continuity at the entry
point! In short the true adjoint variables are not unique along the state boundary.

The apparent discrepancy is compounded by another factor. Recall that the discrete
estimates follow from construction of the integral∫ tF

tI

µ(t)s(t)dt (4.306)

which appears when forming the augmented objective function (4.224). However, for a
state constraint the optimality conditions are not derived by adjoining (4.306). Instead the
augmented objective function is constructed by adjoining the term∫ tF

tI

µ(t)sq (t)dt , (4.307)

where sq (t) = dqs/dtq is the qth time derivative of the state constraint. By definition the
order q is constructed such that sq (t) is an explicit function of the control u. In essence
the indirect method imposes the constraint sq (t) = 0, whereas the direct method enforces
s(t)= 0, and consequently the discrete adjoint estimate reflects this discrepancy.

Thus it is not surprising that the normalized error for λ2 illustrated in Figure 4.23
is large when the state constraint is active. Elsewhere, it appears that the discrete adjoint
estimates are accurate to approximately three figures.
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4.12 Discretize Then Optimize
Computational techniques for solving optimal control problems typically require combin-
ing a discretization technique with an optimization method. One possibility is to discretize
then optimize, that is, first discretize the differential equations and then apply an optimiza-
tion algorithm to solve the resulting finite-dimensional problem. Conversely one can opti-
mize then discretize, that is, write the continuous optimality conditions first and then dis-
cretize them. While many of the issues were discussed in Section 4.3 it is worthwhile to
compare these alternatives on a specific example. What are the relative merits of each?

4.12.1 High Index Partial Differential-Algebraic Equation

Let us focus on a particular example proposed by Steve Campbell (see [26]) with additional
discussion in [27, 28]. Heat transfer can be described by the PDE

∂y

∂ t
= ∂2y

∂x2
, (4.308)

where the spatial domain is 0 ≤ x ≤ π and the time domain is 0 ≤ t ≤ 5. Conditions are
imposed on three boundaries of this domain:

y(x ,0)= y0(x)= 0, (4.309)

y(0, t)= u0(t), (4.310)

y(π , t)= uπ (t). (4.311)

The input temperatures u0(t) and uπ (t) are viewed as (algebraic) control variables. In
addition the temperature over the domain is bounded according to

g(x , t)− y(x , t)≤ 0, (4.312)

where

g(x , t)= c

[
sin x sin

(
π t

5

)
−a

]
−b (4.313)

is a prescribed function with a = .5, b= .2, and c= 1. Finally, we would like to choose the
controls u0(t) and uπ (t) to minimize

φ =
∫ 5

0

∫ π

0
y2(x , t)dxdt+

∫ 5

0

[
q1u2

0(t)+q2u2
π (t)

]
dt . (4.314)

For our example we set the constants q1 = q2 = 10−3.
One way to solve this problem is to introduce a discretization in the spatial direction,

i.e., xk = kδ = k π
n for k = 0, . . . ,n. If we denote y(xk, t)= yk(t), then we can approximate

the PDE (4.308) by the following system of ODEs:

ẏ1 = 1

δ2 (y2−2y1+u0) , (4.315)

ẏk = 1

δ2 (yk+1−2yk+ yk−1) , k = 2, . . . ,n−2, (4.316)

ẏn−1 = 1

δ2 (uπ −2yn−1+ yn−2) . (4.317)
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This method of lines approximation is obtained by using a central difference approximation

(cf. Table 1.7) to ∂2 y
∂x2 and incorporating the boundary conditions (4.310) and (4.311) to

replace y0 = u0 and yn = uπ . As a consequence of the discretization the single constraint
(4.312) is replaced by the set of constraints

g(xk , t)− yk ≤ 0, k = 0, . . . ,n. (4.318)

The boundary conditions (4.309) are imposed by setting yk(0)= 0. Furthermore if we use a
trapezoidal approximation to the integral in the x-direction, the objective function (4.314)
becomes

φ =
∫ 5

0

[
1

2
δ+q1

]
u2

0(t)dt+ δ

n−1∑
k=1

∫ 5

0
y2

k (t)dt+
∫ 5

0

[
1

2
δ+q2

]
u2
π (t)dt . (4.319)

4.12.2 State Vector Formulation

Let us introduce a normalized time

t = δ2τ (4.320)

and use “′” to denote differentiation with respect to τ , in which case

y′ = dy
dτ
= dy

dt

dt

dτ
= δ2ẏ. (4.321)

Using this notation let us rewrite the differential equations (4.315)–(4.317) as

y′ = Fy+Gu= f(y,u), (4.322)

where the state vector is yT = (y1, y2, . . . , yn−1), and the control vector is uT = (u0,uπ ).
The symmetric, tridiagonal, (n−1)× (n−1) matrix F has elements

Fı =


−2 if  = ı for ı = 1,2, . . . , (n−1),

1 if  = ı −1 for ı = 2,3, . . . , (n−1),

1 if ı =  −1 for  = 2,3, . . . , (n−1),

0 otherwise.

(4.323)

The rectangular (n−1)×2 matrix G is defined by

Gı =


1 if ı = 1 for  = 1,

1 if ı = n−1 for  = 2,

0 otherwise.

(4.324)
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We can also write the objective function (4.319)

φ = 1

2

∫ 5δ−2

0

(
yTAy+uTBu

)
dτ , (4.325)

where the (n−1)× (n−1) diagonal matrix

Aı =
{

2δ3 if  = ı for ı = 1,2, . . . , (n−1),
0 otherwise

(4.326)

and the 2×2 diagonal matrix

B=
[
δ2(δ+2q1) 0

0 δ2(δ+2q2)

]
. (4.327)

4.12.3 Direct Transcription Results

The direct transcription method utilizes a discretize then optimize philosophy. Specifically,
the differential equations (4.322) and objective function (4.325) are replaced by discrete
approximations leading to a large, sparse NLP problem. After solving the NLP the dis-
cretization (in time) is refined until a sufficiently accurate solution is obtained. If we set
n = 20, the solution obtained using the direct method is illustrated in Figure 4.24, and Fig-
ure 4.25 illustrates the behavior of the solution with respect to the state variable constraint.

4.12.4 The Indirect Approach

The optimize then discretize philosophy requires explicit calculation of the optimality con-
ditions. In order to simplify further analysis let us assume that n is even, and then define
m = n/2. Computational experience suggests that at the solution the only active inequality
constraint of the set (4.318) is at the midpoint of the spatial discretization as illustrated in
Figure 4.26. Although the visual examination suggests a single constrained arc, there are
results in the literature stating when touch points [156] and constraint arcs [117] cannot
exist. Thus it may also be important to determine the isolated points (touch points) where
the constraints are active. Thus we ignore all but the single inequality

s(y,τ )= gm(δ2τ )− ym = gm(δ2τ )− eTy≤ 0, (4.328)

where the n−1 vector

eı =
{

1 if ı = m for ı = 1,2, . . . , (n−1),
0 otherwise.

(4.329)

Denote the kth derivative of s(y,τ ) by dks/dτ k = s(k)(τ ). Then

s(1) = g(1)
m − eTy′

= g(1)
m − eT(Fy+Gu)

= g(1)
m − eTFy (4.330)
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Figure 4.24. y(x , t).

Figure 4.25. Inequality y(x10, t)≥ g(x10, t).
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Figure 4.26. Solution regions.

since eTGu = 0, where the definition of y′ from (4.322) is used to simplify the expres-
sion. The process of differentiation followed by substitution can be repeated leading to the
expression

s(k) = g(k)
m − eT

(
k∏

i=1

F

)
y (4.331)

when k < m and

s(m) = g(m)
m − eT

(
m−1∏
i=1

F

)
(Fy+Gu) . (4.332)

The kth derivative of the constraint function is given by

g(k)
m = dk

dτ k

[
g(xm,δ2τ )

]
= δ2k dk

dtk

[
g(xm, t)

]
, (4.333)

which can be computed from the defining expression (4.313).
Let us define

êT
k = eT

(
k∏

i=1

F

)
(4.334)

for k = 0,1, . . . ,m−1. Thus for 0≤ k < m, (4.331) becomes

s(k) = g(k)
m − êT

k y (4.335)

and (4.332) is just
s(m) = g(m)

m − êT
m−1 (Fy+Gu) . (4.336)

4.12.5 Optimality Conditions

Unconstrained Arcs (s < 0)

When the state constraint is strictly satisfied, the Hamiltonian is given by

H = L(y,u, t)+λTf

= 1

2
yTAy+ 1

2
uTBu+λT(Fy+Gu). (4.337)
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Recalling that FT = F for our problem, it then follows that the adjoint equations (4.7) are

λ′ =−HT
y =−Ay−Fλ. (4.338)

The maximum principle (4.8) yields

0=HT
u = Bu+GTλ, (4.339)

which can be solved analytically to give an expression for the optimal control

u=−B−1GTλ. (4.340)

Constrained Arcs (s = 0)

When the solution lies on the state constraint the Hamiltonian is

H = L(y,u, t)+λTf+µs(m)

= 1

2
yTAy+ 1

2
uTBu+λT(Fy+Gu)+µ

[
g(m)

m − êT
m−1 (Fy+Gu)

]
= 1

2
yTAy+ 1

2
uTBu+µg(m)

m + (λ− µ̂em−1) T (Fy+Gu) . (4.341)

In this case the adjoint equations are

λ′ =−HT
y =−Ay−Fλ+ µ̂eT

m−1F=−Ay−F (λ− µ̂em−1) . (4.342)

The maximum principle yields

0=HT
u = Bu+GTλ−µGT̂em−1 = Bu+GT (λ− µ̂em−1) , (4.343)

which can be solved analytically to give an expression for the optimal control

u=−B−1GT (λ− µ̂em−1) . (4.344)

On the constrained arc we require s(m) = 0, so if we substitute (4.344) into (4.336)
and rearrange, we obtain

0= s(m)

= g(m)
m − êT

m−1 (Fy+Gu)

= g(m)
m − êT

m−1

[
Fy−GB−1GT (λ− µ̂em−1)

]
= g(m)

m − êT
m−1Fy+ êT

m−1GB−1GT (λ− µ̂em−1)

= g(m)
m − êT

m−1Fy+ êT
m−1GB−1GTλ− µ̂eT

m−1GB−1GT̂em−1. (4.345)

Solving (4.345) we obtain the following expression:

µ= g(m)
m − êT

m−1Fy+ êT
m−1GB−1GTλ

êT
m−1GB−1GT̂em−1

. (4.346)
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Boundary Conditions

Inspection of the direct solution (Figure 4.26) suggests that there is one constrained region.
Consequently let us assume that the optimal solution is defined on three distinct regions

0≤ τ1 ≤ τ2 ≤ 5δ−2, (4.347)

where the constrained arc occurs for τ1 ≤ τ ≤ τ2 and the other regions are unconstrained.
Obviously from (4.309) we must have

y(0)= 0. (4.348)

If we define the vector

N(y,τ )=


s(0)

s(1)

...
s(m−1)

 , (4.349)

then at the beginning of the constrained arc (τ = τ1) we must satisfy the tangency conditions

N(y,τ+1 )= 0. (4.350)

Note that it is equally valid to impose these conditions at the other boundary (τ = τ2);
however, we retain the convention established in [54] and [139]. The adjoint variables at
the boundary must satisfy

λ(τ−1 )= λ(τ+1 )+NT
yπ , (4.351)

where π is an m-vector and from (4.335) and (4.349) we have

NT
y =−

[̂
e0, ê1, . . . , êm−1

]
. (4.352)

If we define the vector

Nτ =


g(1)

g(2)

...
g(m)

 , (4.353)

then we must also have
H (τ−1 )= H (τ+1 )−πTNτ . (4.354)

The following simple continuity conditions must be imposed:

λ(τ−2 )= λ(τ+2 ), (4.355)

y(τ−1 )= y(τ+1 ), (4.356)

and
y(τ−2 )= y(τ+2 ). (4.357)

Finally, we must impose the terminal condition

λ(5δ−2)= 0. (4.358)
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Optimality Conditions: Summary

Summarizing the optimality conditions leads to the statement of a multipoint BVP. Specif-
ically, when the solution is unconstrained we must satisfy the differential equations

y′ = Fy−GB−1GTλ,

λ′ =−Ay−Fλ, (4.359)

and the constrained arcs satisfy the differential equations

y′ = Fy−GB−1GT (λ− µ̂em−1) ,

λ′ =−Ay−F (λ− µ̂em−1) (4.360)

with boundary conditions (4.348), (4.350), (4.351), (4.354), (4.355), (4.356), (4.357), and
(4.358).

4.12.6 Computational Comparison—Direct versus Indirect

Direct Method

The SOCS software was used to obtain solutions for a number of different spatial dis-
cretizations n. Table 4.4 presents a summary of the computational results. The first column
of the table gives the value of the spatial discretization. Column two gives the number
of mesh-refinement iterations required to achieve a discretization error of 10−7 or approxi-
mately eight significant figures, and column three shows the number of grid points required
to achieve this accuracy. The discretize then optimize approach implemented in SOCS re-
quires solving a sequence of large, sparse NLP problems, and the next three columns sum-
marize information about the NLP performance. Column four gives the total number of
gradient/Jacobian evaluations required to solve all of the NLP problems. The number of
Hessian evaluations is given in the next column, followed by the total number of function
evaluations including those needed for finite difference perturbations. The final column
gives the total CPU time to compute the solution on a SUN Blade 150 workstation. De-
fault tolerances were used for all of the NLP subproblems which guarantee that all discrete
constraints were satisfied to a tolerance of ε =√εm ≈ 10−8, where εm is the machine pre-
cision. Since the direct method does not require special treatment for constrained arcs these
results were obtained using a single phase formulation.

Table 4.4. Direct method (one phase).

n Refn Grid Grad Hesn Func CPU
4 8 172 32 8 959 7.84
6 8 317 32 9 908 26.4

20 13 1063 50 14 1617 474
40 16 2105 61 18 2057 3685

Indirect Method

In contrast to the direct method, which can be formulated using a single phase, the indirect
method must be modeled using more than one phase because the optimality conditions are
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different on constrained and unconstrained arcs. If one assumes there are three phases as
illustrated by Figure 4.26, then the SOCS software can also be applied to the boundary
value problem summarized in section 4.12.5. The numerical results for this approach are
presented in Table 4.5.

Table 4.5. Indirect method (three phases).

n Refn Grid Grad Hesn Func CPU
4 5 183 29 0 419 2.46

4† 5 183 51 21 2777 8.61
6† 6 229 150 52 908 62.8
20 Fails to Converge
40 Fails to Converge

The first row of the table corresponding to the case n = 4 demonstrates the expected
behavior for the method. The mesh was refined 5 times, leading to a final grid with 183
points. The solution of the BVP required 29 gradient evaluations and 419 total function
evaluations and was computed in 2.46 seconds. Since there were no degrees of freedom
(and no objective function), no Hessian evaluations were required. For all other cases
tested it was either difficult or impossible to compute a converged solution. In an attempt
to improve robustness, the BVP was formulated as a constrained optimization problem by
introducing slack variables. Specifically, instead of treating boundary conditions such as
(4.354) as equality constraints of the form

ψ(x)= 0

we formulated conditions of the form

ψ(x)+ s+− s− = 0,

where the slack variables s+ ≥ 0 and s− ≥ 0, and then minimized an objective F(x) =∑
(s+ + s−). The second and third rows in Table 4.5 present results obtained using the

slack variable formulation (denoted by †). In both cases solutions were obtained with
converged values for the slacks s ≤ ε; however, the rate of convergence was very poor, as
indicated by the number of Hessian evaluations. It was not possible to obtain a converged
solution using any technique when n > 6.

4.12.7 Analysis of Results

The Quandary

The numerical results presented in Section 4.12.6 pose a number of controversial issues. It
appears that the direct method solves the problem in a rather straightforward manner for all
values of the spatial discretization n. Yet when the inequality constraint is active, s(y,τ )=
0, the combined DAE has index m = n/2+ 1. Thus, referring to Table 4.4, it appears
that the direct method has solved a DAE system of very high index (11 or 21). However,
usually the only way to solve a high index DAE is to use index reduction [48] since no
known discretization converges for index 21 DAEs. In fact, the default discretization in
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SOCS, like most discretizations, fails to converge if the index is greater than three [60]. In
short, it appears that the direct method works, even though it shouldn’t!

In contrast, the index reduction procedure has been performed for the indirect method.
Specifically, the necessary conditions given by (4.345) explicitly involve the mth time
derivative of the constraint s(y,τ ) = 0; i.e., index reduction has been performed. In fact,
consistent initial conditions for the high index DAE are imposed via the tangency condi-
tions (4.350). In short, it appears that the indirect method does not work, even though it
should!

In order to explain this quandary, we first suspected a bug in the code. To address this
issue we compare the direct and indirect solutions for the cases n = 4 and n = 6. Figures
4.27 and 4.28 plot the difference between the direct and indirect solutions. At least visually
the solutions for the state variable (temperature) appear to agree quite closely. There is
a slight discrepancy between the control variable solutions; however, this can possibly
be attributed to differences in the formulation. Specifically, the direct method has a single
phase, and the control approximation is continuous by construction. In contrast, the indirect
method has three phases and consequently can introduce a discontinuity in the control at the
phase boundary. This still does not explain why the direct method works and the indirect
method fails.

Figure 4.27. Difference between direct and indirect solutions n = 4.

The Explanation

Let us focus on the direct method. In particular let us take a microscopic look at the
results obtained by the direct method. Figure 4.29 plots the quantity s(y,τ )/ε, where ε =√
εm ≈ 10−8 and εm is the machine precision. Since ε is the NLP constraint tolerance, we
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Figure 4.28. Difference between direct and indirect solutions n = 6.

can view s(y,τ )/ε as a normalized path constraint error. More precisely, the constraint
|s(y,τ )| ≤ ε when −1 ≤ s(y,τ )/ε ≤ 1. Thus in Figure 4.29 we are plotting the regions
when the path constraint is within convergence tolerance. Conversely when s(y,τ )/ε <−1
the mathematical constraint (4.328) is strictly satisfied. Regions corresponding to strict
satisfaction of the path constraint are shaded gray.

From the figure it would appear that when n = 4 there is exactly one region where the
path constraint is within tolerance. However, for n = 6 it appears there are three distinct
regions where the path constraint is within tolerance. And for n = 20 and n = 40 there
may be as many as five regions where the path constraint is within tolerance. At least
graphically, this suggests that the number of constrained arcs is not always one! It may be
three, or five, or perhaps some other value. It also suggests that the number of constrained
arcs may change with the spatial discretization n.

How many constrained arcs are there? Even though a graphical analysis cannot an-
swer the question we immediately have an explanation for the apparent failure of the in-
direct method. In order to explicitly state the necessary conditions (4.359)–(4.360) with
boundary conditions (4.348), (4.350), (4.351), (4.354), (4.355), (4.356), (4.357), and
(4.358), we assumed there was only one constrained arc. Clearly, if the number of con-
strained arcs is wrong, the optimality conditions are wrong! Successful use of the indirect
method requires a priori knowledge of the number of constrained arcs!

At this point, it is important to note the result from [117] which says that for problems
of the type we consider here, there cannot be any constraint arcs at all if n/2 is an odd
integer greater than 2. There can be only touch points. The computational complexity
of the problem as n increases prevents a more careful examination of this behavior. In
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Figure 4.29. Inequality constraint error.

[28] a parameterized fixed-dimensional problem is developed with a similar structure for
which we are able to compute the solutions much more accurately. What we see there is an
increasing number of touch points except that the deviation from the constraint was several
orders less than 10−7. For this problem the theory held but was numerically meaningless
since the constraint deviation was below normal error bounds.

Academic problems are often “simple.” In contrast, real world applications often
contain very complicated constraints. For these applications it is seldom possible to predict
when the constraints will be active or compute the requisite necessary conditions. Also, as
illustrated above and in [28], the theoretically predicted behavior may occur at or below the
computational tolerances used to solve the problem, leading to an extremely ill-conditioned
indirect solution. Thus the difficulties exhibited by this example can occur in real world
problems where it is even harder to predict what will happen.

To fully understand how the direct method successfully obtained a solution it is help-
ful to review how the sparse NLP algorithm treats the discrete problem. During the final
mesh-refinement iterations an implicit Runge–Kutta (Hermite–Simpson) discretization is
used, and for this method the NLP variables from (4.57) are

x= [y1,u1,u2,y2,u2,u3, . . . ,yM ,uM
]� . (4.361)
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Specifically, the NLP variable set consists of the state and control variables at M grid
points y j ≡ y(τ j ), u j ≡ u(τ j ), and the control variables at the midpoints τ̄ j ≡ (τ j +τ j−1)/2
of the M − 1 discretization intervals u j ≡ u[τ̄ j ]. The differential equations (4.322) are
approximated by the defect constraints (4.58)

ζ j = y j+1−y j −
h j

6

[
f j+1+4f j+1+ f j

]
= 0, j = 1, . . . , (M−1). (4.362)

Of particular relevance to this discussion is the treatment of the (continuous) state inequal-
ity constraint (4.328), which is approximated by enforcing it at the grid points

s(y j ,τ j )≤ 0, j = 1, . . . , M , (4.363)

and the midpoints

s[y j , τ̄ j ]≤ 0, j = 1, . . . , (M−1). (4.364)

Taken collectively, the set of (2M−1) constraints (4.363)–(4.364) are treated as inequality
constraints by the NLP algorithm.

Table 4.6 summarizes this information for the four spatial discretization cases. The
first row gives the total number of discrete inequality constraints (2M − 1) that are en-
forced by the NLP algorithm. The second row of the table gives the number of inequality
constraints that are within tolerance, which corresponds to the information displayed in
Figure 4.29. Row three tabulates the number of constraints treated as “active” by the NLP
algorithm. Row four gives the percentage of constraints within tolerance that are also con-
sidered active by the NLP.

Table 4.6. The NLP active set.

Spatial Discretization, n 4 6 20 40
Inequalities s 343 633 2125 4209
Inequalities within tolerance, |s|< ε 102 149 475 1083
Active Inequalities 59 52 38 40
Percent Active 58 35 8 4

Clearly this data suggests that only a small fraction of the discrete constraints within
convergence tolerance are actually treated as “active” inequalities by the NLP algorithm.
Now, the active inequality constraints at the NLP solution satisfy a constraint qualification
test. More precisely the underlying QP algorithm constructs the set of active inequality
constraints such that the gradients are linearly independent (cf. Section 1.12). In essence the
active set is constructed to satisfy the so-called linear independent constraint qualification
(LIQC). Conversely, we suspect that if all of the inequalities within tolerance had been
included in the active set, the resulting Jacobian matrix would be rank deficient. However,
the solution does satisfy the more general Mangasarian–Fromovitz constraint qualification
(MFQC) as demonstrated recently by Kameswaran and Biegler [120].

Can the direct approach be used to solve a high index (greater than three) DAE? Sup-
pose the high index path constraint had been treated as an equality constraint. This would
require treating every grid point as an equality constraint, thereby leading to a singular Ja-
cobian matrix. In addition, as noted earlier, the discretization does not converge for high
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index DAEs. The direct approach will fail if the path constraint is treated as an equality.
Indeed, the solutions presented exploit the fact that the path constraints are inequalities,
not equalities. In other words the direct approach solves the high index DAE conditions
by directly enforcing a small subset of the discrete conditions and trivially satisfying the
others. This explains why the direct approach works when it shouldn’t!

Since the NLP active set is determined using the Lagrange multipliers for the discrete
problem, the behavior of the direct method also demonstrates a theoretical issue of some
interest. In [23], we prove for a class of higher index state constrained control problems
that the discrete solution converges to the “continuous” optimal control using the theory of
consistent approximations [144]. Although the proof is applicable only for a trapezoidal
discretization, it does not rely on the convergence of the discrete NLP Lagrange multipliers
to the continuous adjoint variables. In fact, it is shown in [23] that the multipliers fail to
converge to the adjoint variables. In [23], it was also shown that for problems with an active
constraint arc that the direct method could stabilize an unstable discretization by using
small perturbations off the constraint arc. We suspect that the consistent approximation
ideas will apply here, but as yet we have not extended the results in [23] to this situation.

To summarize, this example presents a comparison of two techniques for solving
optimal control problems, namely the direct versus the indirect method. For the purpose of
demonstration we focused on a model problem that requires solving a PDE subject to an
inequality constraint on the state. After discretization using a method of lines, the problem
can be stated as an optimal control problem with linear ODEs subject to a high index path
inequality constraint. A preliminary examination suggests that the model problem has a
single constrained arc, and the appropriate optimality conditions are derived for this case.
However, we also demonstrate that the assumed arc structure is incorrect. The example
illustrates that to successfully use the indirect method it is necessary to guess

(a) the number of constrained arcs,
(b) the location of the constrained arcs, and
(c) the correct index of each constrained arc.

In general it is extremely difficult to determine this information a priori, and failure to do so
will cause the indirect method to fail. In contrast the direct method works because the un-
derlying NLP algorithm determines the number, location, and correct active grid points for
a linearly independent active set. In short, the direct method provides a robust method for
solving optimal control problems especially when state inequality constraints are present.

4.13 Questions of Efficiency
Traditionally, there are two major parts of a successful optimal control

or optimal estimation solution technique. The first part is the “optimization”
method. The second part is the “differential equation” method. When faced
with an optimal control or estimation problem it is tempting to simply “paste”
together packages for optimization and numerical integration. While naive
approaches such as this may be moderately successful, the goal of this book is
to suggest that there is a better way! The methods used to solve the differential
equations and optimize the functions are intimately related (cf. the preface).

Algorithms for solving the NLP problem are described in Chapters 1 and 2. Chapters
3 and 4 present approaches for transcribing the continuous problem into an NLP. What
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remains is to intelligently select an NLP algorithm that is appropriate for this class of
problems. But how does one quantify a “good algorithm?” Ideally, a “good algorithm” will
solve “most” problems “faster” than a “bad algorithm.” Typically computer time is used
to measure algorithm speed; however, when this is done it is imperative that all testing
be done using the same hardware, compiler options, and operating system. The number
of function evaluations can be used instead of (or in addition to) computer time, but then
one must carefully define a “function evaluation.” Furthermore to make a fair comparison
between algorithms it is important to

(a) test a large suite of problems
(b) using the same initial guess and
(c) the same convergence criteria.

When comparing one NLP to another, it is common to perform benchmark tests using a
suite of standard problems, e.g., Hock and Schittkowski [114] or CUTE [45]. While this
provides useful information, it is not appropriate for testing an optimal control algorithm.
In particular we would like to choose the best algorithm for solving a sequence of NLP
problems. Typically at a step in the sequence the NLP problem will have

(a) more variables than the previous NLP,
(b) more constraints than the previous NLP,
(c) and possibly different nonlinearity (because of a different discretization).

The initial guess for each NLP is determined by the solution of the previous (coarse grid)
solution. Convergence criteria involve the sequence of NLP problems, rather than just
a single NLP. Since each NLP is derived by transcription of an optimal control problem,
the nonlinearity is dictated by the differential equations. Finally all problems exhibit matrix
sparsity that is associated with the discretization technique. In short, choosing an algorithm
to efficiently solve a sequence of NLPs is not the same as choosing an algorithm for a
single NLP. One cannot simply “paste” together packages for optimization and numerical
integration!

Unfortunately, there is no easy way to prove which algorithm is best suited for this
environment. Nevertheless, considerable insight can be gained by examining the behavior
of the sparse SQP algorithm on a typical problem. Let us revisit an example first presented
in Table 2.2 (p. 54) of reference [21]. This space shuttle reentry problem has five state and
two control variables and is discussed in Example 6.2 as well as in [36]. To illustrate the
behavior, the problem was solved using a trapezoidal discretization with M equally spaced
grid points. Ten different cases were solved and Table 4.7 summarizes the significant per-
formance parameters. The number of grid points shown in column one ranged from 50 to
25600. Columns two, three, and four present the dimensions of the resulting NLP problem,
i.e., the number of variables n, active constraints m̂, and degrees of freedom nd = n− m̂.
Column five of the table (NFE) shows the total number of function evaluations (includ-
ing finite difference perturbations) needed to solve the problem. Column six contains the
number of Jacobian (gradient) evaluations (NGE) needed to converge, and column seven
presents the number of Hessian evaluations (NHE). Column eight of the table presents the
CPU time (seconds) to obtain a solution on a Dell M90 laptop computer. The discretiza-
tion error εα is presented in the last column. It should be emphasized that the results in
Table 4.7 do not use the mesh-refinement algorithm described in Section 4.7. Instead, each
case begins with an initial guess constructed by linearly interpolating the state and control
variables between the initial and final times.
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Table 4.7. Shuttle reentry example.

M n m̂ nd NFE NGE NHE T(sec) εα

50 351 253 98 405 16 7 0.120000 1.19×10−2

100 701 503 198 494 18 9 0.260000 2.25×10−3

200 1401 1003 398 494 18 9 0.570000 3.64×10−4

400 2801 2003 798 405 16 7 1.06000 5.26×10−5

800 5601 4003 1598 440 16 8 2.75000 7.08×10−6

1600 11201 8003 3198 367 15 6 6.83000 9.18×10−7

3200 22401 16003 6398 413 16 7 21.7700 1.17×10−7

6400 44801 32003 12798 502 18 9 92.7300 1.47×10−8

12800 89601 64003 25598 457 17 8 356.660 1.84×10−9

25600 179201 128003 51198 503 18 9 4588.33 6.64×10−10

A second set of data was gathered by repeating the 10 cases using a Hermite–Simpson
compressed (HSC) discretization instead of trapezoidal, and the combined results are illus-
trated using a logarithmic scale in Figure 4.30. The number of variables n from Table 4.7
are plotted with a solid line and range from 351 to 179201. The number of constraints is
plotted using a dotted line, and the number of degrees of freedom are plotted using a dashed
line. The shaded regions (light, medium, and dark, respectively) present the corresponding
information for the HSC discretization. Obviously the NLP dimensions grow linearly with
the mesh size M .

Figure 4.30. NLP dimensions increase with mesh.
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Figure 4.31 illustrates the quantities that do not change with the mesh size. Specifi-
cally the number of function evaluations, the number of gradient evaluations, and the num-
ber of Hessian evaluations are essentially the same regardless of whether the NLP problem
has 351 variables or 179201 variables. There are two reasons for this:

1. sparse differences—first and second derivatives are computed using sparse finite dif-
ferences, and the number of index sets remains unchanged by mesh size, and

2. quadratic convergence—a second order (Newton) NLP algorithm is used, and the
number of iterations is not altered by problem size.

Figure 4.31. NLP evaluations do not increase with mesh.

Figure 4.32 illustrates how the accuracy of the solution as measured by the discretiza-
tion error is related to the size of the grid. The discretization error for a trapezoidal method
is displayed by the shaded region, whereas the Hermite–Simpson error is plotted with a
solid line. As expected, the higher-order Hermite–Simpson method requires fewer (equally
spaced) grid points to achieve the same accuracy as a lower-order trapezoidal scheme. It
is also interesting to note that the error for the HSC method actually increases as the grid
becomes very fine, presumably because of roundoff error effects. For comparison, the be-
havior of the mesh-refinement algorithm with a requested tolerance of εα ≤ δ= 10−7 is also
displayed in the figure, using a dashed line. Note that after the first two refinements using a
trapezoidal method, the third refinement changes to a (higher-order) HSC scheme, without
changing the number of grid points. This behavior is obvious because of the vertical line
with M = 99.

Of course the most important figure of merit when assessing an algorithm is how
fast it is possible to obtain a solution to a requested accuracy. Figure 4.33 illustrates how
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Figure 4.32. Discretization error decreases with mesh.

Figure 4.33. Discretization error versus CPU time.
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the computation time (CPU seconds) is related to the discretization error. The shaded
region illustrates how the CPU time increases as the discretization error decreases when
using an equidistributed trapezoidal grid. The solid line illustrates the same information
using an equidistributed Hermite–Simpson scheme. As expected a specified accuracy can
be obtained much faster using the HSC method. Again the best algorithmic performance
is demonstrated when mesh refinement is used. Finally, notice that the CPU time grows
linearly with the size of the problem! This cost can be attributed to the fact that the com-
putational complexity of the sparse linear algebra is O(κn), where κ is a constant defined
by the nonzero percentage of the matrix rather than O(n3) for dense linear algebra.

Question: Newton or Quasi-Newton Hessian?

Historically, quasi-Newton Hessian approximations were developed for problems with no
constraints. Thus when extending the technique to constrained problems one can utilize
a quasi-Newton approximation to the full Hessian. However, exploiting matrix sparsity
when using a quasi-Newton update has to date been computationally unsuccessful. Fur-
thermore, for optimal control applications, the problem dimension n ∼ (ny +nu)M can be
quite large. One common alternative is to apply a quasi-Newton update to the projected or
reduced Hessian (1.63), which is dense. For example this technique is used by Gill, Murray,
and Saunders [93] in the software SNOPT. Unfortunately, as they state in [94] the method
is “. . . best suited for problems with a moderate number of degrees of freedom (say, up to
2000).” As a practical matter the computational linear algebra costs associated with oper-
ations on the (nd × nd ) dense reduced Hessian ZTHLZ become prohibitive, in addition to
any computer storage issues. Byrd, Hribar, and Nocedal [59] use a limited memory update
in the software KNITRO in an attempt to deal with the storage requirements of the dense
projected Hessian matrix. Unfortunately like all quasi-Newton methods, limited memory
updates do not demonstrate quadratic convergence. Thus each NLP problem requires re-
peated solution of a large dense linear system. Furthermore, as the mesh size increases, the
process must be repeated on another, larger NLP and consequently becomes prohibitively
expensive for problems with many degrees of freedom. Since nd ∼ nu M if a quasi-Newton
NLP is used in an SNLP algorithm, the number of controls and/or mesh size are severely
limited. In general a quasi-Newton algorithm could not exhibit the behavior illustrated in
Figure 4.31. Generally, algorithms that fully exploit Hessian sparsity have demonstrated
superior computational performance for large-scale optimization. Full Hessian sparsity is
exploited by the SQP and barrier methods in SOCS as well as the LOQO algorithm of
Vanderbei and Shanno [166].

Answer: Newton.

Question: Barrier or SQP Algorithm?

A second, more serious performance issue occurs when comparing NLP algorithms for
use within the context of an SNLP. Is an SQP better than a barrier method for sequential
nonlinear programming? An answer can be deduced by examining the algorithm behavior
on a collection of optimal control test problems. Two algorithms were compared: the
Schur-complement sparse SQP, and the primal-dual barrier method described in Chapter 2.
The test suite consists of 99 problems drawn from many different applications, including
every problem in this book. All problems were solved on the same computer, using the
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same compiler and operating system. All problems were solved to the same discretization
accuracy εα ≤ δ= 10−7 given by (4.171), using the same mesh-refinement procedure. Both
the SQP and the barrier algorithm utilize gradient and Hessian information constructed
using the sparse finite difference techniques discussed, with an NLP convergence tolerance
of
√
εm , where εm is the machine precision. Finally, the same initial guess was used to

initiate the SNLP, with no difference in problem scaling.
Table 4.8 summarizes the results of the numerical comparison. All 99 problems were

solved correctly when the SQP algorithm was used. In contrast the barrier algorithm solved
only 83 (84%) of the problems. Using the SQP results as a reference, the table presents
a number of comparisons. The average increase in run time for the barrier algorithm was
106.24%, and the median increase was 30.39%. Of the 83 problems successfully solved,
the worst case was 1554.41% more expensive than the SQP, and the best case was 64.77%
better than the SQP. Consistent trends are observed when comparing the number of function
evaluations.

Table 4.8. Percentage change for barrier versus SQP.

83 of 99 Solved Average Median Max Min
Run Time Change (%) 106.24 30.39 1554.41 −64.77
Function Evaluations (%) 204.07 170.25 874.38 −49.74

There are many factors that affect the behavior of a barrier algorithm for solving a
single NLP.

1. The barrier transformation embodied in (2.89) is nonlinear. As such, one might
expect the iterations to be more “nonlinear” and therefore slower, when compared to
an SQP.

2. When posing a general NLP in barrier format the number of variables (2.74) and
constraints (2.75), (2.76) is larger than the SQP formulation. This may increase the
cost of the linear algebra.

3. Problem scaling may interact with the nonlinearity of the barrier transformation.

While these factors are applicable to the solution of a single NLP, far more serious
difficulties are encountered when many NLP problems must be solved within the context
of an SNLP. Typically the NLP problem size grows as the discretization mesh is refined. In
this context it is required that one efficiently solve a sequence of NLPs. The obvious way
to achieve this goal is to use coarse grid information to “hot start” the fine grid NLP. In fact
one can use high-order polynomial interpolation of the coarse grid solution to construct a
very good initial guess for the NLP problem that must be solved on a fine grid. Thus, as
the mesh is refined the initial guess for the NLP subproblem becomes better and better. An
SQP algorithm can exploit this. In contrast for an interior-point algorithm, the iterates must
be strictly feasible. Constructing a feasible initial iterate by perturbing the user-supplied
initial guess is a straightforward process performed by computational software as described
in Section 2.11.9. However, in so doing, the very first iterate for each barrier NLP is
inconsistent with the coarse grid interpolation. Furthermore, an initial estimate must be
supplied for the barrier parameter µ in (2.89), and a poor choice can dramatically degrade
the performance of a barrier algorithm. In short, a barrier algorithm cannot exploit a
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good guess! This fundamental shortcoming of an interior-point method is discussed by
Forsgren [86].

The SNLP process presents one final difficulty for any NLP algorithm (barrier or
SQP). Each NLP subproblem is nonlinear, and computational algorithms are designed to
yield local, but not global, solutions. As the mesh is refined, in principle, the sequence of
NLP subproblems should not change regardless of what NLP algorithm is used. However,
computational experience suggests otherwise—as illustrated by the results summarized in
Tables 7.2 and 7.3. In particular for some problems in the test suite, the barrier algorithm
found different local solutions than the SQP, ultimately leading to failure. To date, this
behavior has been observed only with the barrier NLP, and not when using an SQP.

Answer: SQP.

4.14 What Can Go Wrong
In Section 4.3, we spent some time discussing what’s wrong with the indirect method. We
are now in a position to consider what’s good about the direct method.

1. Since the adjoint equations are not formed explicitly, analytic derivatives are not
required. Instead, equivalent information can be computed using sparse finite differ-
ences. Consequently, a user with minimal knowledge of optimal control theory can
use the technique! Complex black box applications can be handled easily. The ap-
proach is flexible and new formulations are handled readily. Finally, sparsity in the
right-hand side of the dynamic equations (4.32) and (4.33) can be treated automati-
cally.

2. Path inequalities (4.33) do not require an a priori estimate of the constrained-arc
sequence because the NLP active set procedure automatically determines the arc
sequence.

3. The method is very robust since the user must guess only the problem variables y,u.
Furthermore, the NLP globalization strategy, which is designed to improve a merit
function, has a much larger region of convergence than finding a root of the gradient
of the Lagrangian, ∇L = 0, which is the approach used by an indirect method.

For most applications, the direct method is quite powerful and eliminates the deficien-
cies of an indirect approach. Nevertheless, there are some situations that are problematic,
and it is worthwhile to address them.

4.14.1 Singular Arcs

Normally, the optimal control function is uniquely defined by the optimality condition
(4.11). On the other hand, a singular arc is characterized by having both Hu = 0 and a
singular matrix Huu . When this situation appears, the corresponding sparse NLP problem
that arises as a part of the direct transcription method is singular. In particular, the projected
Hessian matrix is not positive definite. The standard remedial action used by most NLP al-
gorithms is to modify the Hessian matrix used within the NLP problem, for example, using
the Levenberg parameter (2.39) described in Section 2.5. While this approach does “fix”
the NLP subproblem, it does not address the real difficulty. Conversely, one can attempt
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to correct the real problem by imposing the necessary condition appropriate for a singular
arc, namely

d2

dt2 (Hu)= 0. (4.365)

If this mixed approach is used with general-purpose software such as SOCS, it is possible
to obtain the correct solution. However, this hybrid technique has all of the drawbacks
of an indirect method since the analytic necessary conditions must be derived and the arc
sequence guessed. Finally, the proper formulation may avoid the appearance of a singular
arc as illustrated in Example 6.10.

Example 4.9 GODDARD ROCKET PROBLEM. To illustrate this situation, consider a
simple version of the classical Goddard rocket problem [54]:

ḣ = v,

v̇ = 1

m

[
T (t)−σv2 exp[−h/h0]

]
− g,

ṁ =−T (t)/c. (4.366)

It is required to find the thrust history 0 ≤ T (t) ≤ Tm such that the final altitude h(tF ) is
maximized for given initial conditions on altitude h, velocity v, and mass m. The problem
definition is completed by the following parameters: Tm = 200, g = 32.174, σ = 5.4915×
10−5, c = 1580.9425, h0 = 23800., h(0)= v(0)= 0, and m(0)= 3.

It can be demonstrated that the optimal solution consists of three subarcs—the first
at maximum thrust T (t) = Tm , followed by a singular arc, with a final arc at minimum
thrust T (t)= 0. On the singular arc, application of (4.365) leads to the nonlinear algebraic
constraint

0= T (t)−σv2 exp[−h/h0]−mg

− mg

1+4(c/v)+2(c2/v2)

[
c2

h0g

(
1+ v

c

)
−1−2

c

v

]
, (4.367)

which uniquely defines the control T (t). Thus, we can formulate the application as a three-
phase problem. All three phases must satisfy the differential equations (4.366); however, in
phase 2 it is also necessary to satisfy the (index-one) path constraint (4.367). Furthermore,
when entering the singular arc at the beginning of phase 2 it is necessary to impose the
boundary condition

0= mg−
(

1+ v

c

)
σv2 exp[−h/h0]. (4.368)

The final times for all three phases are also introduced as NLP variables in the transcribed
formulation. By incorporating knowledge of the singular arc, the SOCS software can ef-
ficiently and accurately compute the solution. Table 4.9 summarizes the computational
performance, and the solution is illustrated by the shaded region in Figure 4.34. Notice that
three mesh-refinement iterations were required to reduce the error in the differential equa-
tions (ERRODE) by increasing the number of grid points M from 60 to 91. Furthermore,
the solution to each NLP subproblem was computed efficiently in terms of the number of
function evaluations (NFE) and the CPU time.
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Table 4.9. Singular arc using hybrid method.

Iter. M NFE ERRODE CPU (sec)

1 60 30 0.67×10−4 0.15×101

2 79 26 0.55×10−5 0.12×101

3 91 14 0.70×10−7 0.96×100

70 3.64

Figure 4.34. Singular arc solution.

In contrast, when no knowledge of the singular arc is incorporated and a standard one-
phase approach is used, the computational performance is much less efficient, as indicated
by the results in Table 4.10. Furthermore, even though the final solution had 450 grid
points, the control history during the singular arc is quite oscillatory, as illustrated by the
dotted line in Figure 4.34. The oscillatory control is, of course, a direct consequence of the
fact that the control is not uniquely determined on the singular arc unless the higher-order
conditions (4.365) are imposed. The mesh refinement attempts to correct the perceived
inaccuracy on the singular arc by adding grid points to this region. It is interesting to note,
however, that the computed optimal objective function value h∗ = 18550.6 is quite close to
the true value computed using the hybrid approach (h∗ = 18550.9).
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Table 4.10. Singular arc using standard method.

Iter. M NFE ERRODE CPU (sec)

1 50 189 0.52×10−3 0.46×101

2 96 416 0.72×10−3 0.17×102

3 103 2078 0.13×10−3 0.58×102

4 188 3398 0.64×10−4 0.34×103

5 375 230 0.26×10−6 0.19×103

6 450 230 0.84×10−7 0.17×103

6541 775.30

4.14.2 State Constraints

A standard approach to a problem with path constraint(s)

0≤ g[y(t),u(t), t]

is well behaved provided the matrix gu is full rank. However, for state constraints g[y,u, t]≡
g[y, t], it is clear that the matrix gu is not full rank. In this case, after discretization, the
sparse NLP Jacobian matrix does not have full row rank and, consequently, violates the
NLP constraint-qualification test! Furthermore, numerically detecting the rank of a matrix
is difficult.

On the other hand, if the analyst recognizes this situation, it is possible to use index
reduction to construct a well-posed discretized subproblem. Essentially the user must ana-
lytically differentiate g and then substitute the state equations into the resulting expression.
This process can be repeated q times until the control u appears explicitly. Then, during
the constrained arcs, one can impose the derived conditions, e.g.,

dq

dtq
(g)= 0.

Additional endpoint conditions

dq−k

dtq−k
(g) |t=ta = 0

for k = 1, . . . ,q must be imposed at one end of the constrained arc (where t = ta). For
indirect formulations, the adjoint variables also require additional “jump conditions” at
the end of the arc. Although this technique can be used to obtain the correct solution,
unfortunately it is not “automatic” and, as such, has all of the drawbacks of the indirect
method as discussed in Section 4.12.

Example 4.10 BRACHISTOCHRONE. To illustrate the situation, consider the classical
Brachistochrone problem with a state variable inequality constraint:

Minimize tF subject to

ẋ = v cosu,
ẏ = v sinu,
v̇ = g sinu,
0 ≥ y− x/2−h
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with boundary conditions x0 = y0 = v0 = 0 and xF = 1. Now for h = 0.1, the behavior
of the standard approach summarized in Table 4.11 efficiently and accurately computes the
solution illustrated in Figure 4.35. Unfortunately, using the same technique with h = 0
will fail because the initial conditions x0 = 0, y0 = 0, together with the path constraint
y0− x0/2= 0, constitute a rank-deficient set of constraints, and the Jacobian is singular!

Table 4.11. State-constrained solution using standard method.

Iter. M NFE ERRODE CPU

1 10 149 0.16×10−2 0.13×101

2 19 35 0.19×10−3 0.54×100

3 21 140 0.13×10−4 0.10×101

4 41 119 0.55×10−6 0.21×101

5 69 119 0.53×10−7 0.72×101

562 12.16

Figure 4.35. State-constrained solution.

4.14.3 Discontinuous Control

Example 4.11 BANG-BANG CONTROL. As a final example of the limitations present
in general-purpose software such as SOCS, it is worth reviewing the behavior on a problem
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Figure 4.36. Bang-bang control approximation.

with discontinuous optimal control. This situation can occur whenever the differential
equations are linear, and is readily illustrated with the solution to the following problem:

Minimize tF subject to

ẋ = y,

ẏ = u,

−1 ≤ u ≤ 1

with boundary conditions x0 = y0 = 0, xF = 1, and yF = 0. The exact optimal solution is
bang-bang with

u∗(t)=
{

1 if t < 1,
−1 if t > 1.

The continuous control function u(t) approximation to this solution is illustrated in
Figure 4.36. While this is a reasonably good approximation (notice the independent vari-
able scale is magnified), it nevertheless is still an approximation. Furthermore, an alter-
native parameterization of the control that permits discontinuities would readily construct
the exact answer. Unfortunately, this again is not “automatic” and, as such, represents a
limitation in the current methodology.





Chapter 5

Parameter Estimation

5.1 Introduction
The behavior of many physical processes can be described mathematically by ordinary
differential or differential-algebraic equations. Commonly a finite number of parameters
appear in the description of the system dynamics. A parameter estimation problem arises
when it is necessary to compute values for these parameters based on observations of the
system dynamics. Methods for solving these so-called inverse problems have been used for
many years [155]. In fact, most techniques in use today are based on ideas proposed by
Gauss nearly 200 years ago that he used to solve orbit determination problems.

Traditional methods for solving inverse problems usually combine a standard initial-
value numerical integration technique with a Gauss–Newton method for optimization. An
approach that uses neither of the traditional processes can be constructed using the same
techniques introduced in Chapter 4 for solving optimal control problems. Initial value in-
tegration is replaced by a discretization of the relevant differential-algebraic equations. We
then exploit sparse finite difference approximations to the Hessian matrix, which permits
us to construct a quadratically convergent algorithm for solving parameter estimation prob-
lems.

5.2 The Parameter Estimation Problem
Typically the dynamics of the system are defined for tI ≤ t ≤ tF by a set of ODEs written
in explicit form given by (4.32) and restated here as

ẏ= f[y(t),u(t),p, t], (5.1)

where y is the ny dimension state vector, and u is an nu dimension vector of algebraic
variables. In addition the solution must satisfy algebraic path constraints (4.33) of the
form

gL ≤ g[y(t),u(t),p, t]≤ gU , (5.2)

where g is a vector of size ng , with elements of the form

g[y(t),u(t),p, t]= αTv+βTa[v, t], (5.3)

219
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where

v=
 y(t)

u(t)
p

 (5.4)

and

a[v, t]=


a0(y,u,p, t)
a1(y,u,p, t)

...
ana (y,u,p, t)

 . (5.5)

The constraint definition can include analytic terms involving αTv, where the (ny + nu +
n p) vector α is constant, as well as linear combinations of the na auxiliary functions ak(v, t)
for k = 0, . . . ,na, where the coefficients βk are nonzero constants. By convention, a path
constraint with a single nonlinear term a0(y,u,p, t) has no auxiliary functions (na = 0).
Observe that each individual path constraint may have a different number of auxiliary func-
tions and analytic terms. In addition to the general constraints (5.2) it is computationally
useful to include simple linear bounds on the state variables as in (4.34)

yL ≤ y(t)≤ yU , (5.6)

the algebraic variables as in (4.35)

uL ≤ u(t) ≤ uU , (5.7)

and the n p parameters
pL ≤ p ≤ pU . (5.8)

Note that an equality constraint can be imposed if the upper and lower bounds are
equal; e.g., (gL)k = (gU )k for some k. Boundary conditions at the initial time tI and/or
final time tF are defined by

ψ L ≤ ψ[y(tI ),u(tI ), tI ,y(tF ),u(tF ), tF ,p]≤ ψU . (5.9)

Unlike an optimal control problem with objective given by (4.39), for the parameter
estimation problem the goal is to determine the n p-dimensional vector p to minimize the
performance index

F = 1

2
rTr= 1

2

�∑
k=1

r2
k , (5.10)

where r is the �-dimensional residual vector. Components of the residual vector can be of
two forms. State residuals are of the form

rk =wk
[
yi(k)(θk)− ŷi(k)

]
, (5.11)

where yi(k)(θk) is the value of state variable i (k) computed at time θk and ŷi(k) is the ob-
served value at the same point. Algebraic residuals are of the form

rk =wk
[
ui(k)(θk)− ûi(k)

]
, (5.12)
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where ui(k)(θk) is the value of algebraic variable i (k) computed at time θk and ûi(k) is the
observed value at the same point. The residual weights are typically positive, i.e., wk > 0.
It is required that data evaluation points satisfy

tI ≤ θk ≤ tF . (5.13)

Often the evaluation points are arranged monotonically, that is, θk ≤ θk+1. It is also com-
mon to have many residuals evaluated at the same time, e.g., θk = θk+1. Although neither
of these assumptions is necessary for our approach, we do require that the initial and final
times tI and tF be fixed. In contrast to an optimal control problem whose objective function
(4.39) involves quantities evaluated continuously over the entire domain, the parameter es-
timation objective (5.10) is evaluated at a finite, albeit possibly large, number of discrete
points.

It is worth noting that more complicated problem descriptions can be accommodated
by the formulation given. For example, suppose it is required to minimize the expression

F = 1

2

N∑
k=1

[h(y(θk),u(θk),p,θk)− ĥk]T�[h(y(θk),u(θk),p,θk)− ĥk], (5.14)

where ĥk are the observed values of the function h at the times θk and � is the inverse
covariance matrix of these quantities. Since the positive definite matrix can be factored as
�=QTQ we can define a new set of algebraic variables

z(t)=Qh(y(t),u(t),p, t) (5.15)

and transform the observed data

ẑk =Qĥk . (5.16)

The maximum likelihood objective function (5.14) then becomes

F = 1

2

N∑
k=1

[zk− ẑk]T[zk − ẑk], (5.17)

where the residuals have the form given by (5.12) and the transformation (5.15) can be
treated as an equality path constraint as in (5.2).

This example suggests that in general the discrete data may involve complicated ex-
pressions of the “real” state and algebraic variables y(t),u(t) and the parameters p. When
this occurs the problem can be restated in terms of an augmented system. In the most
common situation the observation

z(t)= h[y(t),u(t), t] (5.18)

is treated as an (additional) algebraic constraint and it is natural to augment the “real”
algebraic variable u(t) to include the additional algebraic variable z(t). On the other hand,
if the observation is given by

z(t)= h[y(t), t], (5.19)
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then it is possible to augment the “real” state variable y(t) to include the additional state
z(t). In this case the state equations (5.1) must be augmented to include

ż(t)= hy ẏ+ ḣ= hyf+ ḣ, (5.20)

where the vector hy
.= (∂h/∂y1, . . . ,∂h/∂yn) is considered a row vector.

For the sake of simplicity we have not introduced problems with multiple “phases.”
Nevertheless, our software implementation SOPE [38] does not have these restrictions.

5.3 Computing the Residuals
In order to evaluate the residuals (5.11) it is necessary to compute the value of the state
variable at the data evaluation time θk as illustrated in Figure 5.1. This quantity can be
constructed from the Hermite interpolating polynomial. Thus for any particular residual k
there is an interval t j ≤ θk ≤ t j+1 and a particular state ν = i (k). Then the value of the state
needed in the residual calculation is

yν(θk)= (1−3δ2+2δ3)yν j + (3δ2−2δ3)yν, j+1

+ (h j δ−2h jδ
2+h j δ

3) fν j + (−h jδ
2+h j δ

3) fν, j+1, (5.21)

where h j = t j+1− t j is the length of the discretization interval and δ= (θk− t j )/h j defines
the location of the evaluation time relative to the beginning of the interval. In this expres-
sion, yν j is the value of state variable ν at grid point j and fν j is the corresponding value of
the right-hand side (5.1) at the same grid point. The value of the algebraic variable required
in (5.12) can be constructed from a quadratic interpolant when the Hermite–Simpson dis-
cretization is used, i.e., according to

uν (θk)= (1− δ)(1−2δ)uν j+4δ(1− δ)ūν, j+1− δ(1−2δ)uν, j+1, (5.22)

Figure 5.1. Residual evaluation.
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where δ = (θk − t j )/h j . Similarly, when a trapezoidal discretization is used, linear inter-
polation between the grid points yields

uν (θk)= (1− δ)uν j + δuν, j+1. (5.23)

It is important to observe that the residuals are computed by interpolation and do not have
any direct effect on the location of the discretization grid points. This is often referred to
as dense output in methods for numerical integration (cf. [106]). It is worth emphasizing
another property of the interpolation scheme. In each of the expressions (5.21), (5.22), and
(5.23) the interpolated value is written as a linear combination of the NLP variables and
the right-hand-side functions f at the grid points. In particular the quantities h j are fixed by
the mesh-refinement procedure, and the quantities δ are fixed by the location of the discrete
data points within a mesh. Thus, within a particular mesh-refinement step, the coefficients
defining the interpolants are constant during the NLP optimization iterations. For example,
the term (−h jδ

2+ h jδ
3) in (5.21) remains unchanged by the NLP variables. This will be

exploited when constructing derivatives. Furthermore to improve numerical conditioning
we first normalize the time domain using (3.114) and then evaluate (5.21), (5.22), or (5.23)
as functions of τ rather than t .

5.4 Computing Derivatives
First and second derivatives are constructed by exploiting the sparse finite differencing
techniques described in Sections 2.10.3 and 4.6.8. The key notion is to write the complete
set of transcribed NLP functions as[

c(x)
r(x)

]
= Ax+Bq(x)+ ζ , (5.24)

where A and B are matrices (constant during the NLP) and q involves the nonlinear func-
tions at grid points. Elements of the vector ζ that correspond to defect constraints are zero.
Similar information for the nonlinear boundary functions ψ can also be incorporated. We
then construct finite difference estimates for the first derivatives of the set of υ functions
qi (x) with respect to the n variables x in the υ×n matrix

D≡


(∇q1)�
(∇q2)�

...
(∇qυ)�

= ∂q
∂x

. (5.25)

The efficiency of the differencing technique depends on the sparsity of the matrix D
defined in Section 2.2.1. The columns of D can be partitioned into subsets called index sets
such that each subset has at most one nonzero element per row. Derivatives are constructed
by perturbing all variables in an index set at the same time, and consequently the number
of perturbations needed to construct D can be much smaller than the number of variables
n. In our software, we construct this problem-dependent sparsity template information
by random sampling of the user functions. From the sparsity template information, it is
possible to construct the sparsity for the matrix D and compute the finite difference index
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sets. The first derivative information needed to solve the NLP can then be computed from[
G
R

]
= A+BD, (5.26)

where G is the Jacobian of the constraints and R is the residual Jacobian. This function
separability can be further exploited to construct the residual Hessian needed in (2.56) using
(2.66)–(2.69).

5.4.1 Residuals and Sparsity

There are a number of aspects of the approach that deserve emphasis. First, because the
grid points (4.43) do not necessarily coincide with the data evaluation points (5.13), the
sparsity pattern of the matrices R and V do not have a simple block form. Second, the
grid points are placed to efficiently control the discretization error by the mesh-refinement
procedure. However, the data points at θk do not have any direct relation to the grid points
at t j . In essence the numerical integration of the differential equations is not controlled by
the observation data. This also has an impact on the sparsity of the residual Jacobian and
Hessian as illustrated in Figure 5.2. In this illustration, when the mesh includes the points
at t j and t j+1, the partial derivative of the residual rk = wk

[
yν(θk)− ŷν j

]
with respect to

the state at the left grid point is nonzero, i.e.,

∂rk

∂y(t j )
�= 0.

However, when the mesh is refined by adding a new grid point at tr = 1
2 (t j+1+ t j ), we find

that
∂rk

∂y(tr )
�= 0 but

∂rk

∂y(t j )
= 0.

Figure 5.2. Mesh refinement alters sparsity.
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Thus, mesh refinement alters the sparsity pattern of the residual Jacobian and Hessian ma-
trices. Although it is more complicated to implement the construction of the sparsity pat-
tern, there is no apparent impact on the solution times.

5.4.2 Residual Decomposition

Let us now present the details of the decomposition (5.24) for the various terms. To express
a state residual given by (5.11) and (5.21) in the decomposed form we write

rk(x)= Ak+m x+Bk+m q(x)+ ζ k+m

= [0 wk (1−3δ2+2δ3) 0 wk (3δ2−2δ3) 0
]


·
yν j
·

yν, j+1
·



+[0 wk(h j δ−2h jδ
2+h jδ

3) 0 wk(−h j δ
2+h j δ

3) 0
]


·
fν j
·

fν, j+1
·


−wk ŷν j . (5.27)

Observe that there are only two nonzero values in row (k +m) of the matrices A and B
denoted by Ak+m and Bk+m , respectively. The nonlinear portions of the residual have been
isolated in the vector q. Furthermore, the problem-dependent sparsity of the nonlinear
quantities can be exploited because of separability; i.e., there is no interdependence be-
tween grid points. Finally, it should be clear that the algebraic residuals (5.12) can also
be written in the separable form required by (5.24) using either the quadratic (5.22) or the
linear (5.23) interpolant.

5.4.3 Auxiliary Function Decomposition

The benefits of sparsity can be exploited by utilizing the separable form for the algebraic
equations. Specifically an algebraic constraint function g[y(t),u(t),p, t] as given in (5.3)
can be expressed as

ck(x)= Akx+Bkq(x)+ ζ k

= [0 αT 0
]

·

y j
u j
p
·

+ [0 β0 , . . . , βna 0
]


·
a0(t j )
. . .

ana (t j )
·

 . (5.28)

Here, Ak = [0,αT,0], Bk = [0,β0, . . . ,βna ,0], and ζ k = 0. In contrast to the decomposition
of the residual specified by (5.27), which can be performed algorithmically, this formu-
lation must be given by the user. Nevertheless, the efficiency improvements are similar.
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Again, the key notion is to define the vector q which is differentiated so that the nonlinear-
ities are isolated and involve quantities at a single grid point.

Ultimately the software implementation must compute derivatives of user-supplied
quantities via sparse finite differences. However, the user can reduce the cost of finite
differencing by exploiting separability in the functions. To illustrate this point consider
three different, yet mathematically equivalent, formulations of the same problem. Suppose
the dynamic system has one state variable y, one control variable u, and one parameter p
that satisfy the DAE system

ẏ = f (u),

0= g(y,u, p), (5.29)

where g(y,u, p)≡ b0(y)+ u+ b1(p). There is some flexibility in how to group the terms
in the path constraint when constructing the expression g(y,u, p)= αTv+βTa[v, t]. One
approach is to ignore separability and simply compute the terms enclosed between “{” and
“}” together, i.e., compute g(y,u, p)= {b0(y)+ u+ b1(p)}. With this approach we define
the quantities in the path constraint function (5.3) as follows:

αT = (0,0,0),

na = 0,

a0(y,u, p)= b0(y)+u+b1(p),

βT = (1). (5.30)

For this formulation the user must compute the functions f and a0, and the matrix D will
contain repeated blocks with the sparsity template

struct

 ∂ f
∂y

∂ f
∂u

∂ f
∂p

∂a0
∂y

∂a0
∂u

∂a0
∂p

= [ 0 x 0
x x x

]
.

Since the rows of the matrix D corresponding to the path constraint will have three nonzero
elements, this formulation will require three index sets and hence three perturbations to
compute a finite difference approximation for D.

A second alternative is to compute the first two terms together and explicitly identify
an auxiliary function, i.e., g(y,u, p)= {b0(y)+u}+ {b1(p)}. Here we define

αT = (0,0,0),

na = 1,

a0(y,u, p)= b0(y)+u,

a1(y,u, p)= b1(p),

βT = (1,1). (5.31)

Since the user must compute the functions f , a0, and a1 individually the corresponding
sparsity template will have the form

struct


∂ f
∂y

∂ f
∂u

∂ f
∂p

∂a0
∂y

∂a0
∂u

∂a0
∂p

∂a1
∂y

∂a1
∂u

∂a1
∂p

=
 0 x 0

x x 0
0 0 x

 .
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Using this formulation the finite difference derivatives can be computed using two pertur-
bations.

A third alternative is to define

αT = (0,1,0),

na = 1,

a0(y,u, p)= b0(y),

a1(y,u, p)= b1(p),

βT = (1,1). (5.32)

Here we explicitly identify both the analytic term and the auxiliary function. Since the
sparsity template is

struct


∂ f
∂y

∂ f
∂u

∂ f
∂p

∂a0
∂y

∂a0
∂u

∂a0
∂p

∂a1
∂y

∂a1
∂u

∂a1
∂p

=
 0 x 0

x 0 0
0 0 x

 ,

this formulation requires only one perturbation to compute the finite difference approxima-
tion for D.

This example illustrates the need for a more general software interface. Typically
when solving a semiexplicit DAE such as (5.29), the user must provide a subroutine to
compute the right-hand-side functions f (y,u, p, t) and g(y,u, p, t) for given values of the
arguments (y,u, p, t). However, to fully exploit sparsity our software implementation per-
mits the user to compute the augmented set of right-hand-side functions f (y,u, p, t) and
ak(y,u, p, t) for k = 0, . . . ,na . Nevertheless, a twofold computational benefit is observed
by exploiting separability. First, the Hessian matrix is usually more sparse since it is deter-
mined by the structure of (BD)T(BD). This leads to computational savings when solving
the linear systems required by the NLP algorithm. Second, since gradient information can
be computed with fewer perturbations, it is not necessary to call the user function routines
as many times, leading to additional computational savings. It is important to note that ex-
ploiting separability is computationally beneficial for both optimal control and parameter
estimation problems. In fact the same separability benefits lead to the HSS discretization
developed in Section 4.6.6. The issue becomes more important when solving nonlinear
parameter estimation problems that require treatment with algebraic path constraints as in
(5.3).

5.4.4 Algebraic Variable Parameterization

For many applications it is natural to consider representing one or more of the algebraic
variables in terms of a finite number of parameters. In particular, let us consider

u(t)=
∑

j

b j B j (t), (5.33)

where tI ≤ t ≤ tF . If the domain is subdivided into N equally spaced segments and the func-
tions B j (t) are cubic B-splines with C1 continuity, the algebraic variable u(t) is uniquely
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determined by the (2N +2) coefficients b j . One alternative is to eliminate u(t) by substi-
tuting this expression wherever the algebraic variable u(t) appears in the problem. Another
alternative is to include the coefficients b j as parameters p and then introduce an additional
constraint

0= g[y(t),u(t),p, t]

= u(t)−
∑

j

b j B j (t). (5.34)

When the continuous problem is transcribed into an NLP, this constraint is enforced at the
discretization grid points leading to the set of NLP constraints

0= u(τk)−
∑

j

b j B j (τk) (5.35)

for k = 1, . . . , M , with tk = τk�t + tI and �t = (tF − tI ) as in (3.114). This expression
can be simplified further by exploiting a property of the B-spline basis functions B j (τk)
referred to as local support. In our case, the B-spline basis is constructed over N equally
spaced segments, so in segment �

B j (τk)≥ 0,
(�−1)

N
≤ τk ≤ �

N
, (5.36a)

B j (τk)= 0 otherwise. (5.36b)

Moreover for a C1 cubic representation, there are at most four nonzero basis functions
B j (τk) at any grid point τk . Since the discretization grid points and B-spline break points,
called knot locations, are fixed relative to each other, the nonzero B-spline basis values
B j (τk) can be precomputed. Consequently each B-spline constraint (5.35) is of the form
(5.3) with β = 0 and strictly analytic terms αTv, where

αT = [. . . ,1, . . . ,−Bα(τk),−Bα+1(τk),−Bα+2(τk),−Bα+3(τk), . . .
]

, (5.37)

vT = [. . . ,uk , . . . ,bα,bα+1,bα+2,bα+3, . . .
]

. (5.38)

Observe that by treating the B-spline decomposition analytically, these constraints do not
introduce any additional sparse finite difference index sets. Furthermore, the NLP con-
straints are strictly linear in the NLP variables and thus are easily satisfied as part of the
NLP iterative process. Clearly this algebraic variable parameterization can be used for
either optimal control or optimal estimation problems.

5.5 Computational Experience
The computational performance and behavior of the algorithm are illustrated on a number
of examples.

Example 5.1 NOTORIOUS PROBLEM. An example described by Bock [44] and Schit-
tkowski [155, p. 141] as a “notorious test problem” was originally introduced by Bulirsch
[55]. The differential equations are

ẏ1 = y2, (5.39)

ẏ2 = µ2 y1− (µ2+ p2) sin( pt) (5.40)
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with y1(0)= 0, y2(0)= π , µ= 60, and 0≤ t ≤ 1. It is easily verified that if the parameter
p = π , then the corresponding analytic solution to (5.40) is given by

y1 = sin(π t), (5.41)

y2 = π cos(π t). (5.42)

Data for this problem can be constructed by evaluating the true solution at the data points
θk and then adding normally distributed random variables with mean zero and standard
deviation σ = .05. It is easy to demonstrate that the optimal value of the objective func-
tion F∗ ≈ �σ 2, where � is the total number of residuals. This deceptively simple example
is extremely difficult to solve using any type of shooting method, because the differential
equations are unstable. In contrast, the parameter estimation process using direct transcrip-
tion is very well behaved. Furthermore, we can use the example to demonstrate two major
features of the new algorithm; namely,

• the grid distribution is not determined by the data location, and

• the algorithm converges quadratically for nonzero, nonlinear residuals.

Consider three different cases:

1. for k = 1,10 select θk = .1k;

2. for k = 1,2000 select θk as a uniformly distributed random variable in the region
0≤ θk ≤ 1; and

3. for k = 1,10 select θk = .1k; for k = 11,2000 select θk as a normally distributed
random variable with mean = .4 and standard deviation = .1.

The first case has a relatively small number of residuals and as such a small, albeit, nonzero
objective at the solution. The second case has a large amount of data spread over the
entire domain, whereas the third case has lots of data clustered in only one portion of
the time domain near t = .4. Table 5.1 summarizes the performance of the algorithm.
Notice that the number of mesh-refinement iterations, grid points, and NLP iterations is
essentially the same for all three cases. This occurs even though the objective function is
significantly nonzero at the solution. Furthermore, the optimal parameter estimate is quite
good, especially since the discretization error tolerance was also 10−7.

Table 5.1. Algorithm performance summary.

Case 1 2 3
No. mesh it. 5 4 5
No. grid pt. 92 73 91
No. NLP it. 23 20 23
F∗ .030372674 2.6563759 2.4887179
|p∗ −π | 3.6×10−8 4.7×10−8 3.6×10−8

Figure 5.3 illustrates the final mesh distribution for case 1 and case 3. The solid line
plots the stepsize history as a function of time for case 3. The shading illustrates the distri-
bution of data points over the domain—the darkest representing the highest concentration.
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Figure 5.3. Stepsize history (case 1: dashed; case 3: solid).

The stepsize for case 1 is shown with dotted lines. Even though case 1 has only 11 points
evenly spread over the time domain, and case 3 has 2000 data points clustered near t = .4,
the final mesh distribution is nearly identical. Obviously for this example the location of
the discrete data does not directly influence the location of the mesh points because the
stepsize is constructed to control error in the differential equation.

5.5.1 Reentry Trajectory Reconstruction

A problem of some practical interest occurs when attempting to reconstruct the trajectory
of an object as it reenters the earth’s atmosphere using information from radar observa-
tions. Let us consider a nonlifting body of unknown size, shape, and mass, reentering
the atmosphere over an oblate rotating earth. The translational motion is described by the
differential equations

ṙ= v, (5.43)

v̇=−D
vr

‖vr‖ +g(r), (5.44)

where rT = (x , y, z) is the earth centered inertial (ECI) position vector, vT = (ẋ , ẏ, ż) is
the ECI velocity vector, and g(r) is the gravitational acceleration. An oblate earth model
including the first four zonal harmonics is used. The earth relative velocity vector is defined
by

vr = v−ω× r, (5.45)
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where ωT = (0,0,ω) is the earth rotation rate vector. The drag on the object is given by

D = g0ρ‖vr‖2

2β
, (5.46)

where ρ(h) is the atmospheric density as a function of the altitude above the oblate spheroid,
g0 = 32.174, and β is the ballistic coefficient. For this application the atmospheric density
is computed using a cubic spline approximation to the 1962 Standard Atmosphere.

The goal is to reconstruct the position and velocity time history from radar informa-
tion. Thus we would like to minimize

F = 1

2

N∑
k=1

qT
k qk (5.47)

with

qk =


(ψk − ψ̂k)/σ1
(ηk− η̂k)/σ2
(sk− ŝk)/σ3
(ṡk− ˆ̇sk)/σ4

 , (5.48)

where ψk = ψ(r(θk),v(θk),θk) is the azimuth angle from the radar site to the object eval-
uated at time θk , and ψ̂k is the corresponding radar measurement data, with standard de-
viation σ1. Similarly, ηk is the elevation, sk is the slant range, and ṡk is the (slant) range
rate. In order to restate the problem involving residuals of the form (5.12) we introduce the
algebraic variables (u1,u2,u3,u4) and the corresponding algebraic path equations

0= ψ(r,v, t)−u1(t), (5.49)

0= η(r,v, t)−u2(t), (5.50)

0= s(r,v, t)−u3(t), (5.51)

0= ṡ(r,v, t)−u4(t). (5.52)

After introducing the new algebraic variables it is clear that (5.47) can be rewritten in the
form (5.12).

To complete the definition of the problem it is sufficient to describe how the radar
quantities in (5.49)–(5.52) are computed. The position of the radar site at time t is given by

w(t)= re

cosθs cosϕ
cosθs sinϕ

sinθs

 , (5.53)

where θs is the geocentric latitude of the radar site, ϕ=φs+φ0+ωt is the inertial longitude
of the radar site, φs is the longitude of the radar site, and re is the radius to the site. The
inertial velocity of the radar site is

ẇ(t)=
−ω [sin(ωt)r1+ cos(ωt)r2]

ω [cos(ωt)r1− sin(ωt)r2]
0

 . (5.54)
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The line-of-sight vector from the radar site to the vehicle is given by

s= r−w, (5.55)

which yields the slant range

s(r,v, t)= ‖s‖. (5.56)

The range rate is then given by

ṡ(r,v, t)= sT(v− ẇ)

‖s‖ . (5.57)

The azimuth angle is given by

ψ(r,v, t)= tan−1

[
w1s2−w2s1[

(w2
1+w2

2)s3−w3(w1s1+w2s2)
]
r−1

e

]
. (5.58)

Now the local geodetic vertical direction at the radar site is

d=
cos(ϕ)cos(θd)

sin(ϕ)cos(θd)
sin(θd)

 , (5.59)

where θd is the geodetic latitude of the radar site, and the geodetic elevation is given by

η(r,v, t)= π

2
− cos−1

(
dTs
‖s‖

)
. (5.60)

Example 5.2 COMPTON GAMMA RAY OBSERVATORY REENTRY. On June 4, 2000,
the NASA Compton Gamma Ray Observatory satellite reentered the atmosphere, and a
portion of the trajectory was observed by the Kaena Point tracking station in Hawaii. The
17 ton spacecraft, one of the largest ever launched by NASA, was deliberately de-orbited
after one of the observatory’s three attitude-control gyros failed in December, 1999. The
radar site provided azimuth, elevation, range, and range rate data for a portion of the trajec-
tory above 70nm altitude during a time span of approximately 4 min. Assistance provided
by Dr. Wayne Hallman of The Aerospace Corporation concerning this example is gratefully
acknowledged.

The parameter estimation method was used to reconstruct the reentry trajectory, and
the results of the algorithm are summarized in Table 5.2. The algorithm began with 25
equally spaced grid points and after six refinement iterations increased the number of points
to 410 (cf. column 2). This refinement reduced the discretization error ε from 1.24×10−2

to 9.91× 10−8 as shown in column 7. The number of gradient, Hessian, function, and
right-hand-side evaluations are given by the columns labeled NGC, NHC, NFE, and NRHS,
respectively. Figure 5.4 displays the normalized error residuals, i.e., the components of qk
given by (5.48) for each set of data. The total normalized residual ‖qT

k qk‖ is plotted in
Figure 5.5.
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Table 5.2. Mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 25 8 4 184 9016 1.24×10−2 2.40
2 49 5 2 110 10670 8.27×10−4 2.41
3 97 5 2 110 21230 4.02×10−5 4.71
4 193 3 1 59 22715 2.40×10−6 5.11
5 385 3 1 59 45371 1.53×10−7 9.09
6 410 4 2 96 78624 9.91×10−8 14.1

Total 410 28 12 618 187626 37.84

Figure 5.4. Normalized residual errors.

5.5.2 Commercial Aircraft Rotational Dynamics Analysis

When constructing a dynamic simulation of a commercial aircraft, flight test data are used
to refine analytic models of the aerodynamic characteristics. A representative example
of a parameter estimation problem occurs when attempting to estimate rotational acceler-
ations from measured information about the aircraft orientation. We consider a particular
maneuver called a “windup turn” for a 767-ER aircraft and gratefully acknowledge the con-
tributions of Dr. Jia Luo of The Boeing Company for information related to this example.
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Figure 5.5. Total normalized residual error.

The rotational dynamics are described by

φ̇ = p+q
sinφ sinθ

cosθ
+ r

cosφ sinθ

cosθ
, (5.61)

θ̇ = q cosφ− r sinφ, (5.62)

ψ̇ = q
sinφ

cosθ
+ r

cosφ

cosθ
, (5.63)

ṗ = ap(b), (5.64)

q̇ = aq (b), (5.65)

ṙ = ar (b), (5.66)

where φ is the bank angle (rad), θ is the pitch angle (rad), ψ is the heading angle (rad), p
is the roll rate (rad/sec), q is the pitch rate (rad/sec), and r is the yaw rate (rad/sec). During
flight testing measurements of the bank, pitch, and heading angle are made; i.e., we have
measured values φ̂k , θ̂k , and ψ̂k at a sequence of time points—in this case 1841 values
corresponding to measurements every .05 sec for 92 sec. We would like to compute the
unknown accelerations ap , aq , and ar such that the objective

F = 1

2

N∑
k=1

[
φk − φ̂k

σ1

]2

+
[
θk− θ̂k

σ2

]2

+
[
ψk − ψ̂k

σ3

]2

(5.67)

is minimized, where the standard deviations on the data are given by σ j . It should be clear
that the residuals are of the form given by (5.11) with weights wk = 1/σν . Note that for
this example the symbol θ is used to denote a state variable, and not an evaluation time as
in (5.11).

Example 5.3 MULTIPHASE APPROXIMATION. There are many ways to parameterize
the accelerations ap , aq , and ar . Since the accelerations are smooth functions of time, a
particularly effective approach is to utilize piecewise polynomial approximations. Let us
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Table 5.3. Mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 200 10 1 105 39900 3.51×10−4 13.0
2 380 3 1 38 28120 2.32×10−5 6.19
3 740 3 1 38 55480 1.48×10−6 10.9
4 1429 3 1 38 107844 9.39×10−8 20.9

Total 1429 19 4 219 231344 51.07

introduce Np phases, where the independent variable t for phase k is defined in the region

t (k)
I ≤ t ≤ t (k)

F and the phases are sequential, that is, t (k+1)
I = t (k)

F . In addition let us construct

the beginning of the first phase to coincide with the beginning of the problem t (1)
I = 0, and

the end of the last phase to coincide with the end of the problem t
(Np )
F = 92. If we treat

the values of the acceleration and their slopes at the phase boundaries as parameters, the
accelerations within a phase are of the form

a(b)=H
[
a(t(k)

I ), ȧ(t (k)
I ),a(t (k)

F ), ȧ(t (k)
F )
]

(5.68)

for k = 1, . . . , Np . In this expression the Hermite interpolationH is given by (5.21), with the
appropriate definition of symbols. Finally, we require continuity and differentiability in the
state variables and accelerations across the phase boundaries. It is worth noting that in gen-
eral there are three distinct levels of discretization. Within a phase, there may be many grid
points selected to satisfy the differential equation accuracy requirements. Furthermore, the
data observation points may or may not coincide with the phase times and/or the differen-
tial equation grid. For this 20 phase example, Np = 20 and the total number of parameters
p is n p = 12Np = 240. The particular data set used for this illustration had N = 1841
data points or 5523 residuals in (5.67). A summary of the mesh-refinement procedure is
presented in Table 5.3. The process was initiated with 10 grid points per phase or a total of
M = 200. The first NLP problem was solved after 10 gradient evaluations (NGC), and one
Hessian evaluation (NHC), which required 39900 evaluations of the right-hand sides of the
differential equations (NRHS). This problem was solved in 13 sec of CPU time with a dis-
cretization error of ε = 3.51×10−4. The mesh was refined three more times as tabulated in
rows 2–4. The overall solution was obtained in 51.07 sec and required 1429 mesh points.
Notice that only one Hessian evaluation was required for each NLP problem, even though
the objective function is quite nonlinear and the optimal value F∗ = 1.715105×10−2 �= 0.

From this information it is also possible to infer how the new approach compares
with a more traditional shooting method. Suppose we assume that a fourth order Runge–
Kutta scheme is used to integrate the trajectory (which requires four right-hand-side evalu-
ations per step), and there are 1429 steps (corresponding to the final grid size M = 1429).
Then, the number of right-hand-side evaluations (231344) required by the new approach is
equivalent to 231344/(1429× 4)≈ 41 integrated trajectories. In comparison at least 240
trajectories would be required just to compute a single finite difference gradient in a tradi-
tional shooting method! Furthermore, if a quasi-Newton method is used to optimize this
function with 132 degrees of freedom, one would expect that at least 132 iterations (and
gradient evaluations) would be required to converge. An estimate of the total number of
trajectories for a traditional shooting method is (132×240= 31680). Thus, comparing the
new versus the old algorithm suggests a ratio of 41 : 31680≈ 1 : 773. In short, a traditional
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shooting method would be extremely impractical for this application! The cost of com-
puting first derivatives could be reduced somewhat for this problem by using a multiple
shooting method; however, this approach still lacks quadratic convergence because it does
not provide Hessian information.

Figure 5.6 presents the optimal time history for all of the angles as well as the data.
Figure 5.7 illustrates the angular rates for the optimal solution and Figure 5.8 plots the
corresponding accelerations. The phase boundaries are illustrated in all figures.

Example 5.4 B-SPLINE APPROXIMATION. The key notion illustrated by Example
5.3 is to represent the rates p, q , and r in (5.64)–(5.66) using the piecewise polynomial
form given by (5.68). Twenty distinct phases were introduced in order to exploit spar-
sity. Similar benefits can be realized by exploiting the local support property of a B-spline
representation, without explicitly introducing additional phases.

Two modifications to the original formulation are required. First, the rates are treated
as new algebraic variables ap(t), aq (t), and ar (t). Second, additional path constraints are
introduced to enforce the B-spline relationship. Specifically the dynamic equations (5.61)–
(5.66) are replaced by the DAE system

φ̇ = p+q
sinφ sinθ

cosθ
+ r

cosφ sinθ

cosθ
, (5.69)

θ̇ = q cosφ− r sinφ, (5.70)

ψ̇ = q
sinφ

cosθ
+ r

cosφ

cosθ
, (5.71)

ṗ = ap(t), (5.72)

q̇ = aq (t), (5.73)

ṙ = ar (t), (5.74)

0= ap(t)−
∑

k

bpk Bk (t), (5.75)

0= aq (t)−
∑

k

bqk Bk(t), (5.76)

0= ar (t)−
∑

k

brk Bk(t). (5.77)

The B-spline basis functions are denoted by Bk(t) with corresponding coefficients bpk , bqk ,
and brk for the respective rates. If 20 internal knots are equally spaced between tI and tF ,
and a C1 cubic spline is used, then the number of coefficients needed to represent each rate
in (5.75)–(5.77) is k = 42. In comparison the piecewise polynomial representation intro-
duces 80 parameters, and explicitly imposes 2×19= 38 constraints to enforce continuity
in the function and slope. Thus both representations have 42 degrees of freedom.

The differential, algebraic, and parametric variables, respectively, are

yT = [φ,θ ,ψ , p,q ,r ], (5.78)

uT = [ap,aq ,ar ], (5.79)

pT = [bp1, . . . ,bp42,bq1, . . . ,bq42,br1, . . . ,br42]. (5.80)
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Figure 5.6. Angular variable history.
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Figure 5.7. Angular rate history.
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Figure 5.8. Angular acceleration history.
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If the auxiliary functions in (5.5) are defined as

a[v, t]=


bp1 B1(t)
bp2 B2(t)

...
bp42B42(t)

 , (5.81)

then path constraint (5.75) can be written as

g[y(t),u(t),p, t]= αTv+βTa[v, t], (5.82)

with β j =−1 for j = 1, . . . ,42, and α7 = 1 as the only nonzero element of α. Clearly (5.76)
and (5.77) can be expressed in a similar fashion. When using a separated Simpson (HSS)
discretization because separability is exploited both the B-spline and piecewise polynomial
representation in Example 5.3 can compute finite difference derivative information using
the same number of index sets (γ = 5).

Example 5.5 ALGEBRAIC FUNCTION APPROXIMATION. The previous examples il-
lustrate two different ways to represent the quantities ap(t), aq(t), and ar (t). Another
alternative is to treat these quantities as differential rather than algebraic variables and in-
troduce additional algebraic functions bp(t), bq(t), and br (t). This approach leads to the
system

φ̇ = p+q
sinφ sinθ

cosθ
+ r

cosφ sinθ

cosθ
, (5.83)

θ̇ = q cosφ− r sinφ, (5.84)

ψ̇ = q
sinφ

cosθ
+ r

cosφ

cosθ
, (5.85)

ṗ = ap(t), (5.86)

q̇ = aq(t), (5.87)

ṙ = ar (t), (5.88)

ȧp = bp(t), (5.89)

ȧq = bq(t), (5.90)

ȧr = br (t). (5.91)

Since the original variables correspond to “rates,” the new variables can be viewed as “cur-
vatures.” As such it is reasonable to try to keep bp ∼ bq ∼ br ∼ 0 and this can be achieved
by including them in the objective, that is, minimize

F = 1

2

N∑
k=1

[
φk − φ̂k

σ1

]2

+
[
θk − θ̂k

σ2

]2

+
[
ψk − ψ̂k

σ3

]2

+b2
pk+b2

qk+b2
rk . (5.92)

The formulations presented in Examples 5.3 and 5.4 share one key attribute. Specif-
ically the number of parameters in p is finite. As the NLP problem size increases during
the mesh-refinement procedure, each subproblem is well-posed. The number of degrees of
freedom does not change as the mesh is refined.
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In contrast, when additional algebraic functions bp(t), bq (t), and br (t) are introduced,
there are no parameters p. When the algebraic functions b(t) are discretized, the num-
ber of degrees of freedom can become arbitrarily large as the mesh is refined. In fact if
the mesh size becomes sufficiently large, it may be possible to interpolate every single
data point. This formulation is clearly ill-posed or at least inconsistent with the standard
mesh-refinement philosophy. Thus when using this formulation, mesh refinement cannot
be permitted!

5.6 Optimal Control or Optimal Estimation?
Example 5.6 LINEAR TANGENT STEERING ESTIMATION. Chapter 4 was devoted

to the optimal control problem, and this chapter addresses the optimal estimation problem.
However, at times the distinction is not so clear cut, and so to highlight the issues, let us
reconsider the linear tangent steering problem first presented in Example 4.1 and again in
Example 4.5. The goal of this optimal control problem is to choose the steering angle β(t)
to minimize the final time subject to dynamics specified by

ẏ1 = y3, (5.93)

ẏ2 = y4, (5.94)

ẏ3 = a cosβ, (5.95)

ẏ4 = a sinβ. (5.96)

This optimal control problem has an analytic solution. Specifically the minimum time
solution with initial conditions y1(0)= y2(0)= y3(0)= y4(0)= 0, final conditions y2(t∗)=
5, y3(t∗)= 45= ab1/b0, y4(t∗)= 0, and thrust a = 100 is given by [54, p. 82]

y∗1 (t)= a

b2
0

(b2−b1 tanβ), (5.97)

y∗2 (t)= a

2b2
0

(b3 secβ0−b2 tanβ−b1), (5.98)

y∗3 (t)= ab1

b0
, (5.99)

y∗4 (t)= ab2

b0
, (5.100)

λ∗1(t)= 0, (5.101)

λ∗2(t)=−2sinβ0

at∗
, (5.102)

λ∗3(t)=−cosβ0

a
, (5.103)

λ∗4(t)=− sinβ0

a

(
1− 2t

t∗

)
, (5.104)
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where

β0 =
( π

180

)
54.6263551908, (5.105)

t∗ = .554570878337, (5.106)

b0 = 2

t∗
tanβ0, (5.107)

β = tan−1 (tanβ0−b0t) , (5.108)

b1 = log

(
tanβ0+ secβ0

tanβ+ secβ

)
, (5.109)

b2 = secβ0− secβ, (5.110)

b3 = tanβ0− tanβ. (5.111)

Clearly the optimal control given by (5.108) is of the linear tangent form

tanβ∗(t)= [p1− p2t
]

. (5.112)

But what if the problem is reversed? Suppose we fix the final time at t∗, omit the
boundary conditions at t = 0 and t = t∗, and then try to find the control that best approxi-
mates the optimal state history. In this case the objective function is

F = 1

2

N∑
k=1

[y1(tk )− ŷ1(tk)]2+ [y2(tk)− ŷ2(tk)]2+ [y3(tk)− ŷ3(tk)]2+ [y4(tk)− ŷ4(tk)]2

(5.113)
with measurement times 0≤ tk ≤ t∗. Furthermore, suppose the measurements are given by

ŷ j (tk)= y∗j (tk)+η j y∗j (tk) (5.114)

for j = 1,2,3,4, with y∗j (tk) given by (5.97)–(5.100). But what are the optimization vari-
ables for this example? One possibility is to treat the steering angle as a function of the two
parameters p= (p1, p2), i.e.,

Formulation LTP β(p, t)= tan−1 [p1− p2t
]

. (5.115)

A second alternative is to treat the steering angle as an algebraic variable, i.e.,

Formulation OCP β(t)= u(t). (5.116)

So what is the difference? Clearly, when η j = 0 in (5.114) the two formulations must
be the same. In fact this formulation is ideally suited for solution using a simple shooting
method since the steering time history can be represented using only two unknowns. Of
course a collocation method will produce equivalent results and does not require a priori
knowledge of the linear tangent functional form for the control function u(t).
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Table 5.4. Mesh-refinement summaries.

Formulation LTP
k M ε nd Levenberg

1 10 7.07×10−4 6 0
2 10 4.73×10−5 6 0
3 19 3.03×10−6 6 0
4 37 1.93×10−7 6 0
5 73 1.20×10−8 6 0

Formulation OCP
k M ε nd Levenberg

1 10 2.6443×10−3 14 6.0×10−6

2 19 2.2177×10−3 23 2.6×10−8

3 19 1.3419×10−3 41 3.7×10−8

4 37 7.0506×10−4 75 0
5 51 4.2101×10−4 92 0
6 60 8.1262×10−5 96 7.4×10−7

7 77 4.1914×10−5 117 7.4×10−7

8 103 8.0736×10−6 163 1.5×10−6

9 142 2.3558×10−6 230 1.5×10−6

10 175 6.1396×10−7 292 1.5×10−6

11 203 1.1786×10−7 347 1.5×10−6

12 247 3.8995×10−8 431 1.5×10−6

But what if η j �= 0? To illustrate let us assume η j are normally distributed random
variables with mean zero and standard deviations 10−1, and let us evaluate the residuals at
10 equally spaced points between 0 and t∗. Table 5.4 summarizes how the SOPE algorithm
performed for both formulations. When the linear tangent parameterization (LTP) (5.115)
is used, five mesh-refinement iterations were needed to achieve the prescribed tolerance
ε ≤ 10−7. In contrast, when the optimal control formulation (OCP) (5.116) was used,
12 iterations were needed to achieve the same accuracy. Moreover, the LTP formulation
required only 73 grid points, whereas the OCP approach needs 247 points. Furthermore a
comparison of the final objective function values

F∗LT P = 40.83222809,

F∗OC P = 19.94180278

suggests that the OCP formulation is “better,” since F∗OC P < F∗LT P . However, examination
of the solutions as illustrated in Figure 5.9 suggests something entirely different. The solid
line illustrates the state history obtained using the LTP parameterization and the dashed line
shows the OCP solution. The exact solution y∗j (t) in (5.114) is shaded and the perturbed
data points ŷ j (tk) are shown with a “+.” Clearly, the OCP solution is “closer” to the actual
data points, which explains why the least squares objective is better. However, this behavior
is achieved by constructing a control history that “follows the noise.” Figure 5.10 illustrates
the control history for both formulations, with the lower figure restricted to the range .175<
t < .186.

This behavior can be explained by the manner in which the steering angle is rep-
resented. When the linear tangent form (5.115) is used there are a fixed number of free
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Figure 5.9. Estimated state history.

parameters (four initial conditions plus two parameters). For this formulation the number
of degrees of freedom, nd , remains fixed as indicated in Table 5.4. Since the underlying
least squares NLP has a unique solution no Levenberg modification is required. In contrast
the number of degrees of freedom grows from 14 to 431 as the mesh is refined in the OCP
formulation and exceeds the number of residuals, �= 40. In this case the underlying NLP
problem has no unique solution and a nonzero Levenberg parameter is introduced to com-
pensate for the rank deficiency. In effect the linear tangent formulation is constructed from
a finite-dimensional space, whereas the optimal control approximation is coming from an
infinite-dimensional space.

This example suggests a more general property for a well-posed parameter estimation
problem. Specifically, we expect that the number of degrees of freedom must reach a
fixed, finite value as the discretization mesh is refined. In fact a linear analysis (cf. (2.57))
suggests the problem has no unique solution when the number of degrees of freedom nd
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Figure 5.10. Estimated control history.

exceeds the number of residuals �. Thus if the parameterization is allowed to grow as
the mesh size grows, we can expect to “chase the noise.” Note that an algebraic state
which is uniquely defined by a corresponding algebraic equation does not require a finite
parameterization.





Chapter 6

Optimal Control Examples

6.1 Space Shuttle Reentry Trajectory
Construction of the reentry trajectory for the space shuttle is a classic example of an optimal
control problem. The problem is of considerable practical interest and is nearly intractable
using a simple shooting method because of its nonlinear behavior. Early results were pre-
sented by Bulirsch [55] on one version of the problem, as well by Dickmanns [73]. Ascher,
Mattheij, and Russell present a similar problem [2, p. 23] and Brenan, Campbell, and Pet-
zold discuss a closely related path control problem [48, p. 157]. Let us consider a particular
variant of the problem originally described in [175].

The motion of the vehicle is defined by the following set of DAEs:

ḣ = v sinγ , (6.1)

φ̇ = v

r
cosγ sinψ/cosθ , (6.2)

θ̇ = v

r
cosγ cosψ , (6.3)

v̇ =−D

m
− g sinγ , (6.4)

γ̇ = L

mv
cos(β)+ cosγ

(v
r
− g

v

)
, (6.5)

ψ̇ = 1

mv cosγ
L sin(β)+ v

r cosθ
cosγ sinψ sinθ , (6.6)

q ≤ qU , (6.7)

where the aerodynamic heating on the vehicle wing leading edge is q = qaqr and the dy-
namic variables are

h altitude (ft), γ flight path angle (rad),
φ longitude (rad), ψ azimuth (rad),
θ latitude (rad), α angle of attack (rad),
v velocity (ft/sec), β bank angle (rad).

247
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For the sake of reference, the aerodynamic and atmospheric forces on the vehicle are
specified by the following quantities (English units):

D = 1

2
cD Sρv2, a0 =−0.20704,

L = 1

2
cL Sρv2, a1 = 0.029244,

g = µ/r2, µ= 0.14076539×1017,

r = Re+h, b0 = 0.07854,

ρ = ρ0 exp[−h/hr ], b1 =−0.61592×10−2,

ρ0 = 0.002378, b2 = 0.621408×10−3,

hr = 23800, qr = 17700
√
ρ(0.0001v)3.07,

cL = a0+a1α̂, qa = c0+ c1α̂+ c2α̂
2+ c3α̂

3,

cD = b0+b1α̂+b2α̂
2, c0 = 1.0672181,

α̂ = 180α/π , c1 =−0.19213774×10−1,

Re = 20902900, c2 = 0.21286289×10−3,

S = 2690, c3 =−0.10117249×10−5.

The reentry trajectory begins at an altitude where the aerodynamic forces are quite small
with a weight of w = 203000 (lb) and mass m =w/g0 (slug), where g0 = 32.174 (ft/sec2).
The initial conditions are as follows:

h = 260000 ft, v = 25600 ft/sec,

φ = 0 deg, γ =−1 deg,

θ = 0 deg, ψ = 90 deg.

The final point on the reentry trajectory occurs at the unknown (free) time tF , at the so-
called terminal area energy management (TAEM) interface, which is defined by the condi-
tions

h = 80000 ft, v = 2500 ft/sec, γ =−5 deg.

To obtain realistic solutions, we also restrict the trajectory by defining the following simple
bounds:

0≤ h, −89 deg≤ θ ≤ 89 deg,

1≤ v, −89 deg≤ γ ≤ 89 deg,

−90 deg≤ α ≤ 90 deg, −89 deg≤ β ≤ 1 deg.

Example 6.1 MAXIMUM CROSSRANGE. The goal is to choose the control variables
α(t) and β(t) such that the final crossrange is maximized. There are many ways to define
the crossrange, but for this case it is equivalent to maximizing the final latitude

J = θ (tF ). (6.8)

For comparison, the solution is computed with no limit on the aerodynamic heating, i.e.,
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Figure 6.1. Max crossrange shuttle reentry.

qU =∞, and also with an upper bound on the aerodynamic heating of qU = 70 BTU/ft2/sec.
Figure 6.1 illustrates the optimal trajectory when no heating limit is imposed.

The time histories for the state are shown in Figure 6.2, with the unconstrained solu-
tion shown as a solid line and the constrained solution as a dotted line. All of the angular
quantities are given in degrees, the altitude in multiples of 105 ft, velocity in multiples of
104 ft/sec, and time in seconds. In Figure 6.3, the control time histories, as well as the aero-
dynamic heating, are illustrated. Note that for clarity the two solutions for angle of attack
are plotted with different scales—the scale corresponding to the unconstrained solution is
given on the right side of the figure. The optimal values for the final time and latitude
are summarized in Table 6.1. For the heat-constrained example, Figure 6.4 illustrates the
behavior of the SOCS mesh-refinement algorithm as the discretization error is reduced be-
low the requested tolerance of 10−7. The first refinement iteration has the darkest shading
and the last refinement has the lightest shading. For this case, using a linear initial guess
between the boundary conditions, the solution was computed after 10 mesh-refinement
iterations.

It is also interesting to ask whether mesh refinement is necessary. In order to assess
the importance of mesh refinement, let us consider the following experiment. Suppose
the mesh-refinement procedure is terminated after a specific number of iterations. Call the
(prematurely obtained) solution û(t). This approximate “solution” can be used to propagate
the trajectory, i.e., let us integrate the differential equations (6.1)–(6.6)

ẏ= f(y, û, t) (6.9)

from tI = 0 to tF . Let us assume the initial conditions are satisfied and assess the relative
error in the terminal conditions, i.e.,

ε = 100
n

max
k=1

[ |ŷk(tF )− yk(tF )|
max(|ŷk(tF )|, |yk(tF )|)

]
. (6.10)

In order to obtain an accurate solution of the IVP, we can use any sophisticated numerical
integration software to compute the value of ŷ(tF ). We have chosen to use a variable-order,
variable-stepsize Gear [90] integrator with a relative error tolerance of 10−14. In essence,
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Figure 6.2. Shuttle reentry—state variables.

we are trying to assess how well the approximate solution û(t) to the BVP satisfies the
corresponding IVP. Figure 6.5 summarizes the results of this experiment. Observe that
when the approximate solution û(t) corresponds to the result after the first mesh-refinement
iteration, the relative error in the integrated state is 46.5%. Thus, while the error in the
objective function is only 0.4% (which might be reasonable for engineering purposes),
the computed trajectory is totally unrealistic. In fact the final integrated trajectory with
the approximate control û(t) has a position error of 12948.73 ft and the velocity error is
390.6111 ft/sec. Mesh refinement is crucial to obtain a realistic solution.
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Figure 6.3. Shuttle reentry—control variables.

Table 6.1. Shuttle reentry example.

qU ∞ 70

tF (sec) 2008.59 2198.67
θ (tF ) (deg) 34.1412 30.6255
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Figure 6.4. Shuttle reentry—mesh refinement.

Example 6.2 MAX-CROSSRANGE ALTERNATE FORMULATION. It is interesting to
note that the dynamics for Example 6.1 are independent of the longitude φ. Observe that
the longitude does not appear on the right-hand side of any of the differential equations
(6.1)–(6.6). Physically this is not surprising since a spherical potential model is used to
describe the earth. For convenience, in Example 6.1 the initial longitude was chosen to be
φ = 0. Another alternative is to simply eliminate the longitude as a state variable and the
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Figure 6.5. Coarse grid solution errors.

corresponding differential equation (6.2). Solutions to the problem using this formulation
were presented in Section 4.13.

Example 6.3 MINIMAX HEATING FORMULATION. Computing a reentry profile that
maximizes the crossrange (6.8) is not the only criterion that can be used. As an alternative
it may be desirable to minimize the peak value of the heating q . This can be achieved by
treating the upper bound qU in (6.7) as an optimization variable. So instead of the objective
(6.8) let us compute the control variables u(t) to minimize

J = qU . (6.11)

To preclude excessive oscillations in the solution let as also impose bounds on the rates
|γ̇ | ≤ ! and |ψ̇| ≤ ς leading to the additional path constraints

−! ≤ L

mv
cos(β)+ cosγ

(v
r
− g

v

)
≤ !, (6.12)

−ς ≤ 1

mv cosγ
L sin(β)+ v

r cosθ
cosγ sinψ sinθ ≤ ς , (6.13)

where ! = ς = .2 deg/sec. In contrast to Example 6.1, which maximized the final latitude,
here let us consider three cases, with the fixed values θ (tF ) = 15,20,25 deg. Table 6.2
summarizes the optimal solutions. Figure 6.6 illustrates the state variable history for each
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Table 6.2. Minimax heating reentry example.

θ (tF ) (deg) tF (sec) q∗U
25 1994.44 49.8777
20 1714.81 38.0550
15 1390.80 27.9982

Figure 6.6. Minimax heating shuttle reentry—state variables.
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Figure 6.7. Minimax heating shuttle reentry—control variables, path constraints.

case, with a solid line used for the θ (tF ) = 25 case, a dotted line used for θ (tF ) = 20, and
a dashed line for θ (tF ) = 15. Using the same plot key, Figure 6.7 displays the optimal
control and path constraint histories. One additional quantity, the lift to drag ratio L/D,
is also displayed. Traditional engineering analysis suggests that aerodynamic efficiency is
best when L/D is maximized, and it is readily verified that for the aerodynamics given, the
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maximum value of the quantity
L

D
= cL

cD

is (L/D)∗ = 1.89211 which occurs when α̂ = 17.3919 deg. After a transition period, the
final portion of all three optimal trajectories utilizes a “max L/D” angle of attack.

6.2 Minimum Time to Climb
Example 6.4 MINIMUM TIME TO CLIMB. The original minimum time to climb

problem was presented by Bryson, Desai, and Hoffman [53] and has been the subject of
many analyses since then. Although the problem is not nearly as difficult to solve as the
shuttle reentry examples, it is included here because it illustrates the treatment of tabular
data. The basic problem is to choose the optimal control function α(t) (the angle of attack)
such that an airplane flies from a point on a runway to a specified final altitude as quickly as
possible. In its simplest form, the planar motion of the aircraft is described by the following
set of ODEs:

ḣ = v sinγ , (6.14)

v̇ = 1

m
[T (M ,h)cosα− D]− µ

(Re+h)2 sinγ , (6.15)

γ̇ = 1

mv
[T (M ,h) sinα+ L]+ cosγ

[
v

(Re+h)
− µ

v(Re+h)2

]
, (6.16)

ẇ = −T (M ,h)

Isp
, (6.17)

where h is the altitude (ft), v the velocity (ft/sec), γ the flight path angle (rad), w the
weight (lb), m = w/g0 the mass, µ the gravitational constant, and Re the radius of the
earth. Furthermore, the simple bounds

0≤ h ≤ 69000 (ft), 1≤ v ≤ 2000 (ft),

−89 (deg)≤ γ ≤ 89 (deg), 0≤ w ≤ 45000 (lb),

−20 (deg)≤ α ≤ 20 (deg)

are also imposed.
The aerodynamic forces on the vehicle are defined by the expressions

D = 1

2
CD Sρv2, (6.18)

L = 1

2
CL Sρv2, (6.19)

CL = cLα(M)α, (6.20)

CD = cD0(M)+η(M)cLα(M)α2, (6.21)

where D is the drag, L is the lift, CL and CD are the aerodynamic lift and drag coefficients,
respectively, with S the aerodynamic reference area of the vehicle, and ρ is the atmospheric
density. Although the results presented here use a cubic spline approximation to the 1962
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Standard Atmosphere [46], qualitatively similar results can be achieved with a simple ex-
ponential approximation to ρ(h) (cf. Example 6.1). The following constants complete the
definition of the problem:

h(0) = 0 (ft),
v(0) = 424.260 (ft/sec),
γ (0) = 0 (rad),
w(0) = 42000.0 (lb),
Isp = 1600.0 (sec),
g0 = 32.174 (ft/sec2),

h(tF ) = 65600.0 (ft),
v(tF ) = 968.148 (ft/sec),
γ (tF ) = 0 (rad),
S = 530 (ft2),
µ = 0.14076539×1017 (ft3/sec2),
Re = 20902900 (ft).

6.2.1 Tabular Data

As with most real aircraft, the aerodynamic and propulsive forces are specified in tabular
form. For the sake of completeness, the data as they appeared in the original reference [53]
are given in Tables 6.3 and 6.4. There are a number of significant points that characterize
the tabular data representation. First, both the thrust and the aerodynamic table values are
given to limited numeric precision (i.e., approximately two significant figures). Perhaps
the most obvious explanation for the limited precision is that the data probably were origi-
nally obtained from experimental tests and truncated at the precision of the test equipment.
Unfortunately, the statistical analysis (if any) of the original test data has long since been
forgotten. Consequently, it is common to assume that the table values are “exact” and cor-
rect to full machine precision. A second difficulty, which is evident in the bivariate thrust
data, is that apparently data are missing from the corners of the table. Of course, the data
are “missing” because a real aircraft can never fly in these regimes (e.g., at Mach number

Table 6.3. Propulsion data.

Thrust T (M ,h) (thousands of lb)
Altitude h (thousands of ft)

M 0 5 10 15 20 25 30 40 50 70
0.0 24.2
0.2 28.0 24.6 21.1 18.1 15.2 12.8 10.7
0.4 28.3 25.2 21.9 18.7 15.9 13.4 11.2 7.3 4.4
0.6 30.8 27.2 23.8 20.5 17.3 14.7 12.3 8.1 4.9
0.8 34.5 30.3 26.6 23.2 19.8 16.8 14.1 9.4 5.6 1.1
1.0 37.9 34.3 30.4 26.8 23.3 19.8 16.8 11.2 6.8 1.4
1.2 36.1 38.0 34.9 31.3 27.3 23.6 20.1 13.4 8.3 1.7
1.4 36.6 38.5 36.1 31.6 28.1 24.2 16.2 10.0 2.2
1.6 38.7 35.7 32.0 28.1 19.3 11.9 2.9
1.8 34.6 31.1 21.7 13.3 3.1

Table 6.4. Aerodynamic data.

M 0 0.4 0.8 0.9 1.0 1.2 1.4 1.6 1.8
cLα 3.44 3.44 3.44 3.58 4.44 3.44 3.01 2.86 2.44
cD0 0.013 0.013 0.013 0.014 0.031 0.041 0.039 0.036 0.035
η 0.54 0.54 0.54 0.75 0.79 0.78 0.89 0.93 0.93
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M = 0 and h = 70000 ft). In fact, for most experimentally obtained data, it can be expected
that information will be missing for unrealistic portions of the domain. In view of these
realities, it is common to linearly interpolate and never extrapolate the tabular data. Figure
6.8 illustrates a linear treatment of the thrust table.

Figure 6.8. Original thrust data.

6.2.2 Cubic Spline Interpolation

While a linear treatment of a tabular function may be adequate for simply evaluating the
functions, it is totally inappropriate if the functions are to be used within a trajectory sim-
ulation and/or optimization. The principle difficulty (as discussed in Section 1.16) stems
from the fact that most numerical optimization and integration algorithms assume that the
functions are continuously differentiable to at least second order. Thus, just to propagate
the trajectory using an integration algorithm such as Runge–Kutta or Adams–Moulton, it is
necessary that the right-hand side of the differential equations (6.14)–(6.17) have the nec-
essary continuity. Although it is appealing to ignore a discontinuity, this is usually a poor
idea (cf. [106, p. 196]). Similar requirements are imposed when a numerical optimiza-
tion algorithm is used to shape the trajectory since the optimization uses second derivative
(Hessian) information to construct estimates of the solution.

The most direct way to achieve the required continuity is to approximate the data by
a tensor product cubic B-spline of the form

T (M ,h)=
n1∑

i=1

n2∑
j=1

ci, j Bi (M)B j (h). (6.22)

In order to use this approximation, it is necessary to compute the coefficients ci, j . The
simplest way to compute the spline coefficients is to force the approximating function to
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interpolate the data at all of the data points. However, for a unique interpolant, data are
required at all points on a rectangular grid. Since data are missing in the corners of the
domain, this difficulty is typically resolved by adding “fake” data in the corners using an
“eyeball” approach. It is common to ignore the limited precision of the data and simply treat
data as though they were of full precision. Finally, by using divided difference estimates of
the derivatives at the boundary of the region, the spline coefficients are uniquely determined
by solving a sparse system of linear equations. Figures 6.9 and 6.10 illustrate the cubic
interpolating spline obtained using this approach.

6.2.3 Minimum Curvature Spline

The cubic spline interpolant does provide C2 (second derivative) continuity as needed for
proper behavior of integration and optimization algorithms. Unfortunately, the approx-
imation, produced by simply interpolating the raw data, does not necessarily reflect the
qualitative aspects of the data. In particular, it is common for the interpolant to introduce
“wiggles” that are not actually present in the tabular data itself. This is clearly illustrated
along the boundaries of the thrust surface in Figure 6.9 and especially in the aerodynamic
data for M ≤ 0.8 as shown in Figure 6.10. In the case of the latter, it is obvious that the
interpolant does not reflect the fact that η is constant for low Mach numbers. A second

Figure 6.9. Cubic spline interpolant for thrust data.
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Figure 6.10. Cubic spline interpolant for aerodynamic data.

drawback of the cubic interpolant is the need for data at all points on a rectangular grid
when constructing an approximation in more than one dimension.

A technique for eliminating the oscillations in the approximation is to carefully select
the spline knot locations by inspection of the data, with fewer knots than data points. In this
case, it is no longer possible to interpolate the data because the number of coefficients is less
than the number of interpolation conditions; i.e., the system is overdetermined. However,
it is reasonable to determine the spline coefficients ci, j such that

f (ci, j )=
�∑

k=1

[
T (Mk ,hk )− T̂k

]2
(6.23)

is minimized. Furthermore, it is possible to introduce constraints on the slope of the spline
approximation to reflect monotonicity of data, i.e.,[

∂T

∂M

]
≥ 0 if

[
T̂k+1− T̂k

] ≥ 0, (6.24)[
∂T

∂M

]
≤ 0 if

[
T̂k+1− T̂k

] ≤ 0 (6.25)

for M ∈ [Mk , Mk+1]. Similar constraints can be imposed to reflect monotonicity in the
h-direction. The coefficients that satisfy these conditions can be determined by solving a
sparse constrained linear least squares problem using the method described in Section 2.10.

By imposing monotonicity constraints and minimizing the error between the data
and the approximating function, it is possible to achieve one of the major goals, namely
constructing a C2 function, which eliminates the wiggles. Unfortunately, the location of
the knots in the spline approximation must be chosen such that the coefficients are well
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determined by minimizing the least square error. In fact, special care must be taken not to
locate knots in regions where data are missing since this will result in a rank-deficient least
squares problem. In essence, the knots must be located such that local constraint and data
uniquely define the spline coefficients.

To resolve these deficiencies, we introduce a rectangular grid with k1 values in the
first coordinate and k2 values in the second coordinate. We require that all data points lie on
the rectangular grid. However, not all grid points need have data (i.e., data can be missing).
Then let us consider introducing a spline with (a) double knots at the data points in order
to ensure C2 continuity and (b) single knots at the midpoint of each interval. Then let us
determine the spline coefficients ci, j that minimize the “curvature”

f (ci, j )=
L∑

k=1

[
∂2T

∂M2 (Mk ,hk)

]2

+
[
∂2T

∂h2 (Mk ,hk)

]2

(6.26)

and satisfy the data approximation constraints

T̂k − ε ≤ T (Mk ,hk)≤ T̂k+ ε (6.27)

for all data points k = 1, . . . ,�, where ε is the data precision. In order to ensure full rank
in the Hessian of the objective, we evaluate the curvature at points determined by the knot-
interlacing conditions [69]. We retain the slope constraints (6.24) and (6.25) on the ap-
proximation in order to reflect the monotonicity of the data. These coefficients can be
determined by solving a sparse constrained linear least squares problem. The resulting
approximations are illustrated in Figures 6.11 and 6.12. For this particular fit, the least
squares problem had 900 variables with 988 constraints of which 77 were equalities. In

Figure 6.11. Minimum curvature spline for thrust data.
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Figure 6.12. Minimum curvature spline for aerodynamic data.

general, the number of variables n for a bivariate minimum curvature fit is n = 9k1k2. For
the general case, the minimum curvature formulation requires imposition of m constraints,
where 10k1k2 ≤ m ≤ 14k1k2 and the exact number depends on the number of algebraic
sign changes in the slope of the data. In addition, if interpolation is required, the number of
equality constraints is me ≤ k1k2. The entire procedure described for this application has
been automated for general multivariate functions with missing data as part of the SOCS

software library.

6.2.4 Numerical Solution

Using the minimum curvature approximations for the tabular data, the minimum time to
climb problem can be solved using the direct transcription algorithm in SOCS. Table 6.5
summarizes the progress of the algorithm for this application using a linear initial guess
for the dynamic variables. The first grid used a trapezoidal discretization (TR) with 10
grid points. The NLP problem was solved using 25 gradient evaluations (GE), 16 Hessian
evaluations (HE), and a total of 523 function evaluations (FE) including the finite differ-
ence perturbations. The right-hand sides of the ODEs were evaluated 5230 times (NRHS)
leading to a solution with a discretization error of εmax = 0.35. Because the error was
not sufficiently equidistributed, a second iteration using the trapezoidal discretization was
performed. The HSS discretization (HS) was used for the third, fourth, and fifth refine-
ment iterations, after which the HSC method (HC) was used for the remaining refinements.
Figure 6.13 illustrates the progress of the mesh-refinement algorithm with the first refine-
ment iteration shaded darkest and the last refinement shaded lightest. For this case, nine
mesh-refinement iterations were required.

Figure 6.14 shows the solution with altitude in multiples of 10000 ft, velocity in
multiples of 100 ft/sec, and weight in multiples of 10000 lb. The optimal (minimum)
time for this trajectory is 324.9750302 (sec). The altitude time history demonstrates one
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Table 6.5. Minimum time to climb example.

Iter. Disc. M GE HE FE NRHS εmax CPU (sec)

1 TR 10 25 16 523 5230 0.35×100 2.8

2 TR 19 8 4 159 3021 0.68×10−1 1.7

3 HS 19 8 5 174 6438 0.87×10−2 3.4

4 HS 37 5 1 74 5402 0.51×10−3 3.7

5 HS 59 4 1 61 7137 0.68×10−4 7.5

6 HC 117 4 1 154 35882 0.12×10−4 11.

7 HC 179 4 1 154 54978 0.13×10−5 16.

8 HC 275 4 1 154 84546 0.14×10−6 27.

9 HC 285 3 1 129 73401 0.97×10−7 22.

Total - - 65 31 1582 276035 - 94.88

Figure 6.13. Minimum time to climb—mesh refinement.
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Figure 6.14. Minimum time to climb solution.

of the more amazing features of the optimal solution, namely the appearance of a dive
midway through the minimum time to climb trajectory. When first presented in 1969, this
unexpected behavior sparked considerable interest and led to the so-called energy-state
approach to trajectory analysis. In particular, along the final portion of the trajectory, the
energy is nearly constant, as illustrated in the plot of altitude versus velocity.
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6.3 Low-Thrust Orbit Transfer
Example 6.5 LOW-THRUST ORBIT TRANSFER. Constructing the trajectory for a

spacecraft as it transfers from a low earth orbit to a mission orbit leads to a class of chal-
lenging optimal control examples. The dynamics are very nonlinear and, because the thrust
applied to the vehicle is small in comparison to the weight of the spacecraft, the duration
of the trajectory can be very long. Problems of this type have been of considerable interest
in the aerospace industry [13, 15, 19, 20, 31, 74, 76, 150, 176]. Typically, the goal is to
construct the optimal steering during the transfer such that the final weight is maximized
(i.e., minimum fuel consumed).

The motion of a vehicle can be described by a system of second order ODEs

r̈+µ
r
r3
= ad , (6.28)

where the radius r = ‖r‖ is the magnitude of the inertial position vector r and µ is the
gravitational constant. In this formulation, we define the vector ad as the disturbing accel-
eration. This representation for the equations of motion is referred to as the Gauss form of
the variational equations.

The Gauss form of the equations of motion isolates the disturbing acceleration from
the central force gravitational acceleration. Note that when the disturbing acceleration is
zero, ‖ad‖ = 0, the fundamental system (6.28) is just a two-body problem. The solution
of the two-body problem can, of course, be stated in terms of the constant orbital ele-
ments. For low-thrust trajectories, this formulation is appealing because we expect ‖ad‖
to be “small” and, consequently, we expect that the solution can be described in terms
of “almost constant” orbital elements. In order to exploit the benefits of the variational
form of the differential equations (6.28), it is necessary to transform the Cartesian state
into an appropriate set of orbit elements. One potential set contains the classical elements
(a,e, i ,�,ω, M). However, these elements exhibit singularities for e = 0 and i = 0 deg or
90 deg. A set of equinoctial orbital elements that avoid the singularities in the classical ele-
ments has been described in [6], [49], and [74]. Kechichian developed a particular form of
these equations in [122], [121], and [174]. These equations were used to solve a low-thrust
earth orbit transfer problem as described in [13]. Unfortunately, this set of equinoctial el-
ements does not accommodate orbits with e ≥ 1. To eliminate this deficiency, a modified
set of equinoctial orbit elements is described in [15] based on the work in [171].

6.3.1 Modified Equinoctial Coordinates

The dynamics of the system can be described in terms of the state variables

[yT,w]= [p, f , g,h,k, L,w], (6.29)

the control variables

uT = [ur ,uθ ,uh ], (6.30)

and the unknown parameter τ .
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Using the modified equinoctial elements, the equations of motion for a vehicle with
variable thrust can be stated as

ẏ= A(y)�+b, (6.31)

ẇ =−T [1+0.01τ ]/Isp , (6.32)

0= ‖u‖−1, (6.33)

τL ≤ τ ≤ 0. (6.34)

The equinoctial dynamics are defined by the matrix

A=



0 2p
q

√
p
µ

0√
p
µ

sin L
√

p
µ

1
q {(q+1)cos L+ f } −

√
p
µ

g
q {h sin L− k cos L}

−
√

p
µ

cos L
√

p
µ

1
q {(q+1)sin L+ g}

√
p
µ

f
q {h sin L− k cos L}

0 0
√

p
µ

s2 cos L
2q

0 0
√

p
µ

s2 sin L
2q

0 0
√

p
µ

1
q {h sin L− k cos L}


(6.35)

and the vector

bT =
[

0 0 0 0 0
√
µp
(

q
p

)2
]

, (6.36)

where

q = 1+ f cos L+ g sin L, (6.37)

r = p

q
, (6.38)

α2 = h2− k2, (6.39)

χ =
√

h2+ k2, (6.40)

s2 = 1+χ2. (6.41)

The equinoctial coordinates y are related to the Cartesian state (r,v) according to the ex-
pressions

r=


r
s2

(
cos L+α2 cos L+2hk sin L

)
r
s2

(
sin L−α2 sin L+2hk cos L

)
2r
s2 (h sin L− k cos L)

 , (6.42)

v=


− 1

s2

√
µ
p

(
sin L+α2 sin L−2hk cos L+ g−2 f hk+α2g

)
− 1

s2

√
µ
p

(−cos L+α2 cos L+2hk sin L− f +2ghk+α2 f
)

2
s2

√
µ
p (h cos L+ k sin L+ f h+ gk)

 . (6.43)

As a result of this transformation, the disturbing acceleration vector ad in (6.28) is
replaced by

�=�g+�T (6.44)
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with a contribution due to oblate earth effects �g and another caused by thrust �T . The
disturbing acceleration is expressed in a rotating radial frame whose principle axes are
defined by

Qr =
[
ir iθ ih

]= [ r
‖r‖

(r×v)×r
‖r×v‖‖r‖

r×v
‖r×v‖

]
. (6.45)

As stated, (6.31)–(6.34) are perfectly general and describe the motion of a point
mass when subject to the disturbing acceleration vector�. Notice that when the disturbing
acceleration is zero, � = 0, the first five equations are simply ṗ = ḟ = ġ = ḣ = k̇ = 0,
which implies that the elements are constant. It is important to note that the disturbing
acceleration vector can be attributed to any perturbing force(s). A more complete derivation
of the equinoctial dynamics can be found in [15].

6.3.2 Gravitational Disturbing Acceleration

Oblate gravity models are typically defined in a local horizontal reference frame, that is,

δg= δgnin− δgr ir , (6.46)

where

in = en− (e�n ir )ir
‖en− (e�n ir )ir‖ (6.47)

defines the local north direction with en = (0,0,1). A reasonably accurate model is obtained
if the tesseral harmonics are ignored and only the first four zonal harmonics are included
in the geopotential function. In this case, the oblate earth perturbations to the gravitational
acceleration are given by

δgn =−µcosφ

r2

4∑
k=2

(
Re

r

)k

P ′k Jk , (6.48)

δgr =− µ

r2

4∑
k=2

(k+1)

(
Re

r

)k

Pk Jk , (6.49)

where φ is the geocentric latitude, Re is the equatorial radius of the earth, Pk(sinφ) is
the kth-order Legendre polynomial with corresponding derivative P ′k , and Jk are the zonal
harmonic coefficients. Finally, to obtain the gravitational perturbations in the rotating radial
frame, it follows that

�g =QT
r δg. (6.50)

6.3.3 Thrust Acceleration—Burn Arcs

To this point, the discussion has concentrated on incorporating perturbing forces due to
oblate earth effects. Of course, the second major perturbation is the thrust acceleration
defined by

�T = goT [1+ .01τ ]

w
u, (6.51)
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where T is the maximum thrust and τL ≤ τ ≤ 0 is a throttle factor. In general, the direction
of the thrust acceleration vector, which is defined by the time-varying control vector u(t)=
(ur ,uθ ,uh), can be chosen arbitrarily as long as the vector has unit length at all points in
time. This is achieved using the path constraint (6.33). The magnitude of the thrust is, of
course, related to the vehicle weight according to (6.32), where g0 is the mass to weight
conversion factor and the specific impulse of the motor is denoted by Isp . Defining the
thrust direction using the vector u(t) and path constraint ‖u(t)‖ = 1 is particularly well
suited for missions that involve steering over large portions of the trajectory, as illustrated
in [13], because ambiguities in the pointing direction are avoided. Specifying the thrust
direction by two angles (e.g., yaw and pitch), which are treated as control variables, is not
unique since the angles α = α0± 2kπ all yield the same direction. In contrast, there is a
unique set of control variables u corresponding to any thrust direction. This ambiguity is
demonstrated in Figure 6.15.

Figure 6.15. Optimal control angles.
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6.3.4 Boundary Conditions

The standard approach for defining the boundary conditions of an orbit transfer problem is
to specify the final state in terms of the instantaneous or osculating orbit elements at the
burnout time tF . The final orbit for this example has an apogee altitude of 21450 nm, a
perigee altitude of 350 nm, an inclination of 63.4 deg, and an argument of perigee of 270
deg. This final orbit can be defined by the boundary conditions (all evaluated at t = tF )

p = 40007346.015232 (ft), (6.52)√
f 2+ g2 = 0.73550320568829, (6.53)√
h2+ k2 = 0.61761258786099, (6.54)

f h+ gk = 0, (6.55)

gh− k f ≤ 0. (6.56)

The initial orbit for this example is a “standard” space shuttle park orbit, which is circular
at an altitude of 150 nm, and an inclination of 28.5 deg. This particular orbit leads to the
following values for the equinoctial elements at t = 0:

p = 21837080.052835 (ft), f = 0, g = 0,

h =−0.25396764647494, k = 0, L = π (rad).

The following constants complete the definition of the problem:

w(0)= 1 (lb), g0 = 32.174 (ft/sec2),

Isp = 450 (sec), T = 4.446618×10−3 (lb),

µ= 1.407645794×1016 (ft3/sec2), Re = 20925662.73 (ft),

J2 = 1082.639×10−6, J3 =−2.565×10−6,

J4 =−1.608×10−6, τL =−50.

For convenience, we have chosen the initial weight as 1 lb, and the goal is to maximize the
final weight, i.e., w(tF ).

6.3.5 Numerical Solution

The solution to this low-thrust orbit transfer problem obtained using the implementation
in SOCS is summarized in Figures 6.16 and 6.17. All times are plotted in hours, with
the semiparameter p given in millions of feet and the true longitude L in multiples of
360 deg. The iteration history is summarized in Table 6.6. Figure 6.18 illustrates the
behavior of the mesh-refinement algorithm. The optimal value for the final weight is
w∗(tF ) = 0.2201791266 lb, which occurs at t∗F = 86810.0 sec with an optimal throttle
parameter value of τ∗ = −9.09081. The final trajectory profile is illustrated in Figure 6.19.
It is also worthwhile to examine the behavior of the optimal control history when angles
are used instead of the direction vector u(t). In particular, one can define

ur =−sinθ ,

uθ = cosθ cosψ ,

uh =−cosθ sinψ
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Figure 6.16. Low-thrust transfer—state variables.

using the two control angles (θ ,ψ). The time history of these angles illustrated in Figure
6.15 clearly demonstrates the ambiguity in the yaw angle. In fact, if the controls were
modeled using angles, it is clear that the mesh-refinement procedure would detect an ap-
parent discontinuity caused by the yaw angle “wrapping” unless the dotted time history
was followed.
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Figure 6.17. Low-thrust transfer—control variables.

6.4 Two-Burn Orbit Transfer
In this section, consider a problem similar to Example 6.5, with one important difference—
the magnitude of the thrust. In particular, for this example the thrust T = 1.25 lb and
the initial weight w(0) = 1 lb leading to a description that is very representative of most
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Table 6.6. Low-thrust transfer example.

Iter. Disc. M GE HE FE RHS εmax CPU (sec)

1 TR 150 416 80 11231 1684650 .22×10−2 0.23×104

2 TR 299 10 7 604 180596 .26×10−3 0.92×102

3 HS 299 11 8 682 407154 .31×10−4 0.31×103

4 HS 597 8 6 503 600079 .15×10−5 0.68×103

5 HS 966 6 3 292 563852 .61×10−7 0.12×104

Total - - 451 104 13312 3436331 - 4562.20

operational launch vehicles. To make the problem more concrete, let us suppose that the
vehicle begins in the same standard space shuttle park orbit as in Example 6.5, which is a
150 nm circular orbit with an inclination of 28.5 deg. The final orbit for this example is
chosen to be a circular orbit with an altitude of 19323 nm and an inclination of 0 deg. This
orbit is referred to as geosynchronous because it has a period of 24 hr, and the motion of
a vehicle in this orbit is synchronized with the revolution of the earth beneath it. Thus, a
satellite placed in geosynchronous orbit appears motionless when viewed from the earth,
making it an attractive platform for communication systems. Since most communication
satellites are placed in an orbit of this type, this particular trajectory design problem has
been studied extensively, and, in contrast to Example 6.5, which is a hard problem, this may
be considered an easy problem. On the other hand, because the problem is rather simple to
solve, it permits us to illustrate and compare different solution methods.

The vehicle dynamics are initialized at a point in the park orbit. For convenience,
the point at which the vehicle crosses the equator in a northbound direction (referred to as
the ascending node) is chosen to be the initial time. After coasting for an unspecified time,
the vehicle’s engine is ignited. The orientation and duration of this “first burn” are also
unspecified. The additional velocity added by the first burn places the vehicle into a “trans-
fer orbit.” After coasting for an unspecified time in the transfer orbit, the motor is again
ignited and the “second burn” is performed. The duration of the burn and orientation of the
vehicle during this time are also unspecified. However, when the second burn is completed,
the vehicle must be deployed in the desired geosynchronous orbit. There are a number of
ways to quantify an optimal orbit transfer. Typically, the trajectory that minimizes the fuel
consumed or maximizes the final weight is preferred. An equivalent approach is to design
a trajectory that minimizes the energy added by the propulsion system, and this approach
is referred to as a “minimum �v” transfer.

The motion of a vehicle can be described by the following system of first order ODEs:

ṙ= v, (6.57)

v̇= g+T, (6.58)

ẇ =−T/Isp . (6.59)

These equations are equivalent to (6.28), where r is the inertial position vector, v is the
inertial velocity vector, and w is the weight. The gravitational acceleration is defined by g
and the thrust acceleration is defined by T. We use T to denote the magnitude of the thrust
‖T‖ and Isp to denote the specific impulse.
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Figure 6.18. Low-thrust transfer—mesh refinement.

6.4.1 Simple Shooting Formulation

Example 6.6 TWO-BURN TRANSFER. In Section 3.3, we described the shooting
method, which is often used for solving simple BVPs such as this two-burn transfer. Early
attempts to solve this problem introduced approximations to the physics in order to expe-
dite the solution of (6.57)–(6.59). Although a simple shooting formulation can be obtained
without approximating the physics, we will follow the historical technique.
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Figure 6.19. Optimal low-thrust transfer.

When the thrust T is large, the duration of the burns is very short compared to the
overall transfer time. Thus, it is common to assume the burns occur instantaneously. Using
this approximation, the net effect of a burn is to change the velocity but not the position.
This technique is called an impulsive �v approximation. To be more precise,

v(t2)= v(t1)+�v, (6.60)
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where v(t1) is the velocity before the burn, v(t2) is the velocity after the burn, �v is the
velocity added by the burn, and t1 = t2. The velocity change is related to the weight by the
expression

‖�v‖ = g0 Isp ln

[
w(t1)

w(t2)

]
, (6.61)

where g0= 32.174 (ft/sec2) is the mass to weight conversion factor. Also, for convenience,
we can define the impulsive velocity using spherical coordinates (�v,θ ,ψ), where

�v =Qv

�v cosθ cosψ
�v cosθ sinψ

�v sinθ

 (6.62)

and the orthogonal matrix

Qv =
[

v
‖v‖

v×r
‖v×r‖

v
‖v‖ ×

(
v×r
‖v×r‖

) ]
(6.63)

defines the principle axes of an inertial velocity coordinate frame.
During coast portions of the trajectory, T = 0 and the equations of motion (6.57)–

(6.59) are just

ṙ= v, (6.64)

v̇= g. (6.65)

The only nonlinear quantity in these equations is the gravitational acceleration g(r). If
one assumes that the earth is spherical, then g(r)=−µr/r3 and the differential equations
(6.64)–(6.65) have an analytic solution! Thus, given the state at some time t0, one can
analytically propagate to another time t1, i.e.,[

r(t0)
v(t0)

]
→
[

r(t1)
v(t1)

]
. (6.66)

In effect, this propagation defines a nonlinear mapping between the states at t0 and t1, say[
r(t1)
v(t1)

]
= P [r(t0),v(t0), t1, t0] . (6.67)

Kepler provided the original solution of this propagation problem over 100 years ago, and
a complete description of the computational procedure can be found both in Section 7.1.4
and [78]. More recently, Huffman [115] has extended the analytic propagation to include
the most significant oblate earth perturbation (i.e., including the contribution of J2 in (6.48)
and (6.49)).

At this point, it is worthwhile to expand on a subtle but important detail regarding
the meaning of analytic propagation. In order to propagate from one time to another, it is
necessary to solve Kepler’s equation. In its simplest form, one must compute E such that

n(t− t0)= E− e sin E , (6.68)

where n and e are constants for the orbit (the mean motion and eccentricity) and t is the
propagation time. Typically, this transcendental equation is solved by a Newton iteration.
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The variable E , called the eccentric anomaly, determines the angular position of the vehicle
at time t on the orbit. In fact, for orbital motion, there is an angular change α that will satisfy
the equation

k [α,�t]= 0 (6.69)

for a specified value of �t , but it cannot be written explicitly in the form

α ∼ k−1 [�t] .

Thus, if we choose to propagate the orbit by specifying the time change, we must solve a
transcendental equation. But an “internal” iteration is undesirable, as discussed in Section
1.16. On the other hand, if we choose to propagate by specifying an angular change, no
iteration is required! Thus, the proper formulation is to introduce the angular change α as
an NLP variable (in addition to t) and then impose the Kepler equation (6.69). Section
7.1.4 revisits this issue.

The fundamental idea of combining impulsive�v and analytic orbit propagation was
originally proposed by a German engineer, Walter Hohmann, who published the idea (in
German) in Munich in 1925. Although his original paper described transfers between cir-
cular orbits with the same inclination, the term “Hohmann transfer” is now loosely applied
to describe any transfer between arbitrary orbits using impulsive approximations.

The boundary conditions that define the desired geosynchronous orbit are

(‖r‖− Re)/σ = 19323 (nm), (6.70)

‖v‖ = 10087.5 (ft/sec), (6.71)

vTr
‖v‖‖r‖ = 0, (6.72)

v3

‖v‖ = 0, (6.73)

r3

‖r‖ = 0, (6.74)

where the constant σ = 6076.1154855643 ft/nm. We use the same values for Re, µ, and J2
as in Example 6.5.

We can now define the NLP problem that must be solved. The NLP variables are

x=



t1
α1
�v1
θ1
ψ1
t3
α2
�v2
θ2
ψ2


=



First-burn ignition time
First coast angle

First-burn velocity
First-burn pitch angle
First-burn yaw angle

Second-burn ignition time
Second coast angle

Second-burn velocity
Second-burn pitch angle
Second-burn yaw angle


. (6.75)
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When values are specified for the NLP variables, it is possible to compute the objective and
constraint functions. This is illustrated schematically below:

...............
..............

......................
......................................................................................................................

✲

..............
...............

.....................
......................................................................................................................

✲
}
�v1

}
�v2

t0 t1 = t2 t3 = t4

Mission Orbit

For this direct shooting formulation, the function generator is as follows:

Direct Shooting

Input: x
Initialize State:

r(t0),v(t0), t0
First Coast:

Propagate through angle α1; from (6.67) compute r(t1),v(t1).
Constraint Evaluation:

Compute Kepler constraint from (6.69) using α1, t1.
First Burn: Given �v1,θ1,ψ1, set r(t2)= r(t1), t2 = t1, and compute

v(t2) from (6.60), (6.62), and (6.63).
Second Coast:

Propagate through angle α2; from (6.67) compute r(t3),v(t3), t3.
Constraint Evaluation:

Compute Kepler constraint from (6.69) using α2, t3.
Second Burn: Given �v2,θ2,ψ2, set r(t4)= r(t3), t4 = t3, and compute

v(t4) from (6.60), (6.62), and (6.63).
Constraint Evaluation:

Compute boundary conditions at t4 from (6.70)–(6.74).
Terminate Trajectory

Compute objective F(x),c(x).
Output: F(x),c(x)

The goal is to minimize the objective function

F(x)=�v1+�v2. (6.76)

Since none of the computed quantities for this example explicitly depends on time, this
problem can also be formulated using only propagation angles. Table 6.7 presents the so-
lutions obtained with and without time as a propagation variable (formulations A and B,
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Table 6.7. Minimum �v transfer.

Formulation A Formulation B

t1 2690.41 *
α1 179.667 179.667
�v1 8049.57 8049.57
θ1 0.148637×10−2 0.146647×10−2

ψ1 −9.08446 −9.08445
t3 21658.5 *
α2 180.063 180.063
�v2 5854.61 5854.61
θ2 −0.136658×10−2 −0.135560×10−2

ψ2 49.7892 49.7892
�v1+�v2 13904.18221 13904.18220

FE 294 249

respectively). The only apparent difference between these approaches is that the formula-
tion B requires fewer function evaluations (FE), which is not surprising because there are
fewer variables. The equivalent weight delivered to the final orbit can be computed using
(6.61) and is w(tF )= 0.23680470963252 lb.

6.4.2 Multiple Shooting Formulation

Example 6.7 TWO-BURN MULTIPLE SHOOTING. A very natural partition of the
problem is suggested by the physics of this two-burn orbit transfer. Modeling the dynamics
using four distinct phases, namely the coast in the park orbit, the first burn, the coast in the
transfer orbit, and the second burn, is an obvious choice. We can also treat each of these
phases as segments and apply the multiple shooting method as described in Section 3.4.
This is illustrated below:

............
..............

................
..........................................................................................

.......................................

..........
.............

..............
.................................................................................................

.....
..........

..............................

t0 t1 t2 t3 t4

Mission Orbit

}
Defect

For the multiple shooting formulation, one must augment the NLP variables (6.75) to in-
clude the state on each side of the segment (phase) boundaries as illustrated. Thus, we in-
clude as new NLP variables the states r(t−k ),v(t−k ) and r(t+k ),v(t+k ) for k = 1,2,3,4, where
− denotes the quantity before the boundary and + denotes the quantity after the boundary.
Additional “defect” constraints must be imposed to ensure continuity across the segment
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boundaries and also to guarantee that the analytically propagated state is consistent with
the (new) guessed values. Thus, when compared to the direct shooting method, the number
of variables increases from 10 to 63. However, the number of constraints also increases
from 7 to 60, so that the total number of degrees of freedom is unchanged.

One of the primary reasons to use a multiple shooting method is to improve robust-
ness, which is demonstrated even on this simple four-segment example. As shown in Table
6.8, the multiple shooting method solved the problem with fewer gradient evaluations (2),
fewer Hessian evaluations (3), and fewer function evaluations (97) when compared to the
simple shooting approach. Even the modest increase in CPU time (attributed to increased
problem size) is somewhat deceiving because the cost of evaluating the functions is so
small for this example.

Table 6.8. Shooting versus multiple shooting.

Shooting Multiple shooting �

GE 11 9 −22%
HE 5 2 −150%
FE 294 197 −49%

CPU (sec) 0.699127 0.872283 +20%

6.4.3 Collocation Formulation

Example 6.8 TWO-BURN COLLOCATION. Both Example 6.6 and Example 6.7 used
approximate physics, that is, simplified orbit dynamics and impulsive burn approximations.
For comparison, let us now solve the same orbit transfer without making these simplify-
ing assumptions. We still pose the problem using four phases. However, in this example
we consider finite-duration burn phases with optimal steering. Oblate gravitational accel-
erations will be used throughout, and we will describe the dynamics using the previously
discussed equinoctial coordinates. During the coast phases, from (6.31), the dynamics are
given by

ẏ= A(y)�g+b, (6.77)

where A(y) is defined by (6.35), b by (6.36), and �g by (6.50). During the burn phases,

ẏ= A(y)�+b, (6.78)

ẇ =−T/Isp, (6.79)

and the total perturbation is given by (6.44). To be consistent with Examples 6.6 and 6.7,
we define the orientation of the thrust using pitch and yaw angles in the inertial velocity
frame and then transform them to the radial frame, that is,

�T =QT
r Qv

T cosθ cosψ
T cosθ sinψ

T sinθ

 , (6.80)
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where Qv is defined by (6.63) and Qr is given by (6.45). Since the dynamics are represented
using equinoctial coordinates, it is convenient to also specify the boundary conditions in
these coordinates. Thus, the geosynchronous conditions (6.70)–(6.74) are equivalent to
having p = 19323/σ + Re and f = g = h = k = 0. Constraints are also used to link the
equinoctial states across the phase boundaries as with the multiple shooting formulation.
The weight at the end of phase 2 is also constrained to equal the weight at the beginning of
phase 4. The situation is illustrated below:

.............
..........

...................
.. ................................. ................. ......................�

�

� � �

�

�

...............................

� �

�

...........
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............ ........... ......... .............. ........... .................�

�

�
� � �

�

�

�

........
...........

...............
�

�
�

t0 t1 t2 t3 t4

Mission Orbit

SOCS was used to solve the problem beginning with a trapezoidal discretization and
10 grid points per phase. The first NLP has 307 variables and 268 active constraints, or
39 degrees of freedom. Figure 6.20 displays the sparsity pattern of the Jacobian and Hes-
sian matrices, corresponding to the initial trapezoidal discretization with 10 grid points per
phase. Note that, because the Hessian is symmetric, only the lower-triangular portion is

(a) Jacobian (b) Hessian

Figure 6.20. Sparsity patterns.
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shown. The iteration history is summarized in Table 6.9. The second and third columns in
the table give a phase-by-phase breakdown of the discretization method (Disc.) and number
of grid points (M), respectively. Trapezoidal discretization is denoted by T and separated
Simpson by H. Observe that the mesh-refinement algorithm tends to concentrate a large
number of points in the early portions of the trajectory because the oblate earth pertur-
bations are more significant in this region. The final mesh-refinement iteration required
solving a sparse NLP problem with 5149 variables, 4714 active constraints, and 435 de-
grees of freedom.

Table 6.9. Two-burn orbit transfer performance summary.

Iter. Disc. M FE εmax T (sec)

1 (T,T,T,T) (10,10,10,10) 2164 0.26×100 0.41×102

2 (H,T,T,T) (10,19,16,19) 604 0.53×10−2 0.20×102

3 (H,H,H,H) (19,19,16,19) 526 0.14×10−2 0.32×102

4 (H,H,H,H) (37,37,31,37) 137 0.96×10−5 0.24×102

5 (H,H,H,H) (73,73,61,37) 113 0.36×10−6 0.35×102

6 (H,H,H,H) (145,73,121,37) 113 0.59×10−7 0.49×102

Total - 376 3657 201.84

Figure 6.21 illustrates the optimal two-burn transfer to geosynchronous orbit. The
optimal steering angles for both burns are plotted in Figure 6.22 with the times normalized
to the beginning of the burn. It is interesting to observe that the optimal burn times, i.e.,
the lengths of phases 2 and 4, are t2− t1 = 141.47 (sec) and t4− t3 = 49.40 (sec). When
compared to the total mission time of 21683.5 (sec), these burn times are quite short, hence
justifying the impulsive approximation. It is also interesting to note that the “true” optimal
objective w(tF ) = 0.2367248713 lb is only 0.033% less than the impulsive burn analytic
coast approximation computed in Example 6.6. However, it is necessary to use the optimal
steering in Figure 6.22 to achieve this performance.

Figure 6.21. Two-burn orbit transfer.
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(a) First burn (b) Second burn

Figure 6.22. Optimal control angles.

6.5 Hang Glider
Example 6.9 RANGE MAXIMIZATION OF A HANG GLIDER. Originally posed by

Bulirsch et al. [58], this problem describes the optimal control of a hang glider in the
presence of a specified thermal updraft. It is particularly sensitive to the accuracy of the
mesh, a difficulty which was resolved in the reference by exploiting a combination of direct
and indirect methods.

The state variables are yT(t) = (x , y,vx ,vy), where x is the horizontal distance (me-
ters), y the altitude (meters), vx the horizontal velocity (meters/sec), and vy the vertical
velocity (meters/sec). The control variable is u(t) = CL , the aerodynamic lift coefficient.
The final time tF is free and the final range xF is to be maximized. The state equations
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which describe the planar motion for the hang glider are

ẋ = vx , (6.81)

ẏ = vy , (6.82)

v̇x = 1

m
(−L sinη− D cosη) , (6.83)

v̇y = 1

m
(L cosη− D sinη−W ) , (6.84)

where the quadratic drag polar

CD(CL )= C0+ kC2
L (6.85)

with

D = 1

2
CDρSv2

r , L = 1

2
CLρSv2

r ,

X =
( x

R
−2.5

)2
, ua(x)= uM (1− X )exp[−X ],

Vy = vy−ua(x), vr =
√
v2

x +V 2
y ,

sinη = Vy

vr
, cosη = vx

vr
.

Note the results presented in [58] correspond to a value of 3.5 instead of 2.5 in the expres-
sion for X . The following constants complete the definition of the problem:

uM = 2.5, m = 100 (kg),

R = 100, S = 14 (m2),

C0 = .034, ρ = 1.13 (kg/m3),

k = .069662, g = 9.80665 (m/sec2),

where W = mg. The lift coefficient is bounded

0≤ CL ≤ 1.4 (6.86)

and the following boundary conditions are imposed:

x(0)= 0 (m), x(tF ) : free,

y(0)= 1000 (m), y(tF )= 900 (m),

vx (0)= 13.227567500 (m/sec), vx (tF )= 13.227567500 (m/sec),

vy(0)=−1.2875005200 (m/sec), vy (tF )=−1.2875005200 (m/sec).
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Figure 6.23. Hang glider, states.

The initial guess was computed using linear interpolation between the boundary conditions,
with x(tF )= 1250, and CL (0)= CL (tF )= 1.

The optimal state histories are displayed in Figure 6.23, with the initial guess plotted
as a dashed line. Figure 6.24 shows the optimal control. The mesh-refinement history is
summarized in Table 6.10 and plotted in Figure 6.25. Observe that eight mesh-refinement
iterations were required before the discretization error ε was reduced significantly. This
behavior is consistent with the sensitivity reported in [58], which led them to use a hybrid
technique. The maximum range is x∗(tF )= 1248.031026 (m).

6.6 Abort Landing in the Presence of Windshear
Example 6.10 ABORT LANDING IN THE PRESENCE OF WINDSHEAR. The dynamic

behavior of an aircraft landing in the presence of a windshear was first formulated as an
optimal control problem by Miele,4 Wang, and Melvin [134]. A number of other authors

4Dr. Angelo Miele was formerly Director of Astrodynamics and Flight Mechanics at Boeing Scientific
Research Laboratory (BSRL), and is now Foyt Professor Emeritus at Rice University.
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Figure 6.24. Hang glider control CL (t).

Table 6.10. Hang glider mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 25 23 16 383 14207 2.0200 1.00×10−1

2 49 30 28 605 38163 3.5669×101 2.90×10−1

3 49 31 29 1946 204480 1.2682×101 7.00×10−1

4 97 56 54 3596 722034 5.2137 2.13
5 106 18 16 1088 259858 5.5682 8.30×10−1

6 113 33 31 2078 499588 1.4190 1.67
7 134 22 20 1352 398490 1.2231 1.30
8 145 17 15 1022 335652 1.2494 1.15
9 151 17 15 1022 349236 1.7212×10−2 1.20
10 277 21 19 1286 777980 1.6366×10−2 3.22
11 291 9 6 449 330507 3.4776×10−5 1.23
12 567 4 2 164 312058 5.2638×10−7 3.02
13 739 3 1 98 306696 2.0964×10−8 4.04

Total 739 284 252 15089 4548949 2.088×10+1
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Figure 6.25. Hang glider mesh-refinement history.

investigated the problem including Bulirsch, Montrone, and Pesch [56, 57], who introduce
the problem as follows:

One of the most dangerous situations for a passenger aircraft in take-off and
landing is caused by the presence of low altitude windshears. This meteoro-
logical phenomenon, which is more common in subtropical regions, is usually
associated with high ground temperatures leading to a so-called downburst.
This downburst involves a column of descending air which spreads horizon-
tally near the ground. Even for a highly skilled pilot, an inadvertent encounter
with a windshear can be a fatal problem, since the aircraft might encounter a
headwind followed by a tailwind, both coupled with a downdraft. The tran-
sition from headwind to tailwind yields an acceleration so that the resulting
windshear inertia force can be as large as the drag of the aircraft, and some-
times as large as the thrust of the engines. This explains why the presence of
low altitude windshears is a threat to safety in aviation. Some 30 aircraft acci-
dents over the past 20 years have been attributed to windshear, and this attests
to the perilousness of this occurrence. Among these accidents, the most disas-
trous ones happened in 1982 in New Orleans, where 153 people were killed,
and in 1985 in Dallas, where 137 people were killed.

6.6.1 Dynamic Equations

Following the development in [56] the dynamic behavior of the aircraft is described by

ẋ = v cosγ +wx , (6.87)

ḣ = v sinγ +wh , (6.88)

v̇ = 1

m
[T cos(α+ δ)− D]− g sinγ − (ẇx cosγ + ẇh sinγ ), (6.89)

γ̇ = 1

mv
[T sin(α+ δ)+ L]− g

v
cosγ + (ẇx sinγ − ẇh cosγ ), (6.90)
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where the state variables are the horizontal distance x , the altitude h, the relative velocity
v, and the relative flight path angle γ . The thrust and aerodynamic forces are defined by

T = βT∗, (6.91)

T∗ = a0+a1v+a2v
2, (6.92)

D = 1

2
CDρSv2, (6.93)

CD(α)= b0+b1α+b2α
2, (6.94)

L = 1

2
CLρSv2, (6.95)

CL(α)=
{

c0+ c1α,

c0+ c1α+ c2(α−α∗)2,
α ≤ α∗,
α∗ ≤ α ≤ αmax ,

(6.96)

β(t)=
{

β0+ β̇0t ,
1,

0≤ t ≤ tβ ,
tβ ≤ t ≤ tF ,

(6.97)

where the thrust, drag, and lift are denoted by T , D, and L, respectively. The power
setting β is specified as in [134]. It is hypothesized that upon sensing a downdraft, the pilot
increases power at a constant rate until reaching a maximum value at time tβ = (1−β0)/β̇0
and thereafter holds it constant. The windshear is modeled as follows:

wx = A(x), (6.98)

wh = h

h∗
B(x) (6.99)

with

A(x)=


−50+ax3+bx4,
1

40 (x−2300),

50−a(4600− x)3−b(4600− x)4,

50,

0≤ x ≤ 500,

500≤ x ≤ 4100,

4100≤ x ≤ 4600,

4600≤ x ,

(6.100)

B(x)=


dx3+ ex4,

−51exp[−c(x−2300)4],

d(4600− x)3− e(4600− x)4,

0,

0≤ x ≤ 500,

500≤ x ≤ 4100,
4100≤ x ≤ 4600,

4600≤ x .

(6.101)

Table 6.11 summarizes the various parameters as given in [56] needed to complete the
model of a Boeing 727 airplane.
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Table 6.11. Dynamic model parameters.

tF 40 sec umax 3 deg/sec
αmax 17.2 deg ρ .2203×10−2 lb sec2 ft−4

S .1560×104 ft2 g 3.2172×101 ft sec−2

mg 150000 lb δ 2 deg
a0 .4456×105 lb a1 −.2398×102 lb sec/ft
a2 .1442×10−1 lb sec2 ft−2 β0 .3825
β̇0 .2 sec−1 b0 .1552
b1 .12369 rad−1 b2 2.4203 rad−2

c0 .7125 c1 6.0877 rad−1

c2 −9.0277 rad−2 a∗ 12 deg
h∗ 1000 ft a 6×10−8 sec−1 ft−2

b −4×10−11 sec−1 ft−3 c − ln (25/30.6)×10−12 ft−4

d −8.02881×10−8 sec−1 ft−2 e 6.28083×10−11 sec−1 ft−3

x0 0 ft γ0 −2.249 deg
h0 600 ft α0 7.353 deg
v0 239.7 ft/sec γF 7.431 deg

6.6.2 Objective Function

The goal of this abort landing problem is to avoid having the airplane crash. To achieve this
we introduce two things: an optimization parameter hmin , which is the minimum altitude
that occurs during the landing, and a new path inequality constraint

h(t)≥ hmin . (6.102)

The optimization objective is to maximize

F = hmin (6.103)

subject to the path inequality (6.102). This maximin problem guarantees the aircraft will be
as high above the ground as possible. The results obtained using SOCS treat this formula-
tion directly.

In contrast, both [134] and [56] treat the objective differently. Because of the rela-
tionship between the Hölder and Chebyshev norm

lim
k→∞

[∫ tF

0
[hr −h(t)]2kdt

] 1
2k

= max
0≤t≤t f

[hr −h(t)],

where hr = 1000 ft is a reference altitude. Specifically, Miele, Wang, and Melvin [134]
simply choose a large value for k and minimize

FM =
∫ tF

0
[hr −h(t)]6dt .

Unfortunately this approach is numerically unattractive because of the scale of the objective
function. In order to address the numeric difficulties Bulirsch, Montrone, and Pesch [56]
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introduce a new state variable and path inequality constraint

ζ̇ = 0,

0 ≥ hr −h(t)− ζ (t)

and then postulate a composite objective function

FB =*

∫ tF

0
[hr −h(t)]6dt++ζ (tF).

The parameter * is gradually changed from one to zero, while + is increased from zero to
one using a homotopy strategy described in [57].

6.6.3 Control Variable

The control variable for this problem is the angle of attack α(t), which is subject to the
constraints

α(t) ≤ αmax , (6.104)

|α̇(t)| ≤ umax . (6.105)

Using the approach described in Section 4.10 it is possible to directly impose the rate
constraint (6.105).

In contrast, the angle of attack is treated as a state variable in [56] and the rate is
treated as a control. This introduces an additional differential equation

α̇ = u

in which case the rate constraint (6.105) can be treated as simple bounds−umax ≤ u≤ umax
on the (new) control. Unfortunately, this transformation introduces two other more delete-
rious effects. The new control u appears linearly in the problem, whereas the “real” control
α appears nonlinearly, and consequently singular arcs can (and do) occur. Furthermore, it
increases the order of the path constraints. When u is the control, the solution has a bound-
ary arc with respect to the first order state constraint and touch points with respect to the
third order state constraints.

6.6.4 Model Data

The mathematical description of a complicated physical system usually entails specification
of tabular data. In order to construct a mathematical model with the appropriate continuity,
one approach is to construct a B-spline approximation as described in Section 6.2.3. This
becomes particularly important when using an indirect method to solve the optimal control
problem as in [56] because discontinuities introduce “interior-point conditions” and as they
state

. . . a reduction of the matching points from 8 points in Miele’s model to 3
points in our model, makes the derivation of the necessary conditions of opti-
mal control theory much easier. Since Miele’s model uses cubic splines, the
wind components of his model are C2 functions everywhere.
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While smoothing the model data is one way to treat discontinuous functions, there
is another approach which can be employed. Let us model the problem using a multiple
phase structure. Since discontinuous behavior can occur at a phase boundary, we can define
a phase structure specifically to treat the different regions in the problem data. In particular
let us model the problem using five distinct phases. Each phase is characterized by a unique
set of boundary conditions and right-hand-side functions as follows:

Phase 1 0= t (1)
I ≤ t ≤ t (1)

F

x[t (1)
I ]= x0, h[t (1)

I ]= h0,

v[t (1)
I ]= v0, γ [t (1)

I ]= γ0,

α[t (1)
I ]= α0, x[t (1)

F ]= 500,

A(x)=−50+ax3+bx4, B(x)= dx3+ ex4,

β(t)= β0+ β̇0t .

Phase 2 t (2)
I ≤ t ≤ t (2)

F = tβ

x[t (2)
I ]= 500, β(t)= β0+ β̇0t ,

A(x)=−50+ax3+bx4, B(x)= dx3+ ex4.

Phase 3 tβ = t (3)
I ≤ t ≤ t (3)

F

x[t (3)
F ]= 4100, β(t)= 1,

A(x)= 1

40
(x−2300), B(x)=−51exp[−c(x−2300)4].

Phase 4 t (4)
I ≤ t ≤ t (4)

F

x[t (4)
I ]= 4100, x[t(4)

F ]= 4600,

A(x)= 50−a(4600− x)3−b(4600− x)4, B(x)= d(4600− x)3− e(4600− x)4,

β(t)= 1.

Phase 5 t (5)
I ≤ t ≤ t (5)

F = tF

x[t (5)
I ]= 4600, γ (t (5)

F )= γF ,

A(x)= 50, B(x)= 0,

β(t)= 1.
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Observe that the throttle parameter (6.97) is a monotonic function of time, and the wind
model (6.100)–(6.101) is a monotonic function of distance x which in turn is a monotonic
function of time. Consequently there is a natural “interleaving” of the discontinuous re-
gions that is explicitly identified by the phase structure. Note also that the discontinuous
behavior in the second derivative of the lift coefficient (6.96) does not present any difficul-
ties because it is a function of the control α, which can be discontinuous.

6.6.5 Computational Results

The overall problem can be posed using five distinct phases. On all five phases, there
are four state variables yT = (x ,h,v,γ ), one control u = α, and one parameter p = hmin .
Each phase must satisfy the differential equations (6.87)–(6.90) and the path constraint
(6.102). On all phases, the control variable must satisfy the simple bounds (6.104) and
the rate constraints (6.105). At all interior phase boundaries we require continuity in the
state, control, parameter, and time, unless the values are fixed by the boundary conditions.
Within each individual phase, the right-hand-side functions are defined by the explicit phase
structure. And finally the goal is to maximize the parameter p = hmin (in the last phase).

Using a linear guess for the dynamic variables, with 10 grid points in each phase, the
optimal control problem was solved using SOCS and the computational performance is
summarized in Table 6.12. The requested resolution for the mesh-refinement procedure was
εmax ≤ 10−7, which was obtained after seven mesh-refinement iterations. The trapezoidal
(TR) discretization was used for the early iterations, followed by either the compressed
Hermite–Simpson (HC) or the separated Hermite–Simpson (HS) method, as indicated in
the second column of the table. The number of grid points is given in the third column,
the number of QP subproblems in the fourth column, and the accuracy achieved in the fifth
column. The total CPU time for each iteration is given in the last column, with the entire
solution obtained in 9.00 sec.

Table 6.12. Windshear performance summary.

Iter. Disc. M NQP εmax CPU (sec)

1 (TR,TR,TR,TR,TR) (10,10,10,10,10) 10 2.29 ×10−2 8.0 ×10−2

2 (TR,HC,TR,HC,TR) (19,10,19,10,19) 11 2.18 ×10−3 1.6 ×10−1

3 (HS,HC,HS,HC,HS) (37,10,37,19,37) 9 3.02 ×10−4 3.1 ×10−1

4 (HS,HS,HS,HS,HS) (67,19,73,47,73) 7 2.69 ×10−5 6.6 ×10−1

5 (HS,HS,HS,HS,HS) (67,19,115,47,145) 19 2.67 ×10−6 4.8 ×100

6 (HS,HS,HS,HS,HS) (67,19,229,47,145) 7 1.32 ×10−7 1.9 ×100

7 (HC,HC,HC,HC,HC) (34,10,120,24,73) 4 9.87 ×10−8 1.0 ×100

Total - 261 67 9.00

Figure 6.26 illustrates the optimal trajectory, and the optimal time histories for the
four state variables are plotted in Figure 6.27. The phase boundaries are delineated by
dotted vertical lines, and the lower bound on the altitude is shown with a dashed horizontal
line. The optimal value achieved was F∗ = 491.85230 (ft). The illustration suggests that
there is a region in Phase 3 during which the altitude is on the minimum altitude boundary
and a second touch point in Phase 5. In fact, during the extended boundary arc in Phase
3, the state inequality is not in the active set at all grid points. Instead there is a very
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Figure 6.26. Optimal trajectory profile.

Figure 6.27. Optimal state profile.

small oscillation in the altitude, all within the mesh-refinement tolerance. This behavior
is similar to that discussed in Section 4.12 (cf. Figure 4.29). Figure 6.28 illustrates the
optimal control required to maximize the objective, as well as the corresponding angle of
attack rate.

It is worthwhile to compare the results presented here with those found in [56]. Qual-
itatively the results are very similar, with the optimal trajectory having an arc that follows
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Figure 6.28. Optimal control profile.

the minimum altitude, and a subsequent single touch point. The angle of attack profile also
compares favorably. Nevertheless, the solution techniques differ in three ways:

1. treatment of the objective function,

2. definition of the control variable,

3. treatment of the physical model data.

In particular, in [56], two additional states are introduced: one because α̇ is treated as the
control, and a second to represent the minimum altitude. An indirect multiple shooting
method was used to solve this problem, which required a sophisticated homotopy strategy
in order to identify the correct switching structure and also deal with singular arcs. In
contrast, the approach described here does not introduce additional state variables, and as
such does not require the same derivative continuity in the angle of attack. Finally, our
approach does not increase the index of the DAE, i.e., the order of the state constraints,
and avoids the computational complexity associated with picking the correct arc structure
as required by an indirect method.

6.7 Space Station Attitude Control
Example 6.11 SPACE STATION ATTITUDE CONTROL. In his Master’s thesis on the

pseudospectral method, Pietz [142] presents results for an application that arises when try-
ing to control the attitude of the International Space Station. A complete discussion of
the problem can be found in Chapter 4 of the thesis. For convenience we present a brief
summary of the optimal control problem. The state of the system is defined by three vec-
tors, namely ω(t), which is the angular velocity of the spacecraft with respect to an inertial
reference frame, r(t), which are the Euler–Rodriguez parameters used to define the vehi-
cle attitude, and h(t), which is the angular momentum of the control moment gyroscopes
(CMGs). The torque u(t) is used to control the system. The dynamics are given by the
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differential-algebraic system

ω̇ = J−1 {τ gg(r)−ω(t)⊗ [Jω(t)+h(t)]−u(t)
}

, (6.106)

ṙ= 1

2

[
r(t)rT(t)+ I+ r(t)⊗

]
[ω(t)−ω0(r)] , (6.107)

ḣ= u(t), (6.108)

0 ≤ hmax −‖h‖. (6.109)

The dynamics utilize the skew-symmetric cross product operator defined by

a⊗ =
 0 −a3 a2

a3 0 −a1
−a2 a1 0

 . (6.110)

The gravity gradient torque is given by

τ gg(r)= 3ω2
orbC⊗3 JC3, (6.111)

where C3 is the third column of the rotation matrix

C= I+ 2

1+ rTr

(
r⊗r⊗− r⊗

)
. (6.112)

Also
ω0(r)=−ωorbC2. (6.113)

The state at the initial time is prescribed leading to the boundary conditions

ω(t0)= ω0, (6.114)

r(t0)= r0, (6.115)

h(t0)= h0. (6.116)

At the final time it is desirable to reach an orientation that can be maintained without utiliz-
ing additional control torque. This torque equilibrium attitude (TEA) is achieved by setting
the right-hand sides of (6.106) and (6.107) to zero, with u = 0, leading to the boundary
conditions

0= J−1 {τ gg(r(t f ))−ω(t f )⊗
[
Jω(t f )+h(t f )

]}
, (6.117)

0= 1

2

[
r(t f )rT(t f )+ I+ r(t f )⊗

][
ω(t f )−ω0(r(t f ))

]
. (6.118)

The goal is to choose the control vector u(t) to minimize the magnitude of the final mo-
mentum ‖h‖, or equivalently to minimize

F = hT(t f )h(t f ). (6.119)

Note that Pietz [142] treats ‖h(t f )‖ as the objective function; however, this quantity is not
differentiable at ‖h(t f )‖ = 0. In contrast, the objective given by (6.119) is differentiable
everywhere and leads to an equivalent solution.
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The problem description is completed by specifying the following parameters:

t0 = 0, t f = 1800,

hmax = 10000, ωorb = .06511
π

180
,

ω0 r0 h0

−9.5380685844896×10−6 2.9963689649816×10−3 5000
−1.1363312657036×10−3 1.5334477761054×10−1 5000
5.3472801108427×10−6 3.8359805613992×10−3 5000

J=
 2.80701911616×107 4.822509936×105 −1.71675094448×107

4.822509936×105 9.5144639344×107 6.02604448×104

−1.71675094448×107 6.02604448×104 7.6594401336×107

 .

The optimal control problem defined by (6.106)–(6.119) was solved using the SOCS

software. Mesh refinement was performed to ensure the discretization error was below
10−7, which produces a solution with at least eight significant figures of accuracy. Constant
values were used as initial guesses for all of the dynamic variables in the problem.

Unfortunately the original formulation suggested by Pietz [142] does not have a
unique solution. In particular there are many control histories that will produce F∗ =
h∗T(t f )h∗(t f )= 0. From an algorithmic perspective, when a nonunique problem is solved
the standard recourse for the underlying nonlinear program is to force the projected Hes-
sian matrix to be positive definite. Within SOCS this is achieved by introducing a nonzero
Levenberg parameter to form a modified Hessian matrix. For the SNOPT algorithm used
to obtain the results in Pietz [142], a quasi-Newton Hessian approximation is used which
is forced to be positive definite. Thus in all cases the computational algorithms produce a
solution; however, none of them is unique!

With this insight, the problem can be reformulated. One possible approach is to
enforce the additional boundary conditions

h(t f )= 0 (6.120)

and then introduce a different objective that uniquely defines the optimal trajectory, e.g.,
minimize

F = 10−6
∫ t f

t0
uT(t)u(t)dt . (6.121)

This can be interpreted as a “minimum energy” criterion. Using this modified for-
mulation, the problem was solved using SOCS and the solution is illustrated with a shaded
region and solid line in Figures 6.29–6.31. The optimal value of the objective function
is F∗ = 3.586883988. It is also interesting that the computational behavior of the SOCS

algorithm for this problem was quite well behaved as summarized in Table 6.13.
The thesis of Bhatt [41] extends the dynamic model proposed by Pietz to incorporate

multibody effects and aerodynamic torques. Bhatt also suggests minimizing the peak CMG
momentum as an objective function; i.e., instead of using (6.121) let us minimize

F = hmax , (6.122)
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which is the upper bound appearing in (6.109). We find that the solution to this minimax
problem yields F∗ = 8660.2540 (ft-lbf-sec), which is an improvement over the saturation
limit hmax = 10000. However, to achieve this value the behavior of the other states and
control become significantly less smooth as illustrated by the dotted lines in Figures 6.29–
6.31.

Figure 6.29. ISS momentum dumping; states ωk(t), rk(t).
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Figure 6.30. ISS momentum dumping; states hk(t), controls uk (t).
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Figure 6.31. ISS momentum dumping; magnitudes ‖h(t)‖ and ‖u(t)‖.

Table 6.13. Space station mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 20 13 2 365 12537 2.0720×10−2 9.0000×10−2

2 39 6 2 270 20658 2.1309×10−3 1.0000×10−1

3 39 9 2 1170 113588 4.2938×10−5 3.7000×10−1

4 77 4 1 544 128606 9.0924×10−6 4.5000×10−1

5 87 4 1 544 149154 1.3774×10−6 5.4000×10−1

6 169 3 1 489 267935 5.1763×10−8 1.0500×100

Total 169 39 9 3382 692478 2.6000×100

k Mesh-Refinement Number; M Number of Mesh Points
NGC Number of Gradient Calls; NHC Number of Hessian Calls
NFE Number of Function Evaluations; NRHS Number of Right-Hand-Side Evaluations
ε Discretization Error; Time (sec) CPU Time
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6.8 Reorientation of an Asymmetric Rigid Body
Example 6.12 REORIENTATION OF RIGID BODY. Fleming, Sekhavat, and Ross [80]

describe an application of optimal control techniques to the attitude control of a spacecraft.
The dynamics are given by the following system of ODEs:

q̇1 = 1

2

[
ω1q4−ω2q3+ω3q2

]
, (6.123a)

q̇2 = 1

2

[
ω1q3+ω2q4−ω3q1

]
, (6.123b)

q̇3 = 1

2

[−ω1q2+ω2q1+ω3q4
]

, (6.123c)

q̇4 = 1

2

[−ω1q1−ω2q2−ω3q3
]

, (6.123d)

ω̇1 = u1

Ix
−
(

Iz − Iy

Ix

)
ω2ω3, (6.123e)

ω̇2 = u2

Iy
−
(

Ix − Iz

Iy

)
ω1ω3, (6.123f)

ω̇3 = u3

Iz
−
(

Iy − Ix

Iz

)
ω1ω2. (6.123g)

In this formulation the orientation is defined using the four-parameter set

qT = (q1,q2,q3,q4)= (̃q,q4), (6.124)

called Euler parameters or quaternions [116, pp. 18–31], where ‖q‖ = 1. The angular
velocity is defined by the vector ωT = (ω1,ω2,ω3). For their example, the authors model
the behavior of the NASA X-ray Timing Explorer (XTE) spacecraft in which case the
moments of inertia are given by

Ix = 5621 Kg ·m2, Iy = 4547 Kg ·m2, Iz = 2364 Kg ·m2

and the control torques u= (u1,u2,u3) are limited by

‖u‖∞ ≤ 50 N ·m. (6.125)

When using this formulation the differential variables are yT = (qT,ωT) and the algebraic
variables are u.

Since the quaternions must have norm one, an alternative is to omit differential equa-
tion (6.123d) from the ODE system (6.123a)–(6.123g) and replace it with an algebraic
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constraint leading to the DAE system

q̇1 = 1

2

[
ω1q4−ω2q3+ω3q2

]
, (6.126a)

q̇2 = 1

2

[
ω1q3+ω2q4−ω3q1

]
, (6.126b)

q̇3 = 1

2

[−ω1q2+ω2q1+ω3q4
]

, (6.126c)

ω̇1 = u1

Ix
−
(

Iz − Iy

Ix

)
ω2ω3, (6.126d)

ω̇2 = u2

Iy
−
(

Ix − Iz

Iy

)
ω1ω3, (6.126e)

ω̇3 = u3

Iz
−
(

Iy − Ix

Iz

)
ω1ω2, (6.126f)

0= ‖q‖−1. (6.126g)

When posed in this manner the differential variables are yT = (̃qT,ωT), and the al-
gebraic variables are û = (q4,u). Observe that the quaternion q4 is treated as an algebraic
state. The goal is to reorient the spacecraft by executing a 150 deg roll maneuver about
the x-axis in minimum time. The initial and final states are specified by the boundary
conditions5

qT(0)= (0,0,0,1), qT(tF )=
(

sin
φ

2
,0,0,cos

φ

2

)
, ω(0)= 0, ω(tF )= 0, (6.127)

where φ = 150◦ is the Euler axis rotation angle.

6.8.1 Computational Issues

As posed the problem illustrates a number of subtle computational issues. First, there are
many local solutions to this problem all with the same value of the optimal time, namely
t∗F = 28.630408 (sec). Two typical solutions are plotted in Figures 6.32–6.34, and numer-
ical experimentation suggests there are other solutions as well. Since the controls appear
linearly in the problem, the solution is “bang-bang.” However, the optimality conditions do
not determine the particular sequence of boundary arcs. For example, notice that in Figure
6.34 the solution plotted as a solid line begins with u(0)= (+50,−50,+50). In contrast the
second solution plotted with a dotted line begins with u(0)= (+50,−50,−50). The con-
trols must be on either the upper or lower bound in order to satisfy the maximum principle;
however, there is no restriction on which bound! Clearly, different combinations can lead
to different arc sequences, which are all potential local optimizers.

Second, it is not clear what (if any) difference there is between the ODE formula-
tion (6.123a)–(6.123g) and the DAE formulation (6.126a)–(6.126g). To address this let us
consider the computational behavior on one particular case, in which we (arbitrarily) add
the additional boundary conditions uT(0) = (+50,−50,+50) to the required conditions
(6.127). For this experiment let us solve the problem using the standard mesh-refinement

5Boundary values correct a typographical error in [80].
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Figure 6.32. Optimal quaternion history.

procedure, beginning with a trapezoidal discretization, and a mesh-refinement tolerance of
εmax = 10−7. As an initial guess we use a straight line between the initial and final condi-
tions (with u(0)(tF )= 0) and a guessed value t (0)

F = 30. Table 6.14 summarizes the results
of six different cases. For the first four cases the initial grid consisted of 20 equally dis-
tributed points, and the final two cases utilize an initial grid with 50 points. Cases 1 and 2
summarize the results using the DAE problem formulation with the SQP and Barrier NLP
algorithms, respectively. The computational results strongly suggest that the DAE prob-
lem is superior. When the problem is formulated as an ODE (using (6.123a)–(6.123g)) we
observe either ill-conditioning and/or slow convergence, regardless of the choice of NLP
algorithm. The difficulty can be attributed to a fundamental numerical problem associated
with quaternions. The DAE formulation explicitly ensures satisfaction of the normalization
condition ‖q(t)‖ = 1 at every grid point, even when the mesh is coarse. In contrast to en-
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Figure 6.33. Optimal velocity history.

sure the normalization holds when using the ODE formulation, it is necessary to integrate
the ODE very accurately. In other words, one cannot expect ‖q(t)‖ = 1 unless the ODEs
(6.123a)–(6.123d) are solved accurately. In particular, even if ‖q(0)‖ = 1, we must expect
that integration error will cause ‖q(tF )‖ �= 1, thereby leading to an ill-conditioned BVP.

It is instructive to examine the behavior of the normalization condition ‖q‖ = 1 after
a single step. Specifically consider a single trapezoidal step

0= y1−y0−
h

2
(f0+ f1) , (6.128)

where yT = (qT,ωT) and f is defined by the right-hand sides of the ODE system
(6.123a)–(6.123g). Let us assume yT

0 = (0,0,0,1,0,0,0) as in (6.127) and further assume
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Figure 6.34. Optimal control torque history.

uT = (+50,−50,+50) over the entire step. Clearly ‖q(0)‖ = 1. Figure 6.35 illustrates
the normalization error in the first four components of y for a range of stepsizes. Clearly,
the numerical integration does not preserve normalization even over a single step. Un-
fortunately, this result has catastrophic implications when present in the boundary value
context. In particular, if the (correctly defined) boundary conditions require ‖q(0)‖ = 1
and ‖q(h)‖ = 1, this cannot be achieved unless the numerical integration scheme has zero
error! As a consequence when a direct transcription method is used to solve the BVP, the
constraints are degenerate, leading to a rank-deficient Jacobian matrix, and the overall suc-
cess or failure of the method will depend on how the NLP treats rank deficiency. Since
this difficulty is not unique to the trapezoidal discretization, or, for that matter, the direct
transcription method, it is preferable to simply pose the problem as a DAE.
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Table 6.14. Performance comparison.

Formulation NLP Ref. Iter. Grid Pts. Func. Eval. Time (sec)
DAE SQP 9 136 10572 25.01
DAE Barrier 9 130 37407 19.52
ODE SQP 8a 353 28999 121.9
ODE Barrier 1b 20 3243 .58
ODE SQP 9c 349 17340 131.02
ODE Barrier 1d 50 3597 1.56

a Abnormal Termination (Incorrect Inertia Ill-Conditioning
b Abnormal Termination (Ill-Conditioning) Final Objective t∗F = 28.877792.
c Optimal Objective t∗F = 28.661727.
d Abnormal Termination; Final Objective t∗F = 28.664134.

Figure 6.35. Stepwise normalization error growth 1−‖q(h)‖.

6.9 Industrial Robot
Example 6.13 INDUSTRIAL ROBOT. An interesting example describing the motion

of an industrial robot is presented in [169]. The machine is shown in Figure 6.36 and is
called the Manutec r3 [138]. It has six degrees of freedom, although only three degrees of
freedom are considered in this formulation since they adequately describe the position of
the tool center point. The dynamics are described by the second order system

M(q)q̈= f(q̇,q,u), (6.129)
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Figure 6.36. Manutec r3 robot.

where the vector q= [q1(t),q2(t),q3(t)]T defines the relative angles between the robot arms.
The torque voltages u = [u1(t),u2(t),u3(t)]T are applied to control the robot motors. The
symmetric positive definite mass matrix M(q) involves very complicated expressions of the
state q, as does the function f, which defines the moments caused by Coriolis, centrifugal,
and gravitational forces. A more complete description of the quantities in this multibody
system can be found in [169]. If the angular velocities are denoted by v, then (6.129) can
be written as the first order system

q̇= v, (6.130)

M(q)v̇= f(v,q,u). (6.131)

Because the matrix M(q) has a special tree structure, it is possible to construct the inverse
using an O(n) algorithm (n = 3), as described in [138]. Thus, we obtain the semiexplicit
first order system

q̇= v, (6.132)

v̇=M−1(q)f(v,q,u). (6.133)

It should be emphasized that the right-hand side of (6.133) involves very complicated ex-
pressions that are often generated automatically by simulation software systems. The com-
putational results use software graciously provided by O. von Stryk to compute these dif-
ferential equations.

The goal is to construct a trajectory for the robot tool tip that goes from one specified
location to another (a “point-to-point” path). Also, we want the tool to begin and end the
trajectory at rest, i.e., with zero velocity. Thus, we have the boundary conditions

q(0)= (0,−1.5,0)T (rad), v(0)= 0 (rad/sec),

q(tF )= (1,−1.95,1)T (rad), v(tF )= 0 (rad/sec).

This particular tool also has physical limits that restrict the state and control variables.
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Specifically,

‖u(t)‖∞ ≤ 7.5 (V),

|q1(t)| ≤ 2.97 (rad),

|q2(t)| ≤ 2.01 (rad),

|q3(t)| ≤ 2.86 (rad),

|v1(t)| ≤ 3.0 (rad/sec),

|v2(t)| ≤ 1.5 (rad/sec),

|v3(t)| ≤ 5.2 (rad/sec).

Three different objective functions are considered in [169], the first two being minimum
time

J = tF (6.134)

and minimum energy

J =
∫ tF

0
uT(t)u(t)dt (6.135)

for a fixed final time tF .
The minimum energy problem is relatively straightforward and of significant practi-

cal value. However, a number of the concepts described in this book are illustrated by the
minimum time problem, and so it will be the primary focus of the discussion. This example
is useful because, as the authors suggest in their abstract,

The highly accurate solutions reported in this paper may also serve as bench-
mark problems for other methods.

What is most admirable is how the authors obtained the solutions using an indirect multiple
shooting method. As stated in [169],

The main drawbacks when applying the multiple shooting method in the nu-
merical solution of optimal control problems are, 1. the derivation of the nec-
essary conditions (e.g., the adjoint differential equations), 2. the estimation of
the optimal switching structure, and 3. the estimation of an appropriate initial
guess of the unknown state and adjoint variables x(t),λ(t),η(t) in order to start
the iteration process.

Briefly, their approach was to derive the adjoint equations using the software tool Maple,
which produced over 4000 lines of FORTRAN code. Then a direct transcription method
(with a coarse mesh) was used to construct both an initial guess for the switching structure
and estimates for the state and adjoint variables. Finally, this information was used to
initialize an indirect multiple shooting method. Our goal here is to solve the same problem
without deriving the adjoint equations and guessing the adjoint variables.

As posed, the minimum time problem presents two major difficulties. First, the con-
trol variable appears linearly in the differential equations. Consequently, it is most likely
that the control will be bang-bang, as discussed in Example 4.11. Singular subarcs, as de-
scribed in Example 4.9, are also possible. However, for the specific boundary conditions
given here, they do not appear. A more complete analysis can be found in [169]. Second,
when the limits on the angular velocity are active, the resulting DAE has index two. Since
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the Jacobian matrix is singular on the state constraints, the control variable is not well de-
fined by the usual necessary conditions, as illustrated by Example 4.10. The approach we
will follow is to first estimate the switching structure and then solve a multiphase problem
with index reduction on the phases corresponding to the active state boundaries.

The first step is to compute an estimate for the switching structure. To do this, let us
solve a modified version of the minimum time problem. Specifically, minimize

J = tF +ρ

∫ tF

0
uT(t)u(t)dt , (6.136)

where the “small” parameter ρ = 1× 10−5 is chosen to regularize the problem. By intro-
ducing this quadratic regularization, the control becomes uniquely defined and the solution
should be “close” to the minimum time problem. It is not necessary (or desirable) to solve
this modified problem to a high degree of precision because the primary goal is to con-
struct the appropriate switching structure. Table 6.15 summarizes the results, which were
intentionally terminated after seven mesh-refinement iterations. In fact, the computed ap-
proximation to the minimum time is 0.495196288 sec, which agrees with the true optimum
value 0.49518904 sec to four significant figures. Although there is very little “visible” dif-
ference in the objective function, there is a visible difference in the control history. It is
interesting to note that the mesh-refinement algorithm presented in Section 4.6.9 selected
the separated Simpson discretization because the function evaluations were relatively ex-
pensive.

Table 6.15. Minimum time with regularization.

Iter. Disc. M GE HE FE RHS εmax CPU (sec)

1 TR 10 16 10 619 6190 0.11×10−1 0.27×101

2 TR 19 10 8 469 8911 0.86×10−2 0.44×101

3 HS 19 7 5 304 11248 0.23×10−2 0.14×102

4 HS 37 7 5 304 22192 0.20×10−2 0.37×102

5 HS 46 8 6 359 32669 0.36×10−3 0.57×102

6 HS 84 7 5 304 50768 0.50×10−4 0.19×103

7 HS 97 5 3 194 37442 0.13×10−4 0.19×103

Total 97 60 42 2553 169420 493.53

The solution to the relaxed problem is illustrated by the dashed line in Figure 6.37.
The relative accuracy of the solution is dominated by the discretization error in the neigh-
borhood of the discontinuities. However, instead of trying to improve the accuracy by
adding grid points, it is better to explicitly introduce this discontinuous behavior using sep-
arate phases. Examination of the solution provides an estimate for the switching structure.
Thus, we are led to model the behavior using nine distinct phases with each phase character-
ized by a different set of active path constraints. Table 6.16 summarizes the phase-by-phase
situation. Thus, in phase 1, the first three angular velocities v1,v2, and v3 are free, whereas
the first two control variables u1 and u2 are at their minimum values, while the final control
u3 is a maximum.

To illustrate how the multiple-phase structure is exploited, let us consider the dynam-
ics in phase 3. In phase 3, state variable v2 is on its lower bound and state variable v3 is on
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Figure 6.37. Robot solution.

Table 6.16. Minimum time switching structure.

Phase v1 v2 v3 u1 u2 u3

1 free free free min min max

2 free min free min free max

3 free min max min free free

4 max min max free free free
5 max min free free free min

6 max free free free max min
7 free free free max max min

8 free free free max max max

9 free free free max min max
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its upper bound. Thus, we must impose the algebraic constraints

0= v2(t)− v2L , (6.137)

0= v3(t)− v3U , (6.138)

where the lower bound v2L = −1.5 and the upper bound v3U = 5.2. Neither (6.137) nor
(6.138) explicitly contains a control variable and, as such, both are index-two path con-
straints. To reduce the index, we must differentiate with respect to time giving

0= v̇2(t), (6.139)

0= v̇3(t). (6.140)

Thus, from (6.132) and (6.133) we must have

q̇1 = v1(t), (6.141)

q̇2 = v2L , (6.142)

q̇3 = v3U , (6.143)

v̇1 =
{

M−1(q)f(v,q,u)
}

1
, (6.144)

0=
{

M−1(q)f(v,q,u)
}

2
, (6.145)

0=
{

M−1(q)f(v,q,u)
}

3
. (6.146)

Since v = (v1(t),v2L ,v3U ) and u = (u1L ,u2(t),u3(t)), the dynamics in phase 3 are com-
pletely defined by this (index-one) DAE system. Thus, phase 3 can be modeled using four
(not six) differential equations and two (not three) algebraic equations. The differential
(state) variables in this phase are

(q1(t),q2(t),q3(t),v1(t))

and the algebraic (control) variables are (u2(t),u3(t)). The beginning and end of the phase
are not specified, so we must treat the values t (3)

I and t (3)
F as additional NLP variables,

where phase 3 is defined on the domain t (3)
I ≤ t ≤ t (3)

F . The phase description is complete
when boundary conditions are specified. Continuity at the beginning and end of the phase
is enforced by imposing the boundary conditions

t (2)
F = t (3)

I , t (3)
F = t (4)

I ,

q1(t (2)
F )= q1(t (3)

I ), q1(t (3)
F )= q1(t (4)

I ),

q2(t (2)
F )= q2(t (3)

I ), q2(t (3)
F )= q2(t (4)

I ),

q3(t (2)
F )= q3(t (3)

I ), q3(t (3)
F )= q3(t (4)

I ),

v1(t (2)
F )= v1(t (3)

I ), v1(t (3)
F )= v1(t (4)

I ).

To ensure the proper transition for the state-constrained variables between phases 2, 3, and
4, at the end of phase 2 we must impose the condition v3(t (2)

F )= v3U and, at the end of phase

3, it is necessary that v1(t (3)
F )= v1U . Observe that no continuity conditions are imposed on
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the control variables. In fact, one benefit of the multiphase treatment of this problem is that
it does permit accurate modeling of the control discontinuities.

It is worth noting that the technique presented here models phase 3 with a reduced
set of state and control variables. Computationally, this is advantageous because the size
of the transcribed problem has been reduced. However, it may be more convenient to im-
plement a problem that has the same number of states and controls on each phase. This
can be achieved by adding the required path equality constraints on each phase and then
simply solving a larger NLP problem. This method is outlined in the doctoral thesis of
O. von Stryk.

For brevity, we omit an explicit description of the approach for all nine phases. How-
ever, it should be clear that with a known switching structure it is relatively straightforward
to implement the correct conditions in a computational tool such as SOCS. When this
information is explicitly incorporated into a nine-phase formulation, the resulting nonlin-
ear program is well-posed and leads to the solution illustrated by the solid line in Figure
6.37. Table 6.17, which summarizes the behavior of the algorithm, clearly demonstrates
the benefit of incorporating the switching structure into the formulation.

Table 6.17. Minimum time with switching structure.

Iter. Disc. M GE HE FE RHS εmax CPU (sec)

1 TR 45 4 0 34 1530 0.18×10−4 0.34×101

2 HC 45 2 0 34 2754 0.25×10−6 0.22×101

3 HC 57 1 0 18 1890 0.66×10−7 0.23×101

Total 57 7 0 86 6174 7.81

As a final point of interest, it is worth comparing the accuracy of the solutions com-
puted using the direct transcription approach with those obtained by the benchmark indirect
multiple shooting approach [169]. The optimal objective function values are given in Ta-
ble 6.18 for both methods, with the significant figures that agree underlined. The results
agree to seven significant figures in both cases, which also validates the reliability of the
discretization error εmax ≤ 1×10−7. More important is the fact that the direct transcription
results were obtained without computing the adjoint equations and estimating values for
the adjoint variables. This is especially encouraging since it suggests that accurate results
can be obtained for many practical applications even when it is too complicated to form the
adjoint equations.

Table 6.18. Accuracy comparison.

Problem Indirect multiple shooting Direct transcription
Min. energy 20.404247 20.40424581

Min. time 0.49518904 0.495189037

6.10 Multibody Mechanism
Example 6.14 ANDREW’S SQUEEZER MECHANISM. Hairer and Wanner [107, pp.

530–542] describe a very nice example of a multibody system called “Andrew’s squeezer
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mechanism” and have graciously supplied a software implementation of the relevant equa-
tions. The problem is used as a benchmark for testing a number of different multibody
simulation codes as described in [154]. For the sake of brevity, we omit a detailed descrip-
tion of the problem and refer the reader to [107]. The multibody dynamics are described
by a second order system similar to (6.129):

M(p)p̈= f(ṗ,p,u)−GT(p)λ, (6.147)

0= g(p). (6.148)

For this example, the “position” vector p = (β,+,γ ,%,δ,�,ε)T consists of seven angles
that define the orientation of the seven-body mechanism. The bodies are linked together
via the algebraic constraints (6.148). The symmetric mass matrix M is tridiagonal, and the
derivation of these equations is often facilitated by noting that

mij = ∂2T

∂ ṗi∂ ṗ j
,

where T is the kinetic energy of the system. The mechanism is driven by a motor whose
drive torque is given by u. In [107], the torque u0 = 0.033 Nm is treated as a constant, in
which case this is simply an IVP. For the sake of illustration, let us assume that the drive
torque is a control variable that can be adjusted as a function of time. Let us impose bounds

0≤ u(t)≤ 0.066 (= 2×0.033) (6.149)

and then try to compute the control such that

J = 1

tF u2
0

∫ tF

0
u2(t)dt (6.150)

is minimized over the time domain 0≤ t ≤ tF = 0.03 ms.
First, let us convert (6.147) from a second order implicit form to a first order semiex-

plicit DAE system giving

ṗ= v, (6.151)

v̇= q, (6.152)

0=M(p)q− f(v,p,u)+GT(p)λ, (6.153)

0= g(p). (6.154)

In this formulation, q, λ, and u are the algebraic variables u, whereas p and v are the
differential variables y. Observe that the complete set of algebraic variables denoted by
u includes the “real” control u as well as the other algebraic variables q and λ. If we
differentiate (6.154) once with respect to time, we find

0= d

dt

[
g(p)

]=G(p)ṗ=G(p)v. (6.155)

A second differentiation with respect to time yields

0= d2

dt2

[
g(p)

]= d

dt

[
G(p)v

]= Ġ(p)v+G(p)v̇= gpp(p)(v,v)+G(p)q. (6.156)



312 Chapter 6. Optimal Control Examples

Since the algebraic variable q appears in this acceleration-level constraint, no additional
derivatives are needed. Observe that in its original form the problem is index three, and
this illustrates the process of index reduction. Collecting results yields the index-one DAE
system

ṗ= v, (6.157)

v̇= q, (6.158)

0=M(p)q− f(v,p,u)+GT(p)λ, (6.159)

0= gpp(p)(v,v)+G(p)q. (6.160)

Since the original problem was index three, some care must be exercised when defin-
ing initial conditions to ensure that they are consistent. First, the initial conditions must
satisfy (6.154), so following [107] we choose one of the position variables +(0)= 0 and
then compute the remaining six such that (6.154) is satisfied. The velocity-level constraint
0 = G(p)v is satisfied if we put v(0) = 0. Finally, it remains to specify initial values for
the algebraic variables q, λ, and u such that (6.159) and (6.160) hold. Rewriting these
equations gives [

M(p) GT(p)
G(p) 0

][
q
λ

]
=
[

f(v,p,u)
−gpp(p)(v,v)

]
. (6.161)

Thus, for given values of the position p, velocity v, and control u, we can solve for the
corresponding values of q and λ. The initial values computed this way are consistent and
for a constant u are sufficient to completely determine the solution to the IVP. However,
when the torque u is allowed to vary with time, there are many solutions, and so, for
comparison, we will impose the boundary condition β(tF ) = p1(tF ) = 15.8106 rad. This
specified value for the angle β is the same as the final value achieved when a constant
torque is used. In other words, we will match the final state for the constant-torque IVP
solution with the optimal control solution. Thus, the goal of the optimal control is to reach
the same state in the same time while expending less “energy” (6.150).

The direct transcription method requires an initial guess for the state and control time
functions. For most applications (including most other examples in this book), it suffices
to supply a linear initial guess. In fact, the default procedure used by SOCS to compute the
state at grid point k is

yk = y1+
(k−1)

(M−1)
(yM −y1). (6.162)

The user must specify the state at the initial grid point, y1, the state at the final grid point,
yM , the initial and final times, tI and tF , and the number of grid points, M . A similar
expression is used to define the control uk and the grid time values tk . However, it is
often possible to construct a much better initial guess for the state and control variables
using special information about the problem and, indeed, this is so for this multibody ex-
ample. One obvious approach is to fix u(t) = u0 and then integrate the index-one DAE
system (6.157)–(6.160) using software for solving a DAE IVP such as DASSL [140, 141]
or RADAU5 [107]. The second approach (also tested in [107]) is to apply an ODE method
to the differential equations (6.157), (6.158). This technique requires an explicit expres-
sion for the vector q appearing on the right-hand side of (6.158). Fortunately, by solving
(6.161), [

q
λ

]
=
[

M(p) GT(p)
G(p) 0

]−1[ f(v,p,u0)
−gpp(p)(v,v)

]
, (6.163)
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Figure 6.38. Squeezer mechanism solution.

one obtains the requisite explicit expression for q = q(v,p,u0). Of course, in practice we
just solve (6.161) and do not explicitly compute the matrix inverse. An Adams predictor-
corrector method was used to integrate the resulting ODE system, although any other IVP
method could be used.

Figure 6.38 illustrates the solution obtained using SOCS. The minimum energy re-
sults are plotted with a solid line and the constant-torque reference trajectories using a
dashed line. The minimum energy J ∗ = 0.6669897295 compared with a value J = 1 for
the constant-torque reference trajectory. The initial guess was constructed by evaluating
the integrated profile at 20 equally spaced grid points. The final solution was obtained after
four mesh-refinement iterations; the algorithm performance is summarized in Table 6.19.
It is interesting to note that the preferred discretization selected by the mesh-refinement
algorithm, as described in Section 4.6.9, was the HSS (HS). To more fully appreciate this
behavior, the same problem was solved four different ways—using two different discretiza-
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Table 6.19. Minimum energy squeezer mechanism.

Iter. Disc. M GE HE FE RHS εmax CPU (sec)

1 HS 20 29 15 2585 100815 0.66×10−4 0.15×102

2 HS 39 18 15 2381 183337 0.98×10−5 0.22×102

3 HS 72 10 7 1154 165022 0.27×10−5 0.18×102

4 HS 143 7 2 456 129960 0.24×10−7 0.20×102

Total 143 64 39 6576 579134 74.15

tions, with and without right-hand-side sparsity. For the sake of discussion, we refer to
these as Methods A–D and they are summarized below:

Method Discretization Separability RHS sparsity

A HS Yes Yes
B HS Yes No

C HC No Yes
D HC No No

An examination of the data in Table 6.20 explains why Method A (HSS exploiting
right-hand-side sparsity) is the preferred approach. First, the number of index sets was 16.
This can be attributed both to the separability of the discretization and the right-hand-side
sparsity as illustrated by the template (cf. (4.115))

T = struct


∂f
∂y
∂g
∂y
∂w
∂y

∣∣∣∣∣∣∣∣∣∣∣

∂f
∂u
∂g
∂u
∂w
∂u

= . (6.164)

When right-hand-side sparsity is not exploited (Method B), the number of index sets in-
creases to 28. Furthermore, when discretization separability is not exploited, the number
of index sets becomes larger still. Because the number of index sets for the HSS method is
much smaller, the number of function evaluations needed to compute the Jacobian and Hes-
sian is also significantly less. The net result is that the right-hand sides of the DAEs were
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Table 6.20. Discretization performance comparison.

A B C D

Index sets 16 28 38 70
FE per Hess./Jac. 152 434 779 2555

Total RHS eval. 579134 1628010 2879084 8399250
Largest NLP 7980 9044 5992 6790

Mesh-ref. iter. 4 5 4 5
Total CPU time 74.15 179.84 151.43 400.37

% Time for FE 23% 34% 55% 70%

evaluated a significantly smaller number of times. Notice that the final NLP was larger for
the HSS discretization (Methods A and B). Nevertheless, Method A is over 5.4 times faster
than the HSC discretization without right-hand-side sparsity (Method D). In simple terms,
for this problem it is better to solve a larger NLP problem because the derivatives can be
computed more efficiently!

The solution to this problem exhibits another phenomenon associated with the numer-
ical solution of high-index DAEs. Figure 6.39 plots the time history of the errors in the path
constraints. Specifically, it displays the acceleration-level error ‖gpp(p)(v,v)+G(p)q‖, the
velocity-level error ‖G(p)v‖, and the position error ‖g(p)‖. The acceleration error is ac-

ceptably small: ‖ d2g(t )
dt 2 ‖ ∼ O(10−11). However, both the position and the velocity errors

“drift” significantly from zero.

6.11 Kinematic Chain
Example 6.15 KINEMATIC CHAIN. Büskens and Gerdts (see [92]) present an exam-

ple that requires control of a multibody system. The problem is interesting because it can be
made arbitrarily large and requires the treatment of an index-2 DAE system. The multibody
dynamics are described by a system similar to (6.147)–(6.148):

ṗ= v, (6.165)

Mv̇= f(p,v)−CT(p)λ+Ku, (6.166)

0= c(p). (6.167)

Figure 6.40 illustrates a chain with ν links, which can be described by the position
vector

pT = (p1, . . . ,pν+1
)T. (6.168)

The location of the individual joints can be represented by four Cartesian components

pk =
(

xk
dk

)
, k = 1, . . . ,ν, (6.169)

pν+1 = xν+1, (6.170)
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Figure 6.39. Path-constraint errors.

where the 2-vector xk = (xk , yk) defines the horizontal and vertical position of link k, and
the 2-vector dk points from joint k to joint (k+1). The holonomic constraints (6.167)

c(p)=
 c1(p1,x2)

...
cν(pν ,xν+1)

 (6.171)

restrict the motion of the individual links. Specifically links of length lk must satisfy the
conditions

ck(pk ,xk+1)=
[

1
2

(‖dk‖2− l2
k

)
xk +dk −xk+1

]
= 0. (6.172)

As written, (6.165)–(6.167) is an index-3 DAE system, and as such it is desirable to reduce
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Figure 6.40. Kinematic chain.

the index by differentiating (6.167). In particular we must have

0= d

dt

[
c(p)

]= C(p)ṗ= C(p)v. (6.173)

The velocity constraint is represented in terms of the matrix

C(p)=
C1(p1) P1

. . .
. . .

Cν(pν) Pν

 , (6.174)

where

Ck(pk)=
[

(0,0) dT
k

I2 I2

]
(6.175)

with

Pk =
[

02 02
−I2 02

]
, k = 1, . . . , (ν−1), Pν =

[
02
−I2

]
(6.176)

and

02 =
[

0 0
0 0

]
, I2 =

[
1 0
0 1

]
.

An index-one DAE can be obtained by again differentiating

0= d

dt

[
C(p)v

]= Ċ(p)v+C(p)v̇. (6.177)
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From (6.174) it follows that

Ċ(p)=
Ċ1(p1) Ṗ1

. . .
. . .

Ċν (pν) Ṗν

 , (6.178)

where

Ċk(pk)=
[

(0,0) ḋ�k
02 02

]
=
[

(0,0) (vk,3,vk,4)
02 02

]
(6.179)

and Ṗk = 0.
Finally, by adding an additional algebraic variable q and path constraint, (6.166) can

be written in semiexplicit form. Collecting results the dynamics are defined by the index-
one DAE system

ṗ= v, (6.180)

v̇= q, (6.181)

0=Mq− f(p,v,u)+CT(p)λ−Ku, (6.182)

0= Ċv+Cq. (6.183)

The problem description is completed by defining the quantities in (6.182). First, the mass
matrix is given by

M=


M1

M2
. . .

Mν

02

 (6.184)

with

M1 =
(

2+ ν−1
)

1 0 1
2 0

0 1 0 0
1
2 0 1

3 0
0 0 0 1

12

 (6.185)

and

Mk = ν−1

[
I2

1
2 I2

1
2 I2

1
3 I2

]
, k = 2, . . . ,ν. (6.186)

The force vector is given by

fT(p,v)= (fT1, fT
2, . . . , fT

ν ,0,0) (6.187)

with

fT1 = (0,0,0,0) (6.188)
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and

fT
k =−gν−1

(
0,1,0,

1

2

)
, k = 2, . . . ,ν. (6.189)

The constants correspond to a chain with a total mass of 1 kg, and links of length lk = ν−1,
for a total length of 1 m, where g= 9.81. There is a single control u(t)= u(t) corresponding
to a force in the horizontal direction at link one. The matrix K is diagonal with

Ki,i =
{

1, i = 1,

0, i = 2, . . . ,4ν+2.
(6.190)

The chain is initialized in a horizontal stretched out position

pk(tI )=
(

xk
dk

)
=
(k−1)lk

0
lk
0

 , k = 1, . . . ,ν, (6.191)

pν+1(tI )= xν+1 =
(

1
0

)
(6.192)

with zero initial velocity v(tI )= 0. As an objective Büskens and Gerdts suggest minimizing

F =
∫ tF

tI

αxT
1(t)x1(t)+α−1uT(t)u(t)dt

= α

∫ tF

tI

x2
1(t)dt+α

∫ tF

tI

y2
1(t)dt+ 1

α

∫ tF

tI

u2(t)dt (6.193)

with α = 1000 over the time interval tI = 0 to tF = 1.
To begin the optimization process a reasonable initial guess can be constructed by

exploiting the algebraic equations (6.182) and (6.183) which can be written as

[
M CT

C 0

][
q
λ

]
=
[

f+Ku
−Ċv

]
. (6.194)

As an initial guess we choose u(0)(t) = 0. We then numerically integrate the ODE (not
DAE) system (6.180)–(6.181) from the given initial conditions (6.191)–(6.192). To solve
this IVP at each integration step it is necessary to compute q(t), which can be computed by
solving the linear system (6.194). This procedure will construct an initial time history for
all of the dynamic variables that satisfies the DAE system (6.180)–(6.183).

Computational results are presented for a chain with five links (ν = 5), and Table
6.21 summarizes a number of key parameters for this case.
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Table 6.21. Chain problem parameters.

Differential Variables 44
Algebraic Variables 38
Differential Equations 44
Algebraic Equations 37
Quadrature Functions 3
Max. Nonzeros in Row of RHS Template 6
Evaluations for Jacobian (HS) 12
Evaluations for Hessian (HS) 27
Evaluations for Jacobian (HC) 21
Evaluations for Hessian (HC) 42

For this example the right-hand-side sparsity template (cf. (4.89)) is of the form

T = .

The first 44 rows correspond to the differential equations (6.180)–(6.181) and are shaded a
light gray. The next 37 rows correspond to the algebraic equations (6.182)–(6.183) and are
unshaded. The final three rows, shaded a dark gray, correspond to the individual terms in
the quadrature objective function (6.193). Observe that this integral has been written as the
sum of three terms in order to exploit separability. It is critical to exploit the fact that the
right-hand-side template has at most six nonzero elements in any row. In fact, if right-hand-
side sparsity is ignored for this DAE system of order 82, a central difference Jacobian and
Hessian will require 3485 function evaluations, which is significantly more than the values
in Table 6.21. This point is further emphasized by reviewing the mesh-refinement summary
in Table 6.22. Notice that the entire problem, including five mesh-refinement iterations, 60
gradient evaluations, and 29 Hessian evaluations, required only 4937 function evaluations.
For this example the first refinement iteration utilized 25 equidistributed grid points and
the HSS discretization. Subsequent iterations used an HSC discretization with the grid
distribution constructed by the refinement algorithm.

Figure 6.41 shows the time history for all of the link position state variables, and the
optimal control time history is illustrated in Figure 6.42. The optimal objective function is
F∗ = .6447976339×10−1.
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Table 6.22. Chain mesh-refinement summary.

k M n NGC NHC NFE NRHS ε Time (sec)

1 25 4018 35 13 586 37518 2.8163×10−3 1.8730×101

2 49 5842 9 6 1626 188504 1.2506×10−4 1.8970×101

3 97 11602 6 4 1077 265747 1.1385×10−5 3.7610×101

4 193 23122 6 4 1077 523411 5.0244×10−7 6.8140×101

5 385 46162 4 2 571 645353 3.2910×10−8 9.1150×101

Total 385 60 29 4937 1660533 2.3460×102

Figure 6.41. Kinematic chain, states xk = (xk , yk) for k = 1, . . . ,6.
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Figure 6.42. Kinematic chain, optimal control.

Solving this problem using the direct transcription method implemented in SOCS is
relatively straightforward. In contrast, if a shooting or multiple shooting method is used,
one must address a particular issue encountered for all DAE optimization problems. Specif-
ically when the system dynamics are described by the DAEs

ẏ= f(y,u, t), (6.195)

0= g(y,u, t) (6.196)

the shooting method must incorporate software for solving a DAE IVP such as DASSL [140,
141] or RADAU5 [107]. To start the integration it is necessary to have consistent initial
conditions; that is, at the beginning of the propagation it is necessary that

0= g[y(tI ),u(tI ), tI ]. (6.197)

However, when one or more of the values y(tI ), u(tI ), or tI is modified as part of an op-
timization iteration, it is quite likely that at the perturbed point (̃y(tI ), ũ(tI ), t̃I ) �= (y(tI ),
u(tI ), tI )

0 �= g[̃y(tI ), ũ(tI ), t̃I ]. (6.198)

Unfortunately, when this happens the DAEs (6.195)–(6.196) cannot be propagated, and the
process fails. Gerdts [92] discusses two different remedies for this dilemma. It is worth
emphasizing that having inconsistent initial conditions is simply not an issue with the direct
transcription method.

6.12 Dynamic MPEC
Example 6.16 DYNAMIC MPEC. When formulating the behavior of physical sys-

tems it is sometimes useful to describe the dynamics using differential equations with dis-
continuous right-hand sides. To illustrate this situation let us consider a simple example
originally suggested by Stewart and Anitescu [162] and discussed by Baumrucker, Renfro,
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and Biegler [7].6 The goal is to minimize the objective

F = [y(2)−5/3]2+
∫ 2

0
y2(t)dt (6.199)

and satisfy the simple differential equation

ẏ = 2− sgn(y), (6.200)

defined for 0 ≤ t ≤ 2, with initial condition y(0)= y0, where the signum or sign function
is given by (1.126). If the state y represents the velocity of a body moving in contact with
a surface, then the term sgn(y) describes the friction force, and the example represents the
situation found in contact and friction problems in computational mechanics. As stated
there is no control variable and the solution is uniquely defined by the initial condition.
However, as a practical matter the numerical solution of (6.200) is problematic because
sgn(y) is discontinuous.

Now, if y(0)= y0 = −1, it is easy to demonstrate for this very simple example that
the dynamics are described by

ẏ = 3, 0≤ t ≤ 1/3, (6.201a)

ẏ = 1, 1/3≤ t ≤ 2. (6.201b)

Clearly the best way to treat the discontinuity is to introduce a separate phase correspond-
ing to each region. The location of the phase boundary can be determined by introducing a
single variable ts and then imposing a single continuity constraint y(t−s ) = y(t+s ) between
the phases. Unfortunately, for realistic problems with more complicated nonlinear dynam-
ics it is seldom so easy to identify the phase structure. Instead the discontinuous behavior
may occur many times during the process. Furthermore both the number and location of
the discontinuities can change from one optimization iteration to the next.

Let us consider an alternate approach. Since sgn[y(t)] is a discontinuous function of
time, let us replace it by an algebraic variable

s(t)= sgn[y(t)], (6.202)

which, unlike a state variable, can also behave discontinuously. Suppose at every time t we
compute the variable s(t)= s to minimize

φ(s)=−sy (6.203)

6This topic was the subject of a technical interchange at Argonne National Laboratory on October 25,
2004, hosted by Sven Leyffer, with participation by Larry Biegler, Shiva Kameswaran, and Juan J. Arrieta-
Camacho (Carnegie Mellon University) and Steve Campbell (North Carolina State University).
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subject to the constraints

s+1≥ 0, (6.204)

1− s ≥ 0. (6.205)

This is an inner level NLP just as first introduced in (1.128a)–(1.128b), and since it must
be solved for each time t the overall approach is referred to as a dynamic MPEC.

Let us now formulate an optimal control problem to reflect these conditions. For this
example we have a single differential variable y(t) and three algebraic variables uT(t) =
[s(t), p(t),q(t)]. We must determine these quantities to minimize the objective function

F = [y(2)−5/3]2+
∫ 2

0
y2(t)+ρ {p(t)[s(t)+1]+q(t)[1− s(t)]}dt (6.206)

for ρ > 0 and satisfy the dynamic constraints

ẏ = 2− s(t), (6.207)

0=−y(t)− p(t)+q(t), (6.208)

−1 ≤ s(t) ≤ 1, (6.209)

0 ≤ p(t), (6.210)

0 ≤ q(t) (6.211)

with boundary condition y(0) = y0. Observe that the complementarity conditions corre-
sponding to (1.130)–(1.131)

0≤ p ⊥ (s+1)≥ 0, (6.212)

0≤ q ⊥ (1− s)≥ 0 (6.213)

are treated using an exact penalty function in the modified objective (6.206). When viewed
this way, the functions p(t) and q(t) are just the time varying Lagrange multipliers for the
inner level optimization problem (6.203)–(6.205). By using the integral form, the SOCS

mesh-refinement procedure will automatically locate the grid points to achieve the required
accuracy. The solution produced by SOCS is plotted in Figure 6.43. Table 6.23 sum-
marizes the behavior of SOCS to solve this problem. The first two refinement iterations
used a trapezoidal discretization and the last five were forced to be (compressed) Hermite–
Simpson. The default SOCS approach would use (separated) Simpson for the last five
refinements, and is a bit faster, but has the same grid configuration. Although this was done
as a one-phase problem it appears that the switch occurs very close to t = 1/3 with almost
all of the grid points clustered in this region as illustrated in Figure 6.44. For x(0) = −1
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the optimal objective function value was φ∗ = 1.6551964, using the exact penalty value
ρ = 103.

Figure 6.43. MPEC solution.

Table 6.23. Mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 10 6 3 45 2117 2.4691×10−1 1.0×10−2

2 16 11 9 101 4159 5.8964×10−3 3.0×10−2

3 16 8 6 503 21667 1.8081×10−3 5.0×10−2

4 24 8 6 503 32051 1.2141×10−4 8.0×10−2

5 30 41 39 3077 191545 6.9649×10−6 6.1×10−1

6 36 5 3 269 30749 1.7732×10−7 1.8×10−1

7 41 5 3 269 34819 4.3035×10−8 2.0×10−1

Total 41 84 69 4767 317107 1.16
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Figure 6.44. MPEC grid distribution.

6.13 Free-Flying Robot
Example 6.17 FREE-FLYING ROBOT. Sakawa [153] presents an example that de-

scribes the motion of a free-flying robot equipped with a propulsion system. The inertial
coordinates of the center of gravity are denoted by (x1, x2) and the corresponding velocity
by (v1,v2). The thrust direction is denoted by θ and the angular velocity by ω. The thrust
from two engines denoted by T1 and T2 serve as the control variables:

ẋ1 = v1, (6.214)

ẋ2 = v2, (6.215)

θ̇ = ω, (6.216)

v̇1 = [T1+ T2]cosθ , (6.217)

v̇2 = [T1+ T2]sinθ , (6.218)

ω̇ = αT1−βT2. (6.219)

Bounds are also imposed on the thrust magnitudes:

|T1(t)| ≤ 1, |T2(t)| ≤ 1. (6.220)

As boundary conditions for the state y= (x1, x2,θ ,v1,v2,ω)T we require

y(0)=
(
−10,−10,

π

2
,0,0,0

)
T, (6.221)

y(tF )= (0,0,0,0,0,0)T. (6.222)

Although the dynamics are relatively straightforward this problem is illustrative because of
the objective function. The objective proposed by Sakawa was

F = 1

2
σ‖y(tF )−yF‖2+γ

∫ tF

0
(|T1|+ |T2|)dt . (6.223)

The first term can be omitted by simply imposing the final condition (6.222) directly. Set-
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ting γ = 1, α = β = .2, and tF = 12 completes the problem definition, and the objective
function becomes

F =
∫ 12

0
(|T1|+ |T2|)dt . (6.224)

Unfortunately, the objective function as written has discontinuous derivatives because
it involves the absolute value function. An approach for treating absolute values motivated
by the MPEC formulation (1.133c)–(1.133e) was described in Example 1.13, and the same
technique can be utilized here. The “trick” is to express each control in terms of its positive
and negative component:

T1 = u1−u2, (6.225)

T2 = u3−u4 (6.226)

with the restriction that u = (u1,u2,u3,u4)T ≥ 0. In effect, each “real” control is split into
two controls, but in so doing one can write

|T1| = u1+u2, (6.227)

|T2| = u3+u4. (6.228)

After making this transformation the modified formulation requires minimizing the
differentiable objective function

F =
∫ 12

0
(u1+u2+u3+u4)dt (6.229)

while solving the DAE system

ẏ1 = y4, (6.230)

ẏ2 = y5, (6.231)

ẏ3 = y6, (6.232)

ẏ4 = [u1−u2+u3−u4]cos y3, (6.233)

ẏ5 = [u1−u2+u3−u4] sin y3, (6.234)

ẏ6 = α(u1−u2)−β(u3−u4), (6.235)

1 ≥ u1+u2, (6.236)

1 ≥ u3+u4 (6.237)

with uk ≥ 0 for k = 1,2,3,4.
The optimal objective function is F∗ = 7.910154646. The optimal state histories

are illustrated in Figure 6.45. The time histories for the controls u are plotted in Figure
6.46 as well as the time history for the “real” controls T1 and T2. It is not surprising that
the control history has a “bang-bang” appearance since the controls appear linearly in the
problem. Note also that the final mesh distribution displayed in Figure 6.47 has very small
steps in the vicinity of the step discontinuities, which is necessary to achieve the requested
accuracy. This step contraction requires 12 iterations in the mesh-refinement procedure as
summarized in Table 6.24.
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Figure 6.45. Free-flying robot states.



6.13. Free-Flying Robot 329

Figure 6.46. Free-flying robot controls.
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Figure 6.47. Free-flying robot final grid distribution.

Table 6.24. Free-flying robot mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 10 16 9 236 4417 3.8980×10−2 9.0000×10−2

2 10 10 8 1274 28968 1.4679×10−2 1.2000×10−1

3 19 11 9 1427 62133 3.5083×10−3 3.8000×10−1

4 37 28 26 4028 312522 3.6559×10−4 2.4200×10+0

5 53 40 38 5864 641114 3.3852×10−4 5.2700×10+0

6 69 20 18 2804 416454 1.8255×10−5 3.2700×10+0

7 82 15 13 2039 370251 3.6540×10−6 6.0300×10+0

8 103 44 42 6476 1375062 2.8825×10−5 1.6500×10+1

9 115 17 15 2345 589151 4.4139×10−6 9.1200×10+0

10 134 20 18 2804 808226 1.6770×10−6 1.2330×10+1

11 142 7 5 815 293347 3.1444×10−7 9.7000×10+0

12 159 5 3 509 230675 9.8315×10−8 1.1620×10+1

Total 159 233 204 30621 5132320 7.6850×10+1
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6.14 Kinetic Batch Reactor
Example 6.18 KINETIC BATCH REACTOR. In his doctoral thesis Leineweber [130]

presents a problem originally given by Caracotsios and Stewart [62] that describes

an optimal control problem which has several interesting features: stiff nonlin-
ear DAE’s, two model stages, a nonlinear inequality path constraint, equality
and inequality boundary conditions, and unspecified terminal time. The ex-
ample in its original form was given by the Dow Chemical Company as a
challenging test problem for parameter estimation software . . . . The desired
product AB is formed in the reaction

H A+2B M −→ AM+M B M H .

(For proprietary reasons, the true nature of the reacting species has been dis-
guised.)

Leineweber presents a kinetic model of the batch reactor system in terms of both
differential and algebraic states denoted by x j and z j , respectively. A detailed explanation
of the chemical process is omitted; however, Table 6.25 summarizes the model presented
in [130]. All of the species concentrations (enclosed in brackets [.]) are given in gmol per
kg of the reaction mixture. For the formulation given here the differential and algebraic
variables are denoted by y j and u j , respectively, which correspond to the original notation
as shown in Table 6.25.

Table 6.25. Batch reactor dynamic variables.

Description
y1 x0 Differential State [H A]+ [A−]
y2 x1 Differential State [B M]
y3 x2 Differential State [H AB M]+ [AB M−]
y4 x3 Differential State [AB]
y5 x4 Differential State [M B M H ]+ [M B M−]
y6 x5 Differential State [M−]
u1 z0 Algebraic State − log([H+])
u2 z1 Algebraic State [A−]
u3 z2 Algebraic State [AB M−]
u4 z3 Algebraic State [M B M−]
u5 T Reaction Temperature

The kinetic model is stated in terms of six differential mass balance equations

ẏ1 =−k2y2u2, (6.238)

ẏ2 =−k1y2 y6+ k−1u4− k2y2u2, (6.239)

ẏ3 = k2 y2u2+ k3y4 y6− k−3u3, (6.240)

ẏ4 =−k3y4 y6+ k−3u3, (6.241)

ẏ5 = k1 y2y6− k−1u4, (6.242)

ẏ6 =−k1y2 y6+ k−1u4− k3y4y6+ k−3u3, (6.243)
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an electroneutrality condition

0= p− y6+10−u1−u2−u3−u4, (6.244)

and three equilibrium conditions

0= u2− K2y1/(K2+10−u1), (6.245)

0= u3− K3y3/(K3+10−u1), (6.246)

0= u4− K1y5/(K1+10−u1), (6.247)

where

k1 = k̂1 exp(−β1/u5), (6.248)

k−1 = k̂−1 exp(−β−1/u5), (6.249)

k2 = k̂2 exp(−β2/u5), (6.250)

k3 = k1, (6.251)

k−3 = 1

2
k−1. (6.252)

The values for the parameters k̂ j (kg/gmol/hr), β j (K), and K j (gmol/kg) are

k̂1 = 1.3708×1012, β1 = 9.2984×103, K1 = 2.575×10−16,

k̂−1 = 1.6215×1020, β−1 = 1.3108×104, K2 = 4.876×10−14,

k̂2 = 5.2282×1012, β2 = 9.5999×103, K3 = 1.7884×10−16.

The reaction temperature T (K) is treated as the control variable and is limited to

293.15≤ u5(t) ≤ 393.15 (6.253)

for the duration of the process 0 ≤ t ≤ tF . Leineweber introduces a piecewise linear ap-
proximation for u5(t). In contrast, we will treat u5(t) like all other algebraic variables, and
consequently the representation will be modified during the mesh-refinement procedure.
Presumably this is a more accurate treatment for the reaction temperature control. The
initial catalyst concentration, which Leineweber denotes by [Q+], is treated as the design
parameter p (gmol/kg) appearing in (6.244). This parameter is included as an optimization
variable and is restricted by the bounds

0≤ p ≤ .0262. (6.254)

At the initial time t = 0 the parameter is related to the corresponding differential state
through the point constraint

ψ = y6(0)− p= 0 (6.255)
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and the remaining states are fixed by the boundary conditions

y1(0)= 1.5776, (6.256)

y2(0)= 8.32, (6.257)

y3(0)= y4(0)= y5(0)= 0. (6.258)

At the free final time tF , it is required that

y4(tF )≥ 1. (6.259)

In order to restrict the rate of product formation during the initial 25% of the process time,
Leineweber introduces the nonlinear inequality path constraint

y4(t) ≤ at2 for 0≤ t ≤ (tF/4), (6.260)

where a = 2 (gmol/kg/hr2). And finally, the desired objective is to minimize the quantity

F = γ1tF +γ2 p, (6.261)

where γ1 = 1 and γ2 = 100.
The solution of this problem requires at least two phases, which Leineweber refers to

as “stages,” because the path constraint (6.260) must be imposed during the first portion of
the process. Since the DAE system is stiff it is also helpful to introduce an additional phase
at the beginning of the process in order to effectively model the rapid transient behavior.
The domain is subdivided as follows:

0≤ t ≤ tε Phase 1, (6.262)

tε ≤ t ≤ (tF/4) Phase 2, (6.263)

(tF/4)≤ t ≤ tF Phase 3, (6.264)

where we choose tε = .01. Unlike the phase boundary at tF/4, which must be introduced in
order to treat the path constraint (6.260), the first phase is introduced strictly for numerical
reasons. This rather simple artifice serves two purposes. First, it decouples the nonlinear
transient behavior at the beginning of the process during the early iterations in much the
same way as a multiple shooting method does. Second, it affords a simple way to construct
an initial guess with a sufficiently fine mesh in the transient region. A piecewise linear
initial guess with 40 grid points in Phase 1 and 30 in Phases 2 and 3 was used for the
computational results. The three-phase description is completed by ensuring continuity in
the differential states and the control across the phase boundaries, i.e.,

y( j )
k = y( j+1)

k , j = 1,2, k = 1, . . . ,6, (6.265)

u( j )
5 = u( j+1)

5 , j = 1,2. (6.266)

The algebraic states (u1,u2,u3,u4) are implicitly linked across the phase boundaries by
satisfying the algebraic path constraints (6.244)–(6.247). The differential and algebraic
states are illustrated in Figures 6.48 and 6.49. The optimal control temperature is plotted
in Figure 6.50. The piecewise linear guess for all dynamic variables is also plotted as a
dashed line in the figures. Figure 6.51 illustrates the transient behavior during Phase 1 for
some of the dynamic quantities. Table 6.26 summarizes the mesh-refinement history for
this example.
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Figure 6.48. Batch reactor differential states.



6.14. Kinetic Batch Reactor 335

Figure 6.49. Batch reactor algebraic states.
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Figure 6.50. Batch reactor control.

6.15 Delta III Launch Vehicle
Example 6.19 DELTA III LAUNCH VEHICLE. In his doctoral thesis, Benson [8]

presents a simplified formulation of an ascent trajectory for the Delta III launch vehicle.
This problem is presented as an example for the software GPOCS [147]. The dynamic
model for the motion of a nonlifting point mass in flight over a spherical rotating earth
expressed in Cartesian (ECI) coordinates is given by the differential-algebraic system

ṙ= v, (6.267)

v̇=− µ

‖r‖3 r+ T

m
u+ 1

m
D, (6.268)

ṁ =−ξ , (6.269)

1= ‖u‖, (6.270)

RE ≤ ‖r‖. (6.271)

In this formulation r is the position vector, v is the velocity vector, T is the total vacuum
thrust for all engines, and m is the total mass. The total mass flow rate of all engines is
denoted by ξ . The complete state vector is yT = (rT,vT,m) and the control vector u defines
the inertial thrust direction. The path constraint (6.270) guarantees that u is a unit vector
and (6.271) ensures the altitude is positive. The drag force is given by

D=−1

2
CD Sρ‖vr‖vr , (6.272)
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Figure 6.51. Batch reactor transient behavior (0≤ t ≤ .01).
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Table 6.26. Batch reactor mesh-refinement summary.

k M NGC NHC NFE NRHS ε Time (sec)

1 100 226 213 11859 1210606 1.4918×10−1 1.6920×10+1

2 128 79 77 25099 3998429 4.5655×10−2 1.7170×10+1

3 157 8 6 2024 736266 2.0728×10−2 7.5600×10+0

4 236 7 5 1699 951477 1.5522×10−3 1.3580×10+1

5 249 12 10 3324 1807486 1.8736×10−5 1.8260×10+1

6 267 4 2 724 557582 3.1080×10−7 9.8100×10+0

7 411 3 1 399 583047 5.0851×10−8 2.2290×10+1

Total 411 339 314 45128 9844893 1.0559×10+2

where CD is the drag coefficient, and S is the reference area. The aerodynamic force is
defined in terms of the earth relative velocity vector

vr = v−ω× r, (6.273)

where ωT = (0,0,ωE ) is the angular velocity of the earth relative to inertial space. The
density ρ is modeled using a simple exponential atmosphere

ρ = ρ0e(−h/h0), (6.274)

where ρ0 is the atmospheric density at sea level, h = ‖r‖− RE is the altitude, RE is the
spherical earth radius, and h0 is the density scale height. Table 6.27 summarizes the pa-
rameters that define the dynamic model.

Table 6.27. Dynamic model parameters.

µ 3.986012×1014 m3/sec2

RE 6378145 m
g0 9.80665 m/sec2

h0 7200 m
ρ0 1.225 kg/m3

ωE 7.29211585×10−5 rad/sec
CD .5 (nd)
S 4π m2

The Delta III expendable launch vehicle had two stages augmented with nine strap-on
solid rocket boosters (SRBs). Because of the vehicle configuration it is natural to model the
trajectory using four distinct phases. The first phase begins with the vehicle at rest on the
ground, when the main engine and six of the nine solid rocket booster SRBs ignite. When
the solid rocket burn to depletion, the inert weight is ejected. The second phase begins
when the remaining three SRBs are ignited and terminates when the solid propellant is
depleted. After ejecting the inert weight for the solid rockets, the third phase, consisting of
the main engine only, continues until the remaining liquid propellant in stage 1 is depleted.
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After ejecting the inert weight from stage 1, the second stage is ignited and burns until the
final orbit is achieved, at the time of second engine cutoff (TSECO). Table 6.28 summarizes
the parameters that define the vehicle.

Table 6.28. Vehicle parameters.

Description Symbol Solid Boosters Stage 1 Stage 2

Total Mass, (kg) ' 19290 104380 19300
Propellant Mass, (kg) ! 17010 95550 16820
Structure Mass, (kg) ϕ 2280 8830 2480
Engine Thrust, (N) T 628500 1083100 110094
Specific Impulse, (sec) I 283.33364 301.68776 467.21311
Burn Time, (sec) τ 75.2 261 700

The value for a particular component is denoted using the appropriate subscript; e.g.,
!s is the propellant mass of a solid booster. Note that unlike [8], the specific impulse is
given by I = T τ/(g0!), to ensure consistency with the other vehicle parameters.7 The
mass of the payload is 'p = 4164 (kg).

Within each phase of the ascent trajectory the thrust T and mass flow ξ used in the
dynamics (6.267)–(6.270) are defined as follows:

Phase 1 0= t (1)
I ≤ t ≤ t (1)

F = 75.2,

T = 6Ts+ T1, (6.275)

ξ = 6Ts

g0Is
+ T1

g0I1
. (6.276)

Phase 2 75.2= t (2)
I ≤ t ≤ t (2)

F = 150.4,

T = 3Ts+ T1, (6.277)

ξ = 3Ts

g0Is
+ T1

g0I1
. (6.278)

Phase 3 150.4= t (3)
I ≤ t ≤ t (3)

F = 261,

T = T1, (6.279)

ξ = T1

g0I1
. (6.280)

Phase 4 261= t (4)
I ≤ t ≤ t (4)

F ≤ 961,

T = T2, (6.281)

ξ = T2

g0I2
. (6.282)

7Computational results presented here use g0 = 9.80665 m/sec2 and ωE = 7.29211585× 10−5rad/sec.
The results in [147] use g0 = 9.79827953736866 and ωE = 7.272205216643040×10−5.
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Furthermore, this vehicle definition determines a mass time line as follows:

m[t (1)
I ]= 9's +'1+'2+'p , (6.283)

m[t (1)
F ]= m[t (1)

I ]−6!s− τs

τ1
!1, (6.284)

m[t (2)
I ]= m[t (1)

F ]−6ϕs, (6.285)

m[t (2)
F ]= m[t (2)

I ]−3!s− τs

τ1
!1, (6.286)

m[t (3)
I ]= m[t (2)

F ]−3ϕs, (6.287)

m[t (3)
F ]= m[t (3)

I ]−
(

1−2
τs

τ1

)
!1, (6.288)

m[t (4)
I ]= m[t (3)

F ]−ϕ1, (6.289)

where m[t(k)
I ] is the mass at the beginning of phase k, and m[t (k)

F ] is the mass at the end of
the phase.

The launch vehicle begins at rest relative to the earth with the following initial state
vector:

r(0)= r0 = [RE cosψL , 0 , RE sinψL ]T, (6.290)

v(0)= v0 = −ω× r0, (6.291)

m(0)= m0 = 9's +'1+'2+'p, (6.292)

where ψL = 28.5 (deg) is the (geocentric) latitude of the launch site at Cape Canaveral, and
(6.291) ensures the relative velocity given by (6.273) is zero. At the final time t f = t (4)

F ,
the launch vehicle must insert the payload into a geosynchronous transfer orbit (GTO). The
classical elements

a f = 24361140 (m), (6.293)

e f = .7308, (6.294)

i f = 28.5 (deg), (6.295)

� f = 269.8 (deg), (6.296)

ω f = 130.5 (deg), (6.297)

referred to as semimajor axis, eccentricity, inclination, right ascension of the ascending
node (RAAN), and argument of perigee, respectively, can all be computed from the ter-
minal state vector (r f ,v f ) = (r[t (4)

F ],v[t (4)
F ]). Continuity in the position and velocity from

phase to phase is enforced by imposing the conditions

r[t (k)
F ]= r[t(k+1)

I ], (6.298)

v[t (k)
F ]= v[t(k+1)

I ] (6.299)
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for k = 1,2,3. Finally, the mass is linked by imposing (6.285), (6.287), and (6.289), which
incorporates the requisite jettison of engine structure.

The objective is to choose the control vector u(t), and final time t f , to maximize the
final mass

F = m(t f ) (6.300)

subject to the DAE constraints (6.267)–(6.271), with initial conditions (6.290)–(6.292),
boundary conditions (6.293)–(6.297), and linkage conditions (6.298), (6.299), (6.285),
(6.287), and (6.289).

A guess is required to initiate the iterative solution of the optimal control problem,
and for the results presented here a simple linear interpolant of the dynamic variables was
utilized. Specifically a guess for the state is

y(t)= y0+ (y f −y0)
t

t f
, (6.301)

where 0 ≤ t ≤ t f . The initial state y0 can be defined immediately from (6.290)–(6.292).

If we guess t f = 961, the final mass is just m f = m[t (4)
F ] = m[t (4)

I ]− !2, where (6.289)
is used. A guess for the final values of the position and velocity vector (r f ,v f ) can be
constructed from the values of the classical elements (6.293)–(6.297) provided a guess for
the true anomaly ν f is also supplied. One can simply guess ν f = 0 or guess a value of ν f
such that the altitude has a specified value. For the results given, we guess ν f such that
h f = 200 (km). The initial guess for the control angles is just uT(t)= (1,0,0).

The optimal steering commands u(t) are plotted in Figure 6.52. Figure 6.53 illustrates
the optimal solution for the position r(t) and velocity state v(t). Figure 6.54 displays the
history for the mass m(t), the altitude h(t) = ‖r(t)‖− RE , and the velocity ‖v(t)‖. The
optimal value for the final mass is F∗ = m∗(t f ) = 7529.712412 (kg), which occurs when
t f = 924.139 (sec).

Table 6.29 summarizes some of the important performance characteristics of the
SOCS algorithm. Four mesh-refinement iterations were required to reduce the discretiza-
tion error below the requested tolerance εmax = 10−7. The first refinement iteration used a
trapezoidal discretization (denoted “TR”), with 10 grid points in each phase. The resulting
sparse NLP had n = 401 variables, with 76 degrees of freedom (NDOF). This nonlinear
program required solving 91 QP subproblems, which was completed in 2.00 seconds of
CPU time, and yields a discretization error of εmax = 7.4× 10−4. To improve the solu-
tion accuracy, the mesh-refinement procedure did two things: in phase 1 it changed the
discretization technique from trapezoidal to separated Hermite–Simpson (HS), and in the
remaining phases increased the number of grid points from 10 to 19. This larger NLP with
761 variables was solved in .16 seconds and required six QP subproblems. Two additional
mesh-refinement iterations were required, all using a compressed Hermite–Simpson (HC)
discretization to achieve the requested accuracy, with the overall solution process taking
3.13 sec of CPU time. Observe that the number of QP iterations needed to solve the NLP
problems does not grow with the number of degrees of freedom!

In comparison, the Gauss pseudospectral method implemented in the GPOCS soft-
ware was also used to solve this problem. Using 20 nodes per phase, with no mesh refine-
ment, the NLP subproblem was solved using the SNOPT [94] NLP algorithm. This formu-
lation leads to a problem with 864 variables and 694 constraints. The GPOCS/SNOPT al-
gorithm requires 1674 major iterations (QP subproblems) compared with 64 for the SOCS
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Figure 6.52. Delta III ascent; controls u(t).

results. The total solution time for the GPOCS/SNOPT algorithm was 2724.73 sec com-
pared to 3.13 sec using SOCS. The primary reason for this performance difference can be
attributed to the underlying NLP algorithm. SNOPT constructs the Hessian matrix using a
quasi-Newton method which requires 1674 iterations for this problem with 864 variables.
The quasi-Newton approximation also does not exploit sparsity in the Hessian matrix. In
contrast, SOCS is a Newton method and does exploit Hessian sparsity.
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Figure 6.53. Delta III ascent; states r(t), v(t).
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Figure 6.54. Delta III ascent; mass, altitude, velocity.
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Table 6.29. Delta III mesh-refinement summary.

k Disc. M n NDOF NQP ε Time (sec)

1 (TR,TR,TR,TR) (10,10,10,10) 401 76 91 7.4×10−4 2.00
2 (HS,TR,TR,TR) (10,19,19,19) 761 148 6 6.9×10−5 .16
3 (HC,HC,HC,HC) (19,19,19,19) 977 292 5 2.5×10−6 .37
4 (HC,HC,HC,HC) (37,30,37,37) 1822 552 3 9.9×10−8 .60

Total 141 105 3.13

6.16 A Two-Strain Tuberculosis Model
Example 6.20 TWO-STRAIN TUBERCULOSIS MODEL. In their paper Jung, Lenhart,

and Feng [119] describe a model for two-strain tuberculosis treatment as follows:

In the absence of an effective vaccine, current control programs for TB have fo-
cused on chemotherapy. The antibiotic treatment for an active TB (with drug-
sensitive strain) patient requires a much longer period of time and a higher
cost than that for those who are infected with sensitive TB but have not de-
veloped the disease. Lack of compliance with drug treatments not only may
lead to a relapse but to the development of antibiotic resistant TB—one of the
most serious public health problems facing society today. A report released
by the World Health Organization warns that if countries do not act quickly to
strengthen their control of TB, the multi-drug resistant strains that have cost
New York City and Russia hundreds of lives and more than $1 billion each
will continue to emerge in other parts of the world. The reduction in cases of
drug sensitive TB can be achieved either by “case holding,” which refers to
activities and techniques used to ensure regularity of drug intake for a duration
adequate to achieve a cure, or by “case finding,” which refers to the identifi-
cation (through screening, for example) of individuals latently infected with
sensitive TB who are at high risk of developing the disease and who may ben-
efit from preventive intervention. These preventive treatments will reduce the
incidence (new cases per unit of time) of drug sensitive TB and hence indi-
rectly reduce the incidence of drug resistant TB.

The dynamic model divides the host population into distinct epidemiological classes,
in which the population of each class is treated as a state variable. Thus, the total population
satisfies the relation

N = S+ L1+ I1+ L2+ I2+ T , (6.302)

where Table 6.30 describes the individual states as well as their respective initial conditions.

Table 6.30. TB model state variables.

Description State Initial Condition
Susceptible S(t) 76N/120
Treated Effectively T (t) 1N/120
Latent, infected with typical TB, not infectious L1(t) 36N/120
Latent, infected with resistant TB, not infectious L2(t) 2N/120
Infectious, with typical TB I1(t) 4N/120
Infectious, with resistant TB I2(t) 1N/120
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The dynamic behavior of this system is described by the following system of ODEs:

Ṡ =*−β1S
I1

N
−β∗S

I2

N
−µS, (6.303)

Ṫ = u1r1 L1−µT + (1− (1−u2)(p+q))r2 I1−β2T
I1

N
−β∗T

I2

N
, (6.304)

L̇1 = β1S
I1

N
− (µ+ k1)L1−u1r1 L1+ (1−u2)pr2 I1+β2T

I1

N
−β∗L1

I2

N
, (6.305)

L̇2 = (1−u2)qr2 I1− (µ+ k2)L2+β∗(S+ L1+ T )
I2

N
, (6.306)

İ1 = k1L1− (µ+d1)I1− r2 I1, (6.307)

İ2 = k2L2− (µ+d2)I2. (6.308)

The dynamic model incorporates two variables u1(t) and u2(t), referred to as “case find-
ing” and “case holding” controls, respectively. The “case finding” control represents the
fraction of typical TB latent individuals that are identified and put under treatment. The
effort that prevents failure of the treatment of the typical TB infectious individuals appears
as the coefficient 1− u2(t). Thus when the “case holding” control u2(t) is near 1, the im-
plementation costs are high, but there is low treatment failure. Since the goal of the model
is to reduce the latent and infectious groups with resistant-strain TB, while also keeping
treatment costs low, they propose minimizing the composite objective

F =
∫ tF

0

[
L2+ I2+ 1

2
B1u2

1+
1

2
B2u2

2

]
dt . (6.309)

The control variables are bounded .05 ≤ uk(t) ≤ .95 and the final time is fixed tF = 5
(years). For the numerical results they also assume the total population N is constant, so
* = µN , and d1 = d2 = 0. Finally, the weight factors B1 = 50 and B2 = 500 emphasize
the cost of holding patients in treatment in comparison to screening and finding them in the
first place. Table 6.31 summarizes the various parameters used in the model.

Table 6.31. TB model parameters.

Infection rate (susceptible) β1 13
Infection rate (treated) β2 13
Per capita natural death rate µ .0143
Per capita death rate induced by typical TB d1 0
Per capita death rate induced by resistant TB d2 0
Rate individual in L1 becomes infectious k1 .5
Rate individual in L2 becomes infectious k2 1
Treatment rate for individual with latent, typical TB r1 2
Treatment rate for individual with infectious, typical TB r2 1
Fraction of I1 not completing treatment p .4
Fraction of I2 not completing treatment q .1
Total population N = S+ L1+ I1+ L2+ I2+T N 30000
Infection rate (uninfected) β∗ .029
Weight factor of “case finding” control u1 B1 50
Weight factor of “case holding” control u2 B2 500
Recruitment Rate * µN
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The optimal solution obtained using SOCS is illustrated in Figure 6.55 and yields an
optimal objective function value of F∗ = 5.1520731×103. The total number of individuals
infected with resistant TB at the final time is L2+ I2 = 241.57031+881.34819≈ 1123.

Figure 6.55. Optimal state and control.
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6.17 Tumor Anti-angiogenesis
Example 6.21 TUMOR ANTI-ANGIOGENESIS. In their paper Ledzewicz and Schät-

tler [128] state

. . . the search for cancer treatment methods that would circumvent the problem
of drug resistance is of tantamount importance. One such approach is tumour
anti-angiogenesis.

A growing tumour, after it reaches just a few millimetres in size, no longer
can rely on blood vessels of the host for its supply of nutrients, but it needs to
develop its own vascular system for blood supply. In this process, called angio-
genesis, there is a bi-directional signaling between tumour cells and endothe-
lial cells: tumour cells produce vascular endothelial growth factor (VEGF)
to stimulate endothelial cell growth; endothelial cells in turn provide the lin-
ing for the newly forming blood vessels that supply nutrients to the tumour
and thus sustain tumour growth. But endothelial cells also have receptors that
make them sensitive to inhibitors of inducers of angiogenesis like, for example,
endostatin, and pharmacological therapies typically target the growth factor
VEGF trying to impede the development of new blood vessels and capillar-
ies and thus block its growth. The tumour, deprived of necessary nutrition,
regresses. Since the treatment targets normal cells, no occurrence of drug re-
sistance has been reported in laboratory studies . . . For this reason tumour anti-
angiogenesis has been called a therapy resistant to resistance which provides a
new hope in the treatment of tumour-type cancers.

In [128] the interaction between tumor cells and endothelial cells is described by
a system with the primary tumor volume, p, and the carrying capacity of the vascular,
q , as variables. The control which corresponds to the angiogenic dose rate is bounded
0≤ u(t)≤ a, and a constraint on the total anti-angiogenic treatment administered∫ tF

0
u(t)dt ≤ A

is also imposed. An additional variable y equal to the integral is introduced so that the
constraint can be written as y(tF )≤ A. The resulting dynamics are thus given by

ṗ =−ξp ln

(
p

q

)
, (6.310)

q̇ = q
[
b− (µ+dp

2
3 +Gu)

]
, (6.311)

ẏ = u (6.312)

for 0 ≤ t ≤ tF , with initial conditions p(0)= p0, q(0)= q0, and y(0)= 0. The constant ξ
denotes a tumor growth parameter, while G is a constant that represents the anti-angiogenic
killing parameter. The “birth” rate is modeled by the constant b, the “death” rate is given
by d , and µ is a small parameter introduced to describe the loss of endothelial cells due to
natural causes. The system has an asymptotically stable focus at p̄ = q̄ = [(b−µ)/d

]3/2,
and consequently the domain is restricted to 0 < p ≤ p̄ and 0 < q ≤ q̄ . Ledzewicz and
Schättler [128] demonstrate the problem is well-posed provided the initial conditions sat-
isfy p0 ≥ q0. For our illustration we choose p0 = p̄/2 and q0 = q̄/4 with the remaining
parameters defined in Table 6.32. The final time tF is free and the goal is to minimize the
size of the tumor at the final time, i.e., minimize p(tF ).
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Table 6.32. Tumor model parameters.

Parameter Value
ξ 0.084 per day
b 5.85 per day
d 0.00873 per mm2 per day
G 0.15 kg per mg of dose per day
µ 0.02 per day
a 75
A 15

Because the control appears linearly in the differential equations the solution is “bang-
bang,” and a complete analysis of the necessary conditions is given in [128]. In particular,
the adjoint equations are

λ̇1 = ξλ1

[
ln

(
p

q

)
+1

]
+ 2

3
λ2dqp−

1
3 , (6.313)

λ̇2 =−ξλ1
p

q
+λ2

[
b− (µ+dp

2
3 +Gu)

]
, (6.314)

λ̇3 = 0 (6.315)

with Hamiltonian function

H =−λ1ξp ln

(
p

q

)
+λ2q

[
b− (µ+dp

2
3 +Gu)

]
+λ3u. (6.316)

The Hamiltonian is minimized by choosing the optimal control given by

u∗(t)=
{

0 if %(t) > 0,
a if %(t) < 0,

(6.317)

where the switching function is

%(t)= λ3(t)−λ2(t)Gq(t). (6.318)

For our illustration there is a single switch time ts that occurs when the switching function
is zero, and as such it is natural to consider a formulation with two distinct phases. During
phase 1, the control is at its upper bound u(t) = a and during phase 2 at the lower bound
u(t)= 0. The indirect formulation is complete when the remaining boundary conditions

λ1(tF )= 1, H (tF )= 0, (6.319)
λ2(tF )= 0, %(ts)= 0 (6.320)

are satisfied.
The simplest way to compute numerical results for this problem is to apply the SOCS

direct transcription method. This approach does not require knowledge of the switching
structure, does not require implementation of the indirect necessary conditions, and does
not require initial estimates for the adjoint variables. Table 6.33 briefly summarizes the
mesh-refinement history and solution time needed to reach the requested accuracy of ε <
10−7.

A second alternative is to incorporate knowledge of the phase structure within the
direct formulation. Specifically, one can formulate a problem with two phases. During
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Table 6.33. Mesh refinement—direct formulation.

k M ε Time (sec)

1 60 4×10−5 .11
2 119 2×10−6 1.0
3 119 7×10−7 1.2
4 124 5×10−8 .67

Total 124 2.98

Table 6.34. Method comparison.

Method p∗(tF ) t∗F
One-Phase Direct 7.5716831×103 1.1954773
Two-Phase Direct 7.5716700×103 1.1963497

Two-Phase Indirect 7.5716701×103 1.1963496

phase one the control is u(t) = a, and during phase two u(t) = 0. The switch time ts is
treated as free. This approach incorporates knowledge about the discontinuous behavior
in u(t) without explicitly imposing the switching conditions. Using the solution from the
single phase formulation provides an excellent initial guess for the two phase problem, and
convergence is extremely rapid. Finally the third alternative is to derive the adjoint and
transversality conditions and then solve the indirect formulation using either an indirect
collocation or indirect shooting method. The discrete adjoint estimates from the second
formulation provide an excellent guess for this approach, and again converged results are
obtained easily. Table 6.34 presents a comparison of the results obtained by each method,
all with the requested accuracy of ε < 10−7. Clearly the two-phase results are consistent to
seven significant figures, whereas the one-phase direct result differs slightly in the seventh
digit. This small inaccuracy can be attributed to the method used to represent the optimal
bang-bang control. In particular when two phases are used, the step discontinuity in the
control can be modeled accurately. In contrast, when the problem is treated using a single
phase, the control history is continuous by construction, and the mesh must be refined in
order to approximate the step discontinuity. Figure 6.56 illustrates the continuous control
approximation (solid line) using the one-phase direct method, compared with the discon-

Figure 6.56. Control.
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tinuous (dotted line) control from the two-phase method. Figure 6.57 illustrates the optimal
states, adjoints, and switching function.

Figure 6.57. States.
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This problem illustrates two important points. First, if the control (or state) is dis-
continuous at the solution, it is important to formulate the problem using multiple phases.
The multiphase formulation permits an accurate representation of discontinuous behavior.
Second, when mesh refinement is used with a direct method there is no loss of accuracy
compared to an indirect method. In short, a direct and an indirect method have comparable
accuracy. Thus, as a practical matter, there is no reason to derive the adjoint equations,
unless they are needed for some other purpose.



Chapter 7

Advanced Applications

Most effective numerical methods are based on the following premise:

A hard problem can be broken into a sequence of easy subproblems.

For example, to compute the root of a nonlinear constraint c(x)= 0 using Newton’s
method, one must solve the sequence of linear approximations xk+1 = xk − c(xk)/c′(xk).
Similarly, when using a nonlinear programming (NLP) algorithm to solve a nonlinear op-
timization problem, one solves a sequence of (a) quadratic programming subproblems (an
SQP method) or (b) unconstrained subproblems (a barrier method). In like fashion an opti-
mal control solution can be obtained by solving a sequence of NLP subproblems. Of course
there may be no clear definition of an “easy subproblem.” For Newton’s method is it better
to compute c′(xk) or use a secant approximation? Is a quadratic program easier than an
unconstrained subproblem? Ultimately the solution technique should consist of a sequence
of subproblems that can be solved efficiently and reliably.

This chapter presents a number of advanced applications that require using a combi-
nation of the techniques presented in the book.

7.1 Optimal Lunar Swingby Trajectories
7.1.1 Background and Motivation

With the growth of the space age, it has become desirable to place spacecraft into a wide
variety of mission orbits. Typically a launch vehicle is used to deploy a satellite into a low
altitude park orbit. It then becomes necessary to transfer from the park orbit to the mission
orbit. A major goal of mission design is to compute this orbit transfer to minimize some
performance objective. The most common objective is to minimize the fuel consumed by
the orbit transfer. For spacecraft using propulsion systems whose thrust is high compared to
the mass of the vehicle, i.e., so-called high thrust systems, the duration of the burns is very
short compared to the duration of the orbit transfer itself. Consequently it is common to
model high thrust systems using an instantaneous or impulsive velocity change. In essence
a minimum fuel orbit transfer is approximated using a so-called minimum �v transfer. In
1925, the German scientist Walter Hohmann demonstrated that a minimum �v transfer be-
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tween two circular orbits in the same plane could be achieved using two impulsive velocity
increments.

Although the original Hohmann transfer was strictly between coplanar orbits, the
term is often loosely used to describe any two-impulse transfer. For example, one of the
most common applications involves transferring between a circular orbit with an altitude
of 150 nm and inclination of 28.5 deg (a standard shuttle park orbit) to a geosynchronous
orbit which is circular at an altitude of 19323 nm and inclination of 0 deg. The Hohmann
transfer for this application is illustrated in Figure 6.21. However, the park and mission
orbits are not coplanar in this case, and some of the requisite inclination change must be
accomplished by each of the �v. For this transfer nearly all of the inclination change (≈
26 deg) is achieved by the second impulse. In fact for any orbit transfer it is most efficient
to change the orbital plane at a high altitude when the velocity is smallest.

Because changing the orbit plane is the most expensive portion of the transfer one is
led to consider a three-burn transfer. For this type of transfer, the second burn does all of
the plane change at a very high altitude. In fact it was demonstrated in Betts [12] that a
three-impulse solution is more efficient than two impulses for some transfers that require
large plane changes. Figure 7.1 illustrates the situation. A critical property of a three-burn
transfer is that the second burn be located a “long” distance from the primary body (earth).
Thus one is led to consider locating the second impulse at or near the moon. In effect
the lunar gravitational attraction can be used in lieu of the second burn, thereby producing
a very efficient trajectory. The concept of using a lunar gravity assist to design a nominal
mission trajectory has been considered by many authors (cf. [172]). Lee et al. [129] discuss
using a lunar swingby; however, as with most analyses they do not minimize the impulsive
velocity. A more detailed presentation is given in [22].
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....................................................................................................................
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....................................................................................................................
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tI ts tF
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Mission Orbit

Figure 7.1. Optimal three-impulse transfer orbit.

This application deals with an approach for computing optimal lunar swingby trajec-
tories between two earth orbits. First some representative optimal transfers are presented
that illustrate the performance benefits. Then the problem formulation is explained and a
number of challenging numerical issues are addressed. To facilitate using the examples as
benchmark problems, the dynamics are modeled using three-body mechanics but do not
require more sophisticated planetary ephemerides. The overall solution procedure requires
solution of a dense nonlinear program, an optimal control problem, and an optimal estima-
tion problem.
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7.1.2 Optimal Lunar Transfer Examples

For the sake of illustration examples of lunar swingby transfers to four different mission
orbits are presented. All of the transfers begin in a circular park orbit at an altitude of
150nm, with an inclination of 28 deg. The outbound transfer orbit is established by �v1,
and after passing around the moon the inbound transfer returns to the mission orbit which
is established by applying�v2. All of the transfers minimize the total �v, that is,

F = ‖�v1‖+‖�v2‖. (7.1)

To obtain meaningful results it is also necessary to impose some limit on the total transfer
time. An upper bound of 15 days is imposed on the total transfer time for the examples.

Synchronous Equatorial

Results are presented for a geosynchronous orbit which is circular at an altitude of 19323
nm and inclination of 0 deg. Figure 7.2 illustrates the optimal lunar swingby trajectory and
for comparison summarizes the total �v of the swingby as well as a standard two-impulse
Hohmann transfer. It is interesting to observe that even for this case, which requires only
28.5 degrees of plane change, the swingby solution saves 188.01 fps of total �v.

‖�V1‖ ‖�V2‖ Total (fps)
Hohmann 8056.67 5851.44 13908.12
Swingby 10201.39 3518.72 13720.11

Figure 7.2. Optimal swingby transfer to geosynchronous orbit.

Polar, 24 hr (A)

Figure 7.3 illustrates the optimal lunar swingby trajectory to an orbit which is circular at
an altitude of 19323 nm and inclination of 90 deg. This solution is characterized by an
outbound transfer trajectory from the descending node of the park orbit and as such will
be referred to as solution “A.” The total plane change for this transfer is 61.5 deg, which is
achieved using 3059.56 fps less than the corresponding Hohmann transfer.

Polar, 24 hr (B)

Figure 7.4 illustrates the optimal lunar swingby trajectory to the same mission orbit as in
section 7.1.2. In contrast to solution “A,” this trajectory is characterized by an outbound



356 Chapter 7. Advanced Applications

‖�V1‖ ‖�V2‖ Total (fps)
Hohmann 8113.34 8610.82 16724.17
Swingby 10225.16 3440.44 13665.61

Figure 7.3. Optimal swingby transfer to polar, 24 hr orbit.

‖�V1‖ ‖�V2‖ Total (fps)
Hohmann 8113.33 8610.77 16724.10
Swingby 10251.24 3459.66 13710.90

Figure 7.4. Optimal swingby transfer to polar, 24 hr orbit.
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‖�V1‖ ‖�V2‖ Total (fps)
Hohmann 546.99 39682.76 40229.76
Swingby 10392.39 4826.32 15218.71

Figure 7.5. Optimal swingby transfer to Molniya orbit.

transfer from the ascending node of the park orbit and as such will be referred to as solution
“B.” Although the swingby solution “B” is slightly less efficient than solution “A” it still is
3013.20 fps less than the Hohmann transfer. It is also worth noting the very small difference
in the Hohmann solutions between “A” and “B,” which can be attributed to the small (yet
different) lunar perturbations.

Retrograde Molniya

The final example as illustrated in Figure 7.5 is a retrograde Molniya mission orbit. Specif-
ically the orbit is elliptical with an (osculating) apogee altitude of 21450 nm, a perigee
altitude of 350 nm, an argument of perigee of 270 deg, and a retrograde inclination of
116.6 deg. This particular orbit has a period of approximately 12 hr and requires an orbital
plane change of 88.1 deg. For this example the lunar swingby saves 25011.05 fps of total
�v. In this extreme case the Hohmann transfer is approximately 264% more expensive.

7.1.3 Equations of Motion

The dynamic behavior of a spacecraft can be modeled using a simplified version of the N-
body problem as described in Battin [6]. It is convenient to use an earth centered Cartesian
coordinate system, with boldface notation used to distinguish a vector from a scalar. Let r
and v denote the position and velocity of the spacecraft, and let rL and vL the position and
velocity of the moon.8 The motion is described by

ṙ= v, (7.2)

v̇=−µe

r3 r+gL , (7.3)

8Subscript convention: x p , park; xm , mission; xL , lunar; xı , inbound; xo, outbound; xs , swingby.
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ṙL = vL , (7.4)

v̇L =−µ◦
r3

L

rL , (7.5)

where ‖r‖ = r , ‖rL‖ = rL , and µ◦ = µe +µL = Gme +GmL , where G is the universal
gravitation constant with me and m L denoting the masses of the earth and moon, respec-
tively. The disturbing acceleration caused by the gravitation of the moon is

gL =−µL

[
1

d3 d+ 1

r3
L

rL

]
, (7.6)

where

d= r− rL (7.7)

is a vector from the moon to the vehicle with magnitude ‖d‖= d . To avoid losing precision
when evaluating (7.6), Battin [6] suggests defining the function

F(q)= q

[
3+3q+q2

1+ (
√

1+q)3

]
, (7.8)

where

q = rT(r−2rL)

rT
L rL

. (7.9)

The perturbing acceleration (7.6) is then given by

gL =−
µL

d3

[
r+ F(q)rL

]
. (7.10)

7.1.4 Kepler Orbit Propagation

As written the differential equations (7.4)–(7.5) constitute a two-body approximation to the
lunar motion. It is well known that this system has an analytic solution, and for convenience
we briefly summarize the approach (cf. [6], [78]). In general, the technique is applicable
to any two-body system using the appropriate definitions for the gravitational constant µ◦
and coordinates (r,v), and consequently we omit the subscript for generality. Given a
Cartesian state vector r◦,v◦ at time t◦ called the reference epoch and a specified change in
eccentric anomaly �E = E− E◦, a new state vector (r,v), with corresponding time change
�t = t− t◦, can be computed as follows:
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r◦ = ‖r◦‖, (7.11)

σ◦ = 1√
µ◦

rT◦v◦, (7.12)

v2◦ = vT◦v◦, (7.13)

1

a
= 2

r◦
−
[
v2◦
µ◦

]
, (7.14)

ρ = 1− r◦
a

, (7.15)

C = a(1− cos�E), (7.16)

S =√a sin�E , (7.17)

F = 1− C

r◦
, (7.18)

G = 1√
µ◦

(r◦S+σ◦C) , (7.19)

r = r◦ +ρC+σ◦S, (7.20)

Ft =−
√
µ◦

rr◦
S, (7.21)

Gt = 1− C

r
, (7.22)

r= Fr◦ +Gv◦, (7.23)

v= Ft r◦ +Gtv◦, (7.24)

�t =
√

a3

µ◦

[
�E+ σ◦C

a
√

a
−ρ

S√
a

]
. (7.25)

Notice that the sequence of calculations (7.11)–(7.25) constitutes an explicit defini-
tion for the states, as well as the corresponding time increment, which can be expressed
as

r= hr (�E), (7.26)

v= hv(�E), (7.27)

�t = ht (�E). (7.28)

The propagation is explicit with respect to the independent variable �E but is implicit with
respect to the time t . To be more precise let us rewrite (7.28) as

tE = t◦ +ht (�E) (7.29)

since �t = tE − t◦, where tE is the final time corresponding to the eccentric anomaly in-
crement �E .
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7.1.5 Differential-Algebraic Formulation of Three-Body Dynamics

The original system of 12 differential equations (7.2)–(7.5) can be recast as a differential-
algebraic (DAE) system involving the six states r(t) and v(t) and the single algebraic vari-
able �E(t):

ṙ= v, (7.30)

v̇=−µe

r3
r+gL , (7.31)

0= t− t◦−ht (�E). (7.32)

Observe that the implicit algebraic equation (7.32) is a modified form of Kepler’s tran-
scendental equation. The gravitational perturbation on the spacecraft gL is defined by the
position vectors r and rL using (7.8)–(7.10). The lunar position vector is completely de-
termined by (7.26) using the Kepler propagation procedure outlined in (7.11)–(7.25). Thus
the complete functional dependency is given by

gL = gL (r,�E) .

7.1.6 Boundary Conditions

Denote the state variables at a particular time (e.g., the beginning or end of the trajectory)
by r̃ and ṽ. Boundary conditions defining both the park and mission orbits are typically
stated in terms of osculating orbit elements, i.e., nonlinear functions of r̃ and ṽ. There are
many equivalent ways to specify both the park and the mission orbits. A circular orbit with
specified radius r̄ can be achieved by imposing the following boundary constraints:

r̄ = ‖̃r‖, (7.33a)√
µe

r̄
= ‖̃v‖, (7.33b)

0= r̃T̃v√
µer̄

. (7.33c)

Equation (7.33a) fixes the magnitude of the position vector, (7.33b) defines the circular
velocity, and (7.33c) ensures the flight path angle (and eccentricity) is zero. Observe that
when (7.33a) and (7.33b) are satisfied (7.33c) is just

r̃T̃v√
µer̄

= r̃T̃v
‖̃r‖‖̃v‖ ,

which is equivalent to making the normalized position and velocity vectors orthogonal.
However, as written the denominator in (7.33c) is a constant, which is the preferable, i.e.,
“more linear,” way to pose the constraint.

To achieve a particular inclination ī we must enforce the boundary condition

cos ī = ĥ3, (7.34a)
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where the angular momentum vector h and north vector iz are

h= r̃× ṽ, (7.34b)

ĥ= h
‖h‖ , (7.34c)

iz = (0,0,1)T, (7.34d)

ĥ3 = iTz ĥ. (7.34e)

Observe that (7.34a) is stated in terms of cos ī rather than the inclination ī itself, thereby
avoiding ambiguities when computing the inverse cosine.

If the desired orbit is elliptic, (7.33a)–(7.33c) are not applicable. Instead to achieve a
specified semimajor axis ā, and eccentricity ē (> 0), we must impose the boundary condi-
tions

ā =
(

2

‖̃r‖ −
‖̃v‖2

µe

)−1

, (7.35a)

ē = ‖e‖, (7.35b)

where the eccentricity vector is given by

e= 1

µe
(̃v×h)− r̃

‖̃r‖ , (7.35c)

and the angular momentum is given by (7.34b).
For elliptic orbits (‖e‖ > 0), the eccentricity vector is directed toward periapsis,

thereby defining the orientation of the principal axis. In general, the argument of peri-
apsis ω is an angle measured in the orbital plane from the ascending node to periapsis. The
particular case ω̄ = 270◦ can be enforced by imposing the conditions

0= êTin , (7.36a)

0 > ê3, (7.36b)

where

ê= e
ē

, (7.36c)

ê3 = iTz ê, (7.36d)

in = iz× ĥ, (7.36e)

and e is given by (7.35c), with ĥ defined by (7.34c), and iz from (7.34d). Again notice that
the denominator of (7.36c) involves the constant ē instead of the quantity ‖e‖ appearing on
the right-hand side of (7.35b).
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7.1.7 A Four-Step Solution Technique

To compute a solution to an optimal lunar swingby let us first pose a sequence of “easier”
subproblems. It is important to remark that the proposed technique is a heuristic—other
equally valid methods can be postulated. However, the heuristic has proven to be both
reliable and efficient. Section 7.1.8 will describe how each subproblem is solved.

The four-step solution technique can be summarized as follows:

Step 1: Three-Impulse, Conic Solution
Solve a small NLP with analytic propagation ignoring lunar gravity.

Step 2: Three-Body Approximation to Conic Solution
Solve an “inverse problem” to fit three-body dynamics to the conic solution.

Step 3: Optimal Three-Body Solution with Fixed Swingby Time
Use the solution from Step 2 to initialize.

Step 4: Optimal Three-Body Solution
Compute solution with free swingby time, using Step 3 as an initial guess.

Step 1: Three-Impulse, Conic Solution

Since the optimal trajectory depends on the relative geometry of three bodies, namely the
earth, moon, and spacecraft, it is critical that the solution process be initiated with a reason-
able geometric configuration. This goal can be achieved by using a very simplified model
of the dynamics. In particular for Step 1, it is assumed that the spacecraft dynamics are
determined entirely by the gravitational attraction of the primary body, earth. Further, it
is assumed that the lunar swingby can be approximated by a simple velocity increment.
Because all of the dynamics are modeled using a two-body approximation, the analytic
trajectory propagation approach outlined in Section 7.1.4 can be exploited. With these
simplifying assumptions one can pose the following very simple NLP problem.

Optimization Variables. The problem can be formulated using 24 variables to define
the trajectory as illustrated in Figure 7.6:

(ro,vo,�v1,�Eo) State at Park Orbit Departure, (7.37)

(ri ,vi ,�v2,�Ei ) State at Mission Orbit Arrival, (7.38)

(�vs ,�EL) Swingby Velocity Increment and Lunar Angle to Intercept.
(7.39)

The outbound (earth to moon) transfer orbit is defined by the variables in (7.37), namely
the Cartesian state at the beginning of the outbound transfer ro,vo, the impulsive velocity
�v1, and the eccentric anomaly change for the outbound trajectory �Eo. Equation (7.38)
defines the corresponding variables for the inbound (moon to earth) transfer. The velocity
increment provided by the moon at swingby is defined as �vs , and the location of the moon
relative to a reference epoch is defined by the angle �EL .



7.1. Optimal Lunar Swingby Trajectories 363

........
........
........

........
.........

.......
..........

.......
..........

..........
..........

.......
...........

..........
..........

...........
...........

............
..........

.............
................

.................
.................

�
��✒

................................................................................................................................................................................................................................................

❅
❅❅❘

✘✘✘✿

(ro,vo,�v1)

(rL◦,vL◦)

(ri ,vi ,�v2)

�vs

�Eo

�Ei

�EL

Park Orbit Mission Orbit

Figure 7.6. Three-impulse, conic solution.

Park Orbit Conditions. In order to enforce the boundary conditions at the park orbit,
the following NLP constraints must be imposed:

rp = ro Position Continuity, (7.40)

vp = vo−�v1 Impulsive Velocity Change, (7.41)

φ p
(
rp,vp

)= 0 Park Orbit Constraints. (7.42)

Equation (7.40) ensures that the park orbit and outbound transfer orbit position is continu-
ous. The impulsive velocity change at departure is enforced by (7.41). The park orbit state
vector must also satisfy the nonlinear constraints denoted φ p in (7.42). For the circular
park orbit illustrated here, the vector φ p is given by (7.33a), (7.33b), (7.33c), and (7.34a).

Mission Orbit Conditions. The boundary conditions imposed by the mission orbit
lead to a set of NLP constraints similar to those enforced at departure, namely,

rm = ri Position Continuity, (7.43)

vm = vi +�v2 Impulsive Velocity Change, (7.44)

φm (rm ,vm )= 0 Mission Orbit Constraints. (7.45)

Constraints (7.43) and (7.44) are analogous to (7.40) and (7.41). The mission orbit con-
straints denoted by the vector φm in (7.45) are computed using the appropriate expressions
from Section 7.1.6.

Lunar Conditions. The conditions at the moon used to approximate the lunar swingby
all involve expressions for the state vector computed using the Kepler propagation de-
scribed by (7.26) and (7.27):

hr (ro,vo,�Eo)= hr (ri ,vi ,�Ei) Outbound/Inbound Position, (7.46)

hr (ro,vo,�Eo)= hr (rL◦,vL◦,�EL) Outbound/Lunar Position, (7.47)

hv(ri ,vi ,�Ei )= hv(ro,vo,�Eo)

+hv(rL◦,vL◦,�EL)+�vs Velocity Change. (7.48)
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The constraints (7.46) force the outbound and inbound transfer trajectories to have the same
position at the swingby. Observe that the outbound position hr is completely determined by
the departure state ro,vo, and the outbound eccentric anomaly change �Eo, with similar
comments applicable to the inbound leg. While (7.46) ensures continuity between the
outbound and inbound trajectories, it is also necessary that the swingby occur at the moon’s
position. This is achieved using constraint (7.47). Of course this constraint will locate the
swingby at the center of the moon, which can be achieved only by ignoring the lunar
gravity. Finally, one must model the velocity change at the moon, and this is expressed
by (7.48). Observe that (7.48) involves the Kepler velocities hv and an impulsive change
�vs . This constraint requires the velocity after the swingby to equal the vector sum of (a)
the velocity before the swingby, plus (b) the velocity of the moon, plus (c) the impulsive
change.

Objective. The objective function for this simplified model problem is to minimize
the total �v, i.e.,

F = ‖�v1‖+‖�v2‖+‖�vs‖. (7.49)

The solution to this problem should define a geometric configuration of the earth-moon
system that is optimal when ignoring the lunar gravitational effects.

Step 2: Three-Body Approximation

The solution to the simplified model problem computed in Step 1 is designed to construct
an approximate solution to the overall problem. Unfortunately, by design, the simplified
model ignores one of the primary dynamic aspects of the real problem. Specifically, the
conic solution solves

r̈=−µe

r3 r, (7.50a)

r̈L =−µ◦
r3

L

rL (7.50b)

but not the three-body dynamics

r̈=−µe

r3
r+gL , (7.51a)

r̈L =−µ◦
r 3

L

rL . (7.51b)

Let us denote the conic solution from (7.50a) by r̃(t). If one assumes that the conic trajec-
tory is approximately correct, then it is reasonable to find a “nearby” trajectory that does
satisfy the correct dynamics given by (7.51a). This goal can be achieved by “fitting” the
three-body trajectory to the conic, i.e., by minimizing

F =
N∑

k=1

‖rk − r̃k‖2 (7.52)
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subject to

r̈=−µe

r3 r+gL , (7.53)

r̈L =−µ◦
r3

L

rL , (7.54)

rLmin ≤ ‖r− rL‖, (7.55)

where r̃k = r̃(tk) is the spacecraft position on the conic trajectory and rk = r(tk) is the
state evaluated at the same time points tk on the three-body trajectory. Observe that in this
inverse problem an algebraic inequality constraint (7.55) is included to ensure the trajectory
is sufficiently above the lunar surface where rLmin is a lower bound on the distance from
the spacecraft to the moon. The conic solution serves as a good initial guess for this inverse
problem, so it is reasonable to set r(0)

k = r̃k , provided the N data points exclude the single
time point at the moon. Clearly the lunar acceleration gL cannot be evaluated when ‖d‖ =
‖r− rL‖ = 0 in (7.6).

Step 3: Fixed Swingby Time

The solution obtained from Step 2 provides an excellent initial guess for Step 3. In par-
ticular it supplies a time history for r(t),v(t) that satisfies the full three-body dynamic
equations (7.2)–(7.5). Furthermore, by construction the boundary conditions at the park
and mission orbits will be approximately satisfied. Thus one can pose a problem with two
distinct phases described by either the three-body dynamic equations (7.2)–(7.5) or the
differential-algebraic system (7.30)–(7.32). Figure 7.7 illustrates the dynamic simulation.

Phase 1: Outbound Transfer. The outbound transfer begins at the free initial time tI ,
which must satisfy the following park orbit conditions analogous to those used for Step 1:

rp = ro Position Continuity, (7.56)

vp = vo−�v1 Impulsive Velocity Change, (7.57)

φ p
(
rp,vp

)= 0 Park Orbit Constraints. (7.58)
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Figure 7.7. Fixed swingby time solution.
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The phase terminates at the fixed time ts , which must satisfy the lunar conditions

‖r− rL‖ ≥ rLmin Closest Approach, (7.59)

(v−vL)T(r− rL )= 0 Lunar Flight Path Angle. (7.60)

Observe that by forcing the lunar flight path angle to be zero (7.60) ensures that the closest
approach to the moon will occur at ts .

Phase 2: Inbound Transfer. The inbound transfer begins at the fixed time ts and must
satisfy the conditions

(r,v,rL ,vL )(−) = (r,v,rL ,vL)(+) State Continuity, (7.61)

(rL ,vL)= (rL ,vL ) Lunar State. (7.62)

Equation (7.61) ensures continuity in all of the states across the phase boundary, and since
the time ts is fixed (7.62) enforces consistency with the lunar reference epoch (rL ,vL ).

Phase 2 terminates at the free time tF and at that point must satisfy the mission orbit
conditions

rm = ri Position Continuity, (7.63)

vm = vi +�v2 Impulsive Velocity Change, (7.64)

φm (rm ,vm)= 0 Mission Orbit Constraints, (7.65)

tmax ≥ tF − tI Mission Duration. (7.66)

The objective for this dynamic optimization problem is to minimize

F = ‖�v1‖+‖�v2‖. (7.67)

Step 4: Optimal Three-Body Solution

The completion of Step 3 will provide an excellent initial guess for the full optimal three-
body lunar swingby. Indeed, only two modifications to the formulation in Step 3 are re-
quired. First, of course, the time of closest approach to the moon ts must be free. Second,
one must ensure that the lunar state at the (free) initial time is consistent with the reference
epoch for the moon. Thus at the beginning of Phase 1, the following additional boundary
conditions must be satisfied:

rL = hr (r◦,v◦,�E◦), (7.68)

vL = hv(r◦,v◦,�E◦). (7.69)

Typically any convenient reference epoch for the moon can be chosen.

7.1.8 Solving the Subproblems

The preceding sections posed a set of subproblems that can be solved to obtain an optimal
lunar swingby trajectory. But how does one efficiently solve the subproblems? In particular
it is necessary to solve
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• an optimal control problem in Steps 3 and 4, using the SNLP method presented in
Chapter 4,

• a parameter estimation (inverse) problem in Step 2, using the algorithm described in
Chapter 5, and

• an NLP problem in Step 1, using the methods in Chapter 1.

There are a number of efficiency issues that must be addressed within the context of
an SNLP algorithm. The second step of the algorithm requires the solution of an NLP; how-
ever, among the many possible NLP algorithms it is desirable to choose the most efficient.
The computational experience as discussed in Section 4.13 provides some insight to guide
the choice. To reinforce the observations of Section 4.13, let us compare the performance
of two different NLP algorithms when solving the small, dense NLP subproblems required
by Step 1 (Section 7.1.7). Table 7.1 summarizes the performance of two different NLP
algorithms, when used to solve three different NLP problems. In particular results are pre-
sented for the sequential quadratic programming (SQP) algorithm described in Chapter 1.
Two different techniques were used to compute the Hessian matrix, namely a finite differ-
ence approximation denoted as “Newton” and a quasi-Newton BFGS (Broyden–Fletcher–
Goldfarb–Shanno) recursive update. The second algorithm is the primal-dual interior-point
or barrier algorithm described in Chapter 2. This algorithm was also tested using Newton
and BFGS Hessian approximations.

Table 7.1. NLP algorithm performance comparison.

Step 1–Small, Dense NLP Subproblems

Mission Equatorial Polar Molniya
SQP-Newton (10,4) (16,10) (135,44)
SQP-BFGS (24,19) (36,31) (186,96)
Barrier-Newton (24,22) (57,55) (70,68)†
Barrier-BFGS (242,241)† (58,56) (286,284)

Key: (Gradient Eval., Hessian Eval.) † No Solution

For each algorithm the table presents the number of gradient and Hessian evalua-
tions needed to reach a solution. Although the number of problems in this test set is quite
small, the basic findings are consistent with much more extensive testing as described in
[33]. Generally the SQP algorithm was both more efficient and more robust than the bar-
rier method. Although it is difficult to prove, one speculates that an SQP method is simply
a better choice for solving very nonlinear optimization problems as discussed in Section
4.13. Conversely, our experience suggests a barrier algorithm may be preferable for prob-
lems with linear constraints, especially when there are many inequalities. The testing also
suggests that a quasi-Newton Hessian approximation requires significantly more iterations
to converge. While this is not surprising, it is extremely important when considering the
very large, sparse NLP problems that arise when using discretization methods for optimal
control.

A quasi-Newton Hessian approximation suffers from another deficiency first men-
tioned in Section 4.13 which is not demonstrated by this comparison. The results given
utilize a quasi-Newton approximation to the full Hessian. Unfortunately this can become
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prohibitively expensive for large-scale optimization problems, especially when there are
many degrees of freedom.

A second, more serious performance issue occurs when comparing NLP algorithms
for use within the context of an SNLP. Specifically a barrier algorithm cannot exploit a
good guess as discussed in Section 4.13. To illustrate this point consider the solution of
the optimal control subproblem for the polar mission summarized in Tables 7.2 and 7.3.
Both cases were initiated using the same information. Specifically the initial trajectory was
constructed as the solution from a Step 2 inverse problem. Using this three-body solution
trajectory a variable stepsize numerical integration algorithm was used to construct the
initial grid points. Referring to Table 7.2, the first grid had 594 points, leading to an NLP
problem with 7136 optimization variables and 7715 nonlinear constraints. The solution to
this coarse grid problem requires 18 gradient evaluations (NGC), 10 Hessian evaluations
(NHC), and 3794 function evaluations (NFE), including those needed for finite difference
derivatives. The resulting solution had a relative discretization error of ε = 1× 10−4 and
was computed in 30.1 sec. The grid was refined two times, with the final grid containing
1113 points. Table 7.3 presents exactly the same history, when a barrier algorithm is used
to solve the NLP subproblems. For the SQP algorithm as the mesh is refined, the number of
Hessian evaluations and iterations decreases—only 1 Hessian is needed on the second and
third grids. Each coarse grid solution provides a very good guess, and the Newton method
is within its region of quadratic convergence. For the barrier method this is not true! The
second mesh required an additional 49 Hessian evaluations because the initial guess was
perturbed. The overall penalty in computation time is catastrophic in this example. In
addition, because the initial guesses were perturbed the barrier algorithm converged to a
different local solution than did the SQP algorithm. All of the computational results were
obtained using a Dell M60 laptop computer, with a Linux operating system.

Table 7.2. Mesh refinement with an SQP algorithm.

SQP
k M n m NGC NHC NFE ε Time (sec)

1 594 7136 7715 18 10 3794 1×10−4 30.1
2 881 10580 11446 4 1 454 4×10−7 7.8
3 1113 13364 14462 4 1 454 1×10−8 10.6

Total 26 12 4702 48.6

Table 7.3. Mesh refinement with a barrier algorithm.

Barrier†
k M n m NGC NHC NFE ε Time (sec)

1 594 7720 7715 328 319 112475 1×10−5 749.3
2 881 12985 12980 57 49 17637 2×10−7 233.7
3 1113 14090 14085 6 2 881 1×10−8 18.5

Total 391 370 130993 1001.6

† Different Local Solution than SQP

Is Mesh Refinement Needed?

In light of the apparent conflict between mesh refinement and a barrier algorithm it is
important to review why mesh refinement is needed. Let us consider the solution of the



7.1. Optimal Lunar Swingby Trajectories 369

Figure 7.8. Velocity discontinuity.

Step 2 inverse problem solution for the polar mission. To review, the conic trajectory
available from the solution of Step 1 can be used to construct an initial guess. In particular
by sampling the conic at 600 equal �E increments, one obtains an NLS problem with 1800
residuals. To avoid a singularity, it is necessary to omit the point at the moon. The shaded
region in Figure 7.8 illustrates the discontinuous behavior in one component of the velocity
from the conic trajectory, and the solid line shows the smoothed approximation that results
after “fitting” a three-body solution to the conic. Table 7.4 summarizes the behavior of
the SOCS mesh-refinement procedure for this example, and Figure 7.9 illustrates what
the procedure does to both the discretization error and the mesh distribution. Initially the
discretization error is very large in the vicinity of the moon. Clearly, this error can be
attributed to the approximate nature of the conic trajectory—i.e., the position goes through
the center of the moon and the velocity change is impulsive. During the first few refinement
iterations, grid points are added in the vicinity of the discontinuity, and this leads to a
significant reduction in the discretization error as measured by the value of ε in Table
7.4. In fact after the first refinement iteration only six grid points were added, all in the
neighborhood of the discontinuity, and this reduced the discretization error by nearly four
orders of magnitude. It is also worth noting that solving the NLP subproblem after adding
these grid points was significantly more expensive (taking 17 Hessian evaluations), because
the entire solution had to be adjusted to account for this effect. Clearly, mesh refinement is
needed in order to address the singularities in the vicinity of the moon.
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Table 7.4. Mesh refinement.

k M n m NGC NHC NFE ε Time (sec)

1 599 7188 7775 12 2 144 6×10−1 3.5
2 606 7272 7866 21 17 525 9×10−5 1.1
3 606 7272 7866 4 2 724 1×10−6 7.6
4 742 8904 9634 4 1 448 1×10−8 5.6

Total 41 22 1841 27.7

k Refinement No M Grid Pts n NLP vars
m NLP cons. NGC Grad Eval NHC Hess Eval
NFE Func Eval ε Disc. Error Time CPU

Figure 7.9. Mesh refinement.

DAE or ODE Formulation?

The three-body dynamics of the system can be described by the ODEs summarized in Sec-
tion 7.1.3. However, the differential-algebraic system presented in Section 7.1.5 can also
be used when solving the subproblems in Steps 2, 3, and 4. Is one formulation preferable to
the other in terms of either computational speed and/or solution accuracy? To address this
question, Tables 7.5 and 7.6 compare the formulations. Specifically, the optimal control
problems in Steps 3 and 4 for the Molniya mission were solved using the ODE and DAE
formulations. Both were initialized with the same Step 2 solution trajectory.

The comparison reveals a number of issues. First, the DAE formulation required a
final grid with 2056 points, whereas the ODE formulation achieved the same accuracy with
1190 points. There are 12 ODEs and the DAE system has only 7 equations. Since the
number of grid points is related to the nonlinearity of the equations as well as the order of
interpolation, this suggests the DAE system may be more nonlinear. However, the total so-
lution time is dictated by the total number of NLP variables in the discretized subproblem.
The ODE formulation requires 14291 variables for the final iteration. In contrast, the DAE
formulation needs 16456 variables. Thus the size of the NLP problems is nearly the same,
even though one formulation involves nearly twice as many dynamic equations. Overall,
there was no clearcut difference between the ODE and DAE formulations in either speed
or accuracy for the applications considered here.
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Table 7.5. Steps 3 and 4, optimal solution for Molniya mission.

ODE Formulation

M n NGC NHC Time (sec)
630 7568 26 7 32.02
807 9692 7 2 12.30
940 11288 4 1 8.66
1190 14288 4 1 11.22

1190 14291 10 4 45.49

Total Time = 109.69 sec

Table 7.6. Steps 3 and 4, optimal solution for Molniya mission.

DAE Formulation

M n NGC NHC Time (sec)
1097 8782 30 14 45.27
1530 12246 4 1 7.98
2056 16454 4 1 11.82

2056 16456 7 2 31.02

Total Time = 96.09 sec

Reference Epoch

The reference epoch for all numerical results corresponds to a Julian date of 2453561.5
(July 10, 2005). All results utilize an ICRF (International Celestial Reference Frame).
The lunar ephemeris was constructed using a least squares fit of two-body dynamics
to the JPL DE405 lunar ephemeris [161] over a 60 day period beginning at the ref-
erence epoch. The resulting lunar state vector and corresponding equatorial radii and
gravitational constants are given in Table 7.7.

Table 7.7. Mission parameters.

µe 398600.436380820 km3/sec2

Re 6378.14000000000 km
µL 4902.79881586123 km3/sec2

RL 1737.40000000000 km
r◦x −.3398817123704749×106 km
r◦y .1956358580374241×106 km
r◦z .1139974125070158×106 km
v◦x −.5195857465292167×100 km/sec
v◦y −.7186784200912856×100 km/sec
v◦z −.3742849669631482×100 km/sec
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7.2 Multiple-Pass Aero-Assisted Orbit Transfer
Example 7.1 MULTIPLE-PASS AERO-ASSISTED ORBIT TRANSFER. A favorite sum-

mer pastime while at a seaside beach or lakefront is “stone skipping.” As a flat stone hits
the surface of the water a rapid change in direction takes place that alters the motion for
the next “skip,” and a “good throw” will result in many skips before the stone loses energy.
An analogous situation occurs in orbit mechanics when a spacecraft reenters the atmo-
sphere. When a spacecraft is outside of the sensible atmosphere, i.e., exo-atmospheric,
there are no aerodynamic forces on it. However, as the vehicle gets closer to the earth, the
endo-atmospheric motion is dominated by aerodynamic effects. This rapid change in the
environment can dramatically change the path of the vehicle, much like a stone hitting the
surface of a lake. Trajectories of this type present challenging optimization problems, pri-
marily because the environmental state of the vehicle changes during the dynamic process.
In fact, very similar computational issues arise when modeling chemical or thermodynamic
systems that change state during the course of a process. The concept of a phase becomes
critical when constructing a mathematical model of such dynamic systems.

Many authors have studied the use of atmospheric forces to achieve orbital plane
change. An extensive study of the subject, as well as many pertinent references, can be
found in the paper by Rao, Tang, and Hallman [149]. For the particular scenario considered
here, the motion begins with the vehicle in orbit. After using a rocket to slow the spacecraft,
it reenters the earth’s atmosphere and then skips out again, much like a stone on a lake.
After executing three additional passes through the atmosphere, the spacecraft propulsion
system is used to add velocity, thereby inserting the vehicle into a different orbit. The basic
goal is to change the orbit of the vehicle and minimize the fuel required to execute the
transfer. To be specific let us focus on one of the cases described in [149]. In particular,
the spacecraft begins in a geosynchronous orbit which is circular with zero inclination at
an altitude of 19323 nm.9 After four passes through the atmosphere, it is required that the
vehicle be in a circular orbit at an altitude of 100 nm with an inclination of 89 deg. The
goal is to minimize the fuel consumed to perform the transfer.

This orbit transfer can be modeled using nine distinct phases alternating between
orbital (exo-atmospheric) and atmospheric (endo-atmospheric). During phases 1, 3, 5, 7,
and 9 the dynamics do not include aerodynamic forces and are described in Section 7.2.1.
The dynamics used in phases 2, 4, 6, and 8 are presented in Section 7.2.2.

7.2.1 Orbital Phases

As in [149] let us use a spherical nonrotating earth model, in which case the orbital motion
can be defined by the simple two-body dynamics

ṙ= v, (7.70)

v̇=− µ

r3 r, (7.71)

where r is the earth centered inertial (ECI) position vector and v is the ECI velocity vector.
This system can be solved analytically as described in Section 7.1.4. Given a Cartesian
state vector r◦,v◦ at time t◦ and a specified change in eccentric anomaly �E = E− E◦, a

91 nautical mile = 6076.1154855643 ft.
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new state vector (r,v) with corresponding time change �t = t − t◦ can be computed; i.e.,
from (7.26)–(7.28) we can write

r= hr (r◦,v◦,�E), (7.72)

v= hv(r◦,v◦,�E), (7.73)

�t = ht (r◦,v◦,�E). (7.74)

Thus each orbital phase can be propagated analytically from the state at the beginning of
the phase (r◦,v◦) to the final state (r,v). In fact, for this application it is not necessary
to compute the time change �t (except for display), so it is convenient to simply set the
initial eccentric anomaly E◦ = 0 and treat�E as the independent variable during the orbital
phases.

7.2.2 Atmospheric Phases

During the atmospheric phases (2, 4, 6, and 8), it is more convenient to express the dynam-
ics using an intrinsic or flight path coordinate system as in (6.1)–(6.6). In general, atmo-
spheric phase k is defined in the domain t+k ≤ t ≤ t−k+1. However, since the atmospheric
dynamics are independent of time it is convenient to model the dynamics with respect to
the beginning of the phase and simply set t+k = 0 in a manner similar to the orbital phases
where E+k = 0. The state vector (h,φ,θ ,v,γ ,ψ) is comprised of the altitude, longitude,
geocentric latitude, velocity, flight path angle, and azimuth, respectively. The dynamics are
described by the DAEs

ḣ = v sinγ , (7.75)

φ̇ = v cosγ sinψ

r cosθ
, (7.76)

θ̇ = v cosγ cosψ

r
, (7.77)

v̇ =−D

m
− g sinγ , (7.78)

γ̇ =−1

v

[
q S

m
u2+

(
g− v2

r

)
cosγ

]
, (7.79)

ψ̇ = 1

v

[ −q S

m cosγ
u1+ v2

r
cosγ sinψ tanθ

]
, (7.80)

CLU ≥ CL , (7.81)

QU ≥ Q, (7.82)

where the stagnation point heating rate (BTU/(ft2 sec)) is computed using the equation

Q = 17600

(
ρ

ρE

) 1
2
(

v

vE

)3.15

(7.83)

and the control variables (u1,u2) are defined in terms of the lift coefficient CL and bank
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angle β by

u1 =−CL sinβ, (7.84)

u2 =−CL cosβ (7.85)

with the inverse transformations given by

CL =
√

u2
1+u2

2, (7.86)

β = tan−1 (u1/u2) . (7.87)

The additional quantities

q = 1

2
ρv2, (7.88)

D = q SCD , (7.89)

L = q SCL , (7.90)

CD = CD0+ K C2
L , (7.91)

r = h+ RE , (7.92)

g = µ

r2 , (7.93)

α = CL

CLα
(7.94)

complete the description of the dynamic model. The atmospheric density ρ is computed
using a smooth atmosphere model [46], and the sensible limit of the atmosphere is assumed
to be 60 nm. It is important to note that the particular choice of control variables (7.84)–
(7.85) suggested in [149] is preferable to lift coefficient and bank angle (CL ,β), which
is the more obvious engineering choice. The “winding” problem associated with angles as
illustrated in Figure 6.15 is avoided. This is particularly important in order to achieve robust
convergence for this application. The peak heating rate is limited by the path inequality
constraint (7.82) to the value QU = 400 BTU/(ft2 sec). The parametric values given in
Table 7.8 complete the definition of the dynamic model.

To improve robustness it is also useful to limit the dynamic variables by imposing the
following simple bounds:

0 ≤ h(t)≤ 60 nm, (7.95a)

170 deg ≤ φ(t)≤ 190 deg, (7.95b)

−20 deg ≤ θ (t)≤ 80 deg, (7.95c)

25000 ft/sec ≤ v(t) ≤ 35000 ft/sec, (7.95d)

−5 deg ≤ γ (t)≤ 5 deg, (7.95e)

0 deg ≤ ψ(t) ≤ 40 deg, (7.95f)

−1.1CLU ≤ u1(t) ≤ 1.1CLU , (7.95g)

−1.1CLU ≤ u2(t) ≤ 1.1CLU . (7.95h)
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Table 7.8. Dynamic model parameters.

g0 32.174 ft/sec2 m0 519.5 slug
Isp 310 sec RE 20926430 ft
µ 1.40895×1016 ft3/sec2 ρE .0023769 slug/ft3

S 125.84 ft2 CD0 .032
K 1.4 CLα .5699
CLU 0.4 vE

√
µ/RE ft/sec

7.2.3 Boundary Conditions

The trajectory begins in a circular orbit at an altitude of 19323 nm, i.e., an ECI state vector

rT(t0)= (1.38335209528×108,0,0), vT(t0)= (0,1.00920971977×104,0).
(7.96)

The first de-orbit burn is approximated by an instantaneous velocity change as in examples
(6.6) and (7.1). To be more precise, we use the impulsive �v approximation

v(t1)= v(t0)+�v1, (7.97)

where v(t0) is the velocity before the burn, v(t1) is the velocity after the burn, �v is the
velocity added by the burn, and t0 = t1. The velocity change is related to the mass by the
boundary condition

m(t0)= m(t1)exp

(‖�v1‖
g0 Isp

)
, (7.98)

where m(t0)=m0 is given in Table 7.8. The final value for �E+1 must satisfy the boundary
condition

h(t−2 )= ‖r(�E+1 )‖− RE = 60 nm. (7.99)

As with many orbital problems, this application has more than one local solution. To dis-
tinguish between transfers that differ only because of orbital symmetry, let us (arbitrarily)
focus on solutions that begin with the initial de-orbit burn at a descending node. This can
be achieved by imposing a bound on the z-component of the velocity change

�vz1 ≤ 0, (7.100)

which ensures that the z-component of the inertial velocity is negative.
Now, motion during orbital and atmospheric phases is described using two different

coordinate systems; however, at the phase boundaries the coordinate systems must be con-
sistent. Thus for each atmospheric phase k, where k = 2,4,6,8, the following consistency
conditions must be satisfied:

60 nm= h(t+k ), h(t−k+1)= 60 nm, (7.101a)

φ
[
r(t−k ),v(t−k )

]= φ(t+k ), φ(t−k+1)= φ
[
r(t+k+1),v(t+k+1)

]
, (7.101b)

θ
[
r(t−k ),v(t−k )

]= θ (t+k ), θ (t−k+1)= θ
[
r(t+k+1),v(t+k+1)

]
, (7.101c)

v
[
r(t−k ),v(t−k )

]= v(t+k ), v(t−k+1)= v
[
r(t+k+1),v(t+k+1)

]
, (7.101d)
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γ
[
r(t−k ),v(t−k )

]= γ (t+k ), γ (t−k+1)= γ
[
r(t+k+1),v(t+k+1)

]
, (7.101e)

ψ
[
r(t−k ),v(t−k )

]= ψ(t+k ), ψ(t−k+1)= ψ
[
r(t+k+1),v(t+k+1)

]
. (7.101f)

Observe that the conditions at the beginning of an atmospheric phase require computing
flight path coordinates using the ECI state from the previous phase (e.g., φ

[
r(t−k ),v(t−k )

]
).

Conversely, at the end of the atmospheric phase, these linkage conditions are computed
using the ECI state vector from the next, orbital, phase. In general the transformation
matrix QL E from local horizontal (LH) to earth centered inertial (ECI) coordinates at the
position r is given by

ẑ=−r−1r, (7.102)

x̂= ‖e3− ẑ3̂z‖−1(e3− ẑ3̂z), (7.103)

ŷ= ẑ× x̂, (7.104)

QL E (r)= [̂x ŷ ẑ
]

, (7.105)

where eT
3 = (0,0,1). Thus the intrinsic or flight path coordinates (h,φ,θ ,v,γ ,ψ) can be

computed from the ECI state (r,v) as follows:

r = ‖r‖, (7.106a)

ṽ=QT
L E (r)v, (7.106b)

h = r − RE , (7.106c)

φ = tan−1 (r2/r1) , (7.106d)

θ = sin−1 (r3/r ) , (7.106e)

v = ‖v‖, (7.106f)

γ = sin−1 (−ṽ3/v) , (7.106g)

ψ = tan−1 (ṽ2/ṽ1) . (7.106h)

The inverse of transformation (7.106a)–(7.106h) can be used to compute ECI coordinates
given intrinsic quantities as follows:

r = h+ RE , (7.107a)

r1 = r cosθ cosφ, (7.107b)

r2 = r cosθ sinφ, (7.107c)

r3 = r sinθ , (7.107d)

ṽ1 = v cosγ cosψ , (7.107e)

ṽ2 = v cosγ sinψ , (7.107f)

ṽ3 =−v sinγ , (7.107g)

v=QL E (r)̃v. (7.107h)

To ensure that an atmospheric phase begins with decreasing altitude and terminates
with altitude increasing, the flight path angle at the phase boundaries is restricted by the
boundary conditions

0≥ γ (t+k ), γ (t−k+1) ≥ 0. (7.108)
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The vehicle mass during all atmospheric phases and the final phase must be consistent with
the final mass after the first burn (in phase 1), so we must have

m(t1)= m(t2)= m(t4)= m(t6)= m(t8)= m(t9). (7.109)

The intermediate orbital phases 3, 5, and 7 all begin and end at the atmospheric limit.
Therefore we must impose conditions similar to (7.99) at the beginning and end of these
phases:

‖r(0)‖− RE = ‖r(�E+k )‖− RE = 60 nm. (7.110)

The final outbound orbital phase is a mirror image of the first phase. The altitude at
the beginning of the phase is constrained:

‖r(0)‖− RE = 60 nm. (7.111)

At the final time since there is no change in the position r(t f )= r(t+9 ). However, the final
velocity is altered by the final burn, and so we have

v(t f )= v(t+9 )+�v2, (7.112)

with a corresponding mass change defined by the condition

m(t9)= m(t f )exp

(‖�v2‖
g0 Isp

)
. (7.113)

Furthermore the final orbit conditions must be satisfied:

‖r(t f )‖− RE = 100 nm, (7.114)

‖v(t f )‖ =
√

µ

r f
, (7.115)

rT(t f )v(t+9 )= 0, (7.116)

rT(t f )�v2 = 0, (7.117)

i (t f )= iF , (7.118)

where the inclination in (7.118) can be computed as in (7.34a)–(7.34e).
The objective is to maximize the final mass, that is,

F = m(t f ). (7.119)

7.2.4 Initial Guess

The efficient solution for a nonlinear problem such as this can be dictated by how good
the initial guess is. Of course it is also important that the initial guess be relatively easy to
compute, at least compared to the actual problem. For this example a reasonably simple
approximate solution can be obtained by first solving a small NLP problem. In particular,
let us approximate the trajectory by ignoring the atmosphere and model the action of the
atmosphere by impulsive velocity changes. The basic approach is illustrated schematically
in Figure 7.10.
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Figure 7.10. Bi-elliptic transfer approximate solution.

For this simple model we permit impulsive velocity changes to occur at the initial
and final points and at each perigee location. Furthermore, we assume that there is no �v
in the x-direction and that all of the impulsive changes at perigee are identical. Thus we
pose an NLP problem with n = 2× (1+ 1+ 1)= 6 variables. To fix the orbit geometry,
analytic propagation is used with the inbound and outbound segments having �E = π

and the intermediate arcs of length �E = 2π . The desired initial and final conditions are
imposed as constraints. Furthermore, we arbitrarily insist that each of the perigee burns
occur at a fixed altitude of 40 nm, which is “inside” the atmosphere. This simple bi-elliptic
orbit transfer problem can be solved easily to minimize the total �v using the same NLP
algorithm used by the complete SOCS algorithm. Table 7.9 summarizes the bi-elliptic

Table 7.9. Bi-elliptic transfer solution.

Orbit Perigee (nm) Apogee (nm) Inclination (deg)
Initial 19323.0 19323.0 0.00000
Inbound 40.0000 19323.0 86.4340
First Intermediate 40.0000 8032.62 86.9445
Second Intermediate 40.0000 3733.28 87.5242
Third Intermediate 40.0000 1479.40 88.1873
Outbound 40.0000 100.000 88.9536
Final 100.000 100.000 89.0000
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transfer solution. The bi-elliptic solution not only provides reasonable estimates for the
orbit phases but also can be used to construct estimates for the states at the beginning and
end of each atmosphere phase. Linear interpolation between the states at the beginning and
end of each phase is used for all of the differential variables. Guessing constant values for
CL = .25 and β = 0 yields estimates for the control variables of u1(t)= 0 and u2(t)=−.25.

7.2.5 Numerical Results

The nine-phase problem described has been solved using SOCS, and Table 7.10 presents
a summary of the algorithm performance. The problem was initialized using the approach
described in Section 7.2.4. A total of seven mesh-refinement iterations were performed
as summarized in each row of Table 7.10. Column two gives the number of grid points.
All of the orbital phases (1, 3, 5, 7, 9) utilized the analytic Kepler propagation scheme,
and within SOCS this approach is implemented using two grid points—the initial and final
phase boundaries. No mesh refinement is performed on analytic phases, and consequently
the number of grid points remains unchanged. In contrast, the atmospheric phases (2, 4,
6, 8) are initiated using a trapezoidal discretization with 10 points equally spaced within
the phase. The resulting sparse NLP has n = 402 variables and at the solution the number
of degrees of freedom nd = n− m̂ = 77. The total number of QP subproblems (NQP)
required to solve the first coarse grid NLP was 173, and it took 3.4 CPU sec on a Dell M90
laptop. After two refinement iterations the discretization scheme is changed to an HSC
method, which is used for all subsequent refinement iterations. The discretization error ε
was reduced from 1.3×10−1 on the first grid to 9.2×10−8 on the last. The overall solution
was computed in 16.95 CPU sec.

The optimal impulsive velocity increments are

�v∗1 = (−1.8392052×102,−7.1911864×103,−4.3121550×103)T, (7.120)

�v∗2 = (3.8614396×100,−2.0351389×101,−1.1615574×102)T (7.121)

and the total (minimum)�v for this example is

‖�v∗1‖ = 8386.9940 ft/sec, (7.122)

‖�v∗2‖ = 117.98833 ft/sec, (7.123)

‖�v∗1‖+‖�v∗2‖ = 8504.9823 ft/sec, (7.124)

Table 7.10. Mesh-refinement summary.

k M n nd NQP ε Time (sec)

1 (2,10,2,10,2,10,2,10,2) 402 77 173 1.3×10−1 3.4
2 (2,19,2,19,2,19,2,19,2) 690 144 21 7.5×10−3 0.4
3 (2,19,2,19,2,19,2,19,2) 834 289 32 9.8×10−4 1.7
4 (2,37,2,37,2,37,2,37,2) 1554 569 17 3.9×10−5 1.4
5 (2,73,2,73,2,73,2,73,2) 2994 1138 17 1.5×10−6 3.4
6 (2,95,2,131,2,136,2,145,2) 5144 1976 11 1.2×10−7 4.6
7 (2,95,2,131,2,136,2,150,2) 5194 1996 5 9.2×10−8 1.9

Total 522 4979 16.95
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Figure 7.11. Inclination change.

which corresponds to masses given by

m∗(t1)= 224.07393 slug, (7.125)

m∗(t f )= 221.43883 slug. (7.126)

The dynamic histories of particular interest are illustrated in Figures 7.11, 7.12, and
7.13. Since the time scale for the atmospheric portions of the transfer are significantly
shorter than the orbit transit times, it is convenient to display the results using elapsed time
in the atmosphere as the independent variable. The phase boundaries are indicated using
a vertical dotted line. In Figure 7.11 the inclination is plotted as a function of the total
time, and also the elapsed time during the atmosphere passes. This figure clearly illustrates
that the inclination change is accomplished primarily in the last atmospheric pass. It is
also clear that the inclination changes appear to occur almost instantaneously because the
duration of the atmospheric passes is much shorter than the entire transfer time. This
also suggests that approximating the aerodynamic pass by an impulsive velocity as was
done in the bi-elliptic initialization procedure is a reasonable approximation. Figure 7.12
plots the state variables, and it is clear from the altitude plot that each atmospheric pass
begins at the atmospheric limit of 60 nm. The velocity decreases monotonically because of
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Figure 7.12. States during four atmospheric passes.

atmospheric drag, and for each phase the flight path angle begins negative and ends positive
as required. Figure 7.13 presents the actual controls u1(t) and u2(t), as well as the derived
values for angle of attack and bank angle. Also included are the time histories for the
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Figure 7.13. Controls during four atmospheric passes.

path constraint functions CL and Q that appear in (7.81) and (7.82). For comparison, the
same problem was solved using a single atmospheric pass, and the corresponding dynamic
histories are illustrated in Figures 7.14 and 7.15. The final mass using a single pass was
m∗(t f )= 212.16080 slug. Finally, Figure 7.16 illustrates the entire multipass aero-assisted
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Figure 7.14. States during a single atmospheric pass.

transfer trajectory and Figure 7.17 illustrates the single pass solution. The trajectory plane
shading is defined by the instantaneous inclination, which illustrates the transition from
i ≈ 56 (deg) shown in light gray to i = 89 (deg) in dark.
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Figure 7.15. Controls during a single atmospheric pass.
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Figure 7.16. Optimal four-pass aero-assisted transfer.

Figure 7.17. Optimal single-pass aero-assisted transfer.

7.3 Delay Differential Equations
For many physical processes the mathematical description involves “time lags” or “retarded
arguments.” Thus instead of the usual ODE model

ẏ= f[y(t), t]

the problem description entails a delay differential equation (DDE) model such as

ẏ= f[y(t),y(t− τ ), t , t− τ ]. (7.127)

Observe that the dynamics are expressed in terms of the state y(t − τ ) evaluated at the
delay time t−τ , where τ > 0. This fixed delay model is one of the simplest types of DDEs.
Clearly more complicated descriptions can be envisioned if, for example, one considers
multiple delay times τk and/or nonlinear delay arguments such as y(φ[t−τ ]). Furthermore,
one can consider delay-differential-algebraic equation (DDAE) problem formulations [3].
To fully appreciate the computational challenges caused by stiffness and propagation of
discontinuities it is instructive to review the paper by Shampine and Gahinet [157].
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Although a complete discussion of the subject is beyond the scope of this book, it is
instructive to illustrate some of the issues that arise. To do so we will focus on examples
having fixed delay that can be converted to BVPs with ODEs using an approach called
method of steps. It should be emphasized that this is not the only (or perhaps the best)
approach for these problems.

Example 7.2 ENZYME KINETICS. Let us focus on a particular example originally
published by Okamoto and Hayashi [137] and cited by Hairer, Norsett, and Wanner [106,
pp. 348–349] that describes enzyme kinetics. The enzyme concentrations on the time in-
terval 0≤ x ≤ 160 are described by the DDE system

s′1 = I − zs1(x), (7.128)

s′2 = zs1(x)− c2s2(x), (7.129)

s′3 = c2s2(x)− c3s3(x), (7.130)

s′4 = c3s3(x)− c4s4(x), (7.131)

where the process is inhibited by

z = c1

1+α[s4(x−4)]3 (7.132)

with I = 10.5, c1 = c2 = c3 = 1, c4 = 0.5, and α = 0.0005. As x →∞, the system
approaches an equilibrium state s(x)→ s̃ with s̃1 = I (1+ .004I 3), s̃2= s̃3 = I , and s̃4 = 2I .
In this example the number of delay equations L = 4, and the number of delay intervals
N = 40, with a delay time τ = 4.

For systems such as this with constant delay, it is possible to reformulate the problem
as a BVP involving just ODEs, using a technique called the method of steps. Specifically
let us consider a fixed time domain 0 ≤ t ≤ τ and then transform the original time into
multiples of the delay time, that is,

x = t+ kτ (7.133)

for k = 0, . . . , N −1, where N is the total number of delay steps. Observe that when k = 0,
0 ≤ x ≤ τ , and when k = 1, τ ≤ x ≤ 2τ , and so forth. Using this transformation, each
delay interval has been mapped onto the fixed interval 0 ≤ t ≤ τ . Using this mapping,
the original time domain can be “folded” onto a single interval, by defining new dynamic
variables according to

y1(t)= s1(t),

...

y5(t)= s1(t+ τ ),

...

y j+kL(t)= s j [t+ kτ ]= s j (x) (7.134)

for j = 1, . . . , L, and k = 0, . . . , N −1. Now if we differentiate (7.134), we obtain

ẏ j+kL = dy j+kL

dt
= ds j

dt
= ds j

dx

dx

dt
= s′j . (7.135)
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Using the new dynamic variables, the original system of delay equations (7.128)–(7.132)
is replaced by the system of ODEs

ẏ1+kL = I − zy1+kL , (7.136)

ẏ2+kL = zy1+kL − c2y2+kL , (7.137)

ẏ3+kL = c2 y2+kL − c3y3+kL , (7.138)

ẏ4+kL = c3 y3+kL − c4y4+kL , (7.139)

where the delay term becomes

z = c1

1+α[y4+(k−1)L]3 . (7.140)

The delay term given by (7.140) follows from (7.132) by noting that

s4(x−4)= s4 [(t+ kτ )− τ ]= s4 [t+ (k−1)τ ]= y4+(k−1)L . (7.141)

Of course the problem statement is not complete without the appropriate boundary
conditions. By construction the dynamic variables y describe behavior on a single delay
interval. Furthermore at the boundary of neighboring delay intervals since τ + kτ = (0)+
(k+1)τ we must have

y j+kL (τ )= s j [τ + kτ ]= s j [(0)+ (k+1)τ ]= y j+(k+1)L(0) (7.142)

for j = 1, . . . , L, and k = 0, . . . , N −1.
DDEs pose one additional complication not shared by ODEs, namely how to get

started. For an ODE, it is sufficient to specify the initial values y(0). In contrast for a
DDE, one must specify function histories over the entire startup region −τ ≤ x ≤ 0. For
the particular example illustrated here, we define the startup functions by

y1−L(t)= s1(x)= 60, (7.143)

y2−L(t)= s2(x)= 10, (7.144)

y3−L(t)= s3(x)= 10, (7.145)

y4−L(t)= s4(x)= 20 (7.146)

for −τ ≤ t ≤ 0.
To summarize, the original problem was posed in terms of a system of DDEs for the

dynamic variables s(x) defined on the time domain 0≤ x ≤ 160= 40×4. The problem can
be recast as a BVP for a system of ODEs in the dynamic variables y(t) which is defined
on the domain 0 ≤ t ≤ τ = 4. The approach is attractive since it provides a mechanism
to extend methods for optimal control and estimation of ODEs to DDEs. In spite of its
attractive simplicity the method of steps does present a number of potentially problematic
issues. First, a DDE IVP is replaced by an ODE BVP. Second, the number of ODEs (L N)
is much larger than the number of DDEs (L). Finally, the technique used to control ODE
integration (discretization) error may not be appropriate or efficient for a DDE system.

To illustrate the process, let us take a two step approach. First, let us treat the
constants c1 = c2 = c3 = 1, c4 = 0.5 as known and solve the DDE system. Then as a



388 Chapter 7. Advanced Applications

second step, let us construct an inverse problem and attempt to estimate the parameters
p = (c1,c2,c3,c4). Treating the solution to the first step as a truth model ỹ, data for the
second step can be constructed by adding noise to the truth model, i.e.,

ŷ(θi )= ỹ(θi)+ ν, (7.147)

where ν ∼N (0,σ ) is a vector of independent identically distributed Gaussian random vari-
ables with mean zero and variance σ = 0.01. For this example 10 evaluation times θi are
equally spaced over the time interval. The objective is to minimize

F = 1

2

∑
i

[yi − ŷi ]
T[yi − ŷi ] (7.148)

by choosing the parameters p and dynamic variables y(t) while satisfying the differential
equations (7.136)–(7.140) and boundary conditions (7.142). As initial conditions we im-
pose

y1(0)= 60, (7.149)

y2(0)= 10, (7.150)

y3(0)= 10, (7.151)

y4(0)= 20 (7.152)

with the startup functions given by (7.143)–(7.146). The resulting problem has 160 state
variables y and 156 boundary conditions (7.142). The objective function has 1600 total
residuals.

A piecewise constant initial guess is used to initiate the iterative process. Thus with
two grid points the initial guess is just y(0)

j (0) = y(0)
j (τ ) = 0 for j = 5, . . . ,160. On the

first delay interval when j = 1,2,3,4 and the initial conditions (7.149)–(7.152) provide the
guess y(0)

j (0) = y(0)
j (τ ) = y j (0). Eight mesh-refinement iterations are required to achieve

the desired accuracy of ε ≤ δ = 1×10−7. Table 7.11 presents a summary of the algorithm
performance using SOCS to solve Step 1. Table 7.12 presents similar information for the
parameter estimation step. It is worth noting that by exploiting the right-hand-side sparsity,
it is possible to compute finite difference gradient information quite efficiently for this
application as indicated by the values in Table 7.13. Figure 7.18 illustrates the solution,

Table 7.11. Mesh-refinement summary (nominal).

k M n NGC NFE ε Time (sec)

1 2 320 16 87 1.04×100 .13
2 3 480 12 74 3.07×10−1 .09
3 3 480 15 196 5.51×10−2 .14
4 5 800 3 29 4.88×10−3 .08
5 9 1440 2 20 2.99×10−4 .12
6 17 2720 1 11 1.96×10−5 .20
7 33 5280 1 11 1.23×10−6 .42
8 65 10400 1 11 7.68×10−8 1.34

Total 65 51 439 2.52
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Table 7.12. Mesh-refinement summary (parameter estimation).

k M n NGC NFE ε Time (sec)

1 2 324 20 260 2.91×10−1 .48
2 3 484 23 314 4.39×10−1 1.42
3 3 484 19 733 5.07×10−2 2.31
4 5 804 6 402 3.88×10−3 .63
5 9 1444 4 154 2.26×10−4 .42
6 17 2724 4 154 1.53×10−5 .92
7 33 5284 3 129 9.68×10−7 1.84
8 65 10404 3 129 6.06×10−8 5.59

Total 65 82 2275 13.61

Table 7.13. Number of index sets γ .

Discretization Trapezoidal Hermite–Simpson
Step 1 3 8
Step 2 5 12

with the delay intervals “unfolded” to correspond with the original problem statement. The
estimated parameter values for this case are

p= (1.0000097×100,9.9999697×10−1,9.9999450×10−1,5.0000131×10−1)T, (7.153)

which corresponds to the minimum value F∗ = 8.8747308×10−2.

Example 7.3 IMMUNOLOGY EXAMPLE. A second example originally published in
Russian by G. I. Marchuk is also cited by Hairer, Norsett, and Wanner [106, pp. 349–351].
The dynamics are described by the DDE system

dV

dx
= (h1−h2 F)V , (7.154)

dC

dx
= ξ (m)h3 F(x− τ )V (x− τ )−h5(C−1), (7.155)

d F

dx
= h4(C− F)−h8FV , (7.156)

dm

dx
= h6V −h7m. (7.157)

The dynamics model the struggle of viruses V (t), antibodies F(t), and plasma cells C(t)
in a person infected with a viral disease. The relative characteristic damage is represented
by m(t), where the first term in (7.157) accounts for damaging and the second term for
recuperation. The fact that plasma cell creation slows down when the organism is damaged
by the viral infection is modeled by the term

ξ (m)=
{

1 if m ≤ 0.1,

(1−m) 10
9 if 0.1≤ m ≤ 1.

(7.158)

Equation (7.154) is referred to as a predator-prey equation, and (7.155) models the creation
of new plasma cells with a time lag due to infection. Notice that an equilibrium occurs
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Figure 7.18. Enzyme kinetic delay equation solution.

with C = 1 if the first term in (7.155) is omitted. Equation (7.156) models three effects,
namely creation of antibodies from plasma cells (h4C), decrease in plasma cells due to
aging (−h4 F), and binding with antigens (−h8 FV ).
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The DDE system (7.154)–(7.157) can be converted to a system of ODEs using the
same technique introduced for the previous example. In particular the number of delay
equations L = 4, and if we identify the variables

(y1+kL , y2+kL , y3+kL , y4+kL )= (V ,C , F ,m)

on delay intervals given by (7.133), one obtains the following equations:

ẏ1+kL =
[
h1−h2y3+kL

]
y1+kL , (7.159)

ẏ2+kL = ξ (y4+kL )h3y3+(k−1)L y1+(k−1)L−h5
[
y2+kL −1

]
, (7.160)

ẏ3+kL = h4
[
y2+kL − y3+kL

]−h8y3+kL y1+kL , (7.161)

ẏ4+kL = h6 y1+kL −h7y4+kL (7.162)

for k = 0, . . . , N−1, where N = 120 is the total number of delay steps. For the specific case
of interest, τ = 0.5, h1 = 2, h2 = 0.8, h3 = 104, h4 = 0.17, h5 = 0.5, h6 = 300, h7 = 0.12,
and h8 = 8. As startup conditions we use

y1−L(t)=max
(

0,10−6+ t
)

, (7.163)

y2−L(t)= 1, (7.164)

y3−L(t)= 1, (7.165)

y4−L(t)= 0 (7.166)

for −τ ≤ t ≤ 0. As before, we must also impose the “wrapping” boundary conditions
(7.142). In summary, the complete solution to this DDE requires solving a nonlinear BVP
with 480 ODEs and 476 nonlinear boundary conditions. After the continuous problem is
discretized the resulting sparse NLP has no degrees of freedom, i.e., no objective function.
Nevertheless, the constraints are very nonlinear, and as such initiating the iteration with a
“good guess” is very important.

The serial nature of the problem suggests a very natural way to proceed. As a first
step let us solve a problem with only one delay interval. Thus first solve

ẏ1 =
[
h1−h2y3

]
y1, (7.167a)

ẏ2 = ξ (y4)h3y3−L y1−L −h5
[
y2−1

]
, (7.167b)

ẏ3 = h4
[
y2− y3

]−h8y3y1, (7.167c)

ẏ4 = h6y1−h7y4. (7.167d)

This problem involving four differential equations can be solved using a coarse discretiza-
tion, e.g., a trapezoidal method with two grid points. Since the goal is to construct an initial
guess for the “real problem,” mesh refinement is not needed at this stage. To initiate this
first step it is reasonable to guess constant values for the states. Denote the approximate
solution obtained by this first step[

ỹ1(t), ỹ2(t), ỹ3(t), ỹ4(t)
]

for 0≤ t ≤ τ . (7.168)
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Now let us solve a problem with two delay intervals, i.e., the system

ẏ1 =
[
h1−h2 y3

]
y1, (7.169a)

ẏ2 = ξ (y4)h3 y3−L y1−L −h5
[
y2−1

]
, (7.169b)

ẏ3 = h4
[
y2− y3

]−h8 y3y1, (7.169c)

ẏ4 = h6 y1−h7y4, (7.169d)

ẏ5 =
[
h1−h2 y7

]
y5, (7.169e)

ẏ6 = ξ (y8)h3 y7−L y5−L −h5
[
y6−1

]
, (7.169f)

ẏ7 = h4
[
y6− y7

]−h8 y7y5, (7.169g)

ẏ8 = h6 y5−h7y8 (7.169h)

subject to the boundary conditions

y j (τ )= y j+L(0) (7.170)

for j = 1, . . . , L. It is now necessary to supply an initial guess for this two-delay prob-
lem. Clearly the solution (7.168) satisfies (7.169a)–(7.169d). Also from (7.170) we can
construct a guess for the remaining variables[

ỹ1(τ ), ỹ2(τ ), ỹ3(τ ), ỹ4(τ )
]= [y(0)

5 (0), y(0)
6 (0), y(0)

7 (0), y(0)
8 (0)

]
=
[

y(0)
5 (τ ), y(0)

6 (τ ), y(0)
7 (τ ), y(0)

8 (τ )
]

. (7.171)

In effect this is a constant “prediction” for the next delay interval.
Obviously, this stepwise procedure can be continued. The procedure requires solving

a sequence of BVPs. The number of differential equations grows from step to step. The
solution to the BVP computed at step k provides an excellent initial guess for the BVP that
must be solved at step (k+ 1). In essence the technique can be viewed as an extension
of the predictor-corrector method for solving ODEs (cf. (3.42)). Even though the num-
ber of ODEs increases from step to step, each solution can be computed quite efficiently.
The desired accuracy is achieved using mesh refinement only on the final step of the pro-
cess. Table 7.14 summarizes the final solution refinement behavior. Figure 7.19 illustrates
the solution, with the delay intervals “unfolded” to correspond with the original problem
statement.

Table 7.14. Mesh-refinement summary.

k M n NGC NFE ε Time (sec)

1 2 324 9 47 2.36×10−2 .57
2 3 484 26 159 3.40×10−3 .97
3 3 484 36 520 2.09×10−4 1.57
4 5 804 4 54 2.69×10−5 .53
5 9 1444 5 67 1.03×10−5 1.33
6 15 2724 1 15 1.30×10−6 .51
7 26 5284 1 15 1.82×10−7 1.63
8 42 10404 1 15 7.17×10−8 2.20

Total 42 83 892 9.31
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Figure 7.19. Marchuk delay equation solution.
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Example 7.4 FINITE HORIZON OPTIMAL CONTROL. Deshmukh, Ma, and Butcher
[72] present an example they describe as follows:

The mathematical models of certain engineering processes and systems are
represented by delay differential equations with time periodic coefficients.
Such processes and systems include the machine tool dynamics in metal cut-
ting operations such as milling and turning with periodically varying cutting
speed or impedance and parametric control of robots, etc. Delay differential
equations have been used to model nonlinear systems where finite delay in
feedback control can have adverse effects on closed loop stability.

They propose a linear time-periodic delay differential system

x′(α)= A1(α)x(α)+A2(α)x(α− τ )+B(α)v(α), (7.172)

x(α)= φ(α) for −τ ≤ α ≤ 0, (7.173)

where x(α) is the n-dimensional state vector, and v(α) is the m-dimensional control vector.
Differentiation with respect to time α is denoted by x′ = dx/dα. The matrices A1(α) =
A1(α−T ) and A2(α)=A2(α−T ) are n×n periodic matrices with period T , and the startup
vector function φ(α) is defined on the interval [−τ ,0]. The n×m matrix B(α)= B(α−T )
is also periodic. In [72] the authors also assume a single fixed delay equal to the natural
period of the parametric excitations τ = T > 0. The objective is to minimize the quadratic

J = 1

2
xT(αF )Sx(αF )+ 1

2

∫ αF

0

[
xT(α)Q(α)x(α)+vT(α)R(α)v(α)

]
dα, (7.174)

over the finite horizon 0 ≤ α ≤ αF . S and Q(α) are n×n symmetric positive semidefinite
matrices, R(α) is m×m symmetric positive definite, and both Q(α) and R(α) are periodic
with period T .

To illustrate their approach the authors in [72] address an example with two delay
intervals that describes a controlled delay Mathieu equation[

x ′1(α)
x ′2(α)

]
=
[

0 1
−4π2(a+ c cos2πα) 0

][
x1(α)
x2(α)

]
+
[

0 0
4π2b cos2πα 0

][
x1(α−1)
x2(α−1)

]
+
[

0
1

]
v(α) (7.175)

with startup function[
x1(α)
x2(α)

]
=
[

1
0

]
for −1≤ α ≤ 0 (7.176)

for k = 1, . . . , N . The system parameters are given by the values a = 0.2, b = 0.5, and
c = 0.2 and the uncontrolled system is unstable. The delay interval and period are both
one, τ = T = 1. The goal is to drive the final state to zero, which is reflected by the
objective

J = 104

2
xT(αF )x(αF )+

∫ αF

0

[
xT(α)x(α)+ v2(α)

]
dα, (7.177)
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where the final time is αF = Nτ = N . Two cases will be considered, one with two delay
intervals N = 2 for comparison with the original authors, and a second, more realistic case
with N = 50 intervals.

To apply the method of steps we introduce the expression α = t+ (k−1)τ that relates
the original time α to the time on a delay interval t with 0 ≤ t ≤ τ . Then let us define the
expanded state vector

y(t)=


y1(t)
y2(t)

...
yN (t)

 (7.178)

with a corresponding definition for the expanded control u(t). Departing from our standard
notational convention the components of y and u are defined by

yk(t)= x(α) for (k−1)τ ≤ α ≤ kτ , (7.179a)

uk(t)= v(α) for (k−1)τ ≤ α ≤ kτ , (7.179b)

where the subscript k = 1, . . . , N corresponds to a particular delay interval. Applying this
transformation to (7.172) leads to the system of nN ODEs

ẏk = A1(α)yk+A2(α)yk−1+B(α)uk (7.180)

for k = 1, . . . , N defined on the domain 0≤ t ≤ τ , with α = t+ (k−1)τ . To ensure consis-
tency with the original DDE we impose the additional boundary conditions

yk(0)= yk−1(τ ), (7.181a)

uk(0)= uk−1(τ ). (7.181b)

The startup conditions are given by

y0(t)= φ(t) for −τ ≤ t ≤ 0 (7.182)

and the objective function (7.174) is recast as

J = 1

2
yT

N (τ )SyN (τ )+ 1

2

∫ τ

0

N∑
k=1

[
yT

k Q(α)yk+uT
k R(α)uk

]
dt . (7.183)

Thus the original DDE control problem has be transformed to a standard optimal
control problem defined by the ODE system (7.180), with boundary conditions (7.181a),
(7.181b), and (7.182), and objective (7.183). As such, the SOCS algorithm is directly ap-
plicable. Furthermore, observe that when the linear ODE system (7.180) is discretized,
the resulting finite-dimensional NLP constraints are linear functions of the NLP variables.
Also, after discretization the objective function is a quadratic function of the NLP vari-
ables. Since the boundary conditions are also linear functions of the NLP variables the
resulting finite-dimensional NLP problem is just a QP problem (cf. Section 1.10). As such,
the QP subproblem can be solved in one step, regardless of the initial guess. To exploit this
computational efficiency we set the NLP algorithm option to M (cf. Section 2.6.2), thereby
omitting an unnecessary step to locate a feasible point. Second, the gradient, Jacobian,
and Hessian information needed to define the QP subproblem is normally computed using
sparse central differences. However, since the truncation error for all linear and quadratic
functions is zero, we have | f ′′′(x)| = 0 in (1.165). Thus to minimize the finite difference
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error given by (1.165) a “large” perturbation size should be used. For this case we choose
δ= 1. Furthermore, with limited experimentation one can simply pick a fixed discretization
mesh size, thereby avoiding mesh refinement and the underlying solution of many NLP
subproblems. In summary we choose to discretize the problem with 100 equally spaced
grid points, using the HSC method. As an initial guess for all of the NLP variables we
simply use zero, with the exception of the boundary values (7.176). Figure 7.20 displays
the solutions obtained for both cases. The solution with two delay intervals is shown in the
top plot, and the other three plots contain the time history for the state and control over 50
delay intervals. For the latter case the optimal objective value is F∗ = 4.5677520× 101

with discretization error ε = 6.61×10−8.

7.4 In-Flight Dynamic Optimization of Wing Trailing
Edge Surface Positions

Example 7.5 TRAILING EDGE VARIABLE CAMBER. When designing a commercial
aircraft, one major consideration is the aerodynamic efficiency. Ideally, the shape of the
aircraft is designed to optimize some measure of aerodynamic performance such as the
ratio of lift to drag (L/D). However, aerodynamic forces depend on many factors, so for
example an airfoil designed to maximize L/D when flying at 32,000 ft and Mach .84 is
not optimal when the aircraft flies at any other condition (e.g., 35,000 ft and M = .83).
This deficiency can be addressed by changing the shape of the airfoil to give the best per-
formance at the actual operating condition. One technique that can be implemented on
modern commercial aircraft is to vary the camber of the wing using minor changes in some
of the control surfaces. An approach that was tested for an aircraft using a single control
surface is described by Gilyard [101] and Gilyard, Georgie, and Barnicki [102]. Similar
ideas are presented by Martins and Catalano [132].

In spite of its obvious appeal, practical implementation of this trailing edge variable
camber (TEVC) approach must address a number of nontrivial technical challenges. First,
the expected change in drag caused by changing the camber of the wing is very small—
typically less than 1% of the base drag. Second, on Boeing commercial aircraft as many as
four different control surfaces can be used to modify the camber. Third, the displacement
of the control surfaces is small—typically less than 2 deg—and because of mechanical
limitations the flap positions can be specified only to within 1/4 degree. Finally, the base
drag is affected by many random factors, including wind and atmospheric affects, engine
performance, vehicle weight, etc.

This example describes a rather straightforward camber estimation process developed
in collaboration with Paul H. Carpenter.10 After reaching the operating flight condition
(typically cruise altitude and velocity), the camber control surfaces are “swept” through
a predetermined time profile. During this period, which typically lasts from 3 to 5 min,
dynamic behavior is observed and measurement data is recorded at a high frequency (e.g.
20 samples per second.) Using a high-fidelity model of the dynamics, the trajectory is re-
constructed. The solution to this inverse problem yields an estimate for the time history
of the aerodynamic coefficients (CD, CL , and Cy). From the time history of the aerody-
namic coefficients, we then construct a parametric representation for the drag coefficient

10Aero Performance Tools and Methods, The Boeing Company, P.O. Box 3707, MS 67-FE, Seattle, WA
98124-2207.
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Figure 7.20. Finite horizon optimal control delay equation solutions.

as a function of the camber control variables. This drag model is constructed by solving
a scattered data least squares approximation using a constrained multivariate B-spline rep-
resentation. As the final step, we compute the camber control variables that minimize the
drag model.
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7.4.1 Aircraft Dynamics for Drag Estimation

In general, the dynamic behavior of an aircraft can be described by a set of differential
equations. Using a six degree of freedom model as a starting point a number of changes can
be introduced in order to construct a dynamic model that is appropriate for the estimation
process. The dynamics can be formulated as the following differential-algebraic system:

ż =−u sinθ+ v sinφ cosθ+w cosθ cosφ, (7.184)

u̇ = vr −wq− g sinθ+ Fx

m
, (7.185)

v̇ =wp−ur + g sinφ cosθ + Fy

m
, (7.186)

ẇ = uq− vp+ g cosφ cosθ+ Fz

m
, (7.187)

φ̇ = p+ (q sinφ+ r cosφ) tanθ , (7.188)

θ̇ = q cosφ− r sinφ, (7.189)

ψ̇ = (q sinφ+ r cosφ) secθ , (7.190)

Ẇ =−µ(h, M , Tg), (7.191)

0= nx −
[

Fx

m
+�nx

]
, (7.192)

0= ny−
[

Fy

m
+�ny

]
, (7.193)

0= nz −
[

Fz

m
+�nz

]
, (7.194)

0= Vg−
√

u2+ v2+w2− ż2, (7.195)

0= δ− arctan

(
v cosφ−w sinφ

u cosθ+ v sinφ sinθ +w cosφ sinθ

)
. (7.196)

Observe that the time varying roll, pitch, and yaw rates p(t), q(t), and r (t) are treated as
algebraic variables rather than differential variables; i.e., they are algebraic states. The
approximation is reasonable since the rates are very small at a cruise condition, and this
eliminates the need to estimate the moments L(t), M(t), and N(t).

The total forces that appear in (7.185)–(7.187) are expressed in the body axes as the
sum of aerodynamic and thrust terms, i.e.,

Fx = (−CD cosα+CL sinα) q̄ S+ 1

κ
Tg− Dr cosβ cosα, (7.197)

Fy = Cyq̄S− Dr sinβ, (7.198)

Fz = (−CL cosα−CD sinα) q̄ S− 1

κ
tanηxz Tg− Dr cosβ sinα. (7.199)

Assuming the left and right engines have equal gross thrust Tg and net thrust Tn , and ηxy
and ηxz are constants that define the wing incidence angles for a particular engine, the ram
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drag, lift, and drag are given by

Dr = Tg− Tn, κ =
√

tan2 ηxz+ tan2 ηxy +1,

L = CLq̄S, D = CDq̄S.

The lift and drag forces are defined in terms of the drag coefficient CD , the lift coefficient
CL , the reference area S, and the dynamic pressure q̄ . The vehicle weight W is related to
the mass m by the expression W = mg.

As the aircraft moves the aerodynamic forces change as a function of time, in par-
ticular the total pressure and static pressure. Using values for Ptotal(t), and Pstat ic(t) it
is possible to construct auxiliary quantities. Specifically the following equations can be
evaluated in sequence:

M =√5

[(
Ptotal

Pstat ic

) 1
3.5 −1

] 1
2

, (7.200)

Ve = (14.3791496702540)M
√

Pstat ic, (7.201)

q̄ = V 2
e

295.3714
. (7.202)

These expressions define the Mach number M(t), the equivalent airspeed Ve(t) (knots), and
the dynamic pressure q̄(t) (psf). The ground speed is given by

Vg =
√

u2+ v2+w2− ż2 (7.203)

and the drift angle is given by

δ = arctan

(
v cosφ−w sinφ

u cosθ+ v sinφ sinθ+w cosφ sinθ

)
. (7.204)

These two consistency conditions appear as algebraic equations (7.195) and (7.196). A
similar ambiguity in the decomposition of the total forces (7.197)–(7.199) is resolved by
using information about the total sensed accelerations

nx =
[

Fx

m
+�nx

]
, (7.205)

ny =
[

Fy

m
+�ny

]
, (7.206)

nz =
[

Fz

m
+�nz

]
, (7.207)

where the constants �nx , �ny , and �nz represent observation instrumentation biases.
These expressions also appear as the algebraic equations (7.192)–(7.194). A summary of
the nomenclature is presented in Table 7.15.
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Table 7.15. Nomenclature.

α Angle of Attack (deg) Ptotal Total Pressure (psf)
β Sideslip (Yaw) Angle (deg) Pstatic Static Pressure (psf)
δ Drift Angle (deg) q Pitch Rate Y -Stability Axis (rad/sec)
µ Total Fuel Flow (lb/sec) r Yaw Rate Z -Stability Axis (rad/sec)
φ Euler Roll (Bank) Angle (deg) Tg Total Gross Thrust (lb)
ψ Euler Yaw Angle (deg) Tn Total Net Thrust (lb)
θ Euler Pitch Angle (deg) u X -Velocity (fps)
CD Reference Drag Coefficient u1 Aileron Deflection (deg)
CL Reference Lift Coefficient u2 Flaperon Deflection (deg)
Cy Reference Side Force Coefficient u3 Inboard Flap Deflection (deg)
nx Acceleration X -Direction (g) v Y -Velocity (fps)
ny Acceleration Y -Direction (g) Vg Ground Speed (knots)
nz Acceleration Z -Direction (g) w Z -Velocity (fps)
p Roll Rate X -Stability Axis (rad/sec) z Z -Position (ft)

The motion is described by 8 differential variables (z,u,v,w,φ,θ ,ψ , W ) and 18 al-
gebraic variables

(Tg , Tn,µ,CL ,CD ,Cy , p,q ,r ,nx ,ny ,nz ,α,β, Vg,δ, Ptotal , Pstat ic).

In addition, the three observation biases �nx , �ny , and �nz must be determined. The
total set of 26 dynamic variables and 3 parameters must satisfy the 8 differential equations
(7.184)–(7.191) and the 5 algebraic equations (7.192)–(7.196).

7.4.2 Step 1: Reference Trajectory Estimation

The goal of the first step is to compute time histories for the complete set of dynamic vari-
ables such that the trajectory dynamics defined by the DAEs (7.184)–(7.196) are satisfied.
Denote the dynamic variables by the vector z(t) with corresponding observations by the
vector ẑ(t). These quantities must be chosen to minimize the error at the observation data
points, i.e.,

F =
N∑

k=1

∑
j

j⊂O

[
(z j (tk)− ẑ j (tk))

σ j

]2

. (7.208)

For a typical flight test of 300 sec duration, with 20 data points per second, the total number
of points N ∼ 6000. Statistical information about the observation data is included using
specified values for the standard deviations σ j . Note the summation includes all dynamic
variables for which data are available (the set of observationsO) but excludes the quantities
u(t), v(t), W (t), CL(t), CD(t), and Cy (t). Thus observation data are available for only 20
of the 26 total dynamic variables. Note that for this step information about the camber
control surfaces, i.e., the camber variable data ûk , is not used. The solution to this least
squares problem is the best estimate for the time histories, which are denoted as C∗L (t),
C∗D(t), and C∗y (t). This large-scale parameter estimation problem can be solved using the
method described in Chapter 5.
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7.4.3 Step 2: Aerodynamic Drag Model Approximation

The first step provides estimates for the aerodynamic coefficients as a function of time;
however, it is desirable to construct a parametric model for the drag coefficient. The aero-
dynamic properties of the aircraft can be altered by control surfaces on the wing. For the
Boeing 777 aircraft, two control surfaces, namely the aileron and flaperon, can be utilized.
For the 787 aircraft, the inboard flap can also be used in addition to aileron and flaperon.
Thus we propose constructing the tensor product B-spline model

C̃D(u1,u2)=
n1∑

i=1

n2∑
j=1

ai j Bi (u1)B j (u2) (7.209a)

for aircraft with two control surfaces and

C̃D(u1,u2,u3)=
n1∑

i=1

n2∑
j=1

n3∑
k=1

ai jk Bi(u1)B j (u2)Bk(u3) (7.209b)

for aircraft with three control surfaces. To ensure that the model C̃D has a minimum it must
satisfy the constraints

∂2C̃D

∂u2
j

≥ 0 (7.210)

with respect to the camber control surfaces u j . The number of coefficients a in model
(7.209a) or (7.209b) is dictated by two factors: the order of the B-spline representation,
and the number of internal knots.

In order to compute the coefficients ai j and thereby define the aerodynamic model
(7.209a) or (7.209b) we utilize the results of the reference trajectory estimation, i.e., Step
1. Specifically we choose the coefficients ai j to minimize

F =
N∑

k=1

{
C∗D(tk )− C̃D [û1(tk ), û2(tk)]

}2
(7.211a)

for aircraft with two control surfaces and

F =
N∑

k=1

{
C∗D(tk )− C̃D [û1(tk ), û2(tk), û3(tk)]

}2
(7.211b)

for aircraft with three control surfaces and satisfy the curvature constraints (7.210). Note
that the objective function (7.211a) or (7.211b) involves the quantity C∗D(tk), which is avail-
able from the reference trajectory reconstruction in Step 1. Since the variation in drag is
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attributed to the changes in the camber variables, this information is incorporated into the
model using the data û j (tk). This constrained scattered data fit problem can be solved using
the sparse NLP techniques introduced in Chapter 2.

7.4.4 Step 3: Optimal Camber Prediction

The final step in the process is to determine the best performance over an extended period
of time at cruise using a constant setting for the camber variables. This can be achieved if
we determine the camber to minimize drag. By construction the camber variables appear
only in the quantity C̃D(u), so the optimal values with respect to u can be computed just by
minimizing

F = C̃D(u1,u2) (7.212a)

for aircraft with two control surfaces and

F = C̃D(u1,u2,u3) (7.212b)

for aircraft with three control surfaces, at fixed values of C̄L and M̄ . As a practical matter
we impose simple bounds on this two or three variable optimization problem. Let us denote
the minimum value as

C�
D = C̃D(u∗1,u∗2). (7.213)

7.4.5 Numerical Results

777-200ER Flight Test

The approach described has been implemented using flight test data for a particular Boeing
777-200ER airplane. To illustrate the method a series of representative results are plotted
in Figures 7.21–7.24. Figures 7.21–7.23 share a common format. The left column of each
figure displays the time history for a dynamic variable, as well as the measured (observa-
tion) for the same quantity. The right column presents the error between the data and the
reconstructed variable. So, for example, the first row in Figure 7.21 illustrates the varia-
tion in the horizontal velocity during the test. The right column plots the error between
the measured velocity and the reconstructed value. For this example the error in velocity
varies between ±.1 (fps). The average error in the reconstructed velocity over the entire
test .00020674815 is displayed in the title. Figure 7.23 displays the quantities C∗L (t)−C�

L
and C∗D(t)−C�

D , which are the estimated time histories for the aerodynamic coefficients
relative to their respective optimal values. Using the reconstructed aerodynamic coeffi-
cient data, the tensor product spline model (7.209a) is computed. Figure 7.24 displays the
percent change relative to the minimum, i.e., the quantity

�CD = 100× (C̃D(u1,u2)−C�
D )

C�
D

.
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Figure 7.21.

Performance Comparison

Step 1 requires the solution of a large-scale parameter estimation problem, and Figure 7.25
illustrates how the algorithm proceeds. The overall solution required 10 iterations. The first
three iterations locate a feasible point; that is, the defect constraints are solved. An initial
guess for the optimization variables x (4.105) is constructed by linearly interpolating the
observation data. In Figure 7.25 we see that the initial constraint error ‖c(x(1))‖2 = .137,
and after two iterations it is reduced to ‖c(x(3))‖2 = 8.5×10−9. The next six iterations are
directed toward minimizing the objective function while also satisfying the constraints. At
the beginning of this portion of the algorithm, the constraints are satisfied ‖c(x(4))‖∞ =
2.3× 10−9, and they are also satisfied at the solution ‖c(x(10))‖∞ = 7.1× 10−15. During
the optimization process the objective function is reduced from F(x(4)) = 2.92× 10−5 to
F(x(10)) = 8.1× 10−7, and the error in the projected gradient is reduced from 9.9× 10−5
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Figure 7.22.

to 5.1×10−16. However, note that constraint feasibility is not maintained during the opti-
mization steps, and at the seventh iteration ‖c(x(7))‖∞ = 5.9×10−5. Although the values
quoted have all been scaled to improve numerical conditioning, it is important to note that
the optimal value of the objective function is nonzero. In fact, at the solution the five
largest (unscaled) residuals are, respectively, 5.29,−4.32,4.25,−4.21,3.91. Because the
objective is nonzero and the residuals are nonlinear, a traditional Gauss–Newton method
would exhibit linear convergence. In contrast, the SOPE algorithm demonstrates quadratic
convergence, which is achieved because the full Hessian matrix (2.56) is utilized. This be-
havior is illustrated in Figure 7.25 by the dramatic reduction in the projected gradient and
constraint error during the final iterations.

In order to fully appreciate the algorithmic behavior it is worthwhile to look a little
deeper into the problem characteristics which are summarized in Table 7.16. At each it-
eration the optimization algorithm must solve a large system of linear equations, the KKT
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Figure 7.23.

system (7.215). For this example there are 176050 equations. Because there are 18735
variables, the matrix V is 18735× 18735. Since there are 147290 residuals the matrix R
is 147290×18735. The total number of defect constraints is 10025, and consequently the
matrix G is 10025×18735. Observe that of the 18735 variables, 10025 are determined by
constraints, and one is fixed by the initial condition on airplane weight W (0)=w0, leaving
8709 degrees of freedom available to minimize the objective function (7.208). Even though
the KKT system is large, it is also sparse. It is imperative that sparsity is exploited in order
to efficiently solve the problem. This is achieved in two ways.

First, we must compute the matrices V, R, and G, and this is done using finite dif-
ference approximations. Now a standard finite difference technique would require at least
18735 perturbations just to compute a forward approximation, which is clearly prohibitive.
However, by exploiting the sparse difference technique described in Section 5.4 it is pos-
sible to compute all first and second derivative information with just 170 perturbations!
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Figure 7.24. Aerodynamic model surface change.

This is possible because the total number of index sets for this problem is just 17 and is
determined by the right-hand-side sparsity template given by

T = struct


∂f
∂y
∂g
∂y
∂w
∂y

∣∣∣∣∣∣∣∣∣∣∣

∂f
∂u
∂g
∂u
∂w
∂u

∣∣∣∣∣∣∣∣∣∣

∂f
∂p
∂g
∂p
∂w
∂p

= . (7.214)

The combined benefit of sparse finite differences in conjunction with quadratic convergence
means that the entire problem is solved using only 707 evaluations, or 612901 evaluations
of the right-hand-side dynamic functions given in (7.184)–(7.196).

The second computational benefit accrues from the matrix sparsity itself. It is well
known that the computational complexity for solving a system of n dense linear equations
is O(n3). In contrast for a sparse linear system the cost is O(κn), where κ is a factor
related to sparsity. By using a symmetric indefinite decomposition of the underlying KKT
matrix, as described in Section 2.10 the time required to solve the linear equations on all 10
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Figure 7.25. Iteration history.

Table 7.16. Step 1 computational performance characteristics.

Number of KKT Equations 176050
Number of Residuals 147290
Number of Variables 18735
Number of Constraints 10025
Number of Degrees of Freedom 8709
Number of Index Sets 17
Number of Function Evaluations per Jacobian 34
Number of Function Evaluations per Jacobian/Hessian 170
Total Number of Function Evaluations 707
Total Number of Right-Hand-Side Evaluations 612901
Number of Iterations 10
Number of Hessian Evaluations 3
Total Time Inside NLP (sec) 28.37
Total CPU Time (sec) 30.11

iterations was only 28.37 sec, and the entire solution was obtained in just 30.11 sec. This
would not be possible without exploiting matrix sparsity.

In order to solve the large-scale least squares problems encountered in Step 1 of the
process one must face the computational issues associated with the normal matrix RTR.
It is well known that simply forming the matrix is ill-conditioned, and accurate solution
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of linear systems involving the normal matrix can be problematic. This ill-conditioning
is avoided by using a symmetric indefinite decomposition of the underlying KKT matrix,
as described in Section 2.10. Thus a new estimate for the variables (4.105) is given by
x= x+p, which is the solution to the QP subproblem (2.61)–(2.62). This approach requires
solving the linear system V RT GT

R −I 0
G 0 0

−p
−w
λ

=
RTr

0
0

 , (7.215)

where G is the Jacobian matrix of the defect constraints. In contrast when the normal matrix
is formed explicitly, the search direction can be computed by solving the linear system[

HL GT

G 0

][−p
λ

]
=
[

RTr
0

]
. (7.216)

The optimization search direction p can be computed by solving the KKT system
written in either the sparse tableau format (7.215) or in the normal matrix format (7.216).
The sparse tableau format is well-conditioned, whereas the normal matrix format is ill-
conditioned. On the other hand the sparse tableau format is much larger than the normal
matrix format. To assess the relative merits of each approach for this example a series
of cases were solved using various options. Three different discretization stepsizes were
used, namely h = 1,2,4 seconds. Two different (fourth order) discretization techniques,
specifically HSC and HSS, were tested. In each case both the sparse tableau and the nor-
mal matrix formats were tried. The results are summarized in Table 7.17. Three of the

Table 7.17. Algorithm parameter options.

Case ha Disc KKT Option Nb CPUc

1 1 Cd N 47154 334.780
2 1 C T 351434 F
3 1 Se Nf 59314 594.830
4 1 S T g 363594 F
5 2 C N 23532 287.780
6 2 C T 327812 102.540
7 2 S N 29596 277.700
8 2 S T 314139 70.5900
9 4 C N 11752 F

10 4 C T 316032 85.4500
11 4 S N 14776 436.830
12 4 S T 319056 62.9000

aDiscretization stepsize
bDimension of KKT matrix
cCPU seconds
dHSC discretization
eHSS discretization
fNormal matrix KKT option (7.216)
gSparse tableau KKT option (7.215)
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cases failed to converge either because of storage or iteration limits. Cases 6, 8, 10, and
12 suggest that the sparse tableau format is more efficient provided sufficient storage is
available. When storage is limited, the normal matrix approach can be utilized; however,
there is a significant CPU time penalty which can be attributed to the ill-conditioning of
this alternative. The default settings for production usage employ the sparse tableau format
with the separated Hermite–Simpson discretization.

Constructing the parametric representation for the drag coefficient as described in
Section 7.4.3 also entails solving a sparse constrained optimization problem just as in Step
1. Specifically we must compute the coefficients ai j that define the spline model (7.209a).
In this case it is possible to compute the necessary derivatives analytically; however, the
same sparse optimization algorithm is used.





Chapter 8

Epilogue

Solving a problem in optimal control or estimation is not easy. Pieces of the puzzle are
found scattered throughout many different disciplines. At the very least, one needs an “op-
timization” method and a “differential equation” method. A rudimentary understanding of
modern control theory is helpful, to say nothing of expertise in the domain of application.
In my experience, the most challenging practical problems originate with experts in a par-
ticular domain. An aerodynamicist feels comfortable discussing “lift” and “drag” but is
less familiar with index-two DAEs. Chemical engineers can readily describe a batch feed
process but become uneasy when discussing the KKT conditions. Often this domain ex-
pertise has been painstakingly developed over many years and involves complex computer
simulations and/or expensive experimental studies.

Thus, when faced with an optimal control or estimation problem it is tempting for
the domain expert (i.e., the structural engineer, biochemist, etc.) to simply “paste” together
packages for optimization and numerical integration. While naive approaches such as this
may be moderately successful, the goal of this book is to suggest that there is a better way!
The methods used to solve the differential equations and optimize the functions are inti-
mately related. Furthermore design and development of the “simulation” or experimental
trial should be done with the intent to optimize. Optimization is not an afterthought. In-
deed, perhaps the most important issue needed to successfully solve a problem is the proper
formulation. And so I close with the following:

THEERUM

If there is a flaw in the problem
formulation, the optimization algorithm
will find it.11

11The proof is left to the student.
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Appendix

Software

All of the algorithms described in the book have been implemented and tested on realis-
tic test problems. In addition, all of the examples presented have been solved using this
software, and FORTRAN implementations of the examples can be obtained by contacting
the author. The SOCS [38] library, which contains all of the software, has a great deal of
functionality and it is not intended that this appendix should be viewed as a user’s manual.
On the other hand, it is worthwhile to outline the basic capability of the tool to assist the
reader in the formulation and solution of practical problems. To that end, the following
sections present a brief overview of the library. Additional information can be obtained by
contacting the author at john.betts@comcast.net.

A.1 Simplified Usage Dense NLP
The subroutine HDNLPD provides the most basic functionality for solving small, dense
NLP problems. The primary information that must be supplied by the user (outlined with
a double box in Figure A.1) is a subroutine called FUNBOX that evaluates the objective
and constraint functions. This is the function generator described in Section 3.8. All al-
gorithm parameters are given default values, which are appropriate for a simple problem.
If desired, the default values can be redefined using a utility routine HHSNLP that is com-
mon to all software in the SOCS library. The simplified usage software uses a forward-
communication format and, as such, the optimization algorithm HDNLPD calls the user-
supplied subroutine, which has a fixed calling argument list. For more sophisticated ap-
plications, the reverse-communication subroutine HDNLPR can be used. HDNLPR is ap-
propriate for small, dense applications when the user can supply gradient and Hessian
information. It is also appropriate for use with complicated simulation programs and when
parallel processing is used.

A.2 Sparse NLP with Sparse Finite Differences
Large, sparse NLP problems necessarily demand more information from the user because
of the need to specify matrix sparsity and provide corresponding derivative information.

413



414 Appendix. Software

Main Program

-Define NLP Input
∗Guess
∗Bounds

-Set Optional Input

-Call NLP Algorithm

-Process Solution

HHSNLP
Optional Input

HDNLPD
NLP Algorithm

FUNBOX
Problem Functions

✲

✲✛

❄✻

Figure A.1. Dense NLP software.

Figure A.2 illustrates the usage of the sparse NLP algorithm HDSNLP, which employs a
reverse-communication format. Again, the user-supplied software is shown inside a dou-
ble box. In addition, software for constructing sparse finite difference first and second
derivatives HDSFDJ and HDSFDH is also available. A utility procedure (HJSFDI) can be
used for constructing sparse difference index sets based on the user-supplied matrix spar-
sity patterns. Optional input can be set using the standard SOCS utility HHSNLP. Similar
functionality is available when solving large, sparse nonlinear least squares problems using
subroutine HDSLSQ rather than HDSNLP.

A.3 Optimal Control Using Sparse NLP
Implementing the solution of an optimal control problem using the direct transcription
method in SOCS requires some software supplied by the user. Figure A.3 illustrates the
software organization of an application. As before, user-supplied procedures are shown
with double boxes. However, many of the user-supplied routines are optional, as indicated
by an asterisk in the illustration. The user must call the SOCS algorithm HDSOCS. The
user must define the problem via the subroutine ODEINP. All other information is optional
and can be supplied either by the user or by using dummy routines from the SOCS library
instead. Typically, the user will specify the right-hand sides of the DAEs and quadrature
functions using subroutine ODERHS. For applications with nonlinear boundary conditions,
the point function routine ODEPTF must be supplied. If special output (e.g., graphics files)
is desired, the user can supply a special-purpose ODEPRT routine. The default initial guess
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Figure A.2. Sparse NLP software.
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Figure A.3. Sparse optimal control software.
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for the state and control variables is a linear function between the phase boundaries. When
other initialization procedures are used, subroutine ODEIGS provides this functionality.
When solving an optimal control problem, it is not necessary to define the matrix sparsity,
to compute derivatives, or to call the sparse NLP algorithm. However, nonstandard NLP
options can be set using the HHSNLP utility. Nonstandard optimal control algorithm op-
tions can be set using the HHSOCS utility. For example, the discretization accuracy and
number of mesh-refinement iterations can be set by HHSOCS. A feasible (but suboptimal)
trajectory can be computed by using the feasibility (F) option as set by HHSNLP. The so-
lution computed by SOCS is represented using B-spline function(s). The solution can be
evaluated at arbitrary points with the utility OCSEVL and/or the auxiliary output proce-
dure AUXOUT. Multiphase formulations may also incorporate the LINKST utility when
linking phases together. The overall SOCS library has been designed with flexibility and
functionality in mind and is especially suited for use with complex simulation systems.
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Entries set in italic type indicate an example.

Abort Landing in the Presence of
Windshear, 284

active set method, 18, 33
active set strategy, 16
adjoint equations, 124
adjoint or costate variables, 123
Algebraic Function Approximation, 240
Alp Rider, 163
Analytic ODE Solution, Analytic

Derivative, 112
Andrew’s Squeezer Mechanism, 310
augmented Lagrangian function, 22
autonomous system, 93, 123

B-Spline Approximation, 236
backward Euler method, 100
Bang-Bang Control, 216
barrier function, 33
barrier method, 31
barrier parameter, 33, 77
bilevel optimization problem, 36
Bolza, problem of, 131
boundary conditions, 92
boundary value problem (BVP), 92
Brachistochrone, 215
Broyden update, 11
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) update, 11
Brusselator Problem, 117

calculus of variations, 123
cancellation error, 47
central path, 34
collocation, 127
collocation method, 100

Compton Gamma Ray Observatory
Reentry, 232

consistent function generator, 109, 115
consistent initial conditions, 201, 322
constraint qualification test, 28
continuous functions, 131
control equations, 124
control variable, 101, 130
control variable equality constraint, 125
convergence

quadratic, 3
superlinear, 5

curvature, 9

DAE index, 104
DAEs are not ODEs, 105
Davidon–Fletcher–Powell (DFP)

update, 12
defect, 95, 126
defective subproblem, 61, 62
delay differential equation (DDE), 385
Delta III Launch Vehicle, 336
differential-algebraic equation (DAE),

101
direct method, 127
directional derivative, 9
discretize then optimize, 115, 178, 192,

194, 199
Discretized ODE Solution, Analytic

Derivative of Discretization,
113

Discretized ODE Solution, Analytic
Derivative of Exact Solution,
114
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Discretized ODE Solution, Finite
Difference Derivative of
Discretization, 113

Dynamic MPEC, 322
dynamic system, 91

Enzyme Kinetics, 386
Equality Constrained Minimization, 14
Euler–Lagrange equations, 124
event, 108
exterior point penalty function, 35
external differentiation, 116

filter, 26
Filter Globalization, 26
Finite Horizon Optimal Control, 394
forward communication, 413
forward difference, 110
forward difference approximation, 46
Free-Flying Robot, 326
function error, 109
function generator, 109, 413

Gerschgorin bound, 59, 167
globalization strategies, 21
Goddard Rocket Problem, 213
grid refinement, 153

Hamiltonian, 124
Heat Equation, 149
Hermite–Simpson (compressed) (HSC),

99, 133, 142
Hermite–Simpson (separated) (HSS),

143
Hessian of the Lagrangian, 13
holonomic constraints, 316
Hypersensitive Control, 170

Immunology Example, 389
index reduction, 104, 125, 200, 215, 312
index sets, 52
index-one DAE, 104
indirect method, 127
indirect transcription, 178
Industrial Robot, 304
Inequality Minimization—Active

Constraint, 17

Inequality Minimization—Inactive
Constraint, 17

inertia, 59
Infeasible Constraints, 40
initial conditions, 92
initial value problem (IVP), 92
integration stepsize, 97
interior-point algorithm, 34
interior-point method, 31
internal differentiation, 110, 117
inverse problems, 219
iteration matrix, 167

K -stage Runge–Kutta, 98, 145
Karush–Kuhn–Tucker (KKT) system, 15
Kinematic Chain, 315
Kinetic Batch Reactor, 331

Lagrange, problem of, 131, 168
Lagrange multipliers, 13
Lagrangian, 13
least distance program (LDP), 63
Levenberg parameter, 25, 59
limited memory update, 12, 52
line search, 23
linear programming (LP), 19
Linear Tangent Steering, 135, 178, 241
Linear Tangent Steering Estimation, 241
linkage conditions, 108
Lobatto methods, 100
logarithmic barrier function, 77
Low-Thrust Orbit Transfer, 265

mass matrix, 311
mathematical program with

complementarity conditions
(MPCC), 36

mathematical program with equilibrium
constraints (MPEC), 37

Max-Crossrange Alternate Formulation,
252

Maximum Crossrange, 248
maximum likelihood, 221
Mayer, problem of, 131, 169
mesh refinement, 153
method of lines, 149, 193
method of steps, 386
midpoint rule, 100
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Minimax Heating Formulation, 253
Minimax Problems, 43
minimax problems, 43
minimum curvature spline, 259
Minimum Time to Climb, 256
multibody system, 305, 310, 315
multifrontal algorithm, 56
Multiphase Approximation, 234
multiple shooting, 95, 108, 278
Multiple Shooting Example, 95
Multiple-Pass Aero-Assisted Orbit

Transfer, 372
multistep methods, 97, 102

Newton Method with Line Search, 23
Newton’s method

univariate optimization, 5
univariate root finding, 2

Newton’s Method—Root Finding, 3
nonlinear least squares (NLS), 70
nonlinear programming (NLP), 28
Nonunique Solution, 46
normal matrix, 70
Notorious Problem, 228

ODE Example, 92
one-step methods, 97
optimal control problem, 91
optimize then discretize, 178, 192, 194
ordinary differential equations (ODEs),

91

parallel shooting, 97
parameter estimation problem, 220
parameters, 130
path constraints, 124, 130
penalty function methods, 22
phase, 108, 129
point functions, 131
pointwise quasi-Newton updates, 52
Pontryagin maximum principle, 124
projected gradient, 15
projected Hessian, 15
Putting Example, 105

quadratic penalty function, 22
Quadratic Program, 19
quadratic programming (QP), 18

quadrature functions, 131, 168
quasi-Newton method, see secant

method, 10–12

Range Maximization of a Hang Glider,
282

Rank-Deficient Constraints, 41
Rayleigh Problem with Control

Constraints, 182
Rayleigh Problem, Mixed State-Control

Constraints, 183
Redundancy (Full-Rank), 41
Redundancy (Rank-Deficient), 42
Reorientation of Rigid Body, 299
residual Hessian, 70
residual Jacobian, 70
residuals, 70
reverse communication, 413

Schur-complement, 56
secant method, 4–5
semiexplicit DAE, 101
sequential nonlinear programming

(SNLP) algorithm, 153
sequential quadratic programming

(SQP), 29
sequential unconstrained minimization

techniques (SUMT), 33
Shooting Boundary Value Problem, 93
shooting method, 94, 108, 242, 273
singular arc, 125
singular perturbation, 101
Space Station Attitude Control, 293
sparsity template, 140, 146
SQP Method, 30
state equations, 130
state variable, 101, 130
state variable constraint, 125
stiff, 100
symmetric rank-one (SR1) update, 11

tabular data, 257
Trailing Edge Variable Camber, 396
transcription method, 91, 152
transversality conditions, 124
trapezoidal method, 99, 133, 136
Treating Absolute Values, 43
truncation error, 47
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trust region, 23
Tumor Anti-angiogenesis, 348
Two-Burn Collocation, 279
Two-Burn Multiple Shooting, 278
Two-Burn Transfer, 273
two-point BVP, 93, 124

Two-Strain Tuberculosis Model, 345

Van der Pol Oscillator with State
Constraint, 187

Van der Pol’s Equation, 101
variational inequalities, 37
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