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Abstract

Rendezvous and docking missions have been a mainstay of space exploration from the Apollo
program through present day operations with the International Space Station. There re-
mains a growing interest in several mission types that not only rely on rendezvous and
docking, but also rely on maneuvering spacecraft once docked. For example, there is active
interest in orbital debris removal, on-orbit assembly, on-orbit refueling, and on-orbit ser-
vicing and repair missions. As these missions become more and more popular, the number
of rendezvous and docking class operations will increase dramatically. Current methods
focus on performing rendezvous and docking to very well-known targets and in very well-
known conditions. Inherent to these new mission types, however, is an increasing element
of uncertainty to which new guidance and control architectures will need to be robust.

As guidance and control techniques become more robust, a corresponding tradeo↵ in
performance can typically be experienced. This thesis attempts to address the uncertainties
in rendezvous and docking operations while maintaining a probabilistically optimal level of
performance. There are two main focuses in the thesis: spacecraft trajectory optimization
and reference-tracking controller selection. With respect to trajectory optimization, the goal
is to find probabilistically optimal trajectories given large uncertainties in mission critical
parameters, such as knowledge of an obstacle’s position, while knowing that the trajectory is
able to be replanned onboard the spacecraft when higher precision information is obtained.
This baseline optimal trajectory and subsequently replanned trajectories are then followed
by an optimally determined set of reference-tracking controllers. These controllers are
selected and scheduled throughout the phases of the mission based on the probabilistically
expected performance in the presence of noise and uncertain parameters.

This process is explored through its implementation on a generic problem setup for ren-
dezvous, docking, and joint maneuvering. Results specific to this problem and associated
analysis motivate the use of probabilistic planning in future space missions. Specifically, the
thesis shows that fuel and tracking performance can be improved if multi-stage missions are
planned continuously through phase transitions and without the use of waypoints. Further-
more, under the presence of large uncertainties, the techniques in this thesis produce better
expected fuel and tracking performance than traditional trajectory planning and controller
selection methods.
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Fy Force executed by the thrusters in the ĵ direction
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Veq Stacked constraint matrix for equality constraints for trajectory optimiza-

tion

V
0
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fuel trajectory optimization problem
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vsat Magnitude of the velocity of the spacecraft in the ECI frame

Vss Weighting matrix of the sensitivity in the SWLQE optimization problem
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W
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Wineq Stacked constraint matrix for inequality constraints for trajectory optimiza-

tion

W
0
ineq Stacked constraint matrix for inequality constraints modified for the minimum-

fuel trajectory optimization problem

wr0 Process noise for the random walk for the orbital radius estimation in AEKF
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Chapter 1

Introduction and Motivation

1.1 Historical Missions with Autonomous Rendezvous

and Docking

From the start of the space race in the 1960’s, rendezvous and docking has become an

integral part of spaceflight. Contrasting the American and Russian approach to rendezvous

and docking in the early years of spaceflight comes down to one word: autonomy. The

Russians designed the Soyuz vehicle to dock through automatic control loops being fed

data from an array of sensors, while the Americans let the astronaut command attitude

and position corrections manually from Apollo through the Space Shuttle program. As

of this writing, Soyuz and Shuttle are the only programs to build and fly spacecraft to

transport crewmembers to the International Space Station (ISS) [1]. As the years have

progressed, there has been more interest in unmanned operations and thus naturally more

interest in automated rendezvous and docking.

There are also several unmanned vehicles used for cargo delivery to the ISS. The Orbital

ATK Cygnus, SpaceX Dragon and Japanese HTV each rendezvous to the ISS, but are

berthed through the Canadarm2 robotic arm controlled by a crewmember on the ISS.1

The Soyuz/Progress vehicles are currently capable of autonomously performing rendezvous,

docking, departure and re-entry maneuvers.2 The European ATV has shown the capability

to rendezvous and dock autonomously to the ISS through each of five missions [2].

Several demonstration missions have also been performed with varying success. In 1999,

1
http://www.nasa.gov/mission_pages/station/structure/launch/index.html

2
http://www.nasa.gov/mission_pages/station/structure/elements/progress.html
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the Japanese ETS-VII mission demonstrated the first successful unmanned autonomous

rendezvous, docking, and robotic arm maneuvers [3]. In 2005, the two spacecraft involved

in NASA’s DART mission unfortunately collided and failed to demonstrate autonomous

docking [4]. Also in 2005, the Air Force Research Laboratory’s XSS-11 micro-satellite

was intended to perform autonomous rendezvous and inspection operations, although no

technical reports with results have been issued since its launch.3 In 2007, DARPA’s Orbital

Express mission successfully demonstrated rendezvous, robotic arm docking, servicing and

refueling of a specially designed modular serviceable satellite through increasing levels of

autonomy [5, 6]. In 2010, the Swedish Space Corporation’s PRISMA mission demonstrated

autonomous rendezvous, formation flight and collision avoidance maneuvers [7].

1.2 Proposed Missions and Applications

With the recent successes in unmanned rendezvous and docking technology, a variety of new

mission types are becoming feasible. Some of these mission types will create larger demand

for future missions (e.g., space station assembly) and others will serve to mitigate the e↵ects

of the growing number of missions (e.g., orbital debris removal). Regardless, with the

continual trend toward the commercialization of space, there will become an overwhelming

number of missions that rely on rendezvous and docking.

With the increase of orbital debris in Low Earth Orbit (LEO), a large number of papers

have proposed methods for its removal through unmanned spacecraft rendezvous, capture

and de-orbit [8–10]. Even a new company, Astroscale, has formed and is working toward

a plan of removing space debris through adhesively docking disposable satellites to spent

rocket bodies or defunct satellites.4

One of the major end-of-life causes for satellites on orbit is simply running out of fuel.

A few missions have been proposed to refuel these depleted satellites on orbit. Orbital

Express provided the first feasibility experiment on the topic, but it is di�cult to refuel

spacecraft that were not originally designed for refueling. Thus, another approach has been

proposed for small spacecraft to dock to fuel-depleted satellites to act as ancillary propulsive

modules. These missions are proposed both for satellite retirement into the graveyard orbit

past Geostationary Earth Orbit (GEO) or for station-keeping and more benign modification

3
http://www.kirtland.af.mil/shared/media/document/AFD-070404-108.pdf

4
http://astroscale.com
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of orbits such as DARPA’s SUMO program [11] or DLR’s OLEV program [12]. Some more

grandiose plans involve fuel depots on orbit that satellites could maneuver to themselves or

have fuel delivered to them.

The on-orbit servicing and repair of failed spacecraft that still have the potential for

continued operations is also of interest in the community. This repair could be as simple

as nudging a solar array that did not deploy correctly or as complicated as replacing a

serviceable module such as a faulty flight computer or reaction wheel assembly. Several

missions have been proposed for various levels of repair and serviceability such as DEOS

from the DLR [12], RSGS from DARPA,5 and Restore-L from NASA’s SSCO.6 On the

commercial side there is ViviSat’s MEV,7 an Orbital ATK and US Space joint venture

which recently seems to have signed a deal with Intelsat.8

On-orbit assembly is another area requiring rendezvous, docking, joint maneuvers and

undocking [13]. Given launch vehicle constraints on payload size and mass, large space

structures will require in-space assembly. These structures can range anywhere from space

stations to large aperture telescopes [14]. Creating large space stations could pave the way

for space tourism, which would require regularly scheduled transport involving rendezvous

and docking.

The number of applications for rendezvous and docking is only increasing. Thus, the

demand for more fuel and time e�cient techniques will be at a premium, as will the need

for safer and more robust algorithms to oversee these operations. Current methods are

generally designed toward well-known, specific systems and require weeks of engineers’ time

for integration and testing. The current process of choosing appropriate guidance and

control techniques for missions will need to be revamped to account for the inherently

increased levels of uncertainty in these future missions.

1.3 Generalized Mission Phases

Although the applications of rendezvous and docking vary greatly in mission objective, each

application can be split into a generalized set of up to four guidance and control phases

5
http://www.darpa.mil/news-events/2016-03-25

6
http://ssco.gsfc.nasa.gov/restore-L.html

7
http://www.vivisat.com

8
http://www.wsj.com/articles/orbital-atk-and-intelsat-set-to-sign-satellite-servicing-

pact-1457444904
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shown in Figure 1-1: (1) Rendezvous, (2) Docking, (3) Joint Maneuvers, and (4) Undocking.

Figure 1-1: The four generalized mission phases

Each of these phases is associated with distinct objectives, constraints and uncertainties.

Specific mission parameters will determine how long each of these phases will last. Some

missions may not perform active control during the joint maneuver phase, others may

not even have an undocking phase, and further still, some may loop over multiple phases

to rendezvous and dock to numerous targets in a single mission. Nonetheless, this general

framework should encapsulate the full range of rendezvous and docking mission phases from

a guidance and control perspective. The following descriptions will highlight the di↵erences

between the phases and given more detail into the objectives and constraints present in each

phase. For nomenclature’s sake, note that the “chaser” spacecraft is the one approaching

and docking to the “target” spacecraft.

Rendezvous Phase: For the purposes of this thesis, the orbital phasing ma-

neuvers that involve large �V burns to change the orbits of the two spacecraft

are left out of the problem formulation, and instead the rendezvous phase de-

scribes the period after the orbits are lined up and the spacecraft are separated

by about 10 km to 100 m. The sensors available at these distances play the main

role in defining the rendezvous phase, and thus, when compared to other phases,

the foremost uncertainty in this phase is in the knowledge of the relative state

information. Due to the larger distance traversed in this phase, the potential
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for debris or other spacecraft to intersect a rendezvous trajectory is increased,

and thus there is a requirement to adhere to obstacle path constraints. Due to

the larger maneuvers in this phase, the control methodology used during the

rendezvous phase is generally very concerned with reducing fuel consumption

as much as possible. Additionally, the maneuvers tend to be executed over a

much larger period of time to facilitate this fuel e�ciency. In this respect, the

rendezvous phase is suitable for guidance and control techniques that require

longer computation time but guarantee better performance margins.

Docking Phase: The docking stage is concerned with closing the relative dis-

tance from 100 m until a rigid mating of the two satellites is accomplished. The

sensors available in this phase reduce the uncertainty in the relative state sig-

nificantly. However, due to the risk sensitive nature of operations this close to

the target satellite, several additional constraints are placed on the chaser satel-

lite. There are Line Of Sight (LOS) constraints to ensure the docking sensors

or fiducial markers are in view. There are also constraints that limit the ap-

proach velocity, docking port tolerance, contact force, and plume impingement.

Finally, there are safety constraints for Collision Avoidance Maneuvers (CAM),

among others. Due to the constraints on the precision of the relative state, it is

necessary to control and sense at a faster frequency than during the rendezvous

phase, which was mainly concerned with fuel e�ciency.

Joint Maneuver Phase: Once the spacecraft have rigidly mated at the end of

the docking phase, the joint maneuver phase begins. As is fairly self-descriptive,

the joint maneuver phase handles the guidance and control of the two combined

spacecraft as one. Depending on the mission, the objective during this phase

could be to station-keep or point a passive target, to transport the target to a

new orbital location for assembly, or to deorbit a piece of debris, among others.

This phase could involve either the aggregation and use of actuators and sensors

from both spacecraft or the complete control by the chaser acting as a tug.

Uncertainties in mass, inertia, actuator and sensor properties of the target have

increased, and the dynamics of the combined system will now be di↵erent. The

objective could force the need for high performance in either precision control

or fuel e�ciency depending on the specific system goals.
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Undocking Phase: As it naturally falls in the progression of the phases, the

undocking phase deals with releasing the docking port mechanism and safely

separating the two spacecraft. The objectives in this phase can vary greatly

depending on the mission application. For example, currently several resupply

vehicles to the ISS simply deorbit themselves and burn up in the atmosphere,

while in the future these types of vehicles may need to stay in orbit to perform

another cargo delivery. In any case, a majority of the same constraints need

to be met as described in the docking phase to ensure the safety of the target

spacecraft. Once the separation is deemed far enough, the next orbital maneuver

or rendezvous phase is able to begin, which is generally out of the scope of this

thesis but can be used to link successive rendezvous and docking activities.

The main takeaway here is that there are several phases in the rendezvous and docking

problem, each with their own objectives, constraints and uncertainties. Di↵erent guidance

and control techniques are therefore better suited at di↵erent times in the mission as per-

formance requirements change. The challenge is then to determine the best performing

guidance and control techniques for each phase while taking into account the current level

of uncertainty in the mission.

1.4 Uncertainty and Uncertain Events On Orbit

Over the course of the better part of a century, there is one thing that has remained a

constant in spaceflight: uncertainty. Just the fact that spacecraft are extremely complicated

machines designed and built by teams of specialized engineers makes it di�cult to know

exactly what is going on, let alone that fact that by definition these experts are not on

the same planet during operation and have very limited means of diagnosis or verification.

To make a terminology point here, uncertainty deals with limited knowledge in parameters

of the spacecraft mission. Uncertain events, on the other hand, are incidents that could

potentially happen once in space, but there is limited knowledge of when, how and if they

will happen.

The sources of uncertainty in a spacecraft mission all stem from limited measurement

precision and accuracy at some point in the process of manufacturing, assembling, launching,

and on-orbit activities. Specifically, from assembly, there are uncertainties in the knowledge
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of both the chaser and target’s physical properties such as mass, center of mass, inertia,

actuator alignment and sensor alignment. Of course, there are reasonable estimates for

these parameters, but there is always some measurement error and components often tend

to shift during launch. A lot of these parameters can be calibrated once on orbit, but there

still remains uncertainty resulting from those analyses. There are also uncertainties based

upon unmodeled dynamics, noise in sensor readings, and noise in actuator performance.

Essentially this amounts to biases, measurement noise and process noise that a state esti-

mator will have to consider. Still though there is inherent uncertainty in the knowledge of

a chaser’s relative state with respect to a target (i.e., relative position, velocity, attitude

and angular rate). Finally, for the orbital debris removal problem, there could be even

larger uncertainties in the target’s spin rate, spin axis, and inertia ratios, which all need to

be estimated by the chaser spacecraft. Planning a mission relies heavily upon all of these

mentioned uncertainties. In order to reduce risk, robust planning methods are needed that

take all of this uncertainty into account.

Uncertain events cover a broad spectrum of anomalies, failures, mishaps and unexpected

behavior that can happen during a mission. For reference, in the 20-year period from 1981

to 2000, there were 242 observed on-orbit failures of components of 2,431 payloads, 134 of

those causing total failure [15]. So roughly ten percent of space payloads encounter a failure

at some point during their lifetime, and rendezvous and docking missions are not immune.

From 1990 to 2006, there were 64 incidents related to power-system failures on spacecraft,

which for a docking mission would be disastrous if all control of the system were lost [16].

Some of these uncertain events have historical precedence of happening during ren-

dezvous missions, and some are known to be possible but have not been encountered up to

this point. In 1990, during the STS-32 mission the Shuttle experienced a radar anomaly

during its rendezvous to the Long Duration Exposure Facility causing deviation from the

nominal trajectory and extra fuel and time expenditures [17]. In 1997, the manually pi-

loted Progress cargo vehicle collided with the Mir space station due to insu�cient onboard

sensors and poor visibility, damaging the solar arrays and puncturing a pressurized mod-

ule.9 In 1998, during the STS-91 mission, the Shuttle’s final flight to the Mir station, a

software error in processing GPS measurements caused inaccurate state propagation which

again resulted in excess fuel and time [17]. In 1999, on the second rendezvous attempt of

9
http://history.nasa.gov/SP-4225/multimedia/progress-collision.htm
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ETS-VII, there were anomalous thruster firings on multiple final approach maneuvers and it

took three additional weeks to complete the docking maneuver [3]. In 2005, NASA’s DART

spacecraft experienced a velocity bias from GPS measurements, causing it to unnecessarily

consume all of its fuel and collide with the target satellite [4]. In 2007, during the otherwise

very successful Orbital Express mission, a sensor computer failed causing the navigation to

drop out and required two ground intervention steps to ensure the spacecraft’s safety [18].

These events continue to happen today, even in the seemingly routine docking to the

ISS. In September 2013, the Orbital Sciences Cygnus cargo spacecraft experienced a data

mismatch in their GPS processing software that delayed reaching the ISS by a couple days

until a software patch could be implemented.10 In December 2015, the autonomous docking

in the Soyuz mission had to be aborted and manually taken over after a thruster failure

and subsequent misalignment.11 In February 2017, a SpaceX Dragon approach to the ISS

was aborted due to anomalous GPS data causing the navigation filter to diverge, delaying

berthing by a day.12

So, from historical anomalies, we can categorize the problems into a few areas. First,

failures in spacecraft subsystems and components are rampant on orbit due to the complex-

ity and harsh environment. Second, estimator errors from measurement outliers, software

mistakes and hardware failures have caused satellites to collide with each other or per-

form unnecessary maneuvers. Third, thrusters have failed through either fuel depletion or

anomalous firings. All of these historical events are summarized in Table 1.1. However, an

additional uncertain event, obstacle avoidance has not caused problems on orbit, because it

is currently handled by extensive planning and meticulous tracking of space objects. As the

number of objects in Earth orbit increases and rendezvous missions begin to go into orbits

that are not as well tracked such as geostationary orbit, unexpected obstacle avoidance will

need to be considered. Furthermore, as more universal, reusable, autonomous servicer or

assembly spacecraft are used, the prospect of a mission changing or being redirected could

also be considered an uncertain event that would potentially a↵ect mission planning. For all

of these uncertainties and uncertain events, robustness needs to be built into future systems

10
https://www.nasa.gov/content/cygnus-rendezvous-postponed-to-no-earlier-than-saturday and

https://www.fool.com/investing/general/2013/09/24/orbital-sciences-cygnus-craft-now-set-to-
dock-with.aspx

11
http://www.russianspaceweb.com/iss-soyuz-tma19m.html

12
https://spaceflightnow.com/2017/02/22/spacex-waves-off-space-station-cargo-delivery-

for-at-least-a-day/
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or the consequences will be great.

Table 1.1: Historical examples of anomalies and mishaps on orbit

Date Mission Event E↵ect

1981-

2000

2,431 total mis-

sions

242 component failures 134 total mission failures

1990-

2006

64 a↵ected mis-

sions

Power-system failures Reduced capability or mission

failure

1990 STS-32 Space Shuttle radar

anomaly

Deviation from trajectory,

wasted fuel/time

1997 Progress to Mir Spacecraft misguided under

poor sensing

Collision with Mir Space Sta-

tion

1998 STS-91 Software error in GPS esti-

mates

Deviation from trajectory,

wasted fuel/time

1999 ETS-VII Anomalous thruster firings 3-week delay, wasted fuel

2005 DART Velocity bias from GPS

measurements

Propellant depletion, collision

with target

2007 Orbital Express Navigation system drop out Ground intervention, wasted

fuel/time

2013 Cygnus to ISS GPS software error 2-day delay, wasted fuel/time

2015 Soyuz to ISS Thruster failure and mis-

alignment

Manual override, wasted

fuel/time

2017 Dragon to ISS Diverged estimation filter 1-day delay, wasted fuel/time

1.5 Summary of Thesis Motivation

It is clear that there is a substantial heritage for autonomous rendezvous and docking mis-

sions in Earth orbit. However, given the increasing demand for rendezvous, docking and

joint maneuvers in the coming years, the potential for these missions to be in locations

unsuitable for human control, and the drastic increase of uncertainties in these missions, a

new method of mission planning is required. This new method must take into considera-
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tion the chances that trajectories will need to change due to the uncertainties present in

the problem. Consequentially, at least some portion of the planning must be implemented

onboard the spacecraft. With the increased number of missions, probability is no longer on

our side. More failures and anomalies will begin to occur, and proactive mission plans need

to be able to handle those uncertain events without significantly degrading performance.

Additionally, there will inevitably need to be rendezvous and docking to a wide array of

systems and in a wide variety of orbits and locations. Today, docking to the same, highly

monitored, “designed-to-be-docked-to” spacecraft over and over on meticulously planned

days and times makes for little uncertainty. Furthermore, the multi-stage nature of these

future missions, with di↵erent objectives, uncertainties and constraints in each phase, sug-

gests that appropriate control techniques may vary throughout the mission. As such, a

scheduling problem arises of when and under what circumstances to use specific control

algorithms.

Therefore, we are motivated to develop mission planning techniques for guidance and

control algorithms under the presence of uncertainties and uncertain events. We want to

make the best guidance and control architecture decisions based only upon the knowledge

available before the mission starts. This knowledge for the most part includes the best

available estimates of important mission parameters and the uncertainty distributions which

describe how well we know those parameters. In the case that the baseline guidance and

control architecture is not robust to the value of a parameter on orbit, there is a need to

react. For example, onboard replanning of the trajectory or the type of controller currently

being used may be necessary. A guidance and control framework that accounts for these

types of uncertainties will be very beneficial in the future given the increasing activity in

space.

As a final note of motivation, NASA’s Technology Roadmap specifically calls out sev-

eral relevant topics in Technology Area 4.5 (System-Level Autonomy) and 4.6 (Autonomous

Rendezvous and Docking), including: 4.5.2, Activity Planning, Scheduling and Execution;

4.5.3, Autonomous Guidance and Control; 4.5.7, Path and Motion Planning with Uncer-

tainty; 4.6.2, Guidance, Navigation and Control (GNC) Algorithms; and 4.6.4 Mission

System Managers for Autonomy and Automation [19].
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1.6 Thesis Objectives

The main goal of this thesis is to show that, in the realm of guidance and control for space-

craft proximity operations, there is a tradeo↵ between safety and performance, and that

advanced planning can lead to probabilistically better performance under the presence of

uncertainties and uncertain events. Thus, the thrust of this thesis is to develop guidance and

control mission planning software that is capable of optimizing guidance and control tech-

niques throughout the di↵erent phases of the generalized rendezvous and docking problem

described in Section 1.3. In more detail, the following objectives are set:

1. To develop baseline optimal trajectories that will probabilistically outperform cur-

rent techniques given large initial uncertainties in mission critical parameters and the

possibility of uncertain events;

2. To schedule reference-tracking controllers throughout the di↵erent phases of the ren-

dezvous and docking mission such that the controllers chosen have the probabilistically

best performance given parameter uncertainty in the relative motion dynamics; and

3. To implement trajectory optimization and controller-scheduling algorithms in a form

that incorporates all phases of the mission and is feasible to run onboard a spacecraft

during rendezvous, docking and close-proximity operations.

1.7 Thesis Roadmap

Chapter 1 has attempted to introduce and motivate the thesis topic of planning guidance and

control strategies for rendezvous and docking missions in the presence of uncertainties and

uncertain events. Chapter 2 will place this thesis in the context of the literature and show the

research gap it fills. Chapter 3 will describe the problem in more detail mathematically and

set up the approach this thesis puts forth to meet these objectives. Chapter 4 will discuss

trajectory optimization techniques and Chapter 5 will discuss the selection of reference-

tracking controllers under uncertainty. Finally, Chapter 6 will summarize the thesis, list

contributions, and suggest future work possible in this area. In a more digestible format

than the table of contents, Figure 1-2 illustrates the structure that the thesis follows.
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Chapter 6
Conclusions

Summary, Contributions,
Future Work

Chapter 1
Intro and Motivation
Rendezvous and Docking 

Missions, Uncertainty, Objectives

Chapter 2
Literature Review
Guidance and Control, 

Uncertainty, Planning, Gap

Chapter 4
Trajectory Optimization

Formulation, Multi-stage, 
Obstacles, Probabilistic Planning

Chapter 3
Problem Definition

Dynamics, Phases, Types of 
Uncertainty, Simulation, Process

Chapter 5
Controller Selection

Selection Process, Controller 
Library, Metric Evaluation

Figure 1-2: The roadmap describing the contents and flow of the thesis chapters
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Chapter 2

Literature Review

2.1 Approach to the Literature Survey

The literature survey presented in the next three sections focuses on the three main areas

of critical interest to this thesis: (1) guidance and control algorithms throughout the previ-

ously described rendezvous, docking and joint-maneuver phases, (2) guidance and control

algorithms capable of handling large uncertainty and unpredictable events, and (3) plan-

ning techniques that are capable of scheduling tasks throughout a mission. There are, of

course, overlaps between these categories, which will also be discussed. However, there is

very limited literature available when considering the overlap of all three areas. It is in this

research gap that this thesis work falls and attempts to contribute to and advance the field.

Although di↵erences between the thesis work and the current literature will be discussed

throughout Sections 2.2, 2.3, and 2.4, Section 2.5 will more formally summarize the research

gap.

A major additional goal of this survey is to show the depth of research currently being

performed solely on these individual topics and to identify the most promising techniques

that could be adapted and used as stepping stones. Of particular interest, and where

a large focus in this literature review has been placed, is identifying a spanning set of

guidance and control techniques used for satellite proximity operations. An adapted subset

of these algorithms will later be implemented as choices for the controller scheduler, so it

is important to ensure the current state of the literature is explored. A similar endeavor is

performed on the other two areas as well, attempting to find state of the art techniques to

deal with uncertainties in guidance and control problems and to schedule and plan mission
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timelines in terms of guidance and control. In their current form, these techniques will not

be perfectly applied to this thesis topic, and identifying ways in which the methods can be

improved upon is another goal of the literature review.

Finally, the literature review should serve as a rich resource for others interested in

the field of guidance and control in close-proximity spacecraft operations. The full survey

covers almost two hundred papers and books, a large majority of which were published in

the last twenty years. With this large compendium of literature on these topics, one should

be able to get an excellent grasp of the state and progress of research in this field over the

last couple of decades.

2.2 Guidance and Control for Rendezvous, Docking, and

Joint Maneuvers

Guidance and control for spacecraft proximity operations including rendezvous and docking

has been an actively studied topic from the beginnings of spaceflight and continues to be

actively studied today. Joint spacecraft maneuvers have been less studied, but briefly gained

popularity during the assembly of the International Space Station and have recently gained

popularity due to the rise in interest in servicing and debris removal. Because of the great

interest, researchers have applied a wide array of techniques to solve these problems.

Useful to read for general reference and an overall picture of the literature space, several

historical surveys have been compiled on approaches for rendezvous and docking [20–22], on

technologies used for rendezvous and docking [23, 24], on numerical methods for trajectory

optimization [25], and on formation flying guidance and control [26, 27]. An additional

resource helpful as a general reference is a 2003 textbook on automated rendezvous and

docking by Fehse [1].

Guidance and control of rendezvous and docking to a stationary target in near circular

orbit is probably the source of the largest amount of research, although topics range from

2DOF (Degree of Freedom) and 3DOF position-only rendezvous in circular orbits to 6DOF

docking to tumbling targets in elliptical orbits. In optimal control problems, the objective

tends to be either minimizing fuel or time or a combination of the two. Both real-time, on-

line computations and o↵-line, a priori trajectory plans are explored, as well as formal proofs

for more academic applications. All techniques have their own advantages and disadvantages
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and have been developed to di↵erent levels, however the following categorizes and details a

variety of the approaches available in literature.

Glideslope, R-bar and V-bar: The more traditional approaches to ren-

dezvous and docking found in the literature and used historically on orbit follow

a glideslope trajectory from the radial or in-track directions. A glideslope is a

calculated trajectory that prescribes an exponentially decreasing velocity as the

chaser approaches the target. If the chaser is approaching along the radial direc-

tion, it is considered an R-bar approach, and if the chaser is approaching from

the in-track or forward velocity direction, it is considered a V-bar approach.

Traditionally, to conserve fuel and exploit the natural dynamics, the trajectory

does not directly follow the glideslope, but instead makes hops with waypoints

along the glideslope. Several tracking and control methods have been performed

on orbit and proposed in literature [28–36].

Sliding Mode and Phase-Plane: Sliding mode controllers have proved useful

in controlling nonlinear systems, and have been applied to the docking problem

in both 3DOF position-only and full 6DOF space [37–41]. The sliding mode

controllers have an n-DOF state feedback form and generally guarantee linear

convergence to an artificially created “sliding surface” of order n-1 and then ex-

ponential convergence once the sliding surface is reached. Used in literature to

solve the rendezvous problem with a state feedback form, phase-plane controllers

change gains depending on an evaluation of the state [42, 43]. Although compu-

tationally quick and with guarantees on convergence, both of these methods do

not explicitly accept path constraints and would need a probabilistic analysis in

order to validate constraint adherence. Additionally, these methods are neither

optimal in fuel nor time.

Artificial Potential Functions: Although succumbing to the same optimal-

ity pitfall as the sliding mode and phase-plane controllers, artificial potential

function controllers are capable of accepting path constraints in rendezvous and

docking problems [44–50]. The dynamics are essentially augmented with func-

tions that create high potential in areas where constraints would be violated and

low potential where the desired rendezvous location is. Again, a state feedback
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controller is able to guarantee convergence to the rendezvous location, however

there are not hard guarantees on constraint adherence.

Genetic Algorithms: For the far-rendezvous problem, usually involving a

small number of �V burns, genetic algorithms have been utilized to find fuel-

optimal or time-optimal trajectories to rendezvous two spacecraft in vastly dif-

ferent orbits [51–55]. Genetic algorithms are particularly useful for finding global

optima in non-convex problems with discrete variables and can be useful to find

a priori trajectories when computation time is not a concern. However, for a

docking problem, computational costs are too high to utilize genetic algorithms

on a real-time system, as solution times do not scale well with the number and

discretization level of variables required.

Search Methods: General path planning methods that involve exploring di-

verse areas to find globally optimum solutions have also been developed for the

rendezvous and docking problem, with and without obstacles. The A* method, a

best-first search method, has been used to plan both 3DOF position-only [56–58]

and full 6DOF trajectories [59]. Rapidly exploring Random Trees (RRT*) and

similar randomized search methods have been explored as well [56, 60–62]. Ad-

ditionally, connectivity graph methods have been implemented such as control

using positively invariant constraint admissible sets on a virtual net [63–65],

dynamic programming [66], and generalized Voronoi graphs [67]. In general,

these methods are good ways to search a non-convex space to find global min-

ima, but are potentially computationally expensive and su↵er from the curse of

dimensionality.

Model Predictive Control: Optimality and constraint implementation are

crucial for the rendezvous and docking problem, but the optimal control tech-

niques described above are typically performed on the ground before a mission

and a set of waypoints or a trajectory is sent to a spacecraft to track. This tra-

jectory does not change if the chaser diverges from the path or if the dynamics

are not properly modeled. To partially deal with this problem, Model Predictive

Control (MPC) periodically re-optimizes the trajectory given the current state

of the system. Typically, MPC only implements the first control of the gener-
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ated optimal plan, then re-optimizes and implements the first step of the next

plan, repeating until the objective function is minimized. This process allows

for a pseudo state feedback behavior to the trajectory planning. Because of the

ease of application to the rendezvous and docking problem with a variety of

constraints, this method of control has been studied extensively in the litera-

ture [68–85] and has even been implemented and successfully employed on the

PRISMA proximity operations flight system [7, 58, 86]. The curse of dimension-

ality is also an issue with MPC. Nevertheless, given appropriate horizon lengths

and discretization, MPC can be run in real-time on satellites.

Miscellaneous Rendezvous and Docking Techniques: Other techniques

found in the literature but that do not fit in the categories above include ro-

bust H1 control [87, 88]; analytical solutions to the Hamilton-Jacobi-Bellman

(HJB) equations [89]; analytical solutions using Pontryagin’s Minimum Princi-

ple (PMP) [90]; and Inverse Dynamics in the Virtual Domain (IDVD) with a

sequential gradient-restoration algorithm, which has also been implemented in

hardware [91–93]. Additionally, several other methods of optimization have been

explored in the literature, such as Second Order Cone Programming (SOCP)

[85, 94, 95], Sequential Quadratic Programming (SQP) [85, 96, 97], particle

swarm optimization [98], Mixed Integer Linear Programming (MILP) [85, 99],

and semi-definite programming [100]. Of particular note is the work on the AS-

TRO algorithm which uses slightly-suboptimal but fast optimization of Legen-

dre polynomials to shape trajectories with constraint satisfaction, even including

obstacle avoidance [101–104].

Docking to Tumbling Targets: Depending heavily on coupled attitude and

position, the docking to a tumbling target problem can be considered in a dif-

ferent class than the traditional rendezvous and docking problem. Most of the

work in this area involves analytical solutions or computationally intensive opti-

mal control solutions that could not be run onboard a spacecraft. Nonetheless,

several papers have been written on the topic, detailing the robotic arm capture

of a non-cooperative tumbling target [105, 106], optimal control solutions of

docking to tumbling targets using Gauss Pseudospectral Methods, Pontryagin’s

Minimum Principle, and Sequential Quadratic Programming respectively [107–
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109], a heuristic method of docking to a tumbling target using pre-computed

splines and Linear-Quadratic Regulator (LQR) tracking [110], and basic guid-

ance to maintain docking port alignment and close distance [111]. Finally, a

very recent paper implements a real-time nonlinear MPC solution to dock to a

rotating target [112].

Joint Spacecraft Maneuvers: Also to be considered di↵erent than the ren-

dezvous and docking problem is the control of two or more spacecraft after they

have docked. This joint control problem has not been studied nearly as much

in the literature. However, the topic is important for nearly all rendezvous

missions. Specifically, there has been work on controlling the flexible modes

in a robotically captured system [113], on reconfigurable control algorithms to

change gains based on the current orientation and inertia properties of multiple

docked spacecraft [114–117], and on attitude control of a defunct satellite by the

chaser after it has docked [118]. Current literature does not explicitly discuss

the transition of the control from a rendezvous and docking controller to a joint

controller, other than suggesting a discrete transition from the individual to the

joint estimators and controllers. The author of this thesis has also contributed

some work to this topic in [119, 120], on Resource Aggregated Reconfigurable

Control (RARC) covering the transition from single to dual spacecraft control.

Full Mission Hybrid Control Methods: In December 2016, the author of

this thesis presented a benchmark problem for an invited session at the 2016

IEEE Conference on Decision and Control, challenging others in the session

to solve the multi-stage rendezvous, docking and joint-maneuvering problem in

the context of hybrid control and estimation [121]. This problem, with minor

tweaks, is also presented in Chapter 3 of this thesis. The goal of the session was

to have those outside the field of aerospace engineering study the problem with

a heavier focus on formal methods and hybrid control. Several approaches were

attempted with varying levels of success and coverage of the di↵erent phases.

Of these approaches, Markov Decision Processes (MDPs) proved to be overly

computationally complex and could not be applied to the 2DOF problem with

four states, and only a 1DOF simplification was presented [122]. Another used

di↵erential flatness techniques in the far-field and MPC in the near-field, which
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proved promising [123]. In addition, reach-avoid sets were analyzed for a singular

phase [124] and synthesis of adaptive control techniques were studied [125].

Excluding the baseline solution by the author, only one paper covered all of

the phases. With di↵erent LQR and Proportional-Derivative (PD) controllers

in each phase, they developed a hybrid supervisory controller that guaranteed

robustness and constraint satisfaction through phase transitions [126]. With this

source in particular, the author gained enough confidence in the applicability

of hybrid techniques to provide robust transitions between phases that it is not

explored any further in the thesis.

The literature review in this area (i.e., guidance and control for rendezvous, docking,

and joint spacecraft maneuvers) serves three purposes. The first purpose is that a search of

the current state of the art methods of trajectory planning and trajectory following serves

as motivation for this thesis work. From this current state, it is clear that there are a variety

of techniques, each with its own merits for particular problems, and that no approach has

universally solved every aspect of the problem. For example, computationally fast methods

with convergence guarantees have been developed for state feedback controllers following a

priori defined trajectories, but are not able to adapt their trajectory to update path con-

straints and are neither optimal in fuel nor time. Methods that can update path constraints

and are optimal in fuel and time are generally not computationally fast nor do they have

convergence guarantees (with the notable exception of MPC). One aim of this thesis is to

schedule these trajectory-tracking algorithms to allow for the most appropriate technique

at di↵erent points throughout the mission. That way, for example, when computation time

is not a major concern, higher fidelity, optimal methods can be used and when computa-

tion time is required to be very fast, state feedback controllers can be used. The second

purpose of the literature review in this area is to investigate the best options of which

to choose between to perform this controller scheduling. Several state-of-the-art methods

will be adapted into case studies and directly used on the system as scheduled. The third

purpose is to show that there are no current methods in the literature that are performing

guidance and controller planning as described in this thesis nor are there methods in the

literature discussing optimal guidance and control continuously through the full range of

mission phases as described in Section 3.2.
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2.3 Guidance and Control under Uncertainty

As discussed in the first chapter, uncertainty thrives in the space environment and au-

tonomous methods are needed for spacecraft systems to be robust to these uncertainties.

Most uncertainties experienced on orbit can be dealt with using a combination of cur-

rent techniques developed for satellite proximity operations and those developed for control

applications outside of the space realm. This literature search looks at both of these cate-

gories. The following describes guidance and control methods to address the uncertainties

and uncertain events seen on orbit.

Measurement, Process, and Dynamic Model Uncertainty: Due to mea-

surement noise, approximations in dynamics models, and process noise in ac-

tuators, spacecraft states are never known without some level of uncertainty

associated with them. Several of the techniques described in Section 2.2 are not

capable of handling these uncertainties and still guaranteeing convergence. For

the rendezvous and docking problem, these uncertainties have been dealt with

through robust control techniques such as chance constrained MPC [74, 119,

127], disturbance feedback MPC [80], Markov Chain Monte Carlo (MCMC)

methods [128], and Sensitivity Weighted LQG (SWLQG) [129]; through adap-

tive control techniques such as adaptive output feedback control [130], Model

Reference Adaptive Control (MRAC) [131], passivity-based methods with sim-

ple adaptive control [132, 133], and iterative learning control [134]; and through

analysis techniques such as µ-analysis and describing functions [135]. For exam-

ple, uncertainties in the dynamics model, such as an error in the eccentricity or

semi-major axis of the orbit, would traditionally cause the spacecraft to diverge

from the computed trajectory or consume excess fuel to counteract the limited

knowledge. With these robust methods, this divergence and ine�ciency is no

longer a concern. However, there will be overhead in computation time and

fuel e�ciency when implementing these techniques, which should be taken into

consideration when deciding whether the added robustness is necessary.

Mass and Inertia Property Uncertainty: Uncertainty in the mass and

inertia properties of a spacecraft is also a concern, especially when docking to

and controlling an unknown target object, such as a spent rocket body or other
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piece of space debris. One approach to tackle the identification of the mass and

inertia properties of the spacecraft system is to run online mass ID algorithms

with onboard sensors such as accelerometers and gyros [136]. Alternatively,

adaptive controllers handle this type of uncertainty particularly well without the

need to spend costly time performing system identification. Roughly, adaptive

controllers either wrap feedback control and parameter estimation into one, or

only adapt to output error, such that high fidelity information about the system

is not needed a priori. Recently adaptive control has been proposed for space

problems under mass and inertia property uncertainty [131–134, 137–139]. As

discussed in the previous category, several of these adaptive techniques are also

robust to measurement, process, and dynamic model uncertainties as well.

Angles-only Observability: In the angles-only navigation problem, where

there is only a bearing angle measurement available to an estimator, there is an

unobservable mode in the dynamics that can cause drift in the relative position

estimation error. Wo�nden, who originally discovered that the linear relative

orbital dynamics were not observable, has developed optimal maneuvering to

increase observability during an angles-only navigation phase [140]. Computing

trajectories that will minimize the e↵ects of this uncertainty during angles-only

rendezvous has continued to be studied recently, however does require addi-

tional fuel when compared to nominal trajectories when range measurements

are available [141, 142].

Actuator Failures: Reaction wheels and thrusters are critical components of

any rendezvous and docking mission. If these actuators fail at any point in

the mission, and the possibility of their failure has not been accounted for, a

catastrophe will likely occur. For general spacecraft control, several techniques

have been developed to adapt to known thruster failures [143], known reaction

wheel failures [144], and unknown actuator failures [145]. Additionally, topics

specific to rendezvous and docking have been explored [146–148]. Of particular

interest is Breger and How’s work guaranteeing the chaser is on a safe trajectory

that will not intersect with the target satellite if thruster control is lost at any

point [146]. The approach used during Cygnus missions is robust to missed and

partial burns and is also always able to perform an abort [147]. Finally, a robust
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sliding-mode controller approach for the rendezvous and docking problem is used

for partially failed or completely failed thrusters in [149].

Fault Detection, Isolation and Recovery: As a final category of uncer-

tainty mitigation found in the literature, Fault Detection, Isolation and Recov-

ery (FDIR) methods are essential to determining when failures occur and what

the failures are. These methods first became popular in the aircraft industry

in order to maintain control when engines fail. Typically, because the aircraft

application requires fast correction for these faults, multiple dynamic models are

run simultaneously and are switched between depending on the state of a failure

mode estimator [150–152]. A compilation of FDIR techniques for spacecraft has

been written by Wander [153], although commonly these techniques are only

used to catch faults in a generic spacecraft bus. Work has also been performed

on FDIR for relative navigation sensors during a docking mission [154]. Gener-

ally, this work is heavily weighted toward the FDI part, and the recovery part

(topical to this thesis) is not covered as extensively. Although the topic of FDI

seems to be rich, to scope the thesis, no FDI techniques will be investigated

and the thesis work will assume FDI techniques developed elsewhere are pro-

viding fault feedback to the guidance and control software. Only the recovery

algorithms or algorithms robust to these faults are discussed.

Again, the literature review of uncertainty mitigation techniques serves multiple pur-

poses. First, state-of-the-art methods are found from which this thesis work can borrow

ideas, particularly in the first four categories above. Second, it serves as motivation to

address failure modes and uncertainties of which others in the field are currently interested.

Third, it shows that a lacking area in the literature is planning and designing trajectories

that are least sensitive to uncertainties and uncertain events. The idea to probabilistically

plan optimal trajectories using an initially very large uncertainty in mission critical param-

eters and replan once the uncertainty resolves itself is not discussed in any of the literature

explored in this review. This is one of the major gaps in the literature space that this thesis

will help to fill. This gap lies in the overlap between Section 2.2, general guidance and

control techniques for close-proximity operations, and Section 2.3, guidance and control in

the presence of uncertainties.
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2.4 Mission Planning and Scheduling

The third topic in this literature review, scheduling and planning methods, acts at a broader

level than the previous two topics, which are directly focused on guidance and control

techniques. Instead, this topic looks at the overarching task scheduling algorithms developed

for aerospace systems concerned with resource allocation. The following categorizes the

active areas of research into a few specialized areas and then discusses the overlap between

this topic and those in the previous two sections.

Spacecraft Bus and Constellations: In the late 1990’s and early 2000’s,

the space community was interested in developing autonomous task scheduling

for spacecraft. These algorithms would help plan spacecraft bus tasks such as

payload operation periods, communications downlinks, and power management

on several missions [155–157]. Recently, management of satellite constellations

has become of increasing interest and several studies have investigated multiple-

satellite and ground station scheduling problems [158, 159]. The state of the art

commercial techniques that have been developed for the constellation problem

include those from Orbit Logic Inc. and Planet Labs, Inc. respectively [160, 161].

Verification and Validation: As the autonomous mission planning and schedul-

ing methods became more popular, there was a need for proving that these

techniques would work e↵ectively under relevant circumstances. To gain the

required confidence in the techniques, verification and validation methods have

been developed to help test for use on orbit. While initial methods included

scenario testing with model-based validation [162], this grew into more formal

methods, such as those to verify mode consistency [163].

Multi-Objective Optimization Methods: When performing mission plan-

ning and scheduling, we are generally concerned with optimization over a wide

array of metrics in order to determine which substantiation of the plan or sched-

ule is most preferred. Typically, optimization solvers only consider one metric.

However, some methods have been developed to optimize and select designs

under the multiple-metric framework. These are known as multi-objective opti-

mization problems and come in many flavors. The concept of analyzing Pareto

fronts is very important in this field as one can find non-dominated designs and
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pick appropriate ones o↵ the front. However, creating a Pareto front is time con-

suming if not done properly. The simplest method, known as a weighted sum

technique, involves giving each metric a weighting that depends on the user’s

preference and adding all of the metrics to create a single objective value. By

varying the weightings, a Pareto front can be generated by plotting the indi-

vidual weighted-sum optimal designs as a function of the metrics as in [164]. A

modification to the weighted-sum technique that chooses successive weightings

to fully and evenly cover a Pareto front is the adaptive weighted sum tech-

nique [165]. Additionally, genetic algorithms can be used in a multi-objective

form to create Pareto fronts [166]. As uncertainty is an issue in our problem,

non-deterministic Pareto fronts have also been analyzed in [167]. If preferences

are formatted in a ranking system where improvement in one metric should be

weighted above any improvement in all other metrics, lexicographic methods

can be used to choose designs [168, 169].

Orbit Design and Maneuvers: Autonomous mission planning has also been

performed on orbit design for several problems. Orbital design for debris removal

has been studied through optimization of particular orbits that will intersect

with the largest number of debris pieces [170]. A traveling salesman problem

has been explored for the on-orbit servicing and refueling of GEO spacecraft to

autonomously determine which satellites to service at which times [171]. Addi-

tionally, work has been performed on autonomously determining and planning

orbital maneuvers based on the spacecraft available resources, such as battery

power, fuel and processing power available [172]. Hybrid optimal control has

also been used as an approach to plan maneuvers for an asteroid rendezvous

mission [173]. Generally, this type of mission planning ignores the controller

selection part of this thesis and typically deals with large orbital maneuvers and

�V burns.

Guidance and Control Selection: Specifically looking at the problem of opti-

mally scheduling controllers over a spacecraft mission proves to be very sparsely

covered in the literature. However, there are a few techniques from other fields

that have looked into similar problems. For example, in the chemical processing

field, MPC has been used to schedule Proportional-Integral-Derivative (PID)
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controller gains, e↵ectively performing a receding horizon controller selection

algorithm with a very limited set of controllers [174]. In the more mathematical

controls sense, Multi-Objective Genetic Algorithms (MOGA) have been used to

generate Pareto fronts useful in the design of sliding mode controllers for non-

linear systems, but do not look at varying the controllers throughout a mission

[175]. Taking a step back to the space realm, attitude controllers have been

developed to plan slews based on a number of nontraditional constraints and

scheduling Lyapunov functions to guarantee convergence [176].

Planning under Uncertainty: As guidance and control in the real world re-

quires consideration of uncertainty, so does mission planning. This paragraph

covers the overlap between Sections 2.3 and 2.4. Along with the previously

mentioned work on spacecraft bus task planning, the idea of iterative repair of

autonomously generated plans has increased the responsiveness of re-planning

due to unexpected events [177]. Additionally, around the same time, work on

the New Millennium Deep Space One mission involved autonomy that would

diagnose and recover from faults through re-planning and reallocating resources

[178]. An unexplored architecture for autonomous mission planning for un-

manned aircraft refueling missions under the presence of uncertainty has been

described to use adaptive-neural inference and robust adaptive controllers with

dynamic inversion [179]. Currently, the Model-based Embedded and Robotic

Systems (MERS) group at MIT is actively studying a resilient spacecraft ex-

ecutive for Mars rover planning which deals with probabilistic risk assessment

[180] and additional methods for planning under uncertainty involving partially-

observable Markov decision processes (POMDPs) [181, 182]. The MACE II

project dealt with a concept dubbed self-reliance which necessitates autonomous

multi-level mission planning and control, fault detection, and controller reconfig-

uration through adaptive neural networks and system identification [183–185].

The main concern with MACE II was unknown physical parameters of a flexible

spacecraft test article deployed in the space shuttle.

Current Approaches for Rendezvous and Docking: This paragraph cov-

ers the overlap between Sections 2.2 and 2.4 in terms of historical planning

approaches that have been used on orbit during rendezvous and docking mis-
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sions. The planning of sensor usage and controller implementation has been

discussed in the literature for several of the already completed rendezvous and

docking missions, including PRISMA [7, 58, 86], ATV [2], and the Space Shut-

tle [186]. Additionally, the methods from a few to-be-executed missions have

been compared against previous missions, including a comparison of Space Shut-

tle and Orion plans [32] and a comparison of ATV, PRISMA and SIMBOL-X

plans [187]. Although plans are often mission specific and depend on the sen-

sors available at di↵erent distances for that particular mission, a commonality

at this point is that all guidance and controller selection on these missions is

being planned beforehand taking countless hours from teams of engineers on the

ground. Additionally, if uncertain events occur during the mission, safe modes

are usually initiated until ground control can intervene with appropriate action.

Proposed Approaches for Rendezvous and Docking: This paragraph

covers the overlap between Sections 2.2 and 2.4 in terms of proposed planning

methods for generic rendezvous and docking missions in the future. Several

approaches deal with optimal planning of �V burns for rendezvous but do not

touch on controllers used for those maneuvers nor on uncertainty [188–190].

Others cover the high-level planning and scheduling for the spacecraft bus dur-

ing rendezvous and docking but still do not cover controllers or uncertainty

[191, 192]. An expansive study was performed for a multiple satellite refuel-

ing mission that dealt with di↵erent phases of rendezvous and docking, each

with di↵erent constraints and guidance approaches, but used the same method

of control and did not perform autonomous planning for guidance and control

algorithms [171]. Guglieri developed a method of maneuver planning for the

rendezvous problem where a standard PID controller would track a maneu-

ver selected by an autonomous maneuver scheduler [193]. Another interesting

study was performed using Mixed Integer Nonlinear Programming (MINP) to

plan sensor switching, the number and repetition of set maneuvers, and the

time to docking, however did not detail any control methods used to execute

these maneuvers [34]. Finally, and potentially most topical, is the autonomous

mission management software built by the Charles Stark Draper Laboratory for

rendezvous missions that selects from high and low thrust techniques and can

62



handle thruster failure modes [194].

The purpose of including this topic in the literature review is similar to the previous

two sections: to show the state of the art, which could potentially be used in this work,

and to show how this thesis work di↵ers from what is currently in the literature. As the

overlaps between these sections were discussed in this section, the investigated papers begin

to start looking closer to what is suggested here. However, in general, the literature shows

that there is significant work in spacecraft mission planning, but most of the work focuses

on higher level planning for the spacecraft bus and science objectives, and very little is

focused on methods to perform planning for the rendezvous and docking control problem.

Furthermore, there is no discussion of probabilistically planning the choices of controllers

throughout di↵erent phases of any type of mission. The Draper work in [194] and the

work in [34] come the closest to the thesis work, however they each fall short in a few

areas. The methods do not consider the range of uncertainty required for fully autonomous

rendezvous and docking, they do not perform any detailed guidance and control work other

than computation of �V burns, and they do not cover joint maneuvers and undocking.

2.5 Summary of Research Gap

As the previous three sections detail, there are three main areas that are related to the

thesis topic: guidance and control for spacecraft rendezvous, docking and joint maneuvers;

guidance and control under uncertainty; and mission planning and scheduling. Each of

these areas has been studied in the past, both in and out of the spacecraft control context;

even the pairwise combinations of these areas have been studied. However, the true, full

combination of all three of the areas has neither been investigated in theory nor in applica-

tion. Thus, one of the main literature gaps to which this thesis will attempt to contribute

is the topic of planning of spacecraft guidance and control over multiple stages in the pres-

ence of uncertainties. The contribution most applicable to this gap is the probabilistic (and

subsequent real-time) planning of reference-tracking controllers throughout the phases of

the mission depending on the current knowledge of uncertain parameters. Furthermore,

although there are techniques that deal with trajectory planning for rendezvous and dock-

ing under uncertainty (covering the overlap of Section 2.2 and Section 2.3), there is still

a gap in this area detailing the probabilistic planning of trajectories given the possibility
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of uncertain events later in the mission that would drastically a↵ect the trajectory. No

work has been completed on the topic aside from this thesis. Specifically, this thesis will be

focusing on the full rendezvous, docking, and joint maneuver problem. This specific mission

skeleton has not been investigated in the literature in the context of any of the three areas

discussed above. So, another, smaller literature gap that this thesis will help to fill is that

of guidance and control for this full mission profile.
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Chapter 3

Problem Definition

This chapter is meant to fully describe and set up the problem for this thesis. This de-

scription includes the mathematical formulation of the dynamics in Section 3.1; both a

conceptual and mathematical formulation of the mission phases in Section 3.2; a general

overview and classification of di↵erent types of uncertainty in Section 3.3; a detailed pre-

sentation of the simulation created to test solutions to this problem in Section 3.4; and

an overview of the approach and solution process used in the remainder of the thesis in

Section 3.5.

As a special note, Section 3.1.1 and Section 3.2 combine to form a spacecraft benchmark

problem meant for others in the fields of astrodynamics, guidance and control, hybrid

systems and formal methods to solve and compare results against. The problem definition

itself was developed for an invited session at the 2016 IEEE CDC titled, “A Spacecraft

Benchmark Problem for Analysis and Control of Hybrid Systems.” The papers from this

session were included in the literature review in Section 2.2, but for convenience, the lead

paper, [121], was written by the author of this thesis, with supporting papers of [122], [123],

[124], [125], and [126]. As such, the respective sections will define options that are meant

to make the problem interesting but not too di�cult for the state of the art techniques in

each of these fields. Not all of these option cases are solved for in this thesis, although a

majority are.
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3.1 Close-proximity Spacecraft Orbital Dynamics

This section discusses both a linear form of relative-motion orbital dynamics between a

target and chaser in Section 3.1.1 and a nonlinear version computed to include perturbations

and higher-order dynamics in Section 3.1.2. The linear form will be exclusively used for

GNC execution, while the full nonlinear dynamics will be implemented in the simulation.

3.1.1 Linear Dynamics

Rendezvous and docking is often performed in a relative coordinate frame describing the

di↵erence in position and velocity between the chaser and target spacecraft. The Hill’s

frame as described in Figure 3-1, is similar to a Local Vertical Local Horizon (LVLH) frame

centered on the target spacecraft. The î-direction points radially outward away from the

Earth, the ĵ-direction points in the in-track, orbital velocity direction of the target satellite,

and the k̂-direction points in the cross-track direction out of the orbital plane to complete the

triad. This coordinate system assumes a circular orbit of the target spacecraft to maintain

orthogonality.

Chaser! +î!

+ĵ! Target!

Chaser!

+î!
+ĵ!

+k!

Target!

Figure 3-1: Hill’s reference frame used for relative spacecraft state definition

In the Hill’s frame, the relative translational motion of the chaser spacecraft with respect

to the target can be defined by the Clohessy-Wiltshire-Hill (CWH) equations as developed
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in [195]. If the position vector is xî+ yĵ + zk̂, the dynamics are represented as

:x� 2n 9y � 3n2
x = Fx

m

,

:y + 2n 9x =
Fy
m

, and

:z + n

2
z = Fz

m

,

(3.1)

where m is the mass of the chaser spacecraft; Fx, Fy and Fz are the thrust forces applied by

the chaser spacecraft; n =
a
µ/r

3
0 is the mean motion of the target satellite; and r0 is the

radius of the target’s circular orbit. These dynamics can be written in linear time-invariant

(LTI), state-space form as

9x = Aix+Bi
u

m

= CWH(x,u, n,m), (3.2)

where for the 2DOF case, i = 2, x = r 9x, 9y, :x, :ysT and rFx, FysT = fthru, with fthr being

the thruster force magnitude which scales the control input. For the 3DOF case, i = 3,

x = r 9x, 9y, 9z, :x, :y, :zsT , and rFx, Fy, FzsT = fthru. A3 and B3 can easily be formed from

(3.1) as

A3 =

»

————————————–

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 �2n 0 0

0 0 �n

2 0 0 0

fi

������������fl

, and B3 =

»

————————————–

0 0 0

0 0 0

0 0 0

fthr 0 0

0 fthr 0

0 0 fthr

fi

������������fl

, (3.3)

where normally for a controller, the B matrix would also be scaled by the inverse of the

mass, 1/m, as in (3.2). The chaser spacecraft is assumed to have mass, mc, and the target

spacecraft to have mass, mt. The reason the mass is not included in this B matrix is such

that the dynamics can be represented easily later as a function of mass as in (3.2).

Note that the motion in the k̂-direction is decoupled from the î and ĵ-directions, such

that A2 and B2 can easily be separated from the full A3 and B3. In reality, this problem has

3DOF, although the 2DOF formulation is provided as it is the smallest state formulation
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that still is traceable to on-orbit missions. Many hybrid control techniques that may attempt

to solve this problem are sensitive to state dimension and reducing the state vector by two

elements could potentially bring their approaches into the realm of feasibility.

To match standard representation in relative spacecraft dynamics, the state vector x

is made up of x, y and z positions and velocities and the measurement vector is y. Bold

notation represents vectors; scalars are italicized.

Additionally, since the controllers will eventually need to be implemented in discrete

time and it is useful to be able to propagate the dynamics in a linear form, we obtain the

discrete-time version of these dynamics as

x(k + 1) = Adix(k) +Bdiu(k), (3.4)

where k is the current time-step,

Adi = e

AiT
,

Bdi =

Z T

t=0
e

AitBi

m

dt,

(3.5)

and T is the discretization time, or time between successive steps k and k + 1.

Fortunately, a closed form solution to Ad3 is available commonly in the literature as

Ad3 =

»

————————————–

4� 3 cos(nT ) 0 0 1
n sin(nT ) 2

n p1� cos(nT )q 0

6 psin(nT )� nT q 1 0 � 2
n p1� cos(nT )q 1

n p4 sin(nT )� 3nT q 0

0 0 cos(nT ) 0 0 1
n sin(nT )

3n sin(nT ) 0 0 cos(nT ) 2 sin(nT ) 0

�6n p1� cos(nT )q 0 0 �2 sin(nT ) 4 cos(nT )� 3 0

0 0 �n sin(nT ) 0 0 cos(nT )

fi

������������fl

,

(3.6)

where again the 2DOF equations are easily separated. If implementing the control using an
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impulsive �V approach for control input, the Bd3 matrix can be instead represented as

Bd3 = e

A3T

»

————————————–

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

fi

������������fl

, (3.7)

because an instantaneous change in velocity is performed at each time step and that new

velocity is then propagated forward in time with the Ad3 matrix. From here, we use the

results from (3.5) and (3.6) to simplify the result to

Bd3 =

»

————————————–

1
n sin(nT ) 2

n p1� cos(nT )q 0

� 2
n p1� cos(nT )q 1

n p4 sin(nT )� 3nT q 0

0 0 1
n sin(nT )

cos(nT ) 2 sin(nT ) 0

�2 sin(nT ) 4 cos(nT )� 3 0

0 0 cos(nT )

fi

������������fl

. (3.8)

Otherwise, when using continuous force commands, the full expression for Bd3 will need to

be integrated or solved for numerically as shown in (3.5). This process results in

Bd3 =
fthr

m

»

————————————–

1
n2 p1� cos(nT )q 2

n2 pnT � sin(nT )q 0

� 2
n2 pnT � sin(nT )q 4

n2 p1� cos(nT )q � 3
2T

2 0

0 0 1
n2 p1� cos(nT )q

1
n sin(nT ) 2

n p1� cos(nT )q 0

� 2
n p1� cos(nT )q 4

n sin(nT )� 3T 0

0 0 1
n sin(nT )

fi

������������fl

. (3.9)

Note that in Mission Phases 1 though 2, m = mc in (3.9) as the two spacecraft are not

docked at this point, and in Mission Phase 3, m = mc +mt, because they are docked.

The linear formulation of these dynamics facilitates the use of the CWH equations in

guidance and control algorithms for spacecraft rendezvous and docking missions. As such,
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most, if not all, close-proximity rendezvous and docking missions employ these equations

today. It is worthwhile to note, however, that as the distance between the target and chaser

spacecraft grows, the accuracy of the CWH equations diminishes. In the time frame of

a rendezvous and docking mission in geostationary orbit, it is only relevant to use these

equations into the tens of kilometers of separation. For lower orbits and longer missions, the

separation distances for which the CWH equations are applicable can shrink significantly.

For this mission in geostationary orbit, the thesis will use the linear dynamics in the con-

trollers and estimators, as they maintain a very good approximation of the true dynamics

throughout the mission.

3.1.2 Nonlinear Dynamics

The CWH equations described in the previous section are a linear approximation of the

relative motion problem, where in reality the dynamics are nonlinear both with the inverse-

square gravity formulation and with several orbital perturbations. To better represent the

true dynamics seen on orbit, nonlinear modeling of these dynamics can be performed. This

section deals with this nonlinear formulation of the relative-motion dynamics between the

target and chaser. In most cases, the GNC laws will still use the linear formulation from

the previous section, while the full nonlinear models will be used in the simulation as the

“truth” dynamics.

The relative-motion nonlinear dynamics of the chaser with respect to the target in the

CWH frame can be expressed as a function of the current state and control,

9xCWH = frm
`
xECI
target, xECI

chaser, uCWH
, tepoch, mc, mt

˘
, (3.10)

where xCWH is the relative state in the CWH frame, xECI
target is the target’s state in the

Earth Centered Inertial (ECI) frame, xECI
chaser is the chaser’s state in the ECI frame, uCWH

is the chaser’s executed control force in the CWH frame, tepoch is the time elapsed since the

epoch which defines the ECI reference frame. What happens inside frm is quite complicated

in some respects. The important thing to note here is that the dynamics will be described

in the ECI frame and only converted to the CWH frame at the output. This is due to the

fact that the nonlinear dynamics are much easier to represent in the ECI frame. Thus, the

initial conditions must be known in the ECI frame to kick things o↵, and then the dynamics
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can be propagated in the ECI frame and output in the CWH frame.

Montenbruck and Gill describe the relative magnitudes and dominance of accelerations

from di↵erent sources for a range of Earth orbits in a very useful chart in [196]. The

dominant forces in GEO are as follows (in order of decreasing magnitude): J2, 3rd body

from Moon, 3rd body from Sun, Solar Radiation Pressure (SRP), and J3 through J6. In

LEO, the drag force rises to second in the list behind J2. In addition to the inverse-square

gravity dynamics, each of these perturbations will be modeled as follows.

The acceleration for a single spacecraft in the ECI frame can be represented as

atotal =

»

———–

:x

:y

:z

fi

���fl

ECI

= aGM + aJ2�6 + a3rd + aSRP + a
drag

+ a
ctrl

, (3.11)

where aGM is the gravitational acceleration from the Earth, aJ2�6 is the acceleration due

to the zonal harmonics of the Earth, a3rd is the acceleration from the third body gravity

interactions from the moon and sun, aSRP is the acceleration from solar radiation pressure,

a
drag

is the acceleration due to atmospheric drag, and a
ctrl

is the acceleration provided

by the thrusters. Note that all a vectors are in the ECI frame. All of these individual

components will be computed and propagated for the chaser and target independently. The

following is a description of the components of acceleration due to each of the sources listed

above as defined and modeled in [197].

The two-body, Earth-satellite, inverse-square acceleration is

aGM = � µ

r

2
�sat

· r�sat

kr�satk , (3.12)

where r�sat = kr�satk, the magnitude of the radius from the center of the Earth (�) to

the satellite in question, and the multiplicative unit vector points from the Earth to the

satellite to orient the acceleration in the correct direction.

The inverse-square gravity law essentially treats the Earth as a point mass or a per-

fect sphere, yet in reality the Earth has oblateness and higher order spherical harmonics

associated with a slightly distorted spheroid. Due to this property, there is an imbalanced

mass distribution, and the gravitational field of the Earth varies depending on the location

in orbit. J2 through J6 represent the second through sixth zonal spherical harmonics that
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help model the true shape of the Earth and the gravitational accelerations as a function of

orbital location. Together, J2 through J6 a↵ect the acceleration of a satellite in the ECI

frame as
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(3.13)

where J2 through J6 are small coe�cients defined in [197] and many other sources; r� is the

radius of the Earth; and x, y, and z are the satellite’s position in the ECI frame. J3 through

J6 are smaller e↵ects and correspondingly are three orders of magnitude smaller than J2.

Note that this acceleration is mostly a↵ected by the z-component of satellite’s position,

such that if the inclination of the orbit is zero degrees, the e↵ects di↵er significantly.

While in geosynchronous orbit, the gravity from other celestial bodies actually exerts

forces on the satellite and a↵ect its orbit. The accelerations due to these forces are known

as 3rd body e↵ects. The Moon (l) and Sun (�) cause the largest 3rd body acceleration

in the geosynchronous orbit altitude. The ephemerides of the Moon and Sun with respect

to the Earth are very important in this calculation. The SPICE toolbox within NASA’s

Orbital Determination Toolbox with the most recent ephemeris file is used to find these
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ephemerides [198]. The combined acceleration from both of these sources is computed in

the ECI J2000 frame as

a3rd = µ�

ˆ
rsat�

krsat�k3 � r��
kr��k3

˙
+ µl

ˆ
rsatl

krsatlk3 � r�l
kr�lk3

˙
, (3.14)

where rsat� is the position vector from the satellite to the Sun, r�� is from the Earth to

the Sun, rsatl is from the satellite to the Moon, r�l is from the Earth to the Moon, and

µ� and µl are the gravitational parameters of the Sun and Moon respectively.

Solar Radiation Pressure (SRP) is also included with additional importance on the

ephemeris of the sun with respect to the Earth. This acceleration is due to the reflectance

of the Sun’s radiation. Therefore, in computing the acceleration, there is a required assump-

tion on the size of the spacecraft (mass and sun-facing area, A�) as well as the reflective

properties of the spacecraft. For this analysis, the e↵ective sun-facing area is assumed to be

10 m2 and the mass of the chaser and target are defined in Section 3.2.8. The acceleration

due to SRP is

aSRP = �psrcrA�
m

· rsat�
krsat�k , (3.15)

where psr = 4.57 ⇥ 10�6 N/m2 is the solar pressure at Earth and cr = 1 is the assumed

coe�cient of reflection of the spacecraft.

As the final disturbance, the acceleration due to atmospheric drag is included and de-

pends greatly on the density of the atmosphere, ⇢atm, which is found for a specific altitude

through interpolation of a standard atmospheric density data table. The drag coe�cient,

cd, is assumed to be 2.2 as given by [199]. The cross-sectional area is assumed to be similar

to the sun-facing area and is set to 10 m2. The drag acceleration can be computed as

a
drag

= �1

2
⇢atmAdcdv

2
sat, (3.16)

where vsat is the norm of the velocity of the satellite in the ECI frame.

Now that the orbital dynamics have been described, the acceleration commanded by the

spacecraft controller needs to be considered. Since the controller works in the relative frame

between the target and chaser, we need to transform the commanded thrust vector in the

relative, CWH frame into the ECI frame. To perform this transformation, the instantaneous

rotation matrix from the CWH to the ECI frame is required. This rotation matrix can be
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represented as

CWH
R

ECI
3⇥3 =

»

————–

| | |
r�target

kr�targetk
r�target

kr�targetk ⇥ vtarget

kvtargetk ⇥ r�target

kr�targetk
r�target

kr�targetk ⇥ vtarget

kvtargetk
| | |

fi

����fl
,

(3.17)

where vtarget is the velocity of the target spacecraft in the ECI frame. Note that the double

cross product is necessary in the second column as the velocity direction of the target

will not form a perfect orthogonal triad due to the orbital perturbations bringing it o↵ a

perfectly circular orbit. The same rotation matrix is used for the chaser and the target,

because the CWH coordinate frame is defined based on the target’s position. This rotation

matrix, CWH
R

ECI
3⇥3 , should only be used to rotate a vector from one frame to another and

does not describe the full state transformation from the CWH to ECI frame, because the

CWH frame is a rotating reference frame. This is su�cient for the thruster acceleration

transformation, however, which is computed as

actrl =
CWH

R

ECI
3⇥3

fthr

m

uCWH
, (3.18)

where the mass, m, is specified for the appropriate satellite. Typically, this is only carried

out for the chaser satellite or the docked combination of a chaser and target satellite.

Depending on the control mode selected, the duration of this acceleration may di↵er from

the control period and finer propagation times may be required.

All of the dynamics are now known and can be propagated as is. The only component

left of the nonlinear function, frm, is to transform the propagated target and chaser states

into a relative state in the CWH frame. To start, the relative state in the ECI frame is

calculated by taking the di↵erence between the chaser and target states such that

xECI
rel = xECI

chaser � xECI
target. (3.19)

Then the rotation matrix from the ECI frame to the CHW frame is just the transpose

of the rotation matrix from the CWH to ECI frame computed earlier in (3.17), such that

ECI
R

CWH
3⇥3 =

`
CWH

R

ECI
3⇥3

˘T
. This can be directly used to multiply the position states, how-

ever the velocity states will have an extra component due to the fact that the CWH frame
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is rotating with respect to the ECI frame at a rate of !CWH . The chaser’s relative state to

the target spacecraft in the CWH frame is

xCWH =

»

————————————–

x

y

z

9x

9y

9z

fi

������������fl

CWH

=

»

————————————–

|
ECI

R

CWH
3⇥3 xECI

rel (1 : 3)

|

ECI
R

CWH
3⇥3 xECI

rel (4 : 6)�

¨

˚̊
˚̋

�!CWHy
CWH

!CWHx
CWH

0

˛

‹‹‹‚

fi

������������fl

, (3.20)

where

!CWH =
khtargetk
krCWH

�targetk2
=

krCWH
�target ⇥ vCWH

targetk
krCWH

�targetk2
, (3.21)

and htarget is the specific angular moment vector of the target spacecraft in its Earth orbit.

This relative state is needed by the controller and estimator because it is much easier

to work in a relative reference frame for the rendezvous and docking problem. All of the

measurements and trajectory states are known in the relative frame, so it makes sense to

give the results of the nonlinear dynamics in that frame as well. As these dynamics are

significantly more complicated than the CWH equations from (3.1), typically they will not

be used in the loop for control, but only for analysis before the mission in simulation.

For the mission duration and altitude of the orbit examined in this thesis, the nonlinear

dynamics do not depart from the linear dynamics by a large enough margin to warrant use

in on-board control algorithms.

3.2 Mission Phase Definitions

The rendezvous and docking problem in this paper is split into four phases. Each phase

is defined by a separation distance between the chaser and target spacecraft, closing this

distance from up to 10 km to 0 m, and then performing a maneuver once the satellites are

docked. The relative displacement vector from the target to the chaser is defined in the

Hill’s frame as ⇢ = rx, y, zsT in 3DOF and ⇢ = rx, ysT in 2DOF. The magnitude of this

displacement vector is the 2-norm and is represented as

⇢ = k⇢k=
a
x

2 + y

2 + z

2
. (3.22)
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Figure 3-2: Description of the overall mission phases (not to scale)

As seen in Figure 3-2, the chaser spacecraft begins in Phase 1 while ⇢ � ⇢r, the separation

distance at which ranging data is now available to the target spacecraft. In Phase 1a, the

chaser attempts to rendezvous with the target but only has angular measurements available.

While ⇢d  ⇢ < ⇢r, the mission moves into Phase 1b, where the chaser spacecraft now has

a ranging measurement to the chaser spacecraft and must position itself for the Phase 2

docking. After the chaser moves such that ⇢ < ⇢d, the docking phase, Phase 2, is initiated,

and additional docking port constraints are actived. Once the spacecraft dock (i.e., ⇢ = 0

m), both spacecraft move into Phase 3, where the joint assembly must move to the relocation

position.

The problem can be generalized for any initial position and relocation position, however,

this thesis will examine a specific instantiation of this problem. The position of the chaser

satellite at the initial time, t0, is 3 km behind the target spacecraft in the in-track direction.

The distance at which ranging measurements are available, ⇢r, is 1 km. The docking phase

begins at a ⇢d of 100 m. The relocation maneuver in Phase 3 takes the docked assembly to

5 km in the in-track direction.

For Phase n, the final time at which the chaser enters Phase n+ 1 is tnf and is defined

as the time elapsed since the initial time, t0. The chaser is free to move between Phase 1a,
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1b and 2 freely, but must move to Phase 3 before the eclipse occurs at time, te. Thus, t2f is

constrained to be less than te. Once in Phase 3, the spacecraft cannot move back to Phase

2. The full mission must be completed before tf , meaning t3f must be less than tf .

The following section describes an example Concept of Operations (CONOPS), and the

subsequent sections outline the dynamics, measurement model and constraints in each of

these four phases, as well as o↵er additional discussion on the goals of each phase.

3.2.1 Example Mission Descriptions

The goal of this work is to be as mission-agnostic as possible. However, to allow precise

definition of the problem for the remainder of the document, a specific conceptual mission

will be outlined as the basis for the remaining development. The mission is to assemble a

new space station that has been launched in separate modules. The space station is too

large to fit in a current launch vehicle fairing as a single piece and thus requires on-orbit

assembly from a number of separately launched modules. Given errors in orbit insertion

after separation from the launch vehicle, these passive modules need to be transported

to an assembly location. A tug spacecraft designated as the “chaser” spacecraft, is used

to provide this transportation, and the current space station module is designated as the

“target” spacecraft. Initially, the tug is too far away to obtain anything other than a

passive image from its onboard telescope, providing a bearing-only measurement of the

angles between the target and tug’s body frame. Once the tug reaches a specified distance,

the tug can make use of onboard ranging sensors such as LIDAR or RADAR, providing

a direct measurement of range. The chaser must proceed to stage itself to dock with the

target module, which requires approach within a specified angle of the target body frame in

order to mate with a docking port on the target. Once staged, the chaser moves to dock to

the target, closing the relative distance to zero, while staying within the approach angle and

reducing the closing velocity as it approaches zero relative distance. When operating the

chaser in this close proximity, a higher precision estimate of the relative state is available if

the chaser remains in the line of sight of fiducial markings on the target spacecraft’s docking

port. Also, to maintain safe contact speeds under unforeseen circumstances, the velocity

must be limited in this portion of the mission. Adding to the di�culty is the fact that

the entire procedure must be completed before the tug and target module go into eclipse

and the chaser loses valid data from its vision-based sensors. Once docked, the chaser must
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transport the space station module to the assembly location, where other modules have

already been positioned. The chaser uses similar relative sensing information available with

respect to the first module to approach the assembly location, however in this phase, the

sensed state is with respect to a partner spacecraft located further away than the assembly

location. The combined satellites must reach the assembly location before a predefined

mission end time.

Alternatively, the dynamics and CONOPS can extend to several other mission types.

In one such mission, a current orbital slot in geosynchronous orbit is occupied by a commu-

nications satellite that has unfortunately run out of fuel and could potentially collide with

another satellite or exit the orbital slot. The operator would like to prevent this catastro-

phe as well as keep using the otherwise functional satellite by docking another spacecraft

to it to act as a propulsion system. The same process of close approach, docking and joint

maneuvering occurs, ending in both spacecraft attached at a new operational location in

safety of other nearby spacecraft.

Another mission architecture could involve the removal of orbital debris, where instead

of repositioning the debris into another location on orbit, the goal in the last phase of the

mission would change to de-orbiting the debris. Yet another mission could be very similar

to the debris removal except involving moving a defunct geosynchronous satellite to the

graveyard orbit in the last phase of the mission. In addition, individual phases or subsets

of phases could be explored such that only the rendezvous and docking portion remains,

which brings in many more mission architecture such as cargo delivery to the ISS, spacecraft

refueling, and crew transfer, among others.

3.2.2 Angles-only Rendezvous, Phase 1a

ρ x!

y!

α"

chaser!

target!+ĵ!

+î !

Figure 3-3: Diagram of states during Mission Phase 1a: Angles-only rendezvous
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In Phase 1, the chaser spacecraft only has relative angular measurements to the target space-

craft and is attempting to move closer to the target spacecraft in order to gain additional

sensing abilities. The dynamics are defined as

9x = CWH(x,u, n,mc), (3.23)

where the chaser is controlling itself using thrusters, and the target is stationary at the

origin of the reference frame. The goal in this phase is to navigate and control well enough

to reach the separation distance at which range measurements are available.

The measurement model is defined in 2DOF as

y = h1a(x) = arctan
´
y

x

¯
+ v = ↵+ v , (3.24)

where the angle, ↵, is shown in Figure 3-3. In 3DOF, the model is

y = h1a(x) =

»

———–

arctan
´
y

x

¯

arcsin

ˆ
z

⇢

˙

fi

���fl + v =

»

–↵

e

fi

fl + v , (3.25)

where e is the elevation angle from the +k̂-axis to ⇢. Please note that adding the measure-

ment noise, v, is optional in the benchmark problem.

In Phase 1a, the CWH equations are unobservable when there are only angle measure-

ments, and thus the estimate of the chaser’s state will develop error over time if not dealt

with appropriately. In this thesis, the unobservability is left unattended, and there are often

significant departures from the estimated position when entering Phase 1b, although never

enough to be the sole cause of any instability or mission failure. Others in the literature

attempt to account for the unobservability [141, 142].
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3.2.3 Range-capable Rendezvous, Phase 1b

ρ x!
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Figure 3-4: Diagram of states during Mission Phase 1b: Range-capable rendezvous

In Phase 1b, the chaser spacecraft is close enough such that a ranging measurement is

now available. The chaser attempts to stage itself for docking to the target by closing the

distance and entering the LOS of the enhanced sensors available in Phase 2. The dynamics

remain as in (3.23). Adding a range measurement, the 2DOF measurement model expands

to

y = h1b(x) =

»

——–
arctan

´
y

x

¯

a
x

2 + y

2

fi

��fl + v =

»

–↵

⇢

fi

fl + v , (3.26)

and the 3DOF model correspondingly expands to

y = h1b(x) =

»

———————–

arctan
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y

x

¯

arcsin

ˆ
z
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˙
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fi

�������fl
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»
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e
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fi

���fl + v . (3.27)

In this phase, a couple of additional constraints arise such that the phase must end in

the LOS region at a distance equal to ⇢d. These constraints are represented as

x(t1bf ) 2 XLOS , (3.28)

where t1bf is free, and

⇢(t1bf ) = ⇢d . (3.29)

The added range measurement in this phase allows for much more precise estimation
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and accordingly better control. Nonetheless, the error in the range measurements is large

enough that the chaser would not be able to dock e↵ectively and better estimates are needed.

Additional cognizance must be placed on the fact that the chaser should not exit the range

of the LIDAR or RADAR and transition back to Phase 1a. This could cause rapid switching

in the control, and instabilities could result if not handled properly. This will be a concern

at every phase transition.

3.2.4 Docking, Phase 2

target!

chaser!

+ĵ" +î"

Figure 3-5: Diagram of states during Mission Phase 2: Docking

In Phase 2, the chaser spacecraft is attempting to dock to the target spacecraft (i.e., reduce

⇢ to zero) while remaining in the LOS region, XLOS , shown in Figure 3-5 and maintaining

a slow velocity as to reduce impact forces upon docking. The dynamics remain as in (3.23).

The measurement model also remains the same as in Phase 1b, although the measurement

noise is less.

y = h2(x) = h1b(x) . (3.30)

θ

+ĵ +î

c

+î+ĵ

OR

θ1
θ2

c
Φ

Figure 3-6: Description of the pyramid (left) and cone (right) line-of-sight constraint options

There is the option of setting the LOS constraint (see Figure 3-6) as either a nonlinear
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cone constraint defined as
⇢ · c
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or a linear pyramid constraint defined in 2DOF as,
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and in 3DOF as,
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where the appropriate variables are defined graphically in Figure 3-6. Note that the rotation

of the constraint in the linear form has only been implemented for rotations about the k̂-axis

by an angle, �, while the nonlinear form works for all c vectors.

Additionally, the chaser’s velocity must be kept under the specified value, with a choice

similar to the LOS constraint of both a linear and nonlinear form. The nonlinear version

of the velocity constraint is formulated as

� 9⇢ · ⇢

k⇢k  V̄ , (3.34)

where we are constraining the velocity in direction of the target satellite and e↵ectively the

impact velocity should something go wrong. The linear version of the velocity constraint

involves the infinity norm constraints,

”
9x 9y 9z

ıT


”
V̄ V̄ V̄

ıT
, and

�
”

9x 9y 9z
ıT


”
V̄ V̄ V̄

ıT
.

(3.35)

The 3DOF versions are shown in (3.34) and (3.35), while the 2DOF versions only require

removing the 9z component.

Finally, the chaser must dock to the target before the eclipse time, such that t3f  te,
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and

x(t2f ) = xdocked. (3.36)

Note that, if including measurement noise in the problem, the docking state constraint

can be expanded into a couple bounding inequality constraints as opposed to an equality

constraint. This bounding box for docking should represent the acceptable error in final

docking state due to the docking port physical properties. For the ISS, this would be on the

order of a meter, while for more precise applications could be on the order of centimeters.

3.2.5 Joint Maneuver, Phase 3

docked target 
and chaser+ĵ

+î

relocation 
position

β
rx

ry

partner position

Figure 3-7: Diagram of states during Mission Phase 3: Joint Maneuver

In Phase 3, the spacecraft have successfully docked and now must maneuver together to the

relocation spot using relative measurements from a partner located 5 km past the relocation

spot. The mass of the docked pair has increased, and therefore the dynamics have changed

to

9x = CWH(x,u, n,mc +mt) . (3.37)

As the angular and range measurements come from a di↵erent location, the measurement

model has changed accordingly in 2DOF to

y = h3(x) =

»

——–
arctan

ˆ
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ry

˙

b
r

2
x + r

2
y

fi

��fl + v =
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fi

fl + v , (3.38)
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and in 3DOF to

y = h3(x) =

»

———————–

arctan

ˆ
rx

ry

˙

arcsin

ˆ
rz

krpartnerk
˙

b
r

2
x + r

2
y + r

2
z

fi

�������fl

+ v =

»

———–

�

e

krpartnerk

fi
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where rpartner = rrx, ry, rzsT , the relative position from the partner to the docked pair as

shown in Figure 3-7, krpartnerk=
b
r

2
x + r

2
y + r

2
z , � is the angle from the +ĵ-axis to rpartner

in the chaser frame as shown in Figure 3-7, and e is now the angle from the +k̂-axis to

rpartner in the chaser frame.

There is one additional constraint during this phase that the final location must be the

relocation spot, i.e.,

x(t3f ) = xrelocation, (3.40)

where t3f  tf . Again, if including measurement noise in the problem, the final state

constraint can be expanded into a couple bounding inequality constraints as opposed to an

equality constraint.

This phase will take most of the mission time as it requires the largest maneuver with

the largest mass. Only the thrusters from the chaser are in use, so the e↵ective acceleration

is much less. The dynamics can be thought of as if there were an imaginary target spacecraft

stationary at the original location, and now the combined system is moving in the same,

but now imaginary, CWH frame. This is interesting, because no longer are the errors in

the CWH equations shrinking as the chaser closes distance to the target. Now the error

between the CWH equations and reality grows as the mission moves forward.

3.2.6 Control Options

For all phases, the constraint on the maximum control input at any single point in time is

kuk1  ū, (3.41)

where ū is the upper limit on the thrust that can be produced in each of the axial directions.

The problem o↵ers the choice of three methods to implement control defined as follows.
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On-O↵ Thrusters

The on-o↵ thruster control scheme aims to mimic the behavior of spacecraft systems in

which only the thruster pulse duration is controllable and the magnitude of the thrust is

fixed, such as a cold-gas configuration. For the 3DOF problem, the spacecraft has a total

of 6 thrusters to control in the positive and negative direction in each of the axes. Likewise,

the 2DOF problem assumes the spacecraft to have a total of 4 thrusters.

There is, thus, the choice of operation in three modes for each axis of control. In

mode 1, the positive-oriented thruster is turned on fully; in mode 2, the negative-oriented

thruster is turned on fully; and in mode 3 both thrusters are turned o↵. Thus, the mode is

individually chosen for each axis (Fx, Fy, Fz), and the control vector must be in the form

u = r{�ū, 0, ū}, {�ū, 0, ū}, {�ū, 0, ū}sT for the 3DOF case and u = r{�ū, 0, ū}, {�ū, 0, ū}sT

for the 2DOF case, where ū is 10 N.

The fuel consumption for this control mode is tracked as

ftot =

Z tf

t0

kuk1 dt, (3.42)

where ftot is the total fuel consumption in the mission.

Continuously Variable Thrust

The continuously variable thrust control scheme is useful for the case in which the thrust

magnitude from each thruster can be controlled directly. For the 3DOF problem, the

spacecraft has a total of 6 thrusters to control in the positive and negative direction in

each of the axes. Likewise, the 2DOF problem assumes the spacecraft to have a total of 4

thrusters. Each of these thrusters is capable of achieving a ū of 10 N.

This formulation results in force values being individually chosen for each axis and the

control vector in the form u = [Fx, Fy, Fz]T where u 2 R3. Optionally, this method can be

implemented with discrete intervals or continuous force selection. The fuel consumption for

this control mode is again tracked as in (3.42).

Chemical & Electric Propulsion

The multiple-propulsion-system control scheme is similar to the continuously variable thrust

example except with choice of a high thrust, less e�cient chemical engine or a low thrust,
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very e�cient electric engine. In this scenario, the spacecraft has two types of propulsion

on board and has the choice of which engine to use at any point in time. This results in a

choice between two modes of operation. This control option is meant to make the problem

more interesting in terms of hybrid control mode switching and with it comes significant

additional work in formal proofs of robustness and stability.

Mode 1 uses the high thrust, less e�cient chemical propulsion where u = [Fx, Fy, Fz]T

where u 2 R3 and ū = 10 N. Similar to the previous control schemes, the fuel consumption

for this control mode is tracked as in (3.42).

Mode 2 uses low thrust, very e�cient electric propulsion, where u = [Fx, Fy, Fz]T ,

u 2 R3 and ū = 0.1 N. Contrary to the previous control schemes, the fuel consumption for

this control mode is tracked as

ftot =

Z tf

t0

kuk1

⌘

dt (3.43)

where ⌘ = 100 is the e�ciency gain from using this engine.

Note in (3.42) and (3.43), the units of fuel used are Newton-seconds (Ns). Dividing by

the spacecraft mass at the current time will yield fuel in meters per second (m/s), a �V

form.

3.2.7 Options Definitions

The options that can be specified for an instantiation of the benchmark problem are shown

in Table 3.1. Note the alphanumeric code beside each option for easier communication

of which options are chosen. The default options are 2BNY, which imply 2DOF (=2),

continuous control (=B), nonlinear docking constraints (=N), and inclusion of measurement

noise (=Y). The more di�cult 3CNY option can be considered a reach goal. These options

exist to tailor the problem as desired, although the closer to the default or reach goal the

better. We realize certain techniques have di↵erent strengths and are trying to let the

problem be equally di�cult for all techniques while still upholding traceability to the same

spacecraft rendezvous problem.
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Table 3.1: Options to choose between when solving the benchmark problem

Problem Component Options

State 3DOF (3) or 2DOF (2)

Control On/O↵ (A) or Cont. (B) or Chem & Elec (C)

Constraints Linear (L) or Nonlinear (N)

Measurement Noise Yes (Y) or No (N)

The option choices of 3BNY and 3BLY are explored in this thesis, where the 2DOF

and no-measurement-noise options are just subsets of these chosen options. The continuous

control case is chosen, because this mission aims to mimic the Orbital ATK MEV, which

is being designed and built to rendezvous, dock and maneuver a target satellite that has

run out of fuel.13 The eventual goal for the MEV will be to use high-power solar electric

propulsion, which would enable and require continuous control methods. Additionally, in

this thesis, although the controllers are designed to this problem’s specification, they are

also tested under greater uncertainty involving varying dynamics parameters, process noise

through thruster force uncertainty, and full-nonlinear orbital dynamics.

3.2.8 Definition of Constants

Throughout the previous sections, numerous variables were used to represent constants in

this problem. However, to fully define the problem, we define the values these constants

take, such that the results from this thesis can be compared on a level playing field using

the same parameter values. Table 3.2 sets these values.

13
https://www.orbitalatk.com/space-systems/human-space-advanced-systems/mission-extension-

services/default.aspx
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Table 3.2: Values and definition of constants for the benchmark rendezvous, docking, and
joint maneuvering problem

Variable Value Definition

te 4 hrs. time of eclipse after t0

tf 8 hrs. total mission duration

⇢r 1 km range measurement initial radius

⇢d 100 m docking phase initial radius

mt 2000 kg mass of target (defunct satellite)

mc 500 kg mass of chaser (tug spacecraft)

µ 3.986⇥1014 m3/s2 Earth’s gravitational constant

r0 42,164 km semi-major axis of GEO

ū 10 N maximum thruster force magnitude

V̄ 5 cm/s maximum closing velocity if docking

✓ = ✓1 = ✓2 60� Line Of Sight (LOS) angle

c [-1, 0, 0]T LOS cone direction

xdocked [(0, 0, 0) km, (0, 0, 0) km/s]T state of chaser required to dock

xtarget [(0, 0, 0) km, (0, 0, 0) km/s]T state of target before docking

xrelocation [(0, 5, 0) km, (0, 0, 0) km/s]T state of relocation spot in Phase 3

xpartner [(0, 10, 0) km, (0, 0, 0) km/s]T state of partner spacecraft in Phase 3

In this problem, there is an option to include white Gaussian measurement noise to

simulate sensor performance. Noise levels are time invariant, although because the sen-

sors change between phases, the noise levels do as well. Let R↵↵ = (0.001rad)2, Ree =

(0.001rad)2, R�� = (0.001rad)2, R⇢⇢,a = (10m)2, R⇢⇢,b = (1cm)2, and Rrr = (10m)2. For

the n-th phase, Rn = E
“
vvT

‰
, where for the 2DOF case, R1a = R↵↵, R1b = diag{R↵↵, R⇢⇢,a},

R2 = diag{R↵↵, R⇢⇢,b}, andR3 = diag{R�� , Rrr}. For the 3DOF case, R1a = diag{R↵↵, Ree},
R1b = diag{R↵↵, Ree, R⇢⇢,a}, R2 = diag{R↵↵, Ree, R⇢⇢,b}, and R3 = diag{R�� , Ree, Rrr}.

3.3 Categorization of Uncertainty

In this section, we discuss the sources of uncertainty in the thesis problem. These sources are

above and beyond what is proposed for the benchmark problem discussed in Section 3.1.1
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and Section 3.2. Specifically, for this thesis, the uncertainty in this problem is being ana-

lyzed, and a few methods are proposed to handle this uncertainty. As such, Section 3.3.1

attempts to define and categorize the types of uncertainty present, and Section 3.3.2 sug-

gests appropriate strategies to account for the di↵erent types.

3.3.1 Definitions of Uncertainty Categories

A major focus for this thesis is the ability to cope with uncertainty in the system as can

be seen in the motivation and literature review in Sections 1.4 and 2.3. As stated before,

there are two major divisions here: uncertainties and uncertain events.

Uncertainties

Uncertainties can be further divided into epistemic uncertainty and aleatoric

uncertainty. Both of these types of uncertainty can be mitigated through robust

controller design, however need to be handled di↵erently. Epistemic uncertain-

ties deal with parameters that can theoretically be known, but are not known

exactly in practice. These are uncertainties like an error in mass or inertia prop-

erties, misalignment of sensors or actuators, unknown thruster force magnitude,

or errors in orbital elements; they all cause systematic biases in the dynamics

that could be removed if they were estimated or measured directly with high

precision. For this thesis, the terms “uncertain parameters” and “epistemic

uncertainties” will be used interchangeably.

Aleatoric uncertainties are those that cannot be known as the processes un-

derlying them are beyond current application of scientific knowledge. These are

uncertainties like sensor noise, actuator noise, and resulting noise in state esti-

mates. Aleatoric uncertainties are very familiar to control system engineers and

are for the most part reliably represented as Gaussian noise. They are arguably

the main reason automatic feedback control exists. For the application in this

thesis, we are also assuming higher-order nonlinear orbital dynamics and orbital

perturbations to be aleatoric uncertainties with respect to our control systems.

Although we do have the knowledge to model these uncertainties appropriately

and do so in the simulation, the controllers are simplified to only use the lin-

ear form of the dynamics, as is very common in practice. With this exception
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in mind, it is the commonly the goal of certain adaptive controllers and sys-

tem identification techniques to attempt to reduce the epistemic uncertainties

to aleatoric uncertainties.

Uncertain Events

Uncertain events on the other hand involve a somewhat more nuanced discus-

sion. Remember, rather than dealing with specific parameter uncertainty and

noise, uncertain events describe discrete occurrences during a mission that a↵ect

the mission goals, constraints or performance in some manner, either positively

or negatively. These can be faults or anomalies, but also events in which we gain

better information about the mission. For example, an uncertain event could

be estimator divergence or a critical subsystem fault which are definitively bad,

but could also be getting a better estimate of the target spacecraft’s attitude or

position when sensors come in range. So, in a sense, an uncertain event must

coincide with learning something new about the mission, yet when and where

we learn the new fact and what exactly that new fact is can be uncertain.

There a few questions we can ask when defining an uncertain event. Do we

know this event will happen with certainty at some point in the mission? Do

we know when or where it will happen? Or at least, do we have a model of the

uncertainty distribution that will define when or where it will happen? If so,

does this model allow us to perform tradeo↵s between risk and performance?

And finally, what are the e↵ects of the event? Are we able to replan in real-time

to account for the event, or will the event result in a failed mission?

These questions bring up a couple key characteristics of an uncertain event.

First, we can start with the consequences of the uncertain event. An uncer-

tain event is deemed recoverable, if upon the event, the spacecraft can replan

the mission with respect to the trajectory or selected controller. It is deemed

critical, if upon the event, the spacecraft does not have the capability to finish

the mission and must either passively or otherwise perform an abort maneuver.

For example, a critical event would be something akin to complete thruster fail-

ure or running out of fuel, while a recoverable event would be something such

as an unexpected deviance in mass of the target after docking or an avoidable

obstacle crossing the planned trajectory.
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Secondly, the uncertain event can be categorized by our ability to model the

chances of it happening with some level of precision such that this model can

be exploited to probabilistically plan the mission beforehand. In this case, we

say that the event has an actionable model. Typically, this model involves more

than just when and where this event will happen, but also information about

what exactly will happen (uncertain or not).

For example, if we have a large initial uncertainty in a potential obstacle’s

position and will later find out if the obstacle intersects our trajectory or not, this

initial uncertainty distribution would be an actionable model, and finding out the

higher fidelity obstacle position later in the mission would be the uncertain event.

In this case, we have uncertain information about when and where the event will

happen based on our sensing capabilities and the initial uncertainty, but also

have uncertain information about the possible locations the obstacle could be

once we detect it based on the initial uncertainty. As another example, say

we have a large epistemic uncertainty in the knowledge of the target spacecraft

mass. For this example, we know exactly that the event will happen once we

dock to the target satellite, but only have uncertain information about what will

happen (i.e., what mass the target spacecraft will have). Both of these examples

would have actionable models.

On the other hand, for things like subsystem failures or thruster failures,

although we can approximate the probability of the event over time by Mean

Time Between Failure (MTBF) models, the model is not significantly rich with

information that allows us to proactively take advantage of it, and therefore

is not actionable. The failures could happen with essentially equal probability

over the entire trajectory, and thus we cannot exploit this information to tradeo↵

performance and risk, as we always have to be robust to these events. In the

next section, it will become clearer why we distinguish between these types of

models.

See Figure 3-8 for a list and categorization of uncertainties and uncertain events that

could be explored for this problem and the specific uncertainties which will be investigated

for this thesis. The next section will discuss strategies for handling these di↵erent categories

of uncertainties and uncertain events.
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Uncertainties
Aleatoric

• Angle and range 
measurement noise

• Thruster noise
• Higher-order 

dynamics (J2-6, 
drag, SRP, 3rd

Body)*
• Fuel slosh
• Jitter

Epistemic
• Mass properties of 

target, chaser
• Thruster force 

magnitude
• Thruster direction
• Orbital radius of 

target spacecraft
• Mean motion of 

target spacecraft
• Sensor bias
• Flexible modes

*Technically epistemic, but treated as noise in controllers — Discussed but not handled directly in this thesis
— Results presented in the thesis 

• Tracked obstacles in path
• Unexpected or untracked obstacles in path
• Running out of fuel or total thruster failure
• Failed or anomalous thrusters
• Critical subsystem faults
• Large error in mass properties of target
• Unknown tumbling behavior of target
• Snapping in relative position given new sensors
• Snapping in target attitude given new sensors
• Estimator divergence, sensor faults
• Mission updates/redirection

�

�
�
�
�

�

�
�

�

�
�
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�

Uncertain Events Actionable 
Model? Recoverable?

Figure 3-8: Categorization of uncertainties and examples in the scope of this problem (some
examined in this thesis, others not)

3.3.2 Overview of Methods Used to Handle Uncertainty

First, there will be a brief discussion on techniques to handle aleatoric and epistemic uncer-

tainties. These uncertainties are very common in the field of control and estimation, and

thus there are many techniques in the literature both in and out of the aerospace field that

should suit our purposes.

Aleatoric uncertainties, like sensor noise and actuator noise, can generally be handled

well with a feedback control framework and estimator pairing. If an optimal control plan

were to be executed burn by burn under aleatoric uncertainty without any feedback infor-

mation on the state, it would almost certainly drift from the desired trajectory. Common

choices for spacecraft control are fixed-gain PD or PID feedback controllers paired with

a Kalman filter. Because the measurement models defined for our problem are nonlinear,

instead we must use an Extended Kalman Filter (EKF) that linearizes the measurements

at every time step. If the problem was su�ciently nonlinear, or the noise was not Gaussian,

other estimators such as Unscented Kalman Filters (UKF) or particle filters could be im-

plemented. Kalman filters are able to take noisy measurements from di↵erent sensors and

combine them into a mathematically optimal estimate with consideration for the noise lev-

els present. Additionally, if the controller requires guarantees of convergence and stability

under higher levels of sensor and process noise, certain adaptive and robust control algo-

rithms could be implemented to reduce the sensitivity of the controller to the noisy input.

Many of these techniques will be explored in Chapter 5. In any case, aleatoric uncertainties
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should be handled with feedback control. As shown in Figure 3-8, aleatoric uncertainties

explored in this thesis are angle and range measurement noise, noise in thruster firings and

higher-order orbital dynamics. Additional uncertainties present on orbit that are not con-

sidered in this thesis could be jitter from reaction wheels or other vibrating equipment or

fuel slosh in a propellant tank. Although not investigated here, these sources of aleatoric

process noise should be able to be handled well with adaptive or robust feedback control

design.

Epistemic uncertainties, or parameter uncertainties, manifest themselves as systematic

biases in the spacecraft dynamics. Theoretically, they should be able to be reduced to

the level of the aleatoric noise present in the system. But the question then is exactly

how we eliminate these uncertainties. There are a few options. One option is to design a

compensator that is robust to the uncertainty in the plant. In this manner, the goal is not

to try to improve performance over time, just to increase the range of plants for which the

compensator will maintain stability. Another option is to perform adaptive control that

will attempt to learn information about the errors in the plant model over time and enact

control changes based on this memory of past performance. There are a couple variants

in adaptive control, both directly adapting the gains used in the controller, where we will

not get an estimate of the true parameter values, or indirectly adapting other parameters,

such as an estimate of the true plant, and recomputing gains based on those values. Finally,

another technique is to perform system identification maneuvers by commanding rich control

inputs to stress the system and enable precise determination of the uncertain parameters.

After performing a system identification maneuver, the controller can be designed to the

appropriately estimated, true plant dynamics. Examples from each of optimal, feedback,

robust and adaptive control architectures are implemented and compared under di↵erent

levels of epistemic uncertainty in Chapter 5. Specifically, the epistemic uncertainties this

thesis covers are the mass properties of the target and chaser, the thruster force magnitude,

and the orbital radius and consequentially mean motion of the target spacecraft. Other

sources not covered here, but that could also be accounted for with similar techniques are

sensor bias, thruster directions, and flexible spacecraft modes.

Uncertain events can be divided into four categories for the context of which strategy to

employ. There are uncertain events with actionable models and those without. There are

uncertain events that are recoverable and those that are critical. So, the four combinations
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of those two binary choices each involve a unique strategy. Table 3.3 shows the breakdown

and the brief description of the appropriate strategy to use.

Table 3.3: Strategies for a given uncertain event category

Recoverable Event Critical Event

Uninformative Model

or Absence of Model

Plan nominally or for

sensitivity, then react

Plan for robustness,

guaranteeing safety

Actionable Model
Plan for performance,

then react

Plan for robustness,

guaranteeing safety,

while optimizing

performance

As follows, Table 3.3 is deciphered, starting with uncertain events that do not have

actionable models. In the case that there is an uninformative model or no model at all,

it is di�cult to adjust the mission plan to optimize performance, because we are unable

to perform any obvious tradeo↵s. Essentially, we have either the choice of adding a sen-

sitivity term to our objective function or adding robustness and safety constraints to the

optimization problem. If adding a sensitivity metric to the mission optimization, we would

prefer that the possibility of this event happening at any time in our mission will minimally

a↵ect the performance. In the case that the event is recoverable, we can add this sensitivity

factor if desired or just plan nominally. The important fact is that we are able to replan

(i.e., react) in real-time after a recoverable event happens and still compete the mission.

Reacting to an uncertain event can mean many things. It can mean replanning a trajectory

due to new constraints in the problem, such as obstacle or a shifted LOS zone. It can mean

enacting a more robust or adaptive controller to account for higher sensor or actuator faults.

It can mean redesigning the gains of a controller to account for new information. Or it can

mean changing the choice of a controller later in the mission due to a change in knowledge of

future uncertainties. Several cases of events that require replanning or reacting are covered

in the simulation as discussed in Section 3.4 and a few detailed results are presented in
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Chapters 4 and 5, specifically an unexpected obstacle, snapping in relative state due to new

sensors, and uncertain target spacecraft mass. In the case that it is a critical event, we are

forced to add robustness constraints to the problem so that the event cannot cause worse

consequences, such as crashing into the target spacecraft. These robustness constraints have

been well handled in the literature, such as in [146], where trajectories are optimized with

the constraint that losing all thrusters or propellant at any point during the mission will

not result in collision with the target spacecraft. This category will not be investigated in

the thesis, due to its coverage elsewhere.

The other half of the categories involve cases in which there is an actionable model of

the uncertain event. If the uncertain event is mission critical, the planning is unfortunately

very similar to the case in which we had no model whatsoever, because we still are required

to guarantee safety. The only di↵erence is that now we have a little more information

about when or where this event could possibly occur, such that we can plan to optimize

performance elsewhere and only enforce these constraints where required. This case will

also not be discussed in the thesis due to the close similarities to the other non-recoverable

category.

This leaves the most interesting category remaining, the case where there is an action-

able model and a recoverable event. There is plenty of room here to develop performance

optimizing algorithms that count on the fact the mission will be replanned after the event.

The goal is to find, for example, a baseline optimal trajectory that will have the probabilis-

tically best performance given the uncertainty model associated with the uncertain event.

This is the topic of Section 4.4 and one of the major contributions of this thesis. A moti-

vational example is discussed below and will be evaluated extensively in Section 4.4 along

with the updated target attitude upon reaching the range of new sensors.

As a final point of illustration, Figure 3-9 depicts an uncertain event that has an action-

able model. This involves the ground tracking of an obstacle (e.g., another spacecraft or

piece of space debris) that has been detected and has some probability of intersecting the

nominal trajectory based on the error covariance ellipsoid associated with the estimate of

the ground tracking. The uncertainty here is Gaussian and represented by the red ellipses

in the figure. There is thus a possibility that the obstacle will collide with the spacecraft

trajectory, and this possibility should be accounted for in the mission trajectory planning.

A very conservative method would be to take a path that avoids the full three-sigma uncer-
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tainty ellipsoid, however this may have a large fuel expense when compared to the optimal

nominal trajectory. The uncertain event itself is defined in Figure 3-9b, where there is new

knowledge at a later time based upon onboard sensors that the obstacle will actually be in

a collision path. The correction required at this point to avoid the collision may be much

larger for the nominal trajectory than the conservative one. By incorporating the chance

that this correction will need to be implemented or other corrections for other possible ob-

stacle locations, one could find the probabilistically optimal trajectory that would decrease

the fuel consumption on average. This is an easy to illustrate version, although one could

imagine this translating to the other uncertain events with actionable models described

above, such as a snap in the target state given new sensor information or determining the

uncertain mass of the target satellite.

These uncertainties and uncertain events are dealt with in di↵erent ways. Controllers

and estimators used to handle uncertainties will be covered in Chapter 5, along with anal-

ysis and comparison of the implementation of several techniques, and scheduling of these

controllers over the di↵erent mission phases. For the most part, Chapter 4 will cover the

handling of uncertain events with respect to trajectory planning and show results for several

instances. Chapter 5 will also very briefly cover the uncertain event of only determining

Figure 3-9: Depiction of uncertain event in the form of obstacle avoidance and the deviation
required from di↵erent baseline trajectories
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the target spacecraft’s mass after docking. These are interesting cases as they involve the

combination of uncertainties and uncertain events. The uncertain event can be thought of

as the discovery of a better estimate of the epistemic uncertainty.

3.4 Simulation Environment

In developing the simulation for the relative motion dynamics of a chaser and target space-

craft, it is desired to model the orbital dynamics of the system at a higher fidelity than

the plant model in the controllers. Simulating algorithms in more realistic environments is

critical to assessing their traceability to actual missions. To this end, the simulation prop-

agates the states of both spacecraft individually in the ECI J2000 frame with two-body,

inverse-square gravity; J2 through J6 zonal harmonics to approximate the non-spherical

Earth; 3rd body gravitational e↵ects from the Sun and Moon; solar radiation pressure and

atmospheric drag. These particular disturbances were chosen and modeled as discussed

in Section 3.1.2. The simulation is implemented primarily using MATLAB, however, the

SPICE Toolkit developed at NASA’s Navigation and Ancillary Information Facility is used

for ephemeris querying of the Earth-Sun-Moon system [198].

Typically, a spacecraft uses the data from onboard sensors to estimate its own state. This

estimate of the state has uncertainty associated with it, so the spacecraft does not have exact

knowledge of where it currently is. The goal is thus to simulate a real-world environment,

where an EKF is fed a state that has inherent error associated with it. The simulation

injects a random error drawn from a Gaussian distribution to the true measurements before

the measurements are input to the EKF and the EKF then sends its estimated relative state

to the controller. See Figure 3-10 for the exact location of this injected noise. Additionally,

there is also error associated with the executed versus commanded thrust. Thrusters are

not perfect and cannot deliver exactly the desired force commanded to them all times. To

simulate this behavior, a random error drawn from a Gaussian distribution is injected to the

simulated thrust each time the control algorithm commands a thrust. The goal of adding

these stochastic aspects to the simulation is to show that the method is robust to typical

levels of noise seen on orbit. Thus, the nonlinear orbital dynamics, orbital perturbations,

and noises discussed here are the aleatoric uncertainties that are present in the simulation.

Another area of uncertainty present in the simulation is the epistemic uncertainty, or
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parameter uncertainty. The simulation is capable of separating guidance and control knowl-

edge from the true simulation propagation. In this manner, the simulation can address

epistemic uncertainty due to the guidance and control methods not knowing the specific

values of uncertain parameters. The true values of these parameters and the estimated

values for the guidance and control can each be varied through an input vector such that

repetitive trials can be run to explore the e↵ects of a mismatch between assumed and true

parameter values.

The simulation specifically addresses the knowledge of the exact orbital parameters

assumed to be known by the trajectory optimization and controller plant model in (3.1).

In fact, the CWH equations assume that the eccentricity of the target satellite’s orbit is

zero (i.e., that the orbit is circular). The mean motion, n, depends directly upon the semi-

major axis, or radius, of the orbit and is also hopefully known very well. Unfortunately,

once on orbit, it is di�cult to guarantee that the desired orbit is achieved. There can be

significant errors in the values assumed in the plant model. Thus, it is necessary to test

the algorithm’s robustness to this uncertainty. Upon initialization of the simulation, the

true orbital parameters can be set separately than the orbital parameters used in the plant

model to facilitate this scenario. Additionally, in a similar vein, other parameters can be

varied such as biases in knowledge of spacecraft mass properties, thruster force magnitude,

noise magnitudes, and target spacecraft state.

Finally, depending on the mission scenario, uncertain events can be programmed into the

simulation to occur anytime during the mission. The full realm of uncertain events modeled

in the simulation is quite large and there is a capability to turn on and o↵ the possibility

that any one of them will occur during a mission, as well as tune the probabilities and

e↵ects as desired. Table 3.4 lists the types and variations of uncertain events present in the

simulation. In general, the guidance, navigation and control software is given notification

that a specific uncertain event has happened and is given the opportunity to respond to the

uncertain event. In some situations, this will involve replanning a trajectory, in others it

will mean selecting a new controller or redesigning a controller based on the new parameter

identified. Other uncertain events are put in the simulation as a means of tracking the

algorithms robustness to strange happenings on orbit, such as measurement drops, estimator

biases, jumps in the estimate, and single or multiple thruster failures for only one pulse.

The intent is that the simulation would be run several times, potentially in a Monte Carlo
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Table 3.4: Uncertain events modeled in the simulation

Uncertain Event

Subcategory Option Description Tunable Variables

Thruster Failures Single random failure for one pulse probability, percent thrust reduction

Thruster Failures Multiple random failure for one pulse probability, number, percent reduction

Thruster Failures Single random failure forever probability, percent reduction

Thruster Failures Multiple random failure forever probability, number, percent reduction

Thruster Failures Custom/preset mode specific time, thrusters, percent reduction

Propellant Depletion Random at any time probability

Propellant Depletion Custom/preset mode specific time, probability, etc.

Measurement Bias Random bias added in new phase covariance of random bias, phase, duration

Measurement Bias Custom/preset mode specific bias, phase, duration

Measurement Dropped Single measurement drop probability

Measurement Dropped Custom/preset mode specific time range

Estimator Bias Random bias added in new phase covariance of random bias, phase, duration

Estimator Bias Custom/preset mode specific bias, phase, duration

Estimator Drop Out Single estimate dropped probability

Estimator Drop Out Custom/preset mode specific time range

Obstacles Random obstacle covariance of random obstacle state, time

Obstacles Single custom/preset obstacle obstacle initial state, phase

Obstacles Multiple custom/preset obstacles obstacle initial states, phases

Updated Target State Random jump in state probability, covariance

Updated Target State Random jump at specific distance covariance

Updated Target State Custom/preset jump specific jump, time, distance

Updated Target LOS Random jump in target attitude probability, covariance

Updated Target LOS Random jump at specific distance covariance

Updated Target LOS Custom/preset jump in target attitude specific jump, time, distance

Subsystem Fault Random failure probability

Subsystem Fault Custom/preset failure time, distance

Updated Target Mass Random mass bias added at docking covariance

Updated Target Mass Specific mass bias added at docking specific mass

Change in Mission Random new goal on V-bar, anytime probability, covariance, mean

Change in Mission Random new goal anywhere, anytime probability, covariance, mean

Change in Mission Custom/preset goal, anytime probability, specific goal state

Change in Mission Custom/preset goal at specific time specific time, specific goal state

sense, such that the events would not happen deterministically every run. The chosen

probabilities would hopefully then be able to accurately represent those in a real mission.

Of course, for debugging purposes, there are also custom preset modes for each uncertain

event when the user can define when and what uncertain events occur in a particular

simulation run.
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Figure 3-10: Block diagram depicting the high-fidelity simulation developed to test the
autonomous guidance and control software

The diagram in Figure 3-10 shows how the simulation is structured and shows where the

conversions from frame to frame happen, as well as the flow of the chaser and target state

propagation. Starting from the beginning, the target orbit is defined in orbital elements,

and the chaser position is reported in the relative CWH frame. These initial states are im-

mediately converted to the ECI frame for the propagation. The CWH frame relative state

is computed by di↵erencing the target and chaser’s ECI states and rotating appropriately.

True measurements are computed based on the relative state information and the measure-

ment model for the current phase. Noise is then added to the measurements to simulate

uncertainty from a spacecraft’s sensors. These noisy measurements are sent to the EKF

estimator, which calculates the relative state estimate and then relays this estimated state

to the trajectory optimization and controller. The reference-tracking controller currently

selected by the controller scheduler then executes the appropriate control. The autonomous

trajectory planning and controller scheduling is performed at the first instance in the sim-

ulation and then each time an uncertain event occurs as appropriate. The appropriately

selected reference-tracking controller is run on the chaser spacecraft only, which results in

a commanded control in the CWH frame. This control command is rotated to the ECI

frame and then immediately added to the ECI state before input into the propagator. The

nonlinear perturbations are then added to the dynamics, and the state is propagated in

the ECI frame using MATLAB’s ode45. On the next step in the trajectory, the ECI states
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of the target and the chaser are converted to the target’s CWH relative frame and the

same procedure is repeated until the mission has timed out, completed successfully or a

constraint has been violated. Mission phase transitions are not shown directly in this dia-

gram, however that information is given to the controller scheduler every simulation loop

such that the appropriate controller is put to use as desired. As uncertainty is involved

in this simulation, bounds are set on docking and relocation maneuver finishing positions,

to avoid transitioning issues. Also, not shown in the diagram, during the joint maneuver

phases, both the target and chaser spacecraft are propagated as a single spacecraft to be

represented as the chaser spacecraft for the purpose of the diagram.

Finally, as a representation of the types of results that can be output from the simula-

tion, Figure 3-11 shows a run of the simulation in terms of spacecraft estimated state, truth

state, and reference trajectory in the orbital plane. The simulation also outputs represen-

tative results and plots that help analyze specific simulation results, such as control input

over time, fuel over time, LQR cost over time, estimated states through the mission, and

covariance on the estimated state throughout the mission.

Figure 3-11: Sample results from a LQR reference-tracking controller with full nonlinear
model simulation and aleatoric uncertainties (neither uncertain events nor epistemic uncer-
tainty present)
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The simulation also has a batch mode and a Monte Carlo mode. In the batch mode, dif-

ferent controllers and instantiations of uncertain parameters can be tested on the simulation

with the same random seed to maintain a true comparison. In the Monte Carlo mode, the

simulation can be run several hundred or thousands of times with di↵erent random seeds

driving the noise characteristics and is typically used to evaluate the probabilistic perfor-

mance of a guidance and control technique. Results from these modes are fairly complicated

to explain here, so will instead be left for the results sections later in Chapters 4 and 5.

3.5 Overview of Guidance and Control Planning Process

At a high level, the approach to this thesis is divided into two major components as shown

in Figure 3-12: trajectory optimization (in green, on top) and controller selection (in blue,

on bottom). In the context of the problem set up to this point, there has been no distinction

between the two except for in the description of the simulation. In both the thesis objectives

in Section 1.6, and the literature review in Chapter 2, it is made clear however that we wish

to separate these two components. Roughly, this is splitting guidance from control, and is

typically how these concepts are handled for real applications in space. It is important to

make the distinction.

The overall process is also split up into the pre-mission planning and onboard imple-

mentation phases. The dashed line in Figure 3-12 depicts this divide between the proactive
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Baseline Schedule
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Figure 3-12: High level description of the overall process of guidance and controller planning
both before and during a mission
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planning performed prior to the mission and the real-time replanning and rescheduling

required during the mission. Alliteration aside, the goal is to create computationally in-

tensive, probabilistically optimal guidance and control plans before the mission starts and

then implement simplified versions on the spacecraft in real-time.

In more detail, the trajectory optimization process will function as follows. The exe-

cution must occur individually for a specific mission, so the first step is to define all the

mission objectives, goal states, constraints, performance metrics, potential uncertainties,

and uncertain events. This mission definition is then used to construct and plan a baseline

optimal trajectory for the mission. If recoverable uncertain events with actionable models

exist in the mission definition, then the trajectory will be planned to optimize performance

probabilistically over this uncertainty model. This can involve significant computational

power to solve and thus must be done on ground computers before the mission commences.

Once a baseline optimal trajectory is computed, it is sent to the spacecraft to track with a

reference-tracking controller. At a certain point in the mission, an uncertain event may oc-

cur such that replanning of the trajectory is required. In this scenario, the onboard version

of the trajectory optimization software is implemented such that a quick updated trajectory

is available to the reference-tracking controller. All of the theory and results pertaining to

the trajectory optimization are presented in Chapter 4.

On the other side, the controller selection process starts with the creation of a controller

library. This controller library is a set of hand-designed controllers that are implemented

specifically for the problem defined in this chapter. The makeup of the library will con-

tain a heterogeneous mix of control architectures from standard PD controllers to optimal

controllers to adaptive controllers. These controllers would hopefully have varying per-

formance with respect to the uncertainties present in the mission definition. Therefore,

before the mission, we have the job of probabilistically assessing the performance of each

of these controllers as the uncertainties change. The goal of this process is to find a non-

dominated set of controllers that each perform the best under some set of circumstances

and schedule these controllers across the di↵erent phases given our initial understanding of

the uncertainty. Additionally, from the process, performance curves are created that ex-

press controller performance as a function of uncertainty. From here, the baseline controller

schedule is passed to the spacecraft such that the appropriate reference-tracking controller

can run. Again, at a certain point in the mission, an uncertain event may occur and the
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spacecraft will be required to replan the appropriate controller schedule. This online con-

troller scheduler receives the performance curves for each of the selected controllers and

evaluates these curves over the current knowledge of uncertainty to see if the current plan

needs to be updated. If so, a new updated schedule is relayed such that the appropriate

reference-tracking controller can be executed. All of the theory and results pertaining to

the controller selection are presented in Chapter 5.

The goal of this section is to clearly set up the top-level structure into which the thesis

work fits. It is meant to show high-level interactions between the di↵erent thesis components

and clarify the assumptions made about what information is available where. As such, the

diagram in Figure 3-12 may be referenced elsewhere in the thesis when detailing specific

components. For a breakdown of which blocks of this diagram fall in which sections of the

thesis, see Table 3.5.

Table 3.5: Mapping of the components of the guidance and control planning process to
sections in the thesis

Topic Locations

Mission Definition Section 3.2

Probabilistic Trajectory Optimization Section 4.4

Baseline Trajectory Results Section 4.4.3, Section 4.4.4

Onboard Trajectory Optimization Section 4.1, Section 4.2, Section 4.3

Updated Trajectory Results Section 4.2.2, Section 4.3.3

Controller Library Section 5.2

Controller Scheduling and Selection Section 5.1.1, Section 5.1.2, Section 5.3.3

Baseline Schedule Results Section 5.4

Performance Curves Section 5.3.1, Section 5.3.2

Onboard Controller Scheduling Section 5.1.4

Selected/Scheduled Controller Results Section 5.4
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Chapter 4

Trajectory Optimization

This chapter discusses the formulation and results of the trajectory optimization and path

planning research completed for this thesis. Section 4.1 details two objective functions, a

minimum energy and a minimum fuel form; both linear and nonlinear constraints to which

each of these optimization problems are subjected; and a short description of solution

techniques. Section 4.2 explains why it is beneficial to optimize trajectories continuously

between phases instead of individually for each phase. Section 4.3 adds obstacle avoidance

constraints to the problem, and defines and compares two methods used to account for these

obstacles. Finally, using all of the previous work and results in this chapter, Section 4.4

provides one of the major contributions of this thesis: probabilistic trajectory planning in

the presence of uncertain events. Specifically, the process is described in detail and then

two case studies are explored with results.

4.1 Trajectory Optimization Formulation

The goal of the trajectory optimization problem is to find both the best path for the

spacecraft to reach its goal locations and the control input required to attain that path. In

the problem described in Chapter 3, the path should take the spacecraft from the initial state

through Phases 1a and 1b to stage itself for docking within the required sensor LOS zone,

complete docking to the satellite in Phase 2, and then transition to control of the chaser and

target spacecraft together in Phase 3, such that they reach the desired relocation orbital

position. Thus, we want to solve for the path and control input that takes the spacecraft

through all of these phases and completes the mission for the lowest possible cost subject
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to all of the constraints along the way. This cost can be thought of in multiple forms. In

this thesis, we only consider the minimum linear-quadratic cost that penalizes both control

input and state error and the minimum fuel cost that purely penalizes total control input.

Solutions to both of these optimization formulations are discussed in the following sections.

4.1.1 Minimum Energy

For this section, the minimum energy formulation of the trajectory optimization problem

will be discussed. This formulation is a minimum energy formulation, because it involves

the square of the control input rather than the control input alone. Optimal solutions will

di↵er from the pure minimum fuel or minimum control input formulation. To match a

common linear-quadratic cost function in optimal control, the state error is also included,

however the weighting on the control penalty is very high when compared to the weighting

on the state error. Typically, a cost function like this will be used in MPC as described in

Section 5.2.4, and there is substantial literature available on the topic.

The optimization format used in this thesis will be that using a discretized mission

horizon. The desired length of the mission is divided into discrete time steps at which the

control input is able to change. The solver then attempts to choose the optimal control

input for each of these time steps throughout the mission horizon, such that at the final

time step, the spacecraft has reached the desired goal location.

The minimum energy objective function to be optimized over the mission is denoted as

Jnrg, where

(4.1)Jnrg(U,x(0)) =
N�1
X

i=0

´
yp(i)

T
Rxxyp(i) + u(i)TRuuu(i)

¯
,

in which U =
”
u(0)T , u(1)T , . . . , u(N � 1)T

ıT
is the 3N ⇥ 1 stacked vector of control

input, x(0) is the chaser’s initial state, yp(i) is the error between the chaser’s planned

position at the i-th step of the N -step horizon and the final goal location, Rxx � 0 is the

state error cost weighting matrix, and Ruu > 0 is the control cost weighting matrix. Further

details on this objective function and a similar formulation for MPC can be found in [83]

and [200]. In (4.1), there is a penalty on each step of the trajectory. For all but the last step

in the trajectory, the penalty is on a combination of reference tracking error and applied

control. For the last step, there is a constraint that the spacecraft reaches the final location.
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With the previously described formulation, the objective function is minimized by vary-

ing the control input across each step of the planned trajectory. Adding appropriate dy-

namics, maximum thrust, and endpoint constraints, it is desired to find

min
U

Jnrg(U,x(0)),

subject to x(i+ 1) = Adx(i) +Bdu(i), 8i = 0, . . . , N � 1,

x(N) = xf ,

yp(i) = [I3⇥3 0] px(i)� xf q , 8i = 0, . . . , N, and

ku(i)k1  ū, 8i = 0, . . . , N � 1,

(4.2)

where ū is the maximum thrust that can be applied in each direction as specified in Sec-

tion 3.2.8, xf is the desired final state, and Ad and Bd are the discretized linear CWH

matrices described in Section 3.1.1. For a typical rendezvous and docking problem, xf will

be the center of the CWH frame as a vector of zeros. Alternately it may be an o↵set dis-

tance from that location to account for a docking port or it may be a di↵erent waypoint or

state in the CWH frame as desired. For consistency throughout, only the 3DOF system will

be represented in the analysis as the 2DOF system is only a decoupled subset and can be

derived easily in all expressions. Note that the specific constraints detailed in Section 3.2

for each phase of the mission have not been implemented at this point and will be discussed

later in Section 4.1.3.

The problem stated in (4.2) can be reformulated into a form that is more suitable for

optimization solvers. The states, x(i), for each time step in the horizon are stacked into a

long column vector, which is defined by the 6N⇥1 vector, X = [x(1)T , x(2)T , . . . , x(N)T ]T ,

and the control inputs, u(i), are stacked into U as defined before. In this form, the discrete

dynamics propagation becomes

X =  x(0) + ⌦U, (4.3)

where

 =

»

——————–

Ad

A

2
d
...

A

N
d

fi

������fl
and (4.4)
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⌦ =

»

—————————————–

Bd 06⇥3 06⇥3 06⇥3 . . . 06⇥3

AdBd Bd 06⇥3 06⇥3 . . . 06⇥3

A

2
dBd AdBd Bd 06⇥3 . . . 06⇥3

...
...

. . .
. . .

. . .
...

A

N�2

d Bd A

N�3

d Bd . . . AdBd Bd 06⇥3

A

N�1

d Bd A

N�2

d Bd . . . A

2
dBd AdBd Bd

fi

�������������fl

. (4.5)

The optimal control problem without the additional path constraints added, as posed

in (4.2), can then be reworked to the form of

min
U

1
2U

TSU+HTU,

subject to

VineqU  Wineq, and

VeqU = Weq,

(4.6)

where S, H, Vineq, Wineq, Veq, and Weq are left undefined here simply to show the

structure of the optimal control problem, but are formulated as discussed in [200]. S and

H are constructed such that the discrete dynamics constraints and output constraints are

enforced in the cost function rather than as separate equality constraints. Now the form of

the optimization problem is much simpler for a solver to accept as it is in quadratic form

with linear constraints. The V and W matrices are defined in full detail in Section 4.1.3

to include all constraints in (4.2) and additional linear path constraints added into this

quadratic program for di↵erent phases.

Minimum energy solutions usually involve continuously active control input, rather than

the bang-coast-bang manner for which minimum fuel problems are solved. The goal states

must change between the origin of the CWH frame in the docking problem to the reloca-

tion position in the joint-maneuvering problem. Thus, the optimization is attempting to

minimize the total state error from these goal states at the same time as minimizing the

control e↵ort to reach the goal state. This tradeo↵ creates the continuous control input

signal. And because the control penalty is much larger than the state error penalty, the

solution will always take the full mission horizon to reach the goal state.
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4.1.2 Minimum Fuel

The minimum fuel formulation of the trajectory optimization problem seeks to find the

path that minimizes the total control input required through the mission. A very similar

optimization formulation to the previous section will be used here as well, although this

time the objective function will be the sum of the propellant required at each time step of

the discretized mission horizon, represented in a nonlinear form as

min
U

N�1
X

i=0

ku(i)k1

subject to VineqU  Wineq and VeqU = Weq,

(4.7)

where the V’s, W’s, U, u(i), i, and N are described for the same mission horizon as in

Section 4.1.1, and the k·k1 operator represents the 1-norm or sum of absolute values of

the components of the vector on which it acts. Note that the V and W matrices include

the constraints on the final endpoint condition, control saturation and dynamics and are

described in full in Section 4.1.3.

Unfortunately, this function is nonlinear due to the absolute value function present

in the 1-norm. Nonlinear solvers have di�culty with minimum fuel problems due to the

bang-coast-bang nature of the control creating discontinuities in the solution. Fortunately,

however, this can be transformed into linear form in a couple ways as found in [201].

The first method is to reform (4.7) as

min
U, Z

N�1
X

i=0

kz(i)k1

subject to VineqU  Wineq,

VeqU = Weq,

u(i)  z(i) 8 i = 0, . . . , N � 1, and

�u(i)  z(i) 8 i = 0, . . . , N � 1,

(4.8)

where Z and z(i) mimic U and u(i) although are required to be positive and equal to the

absolute values of the components of U at the optimal solution. However, this doubles the

number of optimization variables and adds 6N additional constraints. There is a better

option that only doubles the number of optimization variables and maintains the same

number of the constraints. Instead, we can split U into positive and negative components
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such that U = U+ �U� and reform (4.7) as

min
U+

, U�

3N
X

j=1

´
U(j)+ +U(j)�

¯

subject to VineqU
+ �VineqU

�  Wineq,

VeqU
+ �VeqU

� = Weq, and

U+
,U� � 0.

(4.9)

After one final reorganization, we can see that this is in standard linear form as

min
U

0
gTU

0

subject to V
0
ineqU

0  W
0
ineq,

V
0
eqU

0
= W

0
eq, and

U
0 � 0,

(4.10)

where U
0
=

”
(U+)T (U�)T

ıT
, the V

0
and W

0
matrices have changed to enforce the same

constraints, and g is simply a vector of ones.

4.1.3 Constraint Overview

The constraints for the minimum energy and minimum fuel problem are identical and as

defined throughout Section 3.2, however need to be enacted slightly di↵erently due to the

formulation of the optimization variables in each problem. First, the constraints will be

developed for the minimum energy problem as this is more intuitive. Then the constraints

will be modified slightly to work for the minimum fuel problem. Nonetheless, they are so

similar that the description for both can fit in one section here.

A standard optimization format for most solvers is to separate linear equality and in-

equality constraints such that they can each be represented by two matrices. In this thesis,

we represent these constraints as

VineqU  Wineq and

VeqU = Weq,

(4.11)

where U is the stacked vector of control inputs as described earlier. Additionally, we
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separate nonlinear constraints into the functions

fineq(U)  0 and

feq(U) = 0.
(4.12)

The following section will discuss the creation of these constraint matrices and functions

to match this form. In general, throughout this section, individual constraints will be

represented in the form shown above and all of the constraints will be stacked into the

final V and W matrices and functions as appropriate. Thus, the number of rows in the

matrices and the number of rows in the output of the functions will change, but the number

of columns in the matrices and input into the functions will remain constant.

First, we will discuss the linear constraints present in all phases. These constraints are

control saturation and potential phase or mission endpoints or waypoints. These constraints

would not benefit from a nonlinear formulation, and thus will always be represented as linear

constraints.

The control saturation constraints are the simplest, since it is only a bound on the

optimization variables such that kuk1  ū. This is implemented in the minimum energy

problem as

I3N⇥3NU 

»

———–

ū

...

ū

fi

���fl

3N⇥1

and � I3N⇥3NU 

»

———–

ū

...

ū

fi

���fl

3N⇥1

, (4.13)

where ū is defined in Section 3.2.8 and noting that we impose the constraint on both

negative and positive thrusts as desired from the infinity-norm. This can be represented in

the minimum fuel form as

»

–I3N⇥3N 03N⇥3N

03N⇥3N I3N⇥3N

fi

fl

»

–U+

U�

fi

fl 

»

———–

ū

...

ū

fi

���fl

6N⇥1

, (4.14)
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where we also must remember that

»

–�I3N⇥3N 03N⇥3N

03N⇥3N �I3N⇥3N

fi

fl

»

–U+

U�

fi

fl 

»

———–

0
...

0

fi

���fl

6N⇥1

(4.15)

to enforce that the split control input vector, U
0
, is always positive as described in Sec-

tion 4.1.2.

Next, we will discuss the endpoint and waypoint constraint formulation. This can be

used to create waypoints that must be met within a phase or a stopping point at which

to switch over to the next phase. Alternatively, only endpoint constraints may exist such

as a docking state constraint and a final relocation position constraint. In any of these

conditions, the formulation of the constraints follows the same pattern. For the minimum

energy form, we can use the same large propagation matrices, ⌦ and  , created to simplify

the objective function. By propagating the spacecraft state to the appropriate time step

with all of the control inputs selected by the optimizer and constraining that state, we have

⌦iU = pxi � ix(0)q , (4.16)

where  i and ⌦i are the i-th block row of the block matrices described in (4.4) and (4.5),

and xi is the desired waypoint or endpoint at the i-th step of the N -step horizon. For

example, an endpoint constraint on the final step in the horizon would look in expanded

form as

”
A

N�1

d Bd A

N�2

d Bd . . . A

2
dBd AdBd Bd

ı
U =

`
xf �A

N
d x(0)

˘
, (4.17)

where the xf is the desired final point or endpoint. For the minimum fuel form, this

constraint becomes
”
⌦i �⌦i

ı
»

–U+

U�

fi

fl = pxi � ix(0)q . (4.18)

Interestingly, for the minimum fuel case, this is the only appearance of the dynamics in the

optimization problem, because the dynamics constraints were absorbed in the cost function

for the minimum energy case but were not in the minimum fuel case. Nonetheless, as long
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as an endpoint constraint is always specified for the minimum fuel problem, which should

always be the case, there will be no issues as all of the dynamics are included inherently in

this constraint.

Now the phase specific constraints will be explored. The docking component of the

mission, Phase 2 is the only phase that has special constraints. Each of these constraints

can take either a linear or nonlinear form as desired. Described as a function of the spacecraft

state in Section 3.2.4, there are two extra constraints in Phase 2: a velocity constraint and

a LOS zone constraint to maintain sensor coverage.

The velocity constraint is an infinity-norm constraint in the linear form, which, for the

minimum energy formulation, translates to

⌦velU 

¨

˚̊
˚̊
˝

»

———–

V̄

...

V̄

fi

���fl

3N⇥1

� velx(0)

˛

‹‹‹‹‚
, (4.19)

where ⌦vel and  vel are the shrunken ⌦ and  matrices to only include the velocity states

from Ad and Bd, and V̄ is the maximum velocity permitted in the docking phase as defined

in Section 3.2.8. ⌦vel and  vel are 3N ⇥ 3N and 3N ⇥ 6 respectively and just contain the

rows pertaining to velocity states. In the minimum fuel form, this constraint becomes

”
⌦vel �⌦vel

ı
»

–U+

U�

fi

fl 

¨

˚̊
˚̊
˝

»

———–

V̄

...

V̄

fi

���fl

3N⇥1

� velx(0)

˛

‹‹‹‹‚
. (4.20)

A more lenient constraint, that does not penalize velocity in directions pointing away from

the target, is the dot product constraint mentioned in Section 3.2.4. This must be im-

plemented in nonlinear form. For the minimum energy case, all that needs to be done is

convert the optimization variables U into states X through (4.3), and then loop through
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each step of the horizon, extracting ⇢ and 9⇢ and setting

fineq(U) =

»

————————————–

� 9⇢(1) · ⇢(1)

k⇢(1)k
...

� 9⇢(i) · ⇢(i)

k⇢(i)k
...

� 9⇢(N) · ⇢(N)

k⇢(N)k

fi

������������fl

� V̄ , (4.21)

where ⇢(i) and 9⇢(i) are the position and velocity in the i-th step of the N -step horizon as

defined in Section 3.2.4. For the minimum fuel case, all that needs to be done is transform

the U
0
vector into a U vector by setting U = U+ � U� before implementing the above

procedure.

The LOS zone constraint can also be implemented in linear form through a pyramid

constraint and nonlinear form through a cone constraint as described in Section 3.2.4. The

linear form for the minimum energy formulation is

pIN⇥N ⌦ Pq⌦U  � pIN⇥N ⌦ Pq x(0), (4.22)

where ⌦ is the Kronecker product and

P =

»

——————–
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2 � �

¯
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´
✓1
2 � �

¯
0 0 0 0
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✓1
2 + �

¯
� cos

´
✓1
2 + �

¯
0 0 0 0

sin ✓2
2 cos� sin ✓2

2 sin� cos ✓2
2 0 0 0

sin ✓2
2 cos� sin ✓2

2 sin� � cos ✓2
2 0 0 0

fi

������fl
. (4.23)

For the minimum fuel problem, this becomes,

”
pIN⇥N ⌦ Pq⌦ � pIN⇥N ⌦ Pq⌦

ı
»

–U+

U�

fi

fl  � pIN⇥N ⌦ Pq x(0). (4.24)

When considering a sensor on the target spacecraft aiding in the navigation of the chaser,

the pyramid constraint would mimic the field of view of a typical rectangular sensor.

When the target has fiducial markings and no onboard sensors, the chaser’s line of

sight to the fiducial markings would trace a cone instead of a pyramid, thus sometimes the

114



nonlinear cone constraint maybe worthwhile to use instead. Finding this nonlinear version

of the LOS constraint follows a similar procedure to the nonlinear velocity constraint. First,

we convert the optimization variables U into states X through (4.3), and then loop through

each step of the horizon, extracting ⇢ and setting

fineq(U) =

»

————————————–

�⇢(1) · c
k⇢(1)kkck

...
�⇢(i) · c
k⇢(i)kkck

...
�⇢(N) · c
k⇢(N)kkck

fi

������������fl

+ cos

ˆ
✓

2

˙
, (4.25)

where ⇢(i) are the position vectors in the i-th step of the N -step horizon as defined in

Section 3.2.4. For the minimum fuel case, all that needs to be done is transform the U
0

vector into a U vector by setting U = U+ �U� before implementing the above procedure.

That finishes the description of all the constraints present in the benchmark problem

discussed in Section 3.2. Of course, more constraints could be added to the problem fol-

lowing a similar process to that described above. Once the individual constraints are in

the correct form, simply concatenating them to the end of the existent V and W matrices

and output vectors of the nonlinear functions is su�cient for implementation. We will add

additional obstacle avoidance constraints in Section 4.3

4.1.4 Solution Techniques

From Section 4.1.1 through Section 4.1.3, both the minimum energy and minimum fuel

optimization problems have been structured into forms that are amenable to solvers. This

section discusses the solvers used to complete the work in this thesis and high level descrip-

tions of how those solvers work.

Minimum Energy

At this point, the minimum energy optimization problem is in quadratic form

with options of both linear and nonlinear constraints. The linear constraint

formulation is convex, and thus can be solved in a very e�cient manner with

any generic quadratic programming solver. The work in this thesis uses MAT-
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LAB’s quadprog function, which uses an interior point method combined with

Lagrangian duality methods and guarantees a global minimum if formulated

feasibly. There are many other quadratic solvers available, both open source

and for purchase. Given that the Karush-Kuhn-Tucker (KKT) conditions are

checked and are valid, the globally optimal solution can be found due to the

convex nature of the minimum energy formulation.

If using nonlinear constraints, the problem is no longer entirely quadratic, so

alternate optimization techniques need to be used. Sequential Quadratic Pro-

gramming (SQP) is an e�cient approach and is implementable with a little ef-

fort through MATLAB’s fmincon function, but also has been written for flight

system execution in C/C++ [202]. SQP essentially is Newton’s method of opti-

mization with constraints added through Lagrange multipliers. SQP, of course,

takes significantly longer to run than a quadratic solver. The work in this thesis

with nonlinear constraints was all implemented through fmincon. There are

tricks one can use to get the most out of the solver including variable scaling to

achieve a Hessian matrix with order of about one on the diagonal. This will allow

gradient based solvers to better be able to search when the objective function is

very flat or very steep in the areas near the optimum. Additionally, sensitivity

studies can be performed to see the appropriate tolerances and exit criterion

such that e↵ective optimization performance is achieved for the quickest time.

These analyses are left out of this thesis but discussed more in [97] if interested.

Due to the nonlinear constraint formulation, the problem has the potential to

become non-convex. If non-convex, the KKT conditions will not guarantee a

globally optimal solution, only a locally optimal solution. Note that significant

e↵ort should be placed in approximating non-convex constraints with convex

constraints, however, if the constraints need to be non-convex, the user must

accept that possibly sub-optimal local minima may be found. Nonetheless, the

feasibility of the solution comes first, and this possible performance degradation

is acceptable given that a feasible trajectory is still found.

Minimum Fuel

The linear formulation of the minimum fuel problem with linear constraints al-
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lows solution through any generic linear solver, which will enable even higher

e�ciency than the quadratic solvers. Again, for the work in this thesis, MAT-

LAB’s linprog function is used. This implementation of linear solver uses dual

simplex methods to quickly solve large order problems with guaranteed globally

optimal solutions.

Unfortunately, there is not a great option openly available to solve the minimum

fuel linear objective function with nonlinear constraints. One could implement

the problem using MATLAB’s fmincon, and the author has done just this, how-

ever the solutions are not extremely accurate and the run times are extremely

long. The challenge is that for a minimum fuel problem, the solution will have

a discontinuous bang-coast-bang solution for the control input. Gradient based

methods such as fmincon will have a lot of trouble with these discontinuities.

The solution this author uses with fmincon is to remove the ability of the opti-

mizer to select nonzero control at intermediate times and only allow control near

the beginning and end of the mission. This significantly reduces the number of

optimization variables and although it still takes a long time to run, will give

suboptimal, feasible solutions. The author does not advise using this method

and has not placed any results from the minimum fuel problem with nonlinear

constraints in this thesis due to the method’s inherent fragility. Again, given

possibly non-convex constraints applied to the linear problem, there is no guar-

antee for a globally optimal solution.

4.2 Multi-stage Optimization

Traditionally, trajectories and missions are designed with extreme safety and risk aversion

in mind. Artificial waypoints or stopping points are built into the mission plan such that

ground crews can issue abort maneuvers every so often or choose to wait at these gates

if deemed necessary. Some of these waypoints are created to ensure that sensing systems

are active and receiving correct measurements before continuing onto the next maneuver.

This is analogous to the transition to the LOS zone in Phase 2 of our problem, where the

higher precision docking sensors are available. New constraints are necessary in this phase

of the mission to maintain sensor lock and ensure safe docking, and it is typically easier to
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separate this phase of the trajectory analysis such that the constraints are only dealt with

where necessary. Unfortunately, stopping the trajectories between these phases creates an

unnecessary constraint that decreases performance. Freeing up this waypoint constraint

could therefore improve performance if the same level of safety can still be achieved.

Additionally, trajectories are designed using common knowledge of ways to exploit the

orbital dynamics in the problem. Thus, simplified trajectories are created to ensure the ren-

dezvous and docking is safe at every step. A common technique involves hopping through

several waypoints on the way to dock, such that if thrusters fail, collision with the target

spacecraft will be avoided for an arbitrarily large number of orbital periods. When the

spacecraft misses a burn during these hopping maneuvers, the natural orbital dynamics will

cause the spacecraft to drift away from the target. Unfortunately, however, designing a

mission in this manner leads to overly safe trajectories and a corresponding loss of perfor-

mance. Techniques have been examined, however, to avoid these waypoint requirements

and still guarantee collision avoidance if thrusters fail [146].

Finally, the fact that these trajectory optimization problems can be solved in real-time

allows us to examine higher performing methods that have smoother transitions between

phases and an absence of waypoints. If something else were to go wrong in a transition

between phases, the spacecraft itself could plan a new trajectory to safely maneuver. The

risk that these failures will happen is fairly low, and if the same level of safety can be attained

by reacting to them, there is the potential to probabilistically gain better performance in

the long run.

Therefore, the next two sections will discuss the process of trajectory optimization con-

tinuously through multiple phases that each have their own constraints. This will be known

as full-mission optimization while the traditional approach would be phase-independent

optimization.

4.2.1 Linking Phases

Given that waypoints between phases will overconstrain the problem, we require a method

to free up the transition point from this fixed constraint. By splitting up phases and

performing phase-independent optimization, the engineer is forced to either select a specific

position and velocity for a final fixed endpoint constraint or can develop a set of states that

are possible for the endpoint. Even if the endpoint constraint consists of a larger set, there
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is still no guarantee that the optimally selected endpoint of the individual phase will be the

optimal transition state between the phases. There is also no guarantee that constraints in

the next phases will not be violated if a high velocity exists at that transition point. By

setting the transition point as a free parameter (in time, position, and velocity), and only

implementing appropriate constraints for each particular phase, we can avoid these pitfalls

of the phase-independent optimization approach. Note that in some cases, like the end of

the docking phase, there is a required fixed position with zero velocity. In these cases, with

no free variables at the phase transition, phase-independent optimization will produce the

same results as the full-mission optimization. Thus, in these cases, computation times will

significantly improve if the phases are separated. Note that this is only true if all variables

are fixed at the phase transition. If any state variable is free, however, there is the possibility

that the phase-independent optimization will produce suboptimal results.

The specific transitions from Phase 1a to 1b and from Phase 1b to 2 will be explored

in this section, where the transition from Phase 2 to 3 is considered suitable for phase-

independent optimization. Therefore, we solve for two trajectories: one with a goal location

of xdocked that covers Phases 1a through 2 and another with a goal location of xrelocation

covering Phase 3. This section therefore discusses the process of linking the di↵erent phases

in the optimization problem. Additionally, a reactive technique will be discussed in the case

that during the actual mission there is large reference-tracking error when transitioning from

phase to phase. In this case, replanning an optimal trajectory at this point will result in

better overall performance metrics for the mission.

In general, this problem of having multiple mission phases and free transition variables

fits very well into the GPOPS-II optimal control solver framework. Unfortunately, the

GPOPS-II solver was deemed to be too slow to execute trajectory planning in real-time

and has not been developed for implementation on a spacecraft. Thus, alternate techniques

were investigated. Specifically, Mixed Integer Linear Programming (MILP) and Mixed

Integer Nonlinear Programming (MINP) serve our purposes very well. The benefit with

integer programming is that if-then constraints can be implemented quite elegantly. These

if-then constraints are necessary for our problem between Phase 1b and Phase 2 because

there are constraints specific to Phase 2 that should not be enforced in previous phases.

Thus, these constraints should only be applied if the state meets the conditions for Phase

2. In this manner, we do not need to set a transition waypoint as the constraints will be
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implemented automatically as the state varies.

For MINP, the if-then constraint for Phase 2 can be implemented as follows. One integer,

binary variable is added to the optimization variable vector for every point in the trajectory.

If this point is within the radius that defines Phase 2, the variable will automatically be set

to 0, while if it lies outside the Phase 2 radius, the variable will automatically be set to 1.

The docking velocity constraint in (3.34) can be reformulated as

� 9⇢ · ⇢

k⇢k  V̄ +M1b, (4.26)

where M1 is an arbitrarily large number and b 2 {0, 1}. The LOS zone constraint from

(3.31) can be reformulated as

⇢ · c
k⇢kkck +M2b � cos

ˆ
✓

2

˙
, (4.27)

where M2 is another arbitrarily large number. In conjunction with these constraints, an

additional constraint is required to force the value of b to be either 0 or 1 depending if the

spacecraft is inside the radius of Phase 2 or outside. This constraint is that

⇢d  kxposk+M3(1� b), (4.28)

where M3 is another arbitrarily large number. To meet each of these three constraints at the

same time, b will be forced to be 1 in Phases 1a and 1b when kxposk> ⇢d and will be forced

to be 0 in Phase 2 when kxposk ⇢d. The same process can be used with the linear versions

of these constraints to form the problem for the MILP solver, although the radius for Phase

2 will need to be converted to a conservative, linear plane constraint tangent to the circle

at that radius. Note that in the optimization framework described in the previous sections,

one b-variable will need to be implemented for each point in the trajectory, meaning that

the optimization variable vector will grow by another factor of the horizon length, N . The

full formulation is left out here, but follows the general form of the discussion of formulating

these types of constraints in Section 4.1.3. After these constraints are implemented with

one of these solvers, the full mission optimization can be performed as the docking phase

constraints will only be implemented where necessary and the transition state will be free

between the phases.
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Alternately, if a MILP or MINP solver is not available, it is more di�cult to handle this

phase transition. Since these solvers are not as widely available to the general public as

linear or quadratic solvers are, this thesis will present all results using an approximation of

the above integer constraints suitable for linear and quadratic solvers. This involves imple-

menting a constraint interpolation and search process to find the optimal phase transition

time. The basic process is to only enforce the docking phase constraints for the particular

time steps relevant for the docking phase. Finding the appropriate time steps to enforce

the constraints is the goal of this process. Typically, this can be done as finding an o↵set

from the docking time (i.e., the end of Phase 2 and final point of our fixed horizon).

Initially, a conservative guess is made requiring the docking constraints to be met much

earlier than truly required. This is illustrated in Figure 4-1. Results from the optimization

are recorded, the resulting trajectory is interpolated at a finer discretization level using

methods from Section 4.1.3 and analyzed against the true nonlinear constraint. If the tra-

jectory is feasible, the o↵set length from the docking time is shrunk by a predetermined

amount and the optimization is run again. This is repeated until either the recorded per-

formance cost from the optimization reaches a minimum and then starts to rise, or if the

trajectory is deemed infeasible. The search for this minimum can be performed as desired.

The results in this thesis are obtained from a standard bisection search algorithm. Although

this increases the time required to solve the problem, the search process usually produces

target+ĵ +î

x

too conservative

too aggressive

Phase 1b

Phase 2

Mission Timeline
near optimal
too conservative
too aggressive

t2ft0

Docking constraints active

Figure 4-1: Brief graphic describing the goals of the constraint interpolation process for
finding the optimal transition time between Phases 1b and 2
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a solution in less than ten iterations.

Although phase-independent optimization can be used to split Phases 2 and 3 without

performance loss, there are still some di↵erences when planning a trajectory for Phase 3

when compared to the other phases. The constant reference point, xf , now changes from

xdocked, a vector of zeros, to xrelocation, which is located 5km in the in-track direction.

Importantly, this location is on the ĵ-axis and experiences no relative motion with respect

to the center of the CWH frame at the target satellite’s initial location. From the perspective

of trajectory planning, the pair of satellites is now maneuvering in an imaginary CWH frame

centered where the original frame was; the frame does not follow the target satellite as it is

maneuvered by the chaser. Additionally, from Phase 2 to 3, the dynamics change when the

target docks with the chaser, and this needs to be incorporated at the correct time in the

⌦ matrix, by computing a new discretized Bd matrix as discussed in Section 3.1.1.

The goal is to perform all optimization computations fast enough that the process can

be performed in real-time onboard a spacecraft. The results section will discuss the running

time in more detail, but for the purpose of this discussion it su�ces to say that it is fast

enough. Given that the multi-stage trajectory optimization is able to be implemented in

real-time, the next topic discusses performance improvements that can be achieved upon

a specific uncertain event. The uncertain event is where there is a large tracking-error

uncovered when entering a new phase due to the higher precision sensors available in that

new phase. Because this is topical to linking phases together, the reactive techniques to

such an uncertain event will be discussed here.

During Phase 1a, there is an unobservability in the system due to only having angular

measurements. This can cause the spacecraft to drift o↵ of the reference-trajectory while

thinking that it is tracking perfectly. Fortunately, when the spacecraft gains a range mea-

surement upon entering Phase 1b, the error in the position of the spacecraft can be quickly

reduced significantly. Because the spacecraft has gone well o↵-track, now there will be sub-

stantial control e↵ort required to return to the originally planned reference trajectory. The

idea here is that the spacecraft can plan a new trajectory onboard after this uncertain event

which would return a new optimal trajectory from that state onward. This new trajectory

likely will be lower performing when compared to the original trajectory, however is the

best path to follow going forward given this large current o↵set. Figure 4-2 depicts this

scenario. This behavior can also happen during other phase transitions, yet will be most
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Angles-only 
Rendezvous
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Undesired

Replanned 
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Drifting due to 
unobservability
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trajectory

Figure 4-2: Description of the trajectory optimization recovery from the uncertain event
of a large error in tracking due to the unobservability in Phase 1a getting reduced when
entering Phase 1b

pronounced during the transition from Phase 1a to 1b. This is a reactionary technique to

an uncertain event as classified in Section 3.3.2.

4.2.2 Results

The optimal trajectory computation is performed on the mission described in Section 3.2

with the minimum energy method described in Section 4.1.1 and Section 4.2.1. Three

methods are compared to show the benefits of optimizing the full mission as opposed to

individual phases. Figure 4-3 shows the full mission trajectories for the three methods.

The first method, named the traditional hopping method is similar to the method that

the Space Shuttle used to dock to the ISS. A fly around is performed from the V-bar to the

R-bar such that the Shuttle would directly align with the ISS docking port in the radial

direction. The Shuttle would then perform an approximation of a straight line trajectory

to close the distance on the R-bar, because of the orbital dynamics and safety requirements

for stopping points along the path, this behavior looks like it is hopping in the approach.
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Figure 4-3: Comparison of trajectories generated following a traditional hopping R-bar
approach, a phase independent approach and a full mission length optimization approach

Figure 4-5 shows this hopping behavior in more detail in Phases 1b and 2. The second

approach shown is an optimization of Phase 1 and Phase 2 individually and is called phase-

independent optimization. When optimizing phases separately and there is no knowledge

of where along the phase transition line to control nor what velocity to control during the

transition, the engineer must choose a position and velocity; normally a centered position

and zero velocity are chosen. The third approach, and the approach posited by this thesis

is to perform the trajectory planning through the full mission and thus avoid these transi-

tioning problems associated with the previous two methods. With this method, constraints

Figure 4-4: Comparison of trajectories generated following a traditional hopping R-bar
approach, a phase independent approach and a full mission length optimization approach;
shown phase by phase
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Figure 4-5: More detailed view of the hopping approach

are only enforced while the spacecraft is in a particular phase, and thus the full problem

can be considered. Each of the trajectory optimization methods exhibits the same planning

for the joint maneuver phase, as the transition is fixed in time and space. A more detailed,

phase by phase comparison of the methods is described in Figure 4-4.

The performance for the three methods can be compared in terms of fuel consumption

along the trajectory and computation time required to solve. The time to mission comple-

tion is set to be constant with all three methods. The hopping method was designed for

the LEO docking application of Shuttle operations, while this mission is a GEO docking in

4 hours. Because of these constraints, the hopping trajectory, which would naturally try

to exploit the orbital dynamics and use less fuel but take longer to dock, does not perform

nearly as close in fuel consumption and it would not be a fair comparison. It is mainly

shown here as a comparison to historical docking methods.

The full-mission optimization method performs the mission with about 15% less fuel re-

quired than the phase-independent mission, however uses about an order of magnitude more

computation time as the problem becomes more complex to solve. Since Phase 3 results

are identical across all techniques, we will ignore those results and focus on the propellant

consumed in Phase 1 and 2. The phase-independent optimization uses 1.326 m/s while the

full-mission optimization uses 1.125 m/s. The true objective for this optimization problem,

the LQR cost, also shows markedly better results with full-mission optimization. The full-

mission optimization minimum energy was 45% less than that for the phase-independent

optimization. When running in MATLAB on a late-2013 MacBook Pro with a 2 GHz Intel

Core i7 processor and 16 GB of 1600 MHz DDR3 memory, the average solution time for the
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phase-independent optimization is about 0.8 seconds and the average solution time for the

full-mission optimization is about 5.5 seconds. Nonetheless, the average computation time

is still on the order of a few seconds for this problem when considering a discretization of 150

total mission steps and implementing the iterative search for the optimal phase transition

time with a quadratic solver. This time scale is very feasible for implementation on orbit,

where the entire mission would last a few hours.

The reason the full mission optimization technique uses less fuel is because it does not

require the pit stop when entering Phase 2 and instead cuts the corner of the LOS region.

Note that the result will not always be that the corner is cut like this and depends on

the initial location and relative velocity of the chaser spacecraft. As the spacecraft moves

closer to the target in the V-bar direction, the optimal trajectory tends to move away from

the corner. Thus, it is di�cult to predict an exact transition point and time ahead of the

optimization process. The full-mission optimization is providing utility here by finding this

optimal transition point and time that could not be determined simply otherwise.

As an important side note, this analysis was performed with no uncertainty considered,

so the corner cutting by the full mission technique in Figure 4-4 would in reality be very

risky. The target attitude may be slightly di↵erent than expected causing the LOS zone

of the sensor to be shifted away from our initial conception. As discussed in Section 4.4.4,

this uncertainty will be incorporated into the optimization such that appropriate margins

are maintained when skirting constraint boundaries. With the appropriate risk bound,

performance still improves (albeit slightly less) with comparison to the phase-independent

optimization.

Finally, to wrap up the results discussion for multi-stage trajectory optimization, the

reactive trajectory planning to uncertain events will be discussed. Because we have proven

that the trajectory optimization process only takes a few seconds and is feasible to run

onboard a spacecraft, we have opened up the possibility that trajectories can be replanned

when more information about the system is obtained. A specific point where this can happen

is at the transition from Phase 1a to 1b as depicted and discussed around Figure 4-2. Given

that a large error is experienced upon a state estimator convergence on the real spacecraft

position in Phase 1b, we can run this trajectory optimization process from this point in

the orbit rather than from the initial position. This involves very little modification of the

original problem, only a change in initial position and appropriate reduction in length of
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the horizon depending on the current time.

To analyze this problem, we must simulate a spacecraft following one of these com-

puted trajectories. Using the simulation environment described in Section 3.4, the nominal

behavior can be seen in Figure 4-6b, where the spacecraft is acting on the estimated po-

sition (red line) and trying to track the trajectory (black line). The truth position of the

satellite (blue line) drifts from the estimated position during Phase 1a, as the covariance

in the angles-only measurement error is too high and there is an unobservability in the

dynamics model. Upon entry into Phase 1b, we can see the estimator snap onto the correct

position when a range estimate is gained. For a static trajectory, as in Figure 4-6b, the

spacecraft must use significant control e↵ort to return to the trajectory. When replanning

is considered in Figure 4-6a, the minimum energy trajectory from the spacecraft’s current

state is computed as it enters Phase 1b. This reaction allows the resulting trajectory to be

smoother and significantly increase overall performance in terms of fuel consumption and

LQR cost.

Figure 4-6: Example results from simulation of a reactionary trajectory replanning approach
(a) compared to no replanning (b) to account for the uncertain event of entering Phase 1b
with a large error

To accentuate the error in the tracking performance in Figure 4-6, an additional measure

was taken to reduce the thruster force level to 80% of nominal. With high covariance mea-

surements in Phase 1a, the false dynamics model is trusted more, and the resulting tracking

error is even more pronounced than in the case with only the unobservability present. Ad-
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ditionally, the distance at which range measurements are available is increased to 1.5 km

as opposed to the 1 km used in the baseline mission design described in Section 3.2.8. In

this case however, we can see an average improvement over ten trials of approximately 52%

in fuel consumption when implementing the replanning compared to no replanning. This

example highlights the significant size of the possible benefits of replanning the trajectory

given large uncovered errors. The cost of correcting for this error immediately is very ex-

pensive, and the smoother trajectories allow the spacecraft to use its current velocity to

its advantage rather than trying to correct for it unnecessarily. Other missions and instan-

tiations of this mission can also see benefits from this technique, although this example

highlights the benefits particularly well.

Hopefully this section gives motivation to the importance of phase transitions in multi-

stage rendezvous and docking operations. Two specific methods have been implemented to

successfully improve performance across these phase boundaries: full-mission optimization

and reactionary planning. The remainder of the thesis will use the techniques developed

and discussed here to plan trajectories and react to some uncertain events.

4.3 Obstacle Avoidance Techniques

Until this point in the chapter, trajectory planning has only been performed on a nominally

executed mission from start to end. This section deals with the possibility that a piece of

orbital debris or another satellite is predicted to move in the way of the previously optimal

mission trajectory. This obstacle is likely being tracked by ground assets, such that the

chaser spacecraft has knowledge of the obstacle’s current state estimate and knowledge of

the uncertainty present in that state estimate. The goal is of course to avoid collision with

the obstacle for the minimum possible cost and still complete the mission. For consistency,

the same cost functions and constraints discussed in Section 4.1 are used here, the only

di↵erence is that an obstacle avoidance constraint is added to the problem. This section

will discuss and compare two methods to structure the collision avoidance constraints: a

nonlinear ellipsoid constraint and a linear, rotating hyperplane constraint.
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4.3.1 Ellipsoid Method

The first constraint explored here will be the ellipsoid constraint, which bounds the obsta-

cle’s position by a 3D ellipsoidal keep out zone. Thus, if the planned trajectory intersects

this ellipsoid, the constraint will be violated. There are two applications in which this con-

straint could serve useful. One is when the obstacle to avoid is large and has a very little

uncertainty in its state estimate, as shown in Figure 4-7a. Here, the main concern is to

avoid the extent of the object’s structure as motivated by avoiding the ISS, so the bounding

ellipsoid circumscribes the physical size of the obstacle with a predetermined amount of

safety margin. The other is when there is high uncertainty in the obstacle’s state estimate

or when the obstacle is small, as shown in Figure 4-7b. Uncertainty is almost always quanti-

fied in terms of Gaussian noise and associated covariance when it comes to state estimation

in aerospace engineering. The main driver of choosing an ellipsoid in the large uncertainty

case is that this commonly available covariance matrix actually represents an uncertainty

ellipsoid. Therefore, this covariance ellipsoid can be used directly as the obstacle to avoid

and the size of the ellipsoid directly relates to the probability the true obstacle location

is inside of it. In Figure 4-7b, the three-sigma ellipsoid is illustrated, which corresponds

to a roughly 97% chance the obstacle is contained within. This formulation is thus quite

convenient for analysis and constraint design.

a.) b.)

3σx

3σy

Figure 4-7: Ellipsoidal obstacle bound in cases of (a) low and (b) high uncertainty. Shown
in 2DOF here although it extends to 3DOF.

When considering the bounding of spacecraft structure by ellipsoid keep-out-zones, an

even higher fidelity modeling of structures can be completed through the use of multiple

ellipsoids approximating components of a structure or mapping of structures using 3D

SLAM techniques as in [103]. In any case, the scenarios investigated in this thesis are

more concerned with very high levels of uncertainty where the precise modeling of the

spacecraft structures is not required.
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There is a helpful property that allows easy evaluation of whether a point lies inside or

outside an ellipsoid. The quadratic inequality,

pxpos � xeqT P pxpos � xeq � 1 , (4.29)

where xpos is the position of the point in question, xe is the position of the centroid of the

ellipsoid, and P is the shape matrix of the ellipsoid, is true when the point lies outside of the

ellipsoid and false when the point lies within the ellipsoid. For the covariance formulation,

P is the inverse of covariance matrix multiplied by n

2 for an n-sigma ellipsoid,
`
n

2⌃
˘�1

.

During trajectory optimization, this constraint needs to be evaluated against all points in

the horizon (i.e., every point along the planned path cannot intersect the ellipsoid). The

inequality in (4.29) is therefore reformulated to compute a vector of constraint evaluations

for each point in the horizon. Formatting this constraint in the required structure follows

a similar procedure to that discussed in Section 4.1.3. First, we convert the optimization

variables U into states X through (4.3), and then loop through each step of the horizon,

extracting xpos and setting

fineq(U) =

»

———–

1
...

1

fi

���fl

N⇥1

� diag

�

X TPX
 

»

———–

0
...

0

fi

���fl

N⇥1

, (4.30)

whereX =
”
xpos(1)� xe, · · · , xpos(i)� xe, · · · , xpos(N)� xe

ı
, a 3⇥N matrix; diag{·}

places the diagonal elements of the square matrix into a column vector; and xpos(i) are the

spacecraft position states (x, y, and z) at step i of the N -step horizon.

For multiple obstacles, the nonlinear constraint can be repeated for each bounding

ellipsoid and the corresponding vectors can be stacked into one large vector to represent the

nonlinear inequality constraint. For moving obstacles, the centroid of the ellipsoid can be

propagated according to the CWH equations and each step of the horizon can be compared

to the expected location of the obstacle according to its propagation based on a given initial

position and velocity. Again, the structure of this propagation (assuming no control input
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by the obstacle) is

Xobst =

»

———–

xobst(1)
...

xobst(N)

fi

���fl

6N⇥1

=  xobst(0), (4.31)

where xobst(i) is the full state of the obstacle at the i-th step of the N -step horizon. Noting

that xe(i) is the extracted position state for the i-th time step, the constraint in (4.30) can

be used except this time the only change is that

X =
”
xpos(1)� xe(1), · · · , xpos(i)� xe(i), · · · , xpos(N)� xe(N)

ı
. (4.32)

Finally, if desired, one can propagate the covariance in the obstacle’s estimated velocity to

the size of the obstacle ellipsoid to simulate the growth of the uncertainty of this ellipsoid.

This additional consideration is not di�cult to implement as it only involves using a di↵erent

P for each step of the trajectory and slightly reformulating (4.30) to account for this. The

results in this thesis assume a small velocity uncertainty, as it is fairly common to have

much smaller error in velocity than position. Thus, the obstacle ellipsoid will not grow

significantly over the fairly short mission durations discussed in this thesis, and a static size

assumption is made. Unless the velocity uncertainty is large, this assumption should not

a↵ect results or applicability of the methods discussed here.

Of course, all of these formulations of the ellipsoid obstacle constraint are nonlinear,

and thus nominal quadratic and linear solvers are unable to solve the problem. Instead, an

SQP approach is used as described in Section 4.1.4.

At this point, it should be noted that the nonlinear ellipsoidal constraint is non-convex.

This characteristic is not desired in optimization problems for a variety of reasons. For path-

planning problems, the largest issue is that successive points in the path can e↵ectively

“jump” obstacles without technically violating the constraint as seen in Figure 4-8. If

the problem is well posed, and the distance between horizon points is smaller than the

minimum characteristic length of the obstacle, this will not a↵ect the feasibility of the

solution. However, if the problem is ill-posed, action needs to be taken to avoid returning

mathematically feasible, but practically infeasible solutions.

Along this line, as a mitigation step, an interpolation scheme was developed. This

scheme discretizes the dynamics of the system at a finer sampling time resolution than
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Original!
discretization !
Interpolated !
discretization !
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evaluation!

Figure 4-8: Illustration of the non-convexity of the ellipsoid constraint and a finer resolution
discretization

given for the trajectory optimization horizon. These finer discretized A and B matrices can

be used in the formulation of new ⌦ and  matrices in the constraint propagation only.

The objective functions will not be executed at this fine resolution, because the control

input cannot be applied at every one of these smaller segments. This requirement makes

⌦, the stacked, block propagation matrix defined in (4.5), invalid. Note that  remains of

the same form defined in (4.4). For a simplified case with two interpolation points, three

steps in the horizon, and the continuous form of the control input the new  dsc is

 dsc =

»

——————–

Adsc

A

2
dsc
...

A

9
dsc

fi

������fl
, (4.33)

and the modified ⌦dsc is

⌦dsc =

»

——————————————————————–

Bdsc 06⇥3 06⇥3

AdscBdsc +Bdsc 06⇥3 06⇥3

A

2
dscBdsc +AdscBdsc +Bdsc 06⇥3 06⇥3

A

3
dscBdsc +A

2
dscBdsc +AdscBdsc Bdsc 06⇥3

A

4
dscBdsc +A

3
dscBdsc +A

2
dscBdsc AdscBdsc +Bdsc 06⇥3

A

5
dscBdsc +A

4
dscBdsc +A

3
dscBdsc A

2
dscBdsc +AdscBdsc +Bdsc 06⇥3

A

6
dscBdsc +A

5
dscBdsc +A

4
dscBdsc A

3
dscBdsc +A

2
dscBdsc +AdscBdsc Bdsc

A

7
dscBdsc +A

6
dscBdsc +A

5
dscBdsc A

4
dscBdsc +A

3
dscBdsc +A

2
dscBdsc AdscBdsc +Bdsc

A

8
dscBdsc +A

7
dscBdsc +A

6
dscBdsc A

5
dscBdsc +A

4
dscBdsc +A

3
dscBdsc A

2
dscBdsc +AdscBdsc +Bdsc

fi

����������������������fl

,

(4.34)

where Adsc and Bdsc are the finer discretized matrices with discretization time Tdsc = 1/3T .

These increased discretization matrices would then be used in the state propagation of the

nonlinear constraint functions. The form is slightly di↵erent for the �V control approach,
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as

⌦dsc =

»

——————————————————————–

Bdsc 06⇥3 06⇥3

AdscBdsc 06⇥3 06⇥3

A

2
dscBdsc 06⇥3 06⇥3

A

3
dscBdsc Bdsc 06⇥3

A

4
dscBdsc AdscBdsc 06⇥3

A

5
dscBdsc A

2
dscBdsc 06⇥3

A

6
dscBdsc A

3
dscBdsc Bdsc

A

7
dscBdsc A

4
dscBdsc AdscBdsc

A

8
dscBdsc A

5
dscBdsc A

2
dscBdsc

fi

����������������������fl

, (4.35)

because the control is implemented instantaneously rather than continuously through each

discretized sub-step. For the general case, it is di�cult to fit on a single page, but the

examples shown should be enough to infer the pattern and extrapolate into the desired

number of interpolation points and length of horizon. In similar form to (4.3), remember

we have

Xdsc =  dscx(0) + ⌦dscU, (4.36)

for spacecraft state propagation and

Xobstdsc =  dscxobst(0), (4.37)

for obstacle state propagation.

Usually, the choice of how many constraint interpolation points to use can be decided

a priori, based on expected velocities and a desirable minimum distance between points.

Alternatively, the level of discretization can be adjusted in real time based on the velocity at

that specific point in the trajectory to ensure that the distance between points of constraint

evaluation is always below a certain characteristic width of the obstacle.

Additionally, although not as critical, non-convexity can prevent a nonlinear solver

from finding an optimal solution, even if the solution is feasible. Because of the non-convex

nature of the obstacle, there becomes multiple paths that the spacecraft can take around

the obstacle. The choice of which side to take can cause local minimums to appear in the

problem and may prevent the solver from finding the globally optimum solution. As this

does not a↵ect the feasibility of the solution, it is not as large of a problem, although does
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prohibit any immediate claims that the true global optimum has been found outright. In

this case, di↵erent initial solutions can be given to the solver and the optimization problem

can be solved multiple times with su�cient coverage that the optimal solution is confidently

found. This process becomes more di�cult when multiple obstacles are considered because

the number of initial guesses will increase unboundedly with the number of obstacles and

defining such initial solutions becomes very challenging. For the purpose of this thesis, the

number of obstacles is kept small such that the number of initial guesses is manageable.

Other search methods, such as RRT* and dynamic programming, are better able to handle

these situations with correspondingly increased computational power.

Convexity will become a problem when obstacles are significantly small or fast or when

the chaser is moving fast. In these cases, the ellipsoid constraint method may not be able

to find a solution and it is suggested to use the convex hyperplane method described in the

next section to find a feasible solution for use as an initial guess. Note that besides convexity

issues, there still is the possibility that the obstacle has made the problem infeasible within

the time constraints of the problem. In this case, the mission objective must change to

either use more time to finish the mission or to back o↵ and start the mission over at a

later time. The design of this abort procedure is not discussed in this thesis. In the worst-

case scenario, if the obstacle is large enough or fast enough, it may be impossible for the

spacecraft to move out of the way at all due to control saturation, and therefore collision

may be unavoidable by any method of trajectory design.

4.3.2 Rotating Hyperplane Method

Due to the nonlinear and non-convex form of the ellipsoid constraint presented in the pre-

vious section, a convex and linear obstacle avoidance constraint is desired. This proposed

linear constraint would speed up the optimization solver for use in real-time or in Monte

Carlo simulation, but also would guarantee feasible results due to its convex nature. How-

ever, approximating the ellipsoid constraint will lead to some loss in accuracy from the

intended constraint and thus ine�ciencies in the optimal solutions to this new problem.

The rotating hyperplane method is the proposed approximation to the ellipsoid con-

straint. At a high level, this method involves using half-space constraints that lay tangent

to the ellipsoid of interest and rotate as the spacecraft proceeds through the mission. Thus,

as the spacecraft approaches the obstacle, it is constrained by the half-plane not to enter
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the ellipsoid individually at each time step. Initially, even the goal state is in the infeasible

region, but as the hyperplane rotates, the goal state comes into view. Figure 4-9 illustrates

this behavior. Additional details and the inspiration for this method can also be found in

[70] and [73].

t = i + Δt 

t = i + 2Δt 

t = i

Hyperplane

Chaser path

Chaser spacecraft

Target location

Obstacle ellipsoid

Feasible space

Infeasible space

Figure 4-9: Illustration of the rotating hyperplane constraint through three time steps
during the mission

The approach from [70] and [73] is slightly di↵erent from what is implemented in this

thesis. These papers assume a stationary obstacle, where this thesis uses a moving obsta-

cle formulation. Additionally, they rotate the hyperplane throughout the entire horizon,

which creates ine�ciencies, because it causes the spacecraft to be pushed around by false

hyperplane constraints due to too slow or too fast of an arbitrarily set rotation speed.

The procedure for creating the linear, rotating hyperplane constraint is as follows, as-

suming we know the obstacle’s position, Xobst, for all time steps throughout the mission

and we know the initial spacecraft location and final goal location. First, we attempt to

optimize the problem without the obstacle constraint and evaluate the ellipsoid constraint

from Section 4.3.1 for every time step in the horizon. If the trajectory does intersect the

ellipsoid, we find the time step at which the constraint is violated by the largest magnitude

and call this the collision time. If it does not intersect, we ignore the obstacle constraint

and use this unconstrained solution.

Di↵ering from the previous literature, to determine at which time steps we wish the
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hyperplane constraint to be rotated, we take the ratio of the largest dimension of the ellipsoid

to the straight-line distance required for the spacecraft to reach the goal. We double this

and multiply by the duration of the full horizon such that the hyperplane will be rotated

roughly for double the time the spacecraft would spend passing the obstacle. From the

collision time, we center the rotation window and apply the rotation of the constraint only

within this window, scaling the speed of rotation to span the full angle required. Outside

the rotation window, we use the adjacent beginning and final hyperplane constraints as a

non-rotating hyperplane.

rs rg e(i)

n(i)

CWH frame

Hyperplane 
at i-th step

γr(i)
γrtot

Spacecraft 
at t0

Goal 
location

Obstacle ellipsoid

Figure 4-10: Diagram of the vectors used to formulate the hyperplane constraints

From the position of the obstacle at the collision time, we compute the unit vectors

from the obstacle ellipsoid center to the goal, rg, and to the spacecraft, rs, through vector

addition and normalization. Figure 4-10 shows each of these and the following vectors in a

2DOF diagram. The cross product of these vectors, rg⇥rs, produces the axis of rotation for

the hyperplane, ar, and the angle between the two vectors, �rtot , tells us the total amount

of rotation we expect the hyperplane to make. We can then determine an angle of rotation,

�r(i), from the vector pointing toward the spacecraft for each time step, i, in the rotation

window. With this angle of rotation at each time step we can compute the point, e(i),

at which the rotated rs vector intersects the ellipsoid surface and can compute the surface

normal of the ellipsoid at this point, n(i). Since the obstacle is moving between each time

step, the e(i) vector must be updated using the current center of the ellipsoid, xe(i). For the

entire mission horizon, we use n(i) and e(i) to form the linear constraints for the minimum

energy problem as

�H⌦U  �HE +H x(0), (4.38)
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where the H and E matrices are defined as

H =

»

——————–

n(1)T 01⇥3 01⇥3 01⇥3 . . . 01⇥3 01⇥3

01⇥3 01⇥3 n(2)T 01⇥3 . . . 01⇥3 01⇥3

...
...

...
...

. . .
...

...

01⇥3 01⇥3 01⇥3 01⇥3 . . . n(N)T 01⇥3

fi

������fl

N⇥6N

and (4.39)

E =

»

————————————————–

e(1)

03⇥1

e(2)

03⇥1

...

e(N)

03⇥1

fi

����������������fl

6N⇥1

, (4.40)

where n(i) is the surface normal of the hyperplane corresponding to the ellipsoid’s surface

normal at point e(i) on the surface of the ellipsoid, each for the i-th step of the N -step

horizon. Remember that if k is the first step of the rotation window and j is the last step,

n

n(1), . . . , n(k � 1)
o

= n(k),
n

e(1), . . . , e(k � 1)
o

=
n

e(k)� xe(k) + xe(1), . . . , e(k)� xe(k) + xe(k � 1)
o

,

n

n(j + 1), . . . , n(N)
o

= n(j), and
n

e(j + 1), . . . , e(N)
o

=
n

e(j)� xe(j) + xe(j + 1), . . . , e(j)� xe(j) + xe(N)
o

.

(4.41)

This enforces the fact that the hyperplane only rotates during the rotation window from k

to j, and stays stationary other than sticking to the edge of the obstacle as it moves.

Finally, for the minimum fuel problem, we have that

”
�H⌦ H⌦

ı
»

–U+

U�

fi

fl  �HE +H x(0). (4.42)

When choosing the angle, �rtot , we inherently choose one direction for the constraint to

rotate. Therefore, we are not entirely sure if we are circumnavigating the obstacle in the

correct direction. This is again due to the non-convex nature of the original constraint.
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To alleviate any concerns that the spacecraft will go around the obstacle in the incorrect

direction, we run the optimization once again, this time choosing to rotate the hyperplane

in the opposite direction. In 2DOF, this ensures we cover both ways the spacecraft could

avoid the obstacle, but for the 3DOF case there could potentially be other local minima,

such as above and below the obstacle. In 3DOF, we can run the optimization for several

rotation axes until the ellipsoid is well covered. For multiple obstacles, this becomes a fairly

complex combinatorial optimization problem such that each direction of each hyperplane

rotation must be chosen correctly to find the true optimal solution. The multiple obstacle

case is not explored in this thesis while using the hyperplane approach for this reason,

although a brute force method could be implemented using the techniques here and going

through all combinations of the hyperplane rotation directions.

An additional note of caution is that this method was derived to heuristically work with

obstacle of the size, location and speed considered in this thesis. The method is sensitive to

the relative size of the rotation window and the time during the mission at which the obstacle

will intersect the nominal trajectory. The method of choosing parameters as discussed in

this section seemed to work for the widest range of possible obstacles, however it is likely

that the specific parameter choices here will be fragile in the general case. Nonetheless, it

works very well for this problem and produces great results for problems similar to those

seen in this thesis.

4.3.3 Results

The obstacle avoidance techniques discussed in the previous two sections are implemented

in the MATLAB simulation discussed in Section 3.4. This section will present results and

compare the performance of the methods for di↵erent obstacle avoidance problems using

the minimum energy objective function formulation from Section 4.1.1.

The same optimization setup is used as described in Section 4.1, although nonlinear,

non-convex, ellipsoid obstacle path constraints are added in one case and a linear rotating-

hyperplane constraint is added in the other two cases. An MPC approach is also investigated

in this results section in which the same optimization problem is solved in a receding horizon

format such that at every time step the same optimization problem is solved, and the first

step of the solution is implemented. The full description of the MPC method is described

in [97], however it follows very closely to the methodology presented above, only that it is
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implemented for MPC. Specifically, this form is used such that comparisons can be made

against the linear rotating-hyperplane avoidance technique developed for MPC in [83]. After

these comparisons, the method from [83] is modified slightly to work with moving obstacles

and in a fixed horizon problem as is desired for this thesis.

First, three examples are examined in which the nonlinear ellipsoid method from this

thesis is compared to the linear rotating-hyperplane avoidance technique in [83], both in the

MPC form. The first example, in Figure 4-11, is a mission scenario where the optimal non-

obstructed path to the target just narrowly intersects the obstacle; the case aims to show

what happens to each of the algorithms when the optimal path is only slightly perturbed.

The second example, in Figure 4-12, is a mission scenario where the optimal non-obstructed

path to the target is completely blocked by a close, large obstacle; the case compares the

two methods’ reactions when a large change in path is required. The third example, in

Figure 4-13 is a mission scenario where the obstacle is very thin in the cross-track direction,

such that the penalty for traveling in the cross-track direction would be smaller than the

penalty for avoiding the obstacle in-plane.

One can see from Figure 4-11 and Figure 4-12 that the nonlinear ellipsoid method is

better at planning a path to narrowly avoid the obstacle, thus conserving fuel and saving

time. The rotating hyperplane method from [83] tends to keep a larger bu↵er between the

true obstacle constraint and the spacecraft. The computation time of the ellipsoid method

on the other hand is more than an order of magnitude higher that the hyperplane method.

Figure 4-13 simply shows that the hyperplane method from [83] does not account for possible
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Figure 4-11: Obstacle avoidance trajectory comparison between the MPC formulation with
a nonlinear ellipsoid constraint and the hyperplane method from [83] – Obstacle narrowly
intersects nominal trajectory
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Figure 4-12: Obstacle avoidance trajectory comparison between the MPC formulation with
a nonlinear ellipsoid constraint and the hyperplane method from [83] – Obstacle close and
directly in path
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Figure 4-13: Obstacle avoidance trajectory comparison between the MPC formulation with
a nonlinear ellipsoid constraint and the hyperplane method from [83] – Obstacle is very thin
in the cross-track direction

motion in the cross-track direction, while the nonlinear ellipsoid formulation can account

for it. Quantitative comparison can be found in [97], but for this thesis it is only important

to show that the hyperplane method tends to “push” the trajectory around the obstacle

depending on the arbitrary rotation rate set for the mission, while the nonlinear ellipsoid

method avoids this behavior.

The analysis from this point forward is performed on a modified hyperplane method

from [83] to maintain consistency with other parts of this thesis. This modified method

solves the fixed-horizon, terminally constrained problem as opposed to the open-ended,

receding horizon MPC problem for which it was originally developed. Additionally, the

improved hyperplane method from this thesis as discussed in Section 4.3.2, which only
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Figure 4-14: Three cases for comparison of the avoidance trajectories computed from each
of three methods: the nonlinear ellipsoid and hyperplane window method developed for this
thesis and the hyperplane method from [83]

rotates the hyperplane in a specified window around the obstacle instead of for the whole

mission timeline is implemented to compare results to the nonlinear ellipsoid method and

the previous hyperplane method from the literature. Figure 4-14 compares these three

methods for three di↵erent cases.

Case 1 is a fairly simple and easy case in which the obstacle is spherical and moving very

slowly. The spherical nature of the constraint allows for a constant rotation throughout the

mission, while more elliptical constraints will cause the hyperplane to move in translation

faster at certain points due to the requirement it is tangent to the ellipsoid. All of the

methods perform well in Case 1 as shown in Figure 4-14 and in the data in Table 4.1. This

thesis’s hyperplane method matches the performance of the nonlinear ellipsoid constraint

very well (within 1%) and only uses a tenth of the computation time. The hyperplane

method from [83] performs about 20% worse in terms of LQR cost, but matches the other
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results from this thesis well.

Table 4.1: Comparison of avoidance trajectory optimization results for the two options
presented in this thesis and one found in literature for Case 1, a spherical and slow obstacle

Ellipsoid Hyperplane (window) Hyperplane from [83]

LQR Cost 1,787 1,800 2,210

Fuel (m/s) 1.5198 1.5197 1.5195

Computation Time (s) 3.5 0.32 0.31

Case 2 adds an elongation of the obstacle in the radial direction, such that the hyperplane

methods will have a more di�cult time due to the rotation causing the translational motion

of the hyperplane to move very quickly at points. In this example, Figure 4-14 also shows

fairly close trajectories, although the data in Table 4.2, shows a slightly di↵erent story.

Due to this elongation, both hyperplane methods su↵er in LQR cost, but still have fuel

consumption within 2% and significantly reduce the computation time over an order of

magnitude.

Table 4.2: Comparison of avoidance trajectory optimization results for the two options
presented in this thesis and one found in literature for Case 2, a radially elongated obstacle

Ellipsoid Hyperplane (window) Hyperplane from [83]

LQR Cost 1,740 3,862 5,682

Fuel (m/s) 1.5200 1.5457 1.5412

Computation Time (s) 3.8 0.26 0.29

Case 3 goes a step further and both elongates the ellipsoid in the in-track direction and

adds velocity such that the obstacle is moving faster with respect to the spacecraft. This

wreaks havoc on the hyperplane method from [83], but the hyperplane method presented

here actually performs very closely to the true optimum from the nonlinear ellipsoid con-

straint. Figure 4-14 and Table 4.1 show how much the previous hyperplane method su↵ers

from needing to rotate over the full mission timeline. This extended rotation window and

the fact that the obstacle travels under the target location before the end of the mission

force the trajectory that ducks under the obstacle to be infeasible, and thus the much more
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costly path of going above the obstacle is required. Since the rotation for the hyperplane

in this thesis only occurs in a range around the obstacle instead of for the full timeline, it

is able to find the much better and truly feasible path to duck under the obstacle as the

nonlinear ellipsoid method found.

Table 4.3: Comparison of avoidance trajectory optimization results for the two options
presented in this thesis and one found in literature for Case 3, a fast and in-track elongated
obstacle

Ellipsoid Hyperplane (window) Hyperplane from [83]

LQR Cost 5,501 5,978 258,880

Fuel (m/s) 1.6374 1.6388 2.3265

Computation Time (s) 3.9 0.26 0.29

Next, the ellipsoid method is run on a few cases that the hyperplane methods are not.

Specifically, these cases are for multiple obstacles and ones requiring significant 3D motion.

The nonlinear nature of the constraints allowed while using SQP permit easier development

for this algorithm and thus faster advancement to the multiple, moving obstacle case. The

following plots in Figures 4-15 through 4-17 show some of the more interesting cases that

were run for the ellipsoid method only. The set of plots in Figure 4-16 show frames taken
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Figure 4-15: The executed trajectory and control in the case of a large obstacle shifted
slightly out of plane and positioned close to the target spacecraft
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at specific periods in time throughout the trajectory in an attempt to show the movement

of the obstacles and the successful avoidance each obstacle.
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Figure 4-16: The executed trajectory in the case of three moving obstacles, each in the path
of the spacecraft, forcing the optimal path between the obstacles. Each plot is shown as a
step in time to capture the movement of the obstacles.
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Figure 4-17: The executed trajectory and control in the case of three obstacles, each in the
path of the spacecraft, forcing the optimal path between the obstacles

Finally, we have shown that these trajectories can be computed in a time scale that

permits real-time usage onboard a spacecraft. These computation times of roughly 4 seconds

for the nonlinear ellipsoid method and 0.3 seconds for the hyperplane methods were found

using MATLAB on a late-2013 MacBook Pro with a 2 GHz Intel Core i7 processor and

16 GB of 1600 MHz DDR3 memory. 100 steps are used for the horizon length. Since

the timescales on orbit are significantly longer than a few seconds, these methods can be

used at will throughout the mission. Specifically, they could be implemented in the case of

an unknown obstacle appearing on the onboard sensors or from ground tracking while the

mission is already in action. This replanning is shown in Figure 4-18, where the obstacle

is detected when the spacecraft reaches 500 meters of colliding with it. Regardless, the

spacecraft is able to replan the trajectory and avoid the obstacle in time.

The obstacle avoidance problem has and can also be explored for the minimum fuel case;

however this analysis is left out of the thesis. In short, the nonlinear optimization solver has

trouble solving minimum fuel problems due to the discrete changes in control required, and

thus, there would be no comparison available in this respect to validate results. Additionally,

the previous literature used for comparison here has only looked at minimum energy forms

for these constraints. Overall, the trajectories computed are very similar, however, and a

more thorough discussion can be had for the minimum energy case.
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Figure 4-18: Example of replanning a trajectory in real-time when an unknown obstacle is
sensed (an uncertain event). Blue line shows the optimal initial trajectory, red shows the
optimal avoidance trajectory.

4.4 Probabilistic Trajectory Planning

In previous sections of this chapter, optimization has been performed without considering

any uncertainty in the sources of the path constraints. In reality, however, there will never

be exact knowledge of the true path constraints as there is always some uncertainty present

in the system. This section describes a major contribution of this thesis, which is probabilis-

tically computing optimal trajectories in the presence of these uncertainties. The objective

is that these trajectories will perform the best on average over all possible instantiations of

error from the known probability distribution of the uncertainty. Section 4.4.1 will motivate

this in the context of the rendezvous, docking and joint maneuvering problem. Section 4.4.2

will describe the general process for completing this type of trajectory optimization, while

Section 4.4.3 and Section 4.4.4 will detail the process and results from two case studies:

uncertain obstacle avoidance and uncertain target attitude. Each of the case studies will

implement a di↵erent objective function for the trajectory optimization to show that the

process works for both the minimum energy and minimum fuel formulations.
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4.4.1 Motivation and Hypothesis

Recent trends in spacecraft engineering and deployment have created an increasing level of

uncertainty in orbit. Spacecraft are being built smaller (e.g., cubesats and other nanosats),

which results in a smaller cross-section for radar and optical sensors to measure and cor-

responds to a decrease in the accuracy of these measurements at the same distance. This

a↵ects both on-orbit sensors and ground-based tracking. Satellites are malfunctioning on

orbit, and missions are being designed to service these satellites. Unfortunately, sometimes

these malfunctioned satellites are unable to communicate their state estimate to the servicer

spacecraft as would normally occur during rendezvous missions. Furthermore, the amount

of orbital debris is growing consistently and most of this debris does not have active sensors

communicating state information. Thus, there is the potential for highly uncertain states to

be involved in planning for missions in the future. This uncertainty can sometimes translate

directly to the path constraints in a trajectory optimization problem if the mission involves

maneuvering in the proximity of other objects.

Specifically concerning the path constraints explored in this thesis, obstacle constraints

have obvious dependence on the uncertainty of the obstacles state. Additionally, the position

and attitude of the target spacecraft can a↵ect the LOS constraint as discussed in Section 3.3

and Section 4.2.2. As the attitude or position of the target change, its own sensors’ Field Of

View (FOV) would rotate and move with the target. Or, if fiducial markings on the target

are being used by the chaser, the LOS region where the chaser could see these markings

would also rotate and move with the target. Furthermore, if the object is passive, there

may be no estimate of its attitude or, most optimistically, there will be a very uncertain

estimate.

Attempting to quantify the size of possible uncertainties in position tracking of orbital

debris or other passive obstacles, we can look to the tracking of cubesats in LEO. Cubesats

are often tracked by the Joint Space Operations Center (JSpOC) similarly to how orbital

debris is tracked using a Two-Line-Element (TLE) method. Unfortunately, with objects the

size of cubesats, there can be significant errors in in-track, cross-track and radial directions

on the order of a couple kilometers to hundreds of kilometers [203]. Velocity is usually

known much better. Considering that the extremely large errors from the analysis in [203]

may only be seen in certain situations, we will assume uncertainty on the level of a couple

147



of kilometers for our obstacle avoidance constraints. Of course, this distance far exceeds

the physical dimensions of any obstacle in Earth orbit (excluding asteroids and the Moon).

If acting in an extremely risk-averse manner, one could bound the obstacle estimate

by a 4-� or higher ellipsoid constraint as formulated and discussed in Section 4.3, which

would avoid the obstacle roughly 99.9% of the time. This conservatism will, however, result

in a decrease in performance as shown by the notional initial trajectory cost (red line) in

Figure 4-19. So, there is a question on how much margin to leave around the estimated

obstacle position.

In any case, given the size of these uncertainties from ground tracking and the critical

and precise nature of rendezvous and docking missions, onboard sensors are most certainly

required to reduce this uncertainty before proceeding to dock. Unfortunately, most sensors

that can precisely measure attitude or range will only work within a certain range of the

subject and, at the time of trajectory planning, may not be able to provide the relevant

information. Assuming, as shown in the previous section, that trajectory replanning can

be performed on the spacecraft in real-time, the most e�cient method will be to plan an

initial trajectory as we see fit, and then replan the trajectory once our onboard sensors

come in range and we have a more precise lock on the state of our target or obstacle. The

key will be to maintain the same, acceptable level of risk of violating the path constraints

upon the replan. The question then becomes, how do we plan the initial trajectory or

baseline trajectory such that we will probabilistically achieve the best performance given the

uncertainty distribution associated with the path constraint? Or phrased slightly di↵erently:

how do we best use our current (potentially very uncertain) knowledge to plan proximity

operation missions, while incorporating the fact that better information will be available in

the future?

Given this framework, where the spacecraft will replan its trajectory after learning new

information about the system (an uncertain event), there is a tradeo↵ between the size of

the safety margin in the path constraints and the optimal fuel or tracking performance as

seen in Figure 4-19. There are thus two competing costs: the initial trajectory cost and the

replanning cost. A large initial margin given to the path constraint will result in fewer and

smaller replanning maneuvers, thus reducing replanning cost, but will increase the initial

trajectory cost. A small initial margin will reduce the initial trajectory cost, but will increase

the frequency and size of replanning maneuvers. Therefore, looking at the summation of
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Figure 4-19: Representation of the tradeo↵ between size of the safety margin in path con-
straints and optimal fuel or tracking performance

the two costs, there will likely be a minimum total cost at which the best performance will

be achieved on average. This hypothesis drives the subsequent methodology and case study

sections.

4.4.2 Methodology

As motivated in the previous section, the goal of this probabilistic trajectory planning

problem is to find the appropriate margin by which to avoid path constraints such that the

expected performance will be minimized over the initial knowledge of the uncertainty in the

source of the path constraint. Assuming a Gaussian uncertainty distribution, the problem

will be posed in terms of what �-level margin will be applied to the path constraint. This

level will be referred to as the variable, n�, which is a multiplier on the standard deviation,

�, of the Gaussian probability distribution that represents the uncertainty in the source of

the path constraint. The generalized optimization problem then becomes finding the

argmin
n�

E
”
Jinit(n�) + Jreplan(n�)

ı
, (4.43)

where Jinit(n�) is a generic trajectory optimization full-mission cost evaluation as a function

of modifying the path constraint by adding a margin of n� to the nominal constraint and

Jreplan(n�) is the additional replanning cost associated with reacting to the uncertain event

of resolving the path constraint estimate. Jreplan(n�) is dependent on the initial trajectory

designed for an n� avoidance and does not change its constraints directly as a function

of n� (it always implements a fully risk-averse constraint matching that of the mission

requirements). What adding this n� margin actually means will be discussed individually

in the two case study sections that follow, however in brief would be the size of the covariance
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ellipsoid in the obstacle constraint in Section 4.4.3 and an angular margin added to the LOS

zone constraint for the target attitude problem in Section 4.4.4.

The process for solving this generalized optimization problem comes down to a Monte

Carlo approach. An expected value could also be computed other ways, such as sampling

the constraint space with a fine n-dimensional grid and integrating it after weighting with

an appropriate probability distribution. The Monte Carlo approach is used here simply due

to the ease of implementation. Other methods could be used to increase the computational

speed if it is desired to implement this process onboard the spacecraft, although at this

point this is meant to be implemented as a baseline trajectory computed on the ground and

sent to the spacecraft before the mission, and thus computation time is not a big concern.

Mission Definition

1 2 … N

Choose Best Initial Path

Propagate Trajectories

Replan after Uncertain Event

Tabulate Costs

Compute Expected Costs

Plan Initial Paths 
Varying nσ

Monte 
Carlo
Loop

Figure 4-20: Monte Carlo process for the probabilistic trajectory planning

The process follows that described in Figure 4-20. Starting out with a definition of the

upcoming mission and the current best estimate of the path constraints, several trajectories

are planned that each avoid the path constraint by a di↵erent margin, n�. Each of these

trajectories is propagated forward until a specific instantiation of an uncertain event occurs.

For the purpose of the case studies in this thesis, the uncertain event corresponds to resolving

a higher precision estimate of the path constraint with onboard sensors and subsequent

replanning of the trajectory to adhere to this new path constraint if necessary. This event
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could be dependent on a specific time or location in the mission or even a distance with

respect to the source of the path constraint. Therefore, each of the planned trajectories

may trigger the uncertain event at a di↵erent point, or may not encounter this event at

all. This is where the Monte Carlo simulation comes into play. A specific instantiation

of the resolved path constraint is drawn from the uncertainty distribution and each of the

trajectories are propagated until the uncertain event is triggered. The trajectory is then

replanned using this new information and adhering to the requisite safety margin given

the smaller uncertainty with this new knowledge. This process repeats itself for a large

number of trials, each drawing a di↵erent result from the uncertainty distribution. The

results for each of these replanning maneuvers are tabulated and kept until the full Monte

Carlo process has completed. At this point, because the Monte Carlo process itself will

approximate the uncertainty distribution, all that is left is to average the results to compute

the expected costs for each of the initial trajectories. Then the process is simple to choose

the n� corresponding to the trajectory with the lowest expected cost.

The Monte Carlo selection of instantiations of these uncertain events is performed using

a Gaussian Latin Hypercube Sampling (GLHS) that has the potential to reduce the number

of trials required to run when compared to a purely random sampling [204]. Using GLHS,

and even LHS in general, can be shown to converge to the true values of the probability

distribution faster than traditional random sampling techniques. The di↵erence in GLHS

is that probability bins are created such that there is an equal chance that a value is drawn

from each of the bins. Thus, the bins are narrower close to the mean for a Gaussian and

grow wider as they move away from the mean. Then a uniform random variable is drawn

and placed appropriately into the corresponding bin. The e↵ect is that the distribution

will match that theoretically predicted with a fewer number of samples than is required for

simply drawing from a Gaussian probability distribution alone due to its inherent structure.

This process can reduce the number of trials run by a factor of 10 or more depending on

the application.

The process for finding the minimum in these results can be improved slightly such that

a full enumeration of all relevant n� trajectories is not necessary as shown in Figure 4-20.

Given the results from the case studies in this thesis, a simple bisection search algorithm

that converges to the minimum is feasible and could slightly improve performance depending

how precise of solution is required. Since the number of trajectories chosen only amounts
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to about 10-20 values of n� between 0.5 and 4 to return a precise enough solution, this

technique has the potential to reduce computation time by a factor of about 4-5, with

marginally improved performance.

Several assumptions need to be made before this problem can be solved. First, we assume

that a current steady-state covariance defining the path constraint with a coarse sensor is

known as well as an anticipated steady-state covariance that will be obtained when in range

of the higher-precision onboard sensor. Furthermore, a simpler assumption, is that we know

the current mean estimates of the chaser, target and path constraint. We will also need to

know the detection range of the onboard sensor and the requirement on the final replanning

maneuver’s avoidance risk. To scope the problem, we also assume that the uncertainty

distributions are Gaussian, that we are not considering error in the position and velocity

states of the target and chaser, that the onboard sensors will detect and have a steady-

state estimate of the refined path constraint 100% of the time, and finally that linear CWH

dynamics dominate other orbital disturbances. Specifically, resolving the assumption that

no error is present in the chaser state is handled well with chance constraints as implemented

in [127]. However, to better showcase the dominating behavior and drive discussion of the

methods in this thesis, this simplified problem is explored.

The problem can be extended to multiple sensor updates and multiple uncertain path

constraints in a recursive and combinatorial formulation, although this significantly in-

creases computation costs as it su↵ers from the curse of dimensionality. The problem is

that for every choice of n� for the first path constraint, another needs to be chosen for the

subsequent path constraint. Thus, this has the property of exponentially increasing the

number of trials required to find the optimal n� for each updated constraint. This exten-

sion is not discussed in the thesis due to the complexity and drastic increase in computation

time, although would prove to be a very interesting topic to study.

Finally, this process is applied to two case studies in the next two sections. These

sections will discuss the customized processes specific to their application, rather than the

general form and process discussed in this section. The goal of these case studies is to allow

the reader to get a more concrete understanding of how this work can be applied to real

problems and show the benefits of planning in this manner through a collection of results.
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4.4.3 Case Study 1: Uncertain Obstacle Avoidance

The first case study examined for the topic of probabilistic trajectory planning under uncer-

tain path constraints is that of a large uncertainty in the state of an obstacle. This problem

will be explored with a minimum energy, LQR cost function as described in Section 4.1.1

and the rotating-hyperplane, ellipsoid obstacle constraint formulation from Section 4.3.2.

The idea is that there is an obstacle being tracked with ground radar with substantial uncer-

tainty associated with its estimate on the order of about a 1 km, 3-� Gaussian distribution.

However, the spacecraft has an onboard sensor, such as LIDAR, that is capable of detecting

any object within a specified range of the spacecraft and reducing the uncertainty in the

estimate by a known sensor improvement factor. The major gain in this new measurement

is that it is from a unique viewpoint which can both reduce the uncertainty in the estimate

and resolve a better estimate of the state of the obstacle, possibly removing bias from the

ground measurements.

While the sensor improvement factor will help reduce the size of the obstacle uncertainty

ellipsoid and make it easier for the spacecraft to avoid, there is no guarantee that this new

position will not be directly in the path of the optimal trajectory. Upon detection, we

can expect the new measurement of the obstacle will likely not place it at the exact mean

of the original uncertainty distribution, but essentially randomly drawn from that initial

distribution. Since it is a Gaussian distribution, there is the possibility, however small, that

the obstacle could pop up anywhere no matter what the initial avoidance plan was.

Thus, after detecting the obstacle, we would like to replan the trajectory to avoid the

ellipsoid corresponding to the newly found obstacle. The final replanning trajectory needs

to maintain the requisite risk margin, specified as the 99.9%, 4-� avoidance trajectory under

the uncertainty of the new sensor. As discussed in the last section, the goal is to find the

probabilistically optimal initial trajectory (as a function of having an n� margin) such that

a balance is found between the increasing initial cost of being more risk averse and the

increasing replanning cost of taking a higher risk initial trajectory.

The n� margin directly corresponds to the size of the covariance ellipsoid defined in

Section 4.3.1, thus the ellipsoid constraint can be modified as

P =
`
n

2
�⌃

˘�1
, (4.44)
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where P is the shape matrix of the ellipsoid, ⌃ is the covariance matrix for the position

estimate of the obstacle, and (4.29) through (4.32) still hold. Thus, we vary the value of

n� to change the size of the obstacle ellipsoid and try to find the level of risk margin that

enables the best performance in terms of LQR cost.

Following the process outlined in Section 4.4.2 for this application may help clarify

exactly what is going on. Figure 4-21 shows a step-by-step procedure that outlines this

process. The first step is to develop an initial estimate of the obstacle’s location from ground

measurements and setup avoidance ellipsoids at the varying levels of n� that we wish to

explore. The second step is to optimize trajectories for each of these n�-levels of margin

around the obstacle. The third step is to propagate the spacecraft through each of the

n�-margin trajectories until the uncertain event is triggered when the spacecraft is within

1 km of the updated obstacle position drawn in the Monte Carlo process. At this point

in step four, an ellipsoid constraint is created to force the spacecraft to avoid the updated

obstacle by a level of n� = 4, corresponding to a 99.9% guarantee of avoidance based on the

anticipated covariance present in the onboard sensor. Finally, the spacecraft replans the

trajectory such that it avoids the obstacle and reaches the goal location. All of the results

(initial trajectory cost and replanning cost) are tabulated for this particular Monte Carlo

run. Then steps three through five are repeated until the required number of trials is run

for the Monte Carlo to return statistically significant results through an average of all of

the trials’ results. A selection of 10,000 trials seems to achieve this statistical significance.

As depicted in Figure 4-21, this particular mission is designed for Phase 3 or the joint

maneuvering phase of the generalized mission architecture presented in Section 3.2. Because

this phase covers the longest distance and is supposed to represent a transfer of a space

station module to an assembly location, the possibility of obstacles was thought to be

higher than some of the other phases. The spacecraft spend more time in this phase and

are navigating to a potentially congested area. There is the potential that another module of

the space station has drifted o↵, another assembler satellite is maneuvering to the assembly

location, or debris has been created from the assembly area. Thus, for our purposes, any of

these situations have produced an obstacle that the spacecraft must avoid before reaching

the assembly location. Of course, the techniques and results shown here will transfer to the

other phases of the mission if necessary and could be combined with additional uncertain

path constraints if necessary.
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Figure 4-21: Steps of the Monte Carlo process for probabilistic trajectory planning with
uncertain obstacle constraints
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This process has been implemented and executed in the MATLAB simulation described

in Section 3.4. The full 3DOF problem is investigated although the goal location and initial

position of the spacecraft are in the same orbital plane, so although there is a third DOF,

the optimal (unobstructed) motion is to stay in the decoupled, 2DOF plane. Note that the

spacecraft still has the ability to avoid the obstacles in the out-of-plane direction, although,

given the advanced distance and the size of the simulated obstacles, it tends to remain in

the orbital plane. Thus, for this simulation we only rotate the hyperplane in positive and

negative directions about the k̂-axis to account for the non-convexity rather than sampling

the full 3DOF boundary. We use a quadratic solver to solve for the minimum LQR cost

trajectory.

Figure 4-22 shows an example of how three choices of the n� avoidance ellipsoid can

a↵ect the results of the total trajectory cost. Note that these results are only for one

instantiation of an obstacle randomly drawn in the Monte Carlo process, and therefore
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Figure 4-22: The e↵ects of replanning on three initial trajectories, each avoiding the initial
obstacle by a di↵erent margin
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only show a general trend that could be experienced and vastly exaggerate the results

at a wholistic level. Additionally, note that the obstacle does move, but it is di�cult to

represent in a static plot, and the hyperplane constraint, which also moves, is not depicted.

The red, initial, n�-level obstacle uncertainty ellipsoid is shown at the point where the

original trajectory is tangent (i.e., where the constraint is active), while the green, updated

4�-level ellipsoid is shown where the specific replanned trajectory is tangent. This is not the

location where each of these obstacles are detected and does not represent the full constraint

that the spacecraft needs to avoid.

From Figure 4-22, there is a larger replanning maneuver for the higher risk scenario

and barely any maneuvering present in the low-risk initial trajectory. The high-risk initial

trajectory is identical to the true minimum-energy trajectory as the 1-� ellipsoid does not

intersect it. At 2.5-�, the trajectory is perturbed by the initial ellipsoid resulting in a lower

replanning cost but higher initial cost. The 4-� ellipsoid is so large that the trajectory does

not even need to be replanned when the onboard sensors detect the obstacle. In fact, the

low-risk option actually replans to have a slightly better solution that the original trajectory,

because the obstacle is not in its path at all. This behavior is important and will occur often

throughout the Monte Carlo process. Thus, sometimes the replanning cost will be negative

as performance will actually be improved after sensing the location of the obstacle with

onboard sensors if the original trajectory was too conservative. Another peculiar behavior

seen in Figure 4-22 is that the 1-� initial obstacle size is smaller than the updated 4-�

size. Although strange at first glance, this is appropriate as the improvement in the sensor

quality was not 4 times as precise, only 3 times for this example.

The process in Figure 4-21 is run by tabulating all of the results from the Monte Carlo

simulation that produces individual trials similar to what is seen in Figure 4-22. New

obstacle instantiations are drawn randomly in the Monte Carlo, and the average initial cost

and replanning cost are computed for each level of margin. These averages are the expected

value of the costs in a probabilistic sense. From this, we can determine the level of margin

that produces the minimum total cost. Figure 4-23 shows the results from a simulation

with three times improvement in sensing from onboard sensors at a detection distance of

1 km, with 10 n� values, and an obstacle with an initial uncertainty of 200 m, 1-�. The

results from this example show the exact behavior that was expected from the notional chart

in Figure 4-19. The results prove that this tradeo↵ between safety and performance does
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Figure 4-23: Results showing the tradeo↵ between initial and replanning costs and a defini-
tive minimum in the total cost for the obstacle avoidance problem

exist and is measurable for a mission with reasonable parameters. Thus, our hypothesis

is confirmed for the case of large uncertainties in initial knowledge of an obstacle’s state.

By selecting an initial trajectory with an avoidance ellipsoid constraint sized with n� =

2.5, the probabilistically optimal, minimum-energy cost trajectory can be implemented as

a baseline for this mission. These results are calculated for the same simulation properties

as for Figure 4-22, and thus the middle plot shows the probabilistically optimal initial

trajectory.

Specifically, to note about Figure 4-23 is that in the range of n� from 0 through about

1.5, the minimum-energy trajectory does not intersect the initial avoidance ellipsoid in this

problem, thus the same trajectory is implemented for all of these cases. Given the same

initial trajectory, all results are the same in this range. Additionally, Figure 4-23 only shows

the cost in excess of the unconstrained minimum-energy trajectory, so the initial nominal

energy is zero with an n� value from 0 through 1.5, and the total cost is simply the avoidance

energy or replanning cost.

As the detection distance and sensor improvement factor are modified, several interesting

results can be gleaned from a comparison of their tradeo↵ curves. Figure 4-24 shows how

the sensor improvement factor a↵ects the results in terms of the general magnitude and
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behavior of initial trajectory cost, replanning or avoidance cost and the minimum of the

total cost. Figure 4-25 shows the same for the detection distance.

The results presented in Figure 4-24 mainly show the trend of how the magnitude of

the avoidance cost changes as the sensor improvement factor deceases (in the left column)

and increases (in the right column), and how this a↵ects the choice of the minimum total

energy trajectory. The nominal case is shown in the top-center with a detection distance

of 1 km and sensor improvement factor of 3, meaning that the onboard sensor is capable of

detecting a 66 m, 1-� estimate at a distance of 1 km. Note the value of the avoidance cost
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Figure 4-24: Results showing the tradeo↵ between initial and replanning costs while varying
the sensor improvement factor for the obstacle avoidance problem
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plateau on the left of each plot to see how a changing sensor improvement factor a↵ects

the results. The initial trajectory cost remains the same for all of these parameter choices,

so the e↵ects seen in the total energy cost of the trajectories is solely due to the changing

avoidance cost. As the sensor improvement factor gets worse, there is a sharp increase in

the avoidance energy, such that at an improvement factor of 2, the avoidance energy more

than quadruples. The bottom left plot is the only one on a di↵erent scale, as the cost

was too high to warrant changing all other plots to its scale. The increasing avoidance

energy behavior causes the optimal n� to increase and suggests more risk-averse initial

trajectories are appropriate for lower performing onboard sensors. The converse happens

when increasing the sensor improvement factor, as can be seen by the rightmost two plots.

The avoidance energy shrinks, causing the optimal n� to decrease until the unconstrained

initial trajectory will perform the best on average with an improvement factor of 5. At a

very high level, these results match what one might expect: investment in higher precision

sensors will reduce the on-orbit cost of unnecessarily avoiding obstacles.

The results presented in Figure 4-25 show a similar trend of how the magnitude of the

avoidance cost changes as the sensor detection distance deceases (in the left column) and

increases (in the right column), and how this a↵ects the choice of the minimum total energy

trajectory. The nominal case is shown in the top-center again. A di↵erence in this scenario

is that the initial trajectory energy costs actually change with the detection distance. This

mainly shows up for larger detection distances, as there are more cases in which there is

very early detection of non-threatening obstacles and the path can be replanned to have

an optimal, unconstrained trajectory at this point which reduces the cost compared to the

initial trajectory. This reduction in cost is lumped in with the initial trajectory cost, because

it does not relate to avoidance per se. Additionally, we wanted to keep the avoidance cost

positive for easier interpretation of the results.

As the detection distance gets worse, there is a to-be-expected increase in the avoidance

energy. This trend is reasonable because reacting later to the same obstacle will require more

severe correction maneuvers. Again, this behavior causes the optimal n� to increase and

suggests more risk-averse initial trajectories are appropriate for lower performing onboard

sensors. The opposite trends can be seen when increasing the detection distance. The

avoidance energy is reduced, causing the optimal n� to move left until the unconstrained

initial trajectory will perform the best on average. Similar to the sensor improvement factor
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Figure 4-25: Results showing the tradeo↵ between initial and replanning costs while varying
the detection distance for the obstacle avoidance problem

results and at a very high level, these results match what one might expect: investment in

longer range sensors will reduce the on-orbit cost of avoiding obstacles by allowing earlier

reaction.

These high-level trends that match conventional wisdom help to validate the process and

give confidence in the results, however in a systems engineering context a more quantified

approach may be required to determine which sensors are most appropriate for a particular

spacecraft. By varying both the detection distance and sensor improvement factor across

relevant ranges for existing sensors, a surface plot can be created that shows the probabilistic
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minimum energy cost of the proposed mission against variations in these sensor parameters.

Figure 4-26 shows an example of this type of performance surface for the mission investigated

in this section. In application, several mission examples should be examined when making

system level decisions for spacecraft design, however, if we simply look at this mission

scenario, we can draw several interesting conclusions.
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Figure 4-26: Results showing the tradeo↵ between initial and replanning costs while vary-
ing the detection distance and the sensor improvement factor for the obstacle avoidance
problem. Three linear sensors are shown on the chart for comparison of performance.

A system engineer could use this surface plot to compare specific sensor performance in

terms of total trajectory costs. Sensors A, B and C shown in Figure 4-26 are linear sensors.

A linear sensor is considered to improve precision inversely proportional to the range from

the subject. Thus, in a simple example a sensor would have twice the precision at half the

distance from the subject. Sensors A and B both have sensor improvement factors of about

2 at their initial detection ranges of 1400 m and 1600 m respectively. Sensor C has a much

better sensor improvement factor of 3.5 but can only detect from 1 km. The relationship

between sensing performance and detection range can be plotted for each sensor and overlaid

on the performance surface in Figure 4-26. By tracing the contours around, we can see that

the initial probabilistic performance of Sensor B and Sensor C are nearly identical. This

result shows an interesting comparison present between detection range and precision of
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the sensor. Additionally, following the line associated with each sensor dot, shows that

using these linear sensors later than their initial detection will only have worse energy

performance. This means that detection range is more important than precision in the

context of these linear sensors. Other sensors may experience di↵erent behavior depending

on the sensor model and additional sensors could be explored as necessary. There is the

potential to be able to find a minimum performance detection range at which to start using

the measurements from the sensor. However, for these linear sensors, the initial detection

range represents the best choice.

Another viewpoint a system engineer could take is that the minimum expected cost (in

this case the energy cost) is essentially the cost of the uncertainty in the system. Because

the initial, unconstrained optimal cost is subtracted from all results in the charts here, the

values shown are indeed the cost due to this uncertainty. Then the question arises as how

to deal with this cost of uncertainty. The choice could potentially lie between investing in

better sensors or in additional fuel (in the case that fuel cost was being optimized). Thus,

analyses can be performed on whether investing in better sensors is worthwhile or if it would

simply su�ce to add additional fuel margin to account for the uncertainty. Plots like that

in Figure 4-26 can go a long way in supporting these decisions. This decision point is of

course subjective and depends entirely on the mission and vehicle, however does provide an

interesting view point.

This section has motivated and discussed results from a case study of probabilistic

trajectory optimization in the presence of large uncertainties in obstacle path constraints.

It can be seen that there are performance improvements to be gained from analyzing the

problem in this manner and finding the appropriate balance between risk and performance.

The next section will discuss another case study in the context of the LOS zone constraint

and uncertainty in the target’s attitude.

4.4.4 Case Study 2: Uncertain Target Attitude

The second case study examined for the topic of probabilistic trajectory planning under

uncertain path constraints is that of uncertainty in the attitude of the target and thus the

direction the LOS zone constraint points. This problem will be explored with a minimum

fuel cost function as described in Section 4.1.2 and the linear LOS zone constraint formula-

tion from Section 4.1.3. The concept is that the target does not have active sensors onboard
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or at least has very poor attitude sensors onboard and the chaser spacecraft does not have a

good estimate of its attitude. The target, which could be a defunct satellite, a space station

module, or orbital debris in the form of a discarded rocket body, has a required docking

location and therefore an associated LOS zone tied to its attitude. This poor initial esti-

mate of the attitude will be improved when the spacecraft gets within range of its onboard

sensors (LIDAR) that are able to measure the attitude more precisely. Again, the major

gain in this new measurement is that it is from a unique viewpoint which can both reduce

the uncertainty in the estimate and resolve a better estimate of the state of the obstacle,

possibly removing bias from the initial measurements.

While the sensor improvement factor will help reduce the uncertainty in the attitude,

there is no guarantee that this new attitude will not cause the original trajectory to miss

the LOS zone. Upon detection, we can expect the new measurement of the attitude will

likely not place it at the exact mean of the original uncertainty distribution, but essentially

randomly drawn from that initial distribution. Since it is a Gaussian distribution, there

is the possibility, however small, that the attitude could pop up anywhere no matter how

robust the initial plan was.

Thus, after detecting the target’s attitude, we would like to replan the trajectory to

adhere to the new LOS zone corresponding to the newly resolved attitude. The final re-

planning trajectory needs to maintain the requisite risk margin, specified as the 99.9%, 4-�

avoidance trajectory under the uncertainty of the new sensor. As discussed previously, the

goal is to find the probabilistically optimal initial trajectory (as a function of having an

n� margin) such that a balance is found between the increasing initial cost of being more

risk averse and the increasing replanning cost of taking a higher risk initial trajectory. The

concern here is with cutting the corner of the LOS zone.

The exact definition of n� in this case study di↵ers from the previous obstacle ellipsoid

application, however should be just as intuitive. We are now concerned with the LOS zone

rotating with the target attitude and thus making corner cutting of the original constraint

very risky. Therefore, we are going to apply an angular margin to both edges of the LOS

zone constraint as shown in Figure 4-27. To simplify, the attitude of the target will only

vary in the k̂-axis and will be oriented correctly in the out-of-plane attitude. Therefore, the

uncertainty in the target attitude can be represented by a Gaussian univariate distribution

with standard deviation, �. The LOS zone margin is then defined by the multiplier, n�.
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Figure 4-27: Description of what the n� margin means in the context of uncertain target
attitude and the LOS zone constraint, where � is the standard deviation in attitude error

The pyramid version of the LOS constraint is described in Section 3.2.4 and further detailed

for implementation in (4.23) and (4.24). It is the angle, �, which will be the uncertain

parameter and will be measured by onboard sensors. The only change to this constraint

will be to change the value of ✓1 to ✓1 � 2n��. When replanning after the resolved attitude

is known, the updated mean estimate for � will be implemented in the constraint. Although

the LOS zone with the margin applied is smaller than the true LOS zone, it is reducing risk

of cutting the corner or exiting the LOS zone on either side rather. If the margin exceeds

the half-width of the LOS zone, there will be no trajectory that can meet that margin as

the constraint is infeasible. Thus, we are limited to scenarios in which the 4-� value of the

constraint is less than the half-width of the true LOS zone.

The process of determining the probabilistically optimal trajectory for this case study

is described in detail in Figure 4-28. The first step is to determine the true LOS zone

FOV angle, ✓1, and construct a set of constraints that vary the margin to this true LOS

zone through di↵erent n� values. The second step is to compute a fuel optimal trajectory

individually for each of these n� valued constraints. The third step is to propagate each

of these trajectories individually until the onboard sensors are within range of the target

spacecraft and a new increased precision measurement is obtained (the uncertain event).

The fourth step, once the new target attitude information is obtained, is to formulate the

new LOS zone constraint by adding a 4-� margin to the true LOS zone based on the smaller

uncertainty associated with the new measurements. Potentially at this point, the target

attitude will have moved in a manner such that the original trajectory now does not adhere
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to the required constraints and replanning must be performed. Therefore, in step five,

the goal is to optimize the trajectory from this point forward to adhere to the new 4-�

constraint, resulting in a 99.9% probability of mission success. Steps three through five are

then repeated by drawing a new resolved attitude from original uncertainty distribution at

the detection distance. This is the Monte Carlo portion of the process and must be repeated

for about 10,000 trials to obtain statistically significant results. For each trial, the results

are tabulated and then averaged at the end to determine the expected value of the initial

trajectory cost and replanning cost. From these results, the best n� initial trajectory can

be chosen as the optimal baseline trajectory.

The case study is implemented through Phases 1 and 2 of the thesis mission problem.

Specifically, the main concern here is with the transition from Phase 1b to Phase 2. The

process discussed in Section 4.2.1 is used to solve this phase transition problem in the

minimum fuel, linear programming form. The case study is implemented and executed in

the MATLAB simulation discussed in Section 3.4 for only the 2DOF problem. We use

a linear solver to compute the minimum fuel trajectories and, consequentially, use linear

versions of all constraints.

Figure 4-29 presents the results from three initial trajectories, each with di↵erent n�

margins and the required replanning maneuver based on a single trial of the Monte Carlo

simulation. For this analysis, we use an attitude standard deviation of � = 5� and a FOV

angle of ✓1 = 60�. The detection distance is 300m and the sensor improvement factor is 10.

There are several interesting points to discuss about these results. The 0-� initial trajectory

skirts the edge of the true LOS zone, such that when the resolved attitude of the target

is determined, it must perform a large maneuver to meet the 4-� constraint with the new

uncertainty. The 2-� initial trajectory instead shows more moderate results with a smaller

avoidance maneuver upon the updated LOS zone. Finally, the 4-� initial trajectory barely

makes a correction at all. Notice how the blue, initial LOS constraints decrease in size as

the n� margin increases to force the initially planned trajectory to enter the docking phase

in a more centralized location. Note that the green, updated LOS zone is determined as

each of the spacecraft enter the range of their onboard sensor (marked as a dashed black line

in the figure), and may be larger or smaller than the initial LOS zone constraint. This is

purely a consequence of the comparative levels of uncertainty and does not explicitly a↵ect

results.
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Figure 4-29: The e↵ects of replanning on three initial trajectories, each adhering to the
initial LOS region constraint by a di↵erent margin

The process in Figure 4-28 repeats, producing results similar to those shown in Fig-

ure 4-29 for each n� trajectory and for each target attitude sampled from the Gaussian

distribution during the Monte Carlo process. All of the costs associated with these trajec-

tories are tabulated and used to compute an expected value of the initial trajectory cost

and replanning cost in terms of fuel consumption. The results in Figure 4-30 show these

expected fuel costs as a function of the n� risk margin. These results are less convincing

than the obstacle case study, however we can still find an optimal n� risk margin of 3.5 and

begin to show increased cost as the risk margin increases further. This optimal trajectory

168



0 0.5 1 1.5 2 2.5 3 3.5 4
Risk Margin (n )

-0.005

0

0.005

0.01

0.015

0.02

0.025

Ex
pe

ct
ed

 F
ue

l C
os

t (
m

/s
)

Total Expected Fuel
Initial Nominal Fuel
Avoidance Fuel

Figure 4-30: Results showing the tradeo↵ between initial and replanning costs and a mini-
mum in the total cost for the uncertain target attitude problem

is similar to that seen in the bottom plot of Figure 4-29 although slightly riskier. As ex-

pected, the replanning fuel cost decreases and the initial trajectory fuel cost increases as the

risk margin increases. Therefore, the tradeo↵ is experienced in this problem as well and is

capable of being exploited to pick a probabilistically optimal baseline solution. With this,

we can confirm that probabilistically planning trajectories under uncertain path constraints

is applicable and could be potentially useful for missions with uncertain target attitude

and an LOS zone constraint. The improvement over an extremely risk-averse trajectory (a

very simple way to handle the uncertainty), however, would vary depending on the specific

mission parameters.

Figure 4-31 shows how the expected replanning, or avoidance, fuel cost changes as a

function of the detection range that specifies the distance that the chaser’s onboard sensors

are able to measure the target’s attitude. As the detection range increases, similarly to the

obstacle avoidance problem, the expected avoidance fuel decreases, causing the minimum

total expected fuel trajectory to have a smaller and smaller n� risk margin. This trend

makes sense as the earlier the spacecraft can react to the new information, the cheaper

that replanned trajectory is going to be. The closer the chaser gets to the target without

knowing the updated target attitude, the more severe a correction maneuver will need to

be. In this way, detection range is a very valuable metric for a sensor. However, there is
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Figure 4-31: Results showing the tradeo↵ between initial and replanning costs while varying
the detection distance for the uncertain target attitude problem

decreasing marginal utility as the detection distance continues to increase and there are

not significant gains after about 1 km in this mission scenario. The initial trajectory fuel

remains fairly constant in this case study as compared to the obstacle avoidance problem.

This fact is a consequence of the minimum fuel problem setup. In the minimum fuel problem,

there is not as much gain in replanning the maneuver when the initial trajectory will meet

a specific instantiation of the updated LOS zone, because to do so would require a fuel

burn. In the minimum energy case, fuel is not weighted as heavily and state error can be

reduced significantly by performing di↵erent burns in a mission replan. For the minimum

fuel, uncertain target attitude problem, negative replanning costs are therefore very rare

compared to the minimum energy, obstacle avoidance problem.

Similarly, Figure 4-32 depicts how a variation in the sensor improvement factor, or how

much more precise of a measurement is available with onboard sensors, a↵ects the total

expected fuel costs. These example results are shown for a detection distance range of 500

m as opposed to the 300 m distance previously used as nominal. The 500 m detection

range better shows the behavior relevant to this discussion. Although an increase in the

sensor improvement factor reduces the expected avoidance maneuver fuel costs in the range

of small n�, the reduction in avoidance fuel for larger n� is not as significant. As a result,
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Figure 4-32: Results showing the tradeo↵ between initial and replanning costs while varying
the sensor improvement factor for the uncertain target attitude problem

the total expected fuel does not vary significantly between these sensor precisions. In fact,

the minimum n� trajectory is not very sensitive to this parameter overall and maintains an

optimal value in the vicinity of 2.75 for all sensor improvement factors shown on the plot.

Also there is a significant decrease in marginal utility after an improvement factor of 10. In

addition to the obstacle avoidance problem, it appears that in this problem the detection

range of a sensor has a larger e↵ect on the subsequent replanning maneuvers than does the

sensor precision. Thus, a general comment that can be drawn from these results is that

detection range should be a premium metric when choosing sensors for spacecraft involved

in rendezvous and docking missions.

Overall, in this section, the probabilistic trajectory planning process has been imple-

mented for an uncertain LOS zone constraint problem and is proven to be beneficial at

improving performance for minimum fuel formulations as well. In conjunction with the

previous section on obstacle avoidance, the first objective of the thesis has been achieved.

We have shown that baseline trajectories computed through probabilistic path planning can

outperform current techniques given large uncertainties in mission critical parameters and

uncertain events. Additionally, in the spirit of the main thesis objective, we have shown

a tradeo↵ between safety and performance and have shown advanced planning can help
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optimize trajectories under this tradeo↵.
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Chapter 5

Reference-Tracking Controller

Selection

Given the trajectories generated in the previous chapter, the aim of this chapter is to

describe how to plan appropriate reference-tracking controllers to follow these trajectories

throughout all phases of the mission. These controllers will be designed with the objective of

achieving robustness to the uncertainties in the problem, both aleatoric and epistemic, while

maintaining a high level of performance. This overall approach will be discussed in more

detail in Section 5.1. Each of the investigated controllers will be described in Section 5.2,

and the probabilistic method of evaluating the controllers against varying uncertainty dis-

tributions is covered in Section 5.3. Finally, the results from applying this methodology to

the thesis problem are presented and explained in Section 5.4.

5.1 Overview of Approach

The subsections included in this major section discuss, at a high level, the process used

for the reference-tracking controller selection portion of this thesis. First, the concept is

motivated and the hypothesis is described in Section 5.1.1. Then, the process developed for

pre-mission baseline controller selection is outlined in Section 5.1.2 and specific uncertainties

covered in this chapter are described in Section 5.1.3. Last, in Section 5.1.4, the method

used to perform this controller scheduling in real-time, onboard the spacecraft is presented.

This section is mainly an overview and specific details about the process, the controllers

and the metric evaluation will be explained in the following major sections.
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5.1.1 Motivation and Hypothesis

As has been covered thoroughly, uncertainty plays an important and potentially detrimental

role in spacecraft rendezvous, docking, and joint maneuvering missions. One cannot expect

that the optimal control solution consisting of control inputs to be implemented at specific

times during the mission will be successful in the presence of unaccounted for process noise or

additional unmodeled dynamics. Any error in knowledge of the design model of the system

will a↵ect the performance of these open-loop optimal trajectories, thus it is important to

account for this error by estimating the spacecraft’s state and making corrections based on

the error between the optimal trajectory and the current state in a closed-loop manner.

The tool that lets us perform these corrections and track the optimal trajectory well in the

presence of errors and noise in the system is called a reference-tracking controller.

Throughout the phases of the mission as described in Section 3.2, the spacecraft will

experience di↵erent levels and types of uncertainty. Di↵erent controllers could potentially

perform better or worse in specific phases depending on the sources and amount of uncer-

tainty associated with that phase. The question then becomes, how do we choose the best

controller for each phase of a mission given di↵erent uncertainties and objectives in each

phase and a set of controllers with varying performance and robustness?

The hypothesis in this work is that there is a tradeo↵ between performance and ro-

bustness to errors in the knowledge of uncertain parameters used to design the specific

reference-tracking controller. In a generalized form, this notional hypothesis is presented in

Co
st

Uncertain Parameter Error

No error 
in model

Figure 5-1: Notional tradeo↵ hypothesized between controller robustness and performance
across levels of error in the design model

174



Figure 5-1. As one tries to increase the robustness of a controller to errors in model param-

eters, there will be some loss in nominal performance of that controller in cases where there

is no error in the model. Hopefully though, the performance will improve over a less robust

controller for cases in which there is large parameter error. In Figure 5-1, the green curve

has the lowest cost when evaluated against the nominal model, but is more fragile when the

error increases such that the cost skyrockets with a small deviation from the nominal plant.

The blue curve represents a slightly more robust controller whose cost does not skyrocket

as quickly, yet has some overhead associated with this additional range of performance and

therefore does not perform as well when there is very little error in the model. The orange

curve represents the same behavior, but takes it a step further. In general, controllers de-

signed optimally for the nominal model without considering any error will be very fragile

and act like the green curve, while robust and adaptive controllers will begin to look more

like the blue and orange curves as they consider the possibility of these model errors.

Given this hypothesis, controllers with di↵erent levels of robustness may be appropriate

for di↵erent levels of uncertainty in specific system parameters. Therefore, the choice of

the best controller will likely di↵er between the phases of the mission, given the varying

levels of uncertainty in the di↵erent phases. It is the goal of the chapter and the second

thesis objective to solve this challenge for a multi-stage rendezvous, docking, and joint

maneuvering mission. This problem may sometimes be referred to as controller scheduling

or controller selection. To clearly define the terminology, scheduling refers to a selection

of a controller for each individual phase, while selection is a narrower term only referring

to choosing the best controller for one particular phase or for the whole mission. Loosely

though, the terms are used interchangeably for the most part.

5.1.2 Selection Process Overview

The process followed here can be used to answer the question raised in the previous motiva-

tion section and find the best performing controller for each of the mission phases under their

unique assortment of parametric uncertainties and noises. This process involves balancing

performance and robustness of the controllers to the appropriate proportion.

To start out, it is very important to understand the particular uncertainties present in

the mission and have a general idea of how they will a↵ect the reference-tracking controllers.

These uncertainties involved in this problem are discussed in Section 3.3, however only
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specific ones will be investigated for the chapter as explained in Section 5.1.3. Knowing

these uncertainties, it is possible to design specific controllers that each have a varying

degree of robustness to the uncertainties. These controllers are grouped into what is known

as the controller library. This library and the controllers contained for this thesis are

described extensively in Section 5.2.

With both of these components defined, Figure 5-2 proceeds to outline the tasks that

make up the full reference-tracking controller selection process. For each of the uncertain

parameters of interest to the mission, both an uncertainty probability distribution and range

need to be defined. This probability density function (PDF) can be anything desired from

uniform to Gaussian to incredibly nonlinear, but should be the best-known representation

of the expected error in our knowledge of the uncertain parameter. The uncertainty range

should be defined such that the overwhelming majority of the probability distribution is

covered, and the integral over this range is essentially equal to one. Expressed in more

detail later, these uncertainty distributions and ranges can either be defined in a univariate
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Figure 5-2: Overview of the reference-tracking controller selection process
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manner individually or multivariate manner considering multiple uncertainties interacting

at once.

Next, the uncertainty range needs to be sampled at a level su�cient for the performance

trends and uncertainty distribution to be well captured. Usually a meshed grid will do. Each

of these sampled levels of parameter error is paired with a controller from the controller

library and then needs to be run through a Monte Carlo simulation to account for the

aleatoric noises present. Once all of the combinations of controllers and parameter error

instantiations are run through the Monte Carlo simulation, the average results are used to

form the performance curves (or performance hypersurfaces in the generalized multivariate

case) for each performance metric. This specific Monte Carlo process of computing the

performance is discussed in Section 5.3.1. Once the performance hypersurfaces are obtained,

they need to be integrated over the PDF associated with these uncertain parameters to

compute the probabilistic expected performance for each desired performance metric as

explained in Section 5.3.2. With these expected performance evaluations for each of the

controllers, all that is left is to determine which controller performs the best in terms of the

preferences of the user for particular performance metrics. This selection process is detailed

in Section 5.3.3

This whole process should be completed for each phase of the mission, selecting the best

controller for each phase. The selection of the four individual controllers that are best for

each of the four mission phases is known as the controller schedule. Given the Monte Carlo

process involved, it is only reasonable to run through all of these steps prior to the mission

for a baseline controller schedule and choice of potentially useful controllers. The real-time,

onboard version of this process is simplified and discussed in Section 5.1.4, although still

relies on this analysis to be performed before the mission.

Additionally, it serves the mission planning well if the process is run for several levels

of uncertainty, such that the designers understand how particular levels of uncertainty in

mission critical parameters a↵ect controller performance and how the ranges over which the

choice of the best controller will change. The process is amenable to this, as long as the

uncertainty range selected early in the process covers all of the uncertainty distributions of

interest. If that is the case, the Monte Carlo simulation would not need to be run again to

determine performance curves for the new range.
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5.1.3 Uncertainties in Dynamics

The classes of uncertainty accounted for in the reference-control design and analyzed in

this chapter involve both aleatoric and epistemic uncertainties. With the exception of the

unexpected combined spacecraft mass after docking to a target with an uncertain mass,

uncertain events are not discussed in the context of pre-mission planning, but only in the

context that the onboard controller scheduler is capable of replanning the control selection

based on new knowledge obtained from the occurrence of an uncertain event.

Specific aleatoric uncertainties investigated include measurement noise from the angle

and range sensors, thruster noise, higher-order orbital dynamics and orbital perturbations.

The measurement noise in the angle and range sensors varies throughout the phases as de-

scribed in Section 3.2.8. In Phase 1a, there is large uncertainty in the angular measurements

and no range measurements available. In Phase 1b, there is similarly performing angular

measurements although a high-uncertainty range measurement has been added. In Phase

2, very precise angular and range measurements are available. When performing the joint

maneuver in Phase 3, we return to the higher-uncertainty range and angular measurements,

although now from a di↵erent source. The same thruster noise is present during all phases

and is represented as a Gaussian 2.5% error added to each thruster firing, as scaled by

the magnitude of the commanded force. Additionally, the full nonlinear orbital mechanics

model is used in the truth simulation as described in Section 3.1.2, including inverse-square

gravity, J2-6, SRP, and 3rd body from the Sun and Moon. Since the mission is in GEO, the

atmospheric drag term has negligible impact. The initial target orbit is set to be circular,

however, note that the inclination is set to three degrees such that the J2-6 perturbation

will be more noticeable. As the mission proceeds, the orbit of the target gradually gains

eccentricity. These nonlinearities are implemented to address the modeling errors associated

with the linear CWH control form. Because of the aleatoric uncertainties, the Monte Carlo

simulation is required such that enough missions can be simulated to statistically determine

performance e↵ects and mission success criterion under these random noises a↵ecting each

time step of the mission di↵erently.

Epistemic sources of uncertainty, or uncertain parameters, explored in this analysis are

limited to the thruster force magnitude and the initial orbital radius of the target spacecraft

that defines the CWH frame and dynamics. These two were chosen on purpose, such as to
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account for two other uncertain parameters and e↵ectively kill four birds with two stones.

Taking a look at the CWH equations in (3.1) again, although in an expanded form, we have
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(5.1)

Notice that the thruster force magnitude, fthr, has an exact inverse relationship of the mass

on the CWH dynamics. Therefore, designing a controller to be robust to an uncertainty

in either of these parameters could result in an identical result. Whether the uncertainty

lies in the mass or the thruster force level is pretty much irrelevant, so we just choose the

thruster force level as it is the fraction of nominal force the spacecraft performs and has

nicer scale and no units to worry about. Nominally, fthr = 1. If the spacecraft instead

only had half of the thrusting force anticipated or had double the mass, for our purposes

we understand that fthr would equal 0.5 in both cases.

Also notice in (5.1), that we have replaced the n from (3.1) with its expanded form. By

doing this, we can more closely address the actual parameter that the ground sensors are

measuring (i.e., the altitude). By looking at r0, the target’s initial orbital radius, we also

are investigating changes in the mean motion of the orbit. The math is also a little more

fun, since we have the square root of a cubic rather than the simpler CWH representation

with the mean motion, n.

We treat these two parameters, fthr and r0, as epistemic uncertain parameters, meaning

that it is possible to determine their true value, but in practice we do not know them.

They can be considered biases in a sense, where there could potentially be an error between

what value we use to construct the model for the controller and what value exists in reality.

These are the uncertain parameters referred to in Figure 5-2 and Section 5.1.2, that will

be varied and over which controller performance will be integrated. This means that the

controllers will be designed to nominal values of these parameters, but the simulation will

add a constant error to the true parameter value and simulate the dynamics with this error

incorporated, yet still run the controller which was designed for the nominal values. In this

manner, we can see how di↵erent controllers behave when run on dynamics that do match
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their design model. This is key in assessing robustness performance.

Other potential uncertain parameters that could be investigated in future work, but are

not investigated this thesis, include the magnitude of the sensor covariances in di↵erent

phases, the direction thrusters are pointed, constant sensor bias in angle or range, and

constant or periodic external forces.

5.1.4 On-line Controller Scheduling

In fitting all of these pieces together, Figure 5-3 shows where the onboard controller schedul-

ing component fits into the larger architecture. Section 5.1.2 details what happens during

the controller scheduling and downselection block in this diagram. After that process is

completed prior to the mission, the performance curves (or hypersurfaces) are handed to

the on-line controller scheduler, so as not to perform the time-consuming task of rerun-

ning all of the Monte Carlo simulation trials with added noises and nonlinear dynamics

onboard the spacecraft. Instead, as the uncertainty distributions of mission critical param-

eters change during a mission, the onboard planner is capable of performing the expected

performance computations on-line. These calculations are far less computationally intensive

and only require the knowledge of the current uncertainty distribution and the storing of

the performance curves (or hypersurfaces) in memory.

Note that this assumes that a significant amount of memory is available to store these
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Figure 5-3: Overall process of guidance and controller planning both before and during a
mission, with the on-line controller scheduling portion highlighted
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performance results. This memory requirement grows depending on how fine the sampling

mesh is over the uncertainty range and grows exponentially with the number of uncertain

parameters considered. To reduce this requirement, any controllers that were completely

dominated in all relevant performance metrics and over all ranges of expected uncertainty

can be discarded. Then, only the results from the smaller downselected set of controllers

needs to be uploaded to the spacecraft. Additional methods to deal with a growing memory

burden would be to only include a set of important performance metric information rather

than the full set. Given the initial analysis, areas of the performance hypersurfaces that are

well represented by interpolation schemes could also be left out of the upload package.

Although this controller schedule update process could be performed continuously through-

out the mission as the uncertainty distributions change, the author does not suggest this

implementation method as it could lead to chattering, or the rapid switching back and

forth between di↵erent controllers. Instead, it is suggested only to plan controllers for the

upcoming phases based on the current knowledge. Before an upcoming phase, the current

levels of uncertainty could be determined, and the controller scheduling process could be

performed, returning the suggested controller to use for the next phase. If significant analy-

sis were performed on the continuous controller scheduling problem to show the architecture

was robust to chattering or other unintended behavior, the author anticipates there could

be significant performance gains over a mission, however no such analysis is performed or

provided in this thesis.

Something to consider amongst all of this is that when an uncertainty distribution

changes during a mission, the mean of that distribution will also change most of the time.

Because the controllers and the analysis process were designed around the nominal mean

values of the uncertain parameters, and now those mean values have changed, the question

is raised as to whether these results are still valid. Under certain assumptions they can be.

If we assume that the controller itself will not be redesigned to account for the new mean of

the distribution, and we are only choosing between the same nominally designed controllers,

then this process is perfectly valid. If we instead plan on updating the controllers onboard

the spacecraft in real-time to be designed to a model with the new mean parameter values,

we must make one of a couple assumptions for this onboard scheduling process to remain

valid. One assumption we can make is that the same relative or normalized performance

will remain constant about the new mean parameter values. Then, we just need to shift
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the uncertainty distribution’s mean back to the original and only update the covariance

in our onboard analysis. Alternately, we could perform analysis prior to the mission to

create performance hypersurfaces for a range of possible nominal mean parameter values

and then select the appropriate curves onboard the spacecraft. However, this is not a great

alternative as the data volume would increase significantly. For the purpose and results

from this thesis, we consider either of the first two assumptions to be true, with the third

as an unfortunate backup.

5.2 Controller Library

The controller library is comprised of a set of reference-tracking controllers that are specif-

ically designed to handle the dynamics and uncertain parameters of interest to a particular

mission. These reference-tracking controllers are each hand designed and tuned appropri-

ately by an engineer to adhere to reasonable stability margins. The library should consist

of a varying range of controller performance levels and robustness to uncertainties, such

that the controller scheduler has su�cient choices of controllers to cover the span of possi-

ble uncertainties throughout the full multi-stage mission. The subsequent subsections each

describe in mathematical detail the controllers chosen for analysis in this thesis. At a high

1. Optimal replanning controller (MPC)
Receding horizon, optimizing LQR cost, tube constraints

2. Optimal feedback controller (LQG) – Baseline
Infinite horizon, static-gain LQR controller and EKF 

3. Robust controller, desensitized (SWLQG)
Static-gain controller optimized for sensitivity and EKF

4. Parameter identification, Augmented EKF (AEKF)
EKF adding parameter states and baseline LQR controller
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Figure 5-4: An example of the controllers contained in the controller library for this thesis
and ranking based on nominal performance and robustness to uncertainties
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level however, Figure 5-4 briefly describes the controllers implemented for this problem and

ranks them based on anticipated nominal performance and robustness. The baseline for all

of the analysis will be the Linear-Quadratic-Gaussian (LQG) controller, meaning a Linear-

Quadratic Regulator (LQR) paired with an Extended Kalman Filter (EKF). Each of the

other controllers implemented make slight tweaks to this design such that the performance

goal should remain relatively constant. In this manner, the true comparison is being made

between control architectures and design choices rather than the tuning of specific knobs

to increase or decrease performance within one controller type.

The controller library spans optimal, robust, and adaptive control types. Model Pre-

dictive Control (MPC) is used as the example of a controller using online optimization to

improve performance at the expense of increased computation power. The LQG controller

is used as the baseline, constant-gain feedback controller. The Sensitivity Weighted LQG

(SWLQG) controller is a desensitizing robust controller which also is a constant-gain feed-

back controller, but is designed to be more robust to changes in the uncertain parameters.

Finally, a parameter estimation techniques known as an Augmented EKF (AEKF) is used

as a varying-gain feedback controller that optimizes gains every time step based on a current

estimate of the uncertain parameters.

These controllers need to be designed in the same format such that they have common

inputs and outputs. If designed in this manner, swapping one controller for another will

be simple, as it only required to switch the controller function call in the code. Inputs

should include the current estimated state, the reference trajectory to be followed, any

other updated variables from the estimator or other software modules, and maybe the

appropriate mission phase. The output should be the commanded control input for that

time step. Internal variables should store things like integral error or other persistent

variables. The controllers are each formatted in a manner similar to this in the simulation

described in Section 3.4, such that any user can easily swap in and out a specifically designed

controller as desired for a particular mission phase.

5.2.1 General Control Setup

This section will discuss the control set-up that several of the controller methods will refer

to in the upcoming sections. In this thesis, the standard form of a linear feedback controller
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in state space will be defined as:

9x = Ax+Bww+Buu

z = Czx+Dzww+Dzuu

y = Cyx+Dyww+Dyuu ,

(5.2)

where x represents the state vector of positions and velocities in the CWH frame; z is the

vector of performance variables; y is the measurement vector; u is the control input to the

system; w is unit Gaussian disturbance noise; and A, Bw, Bu, Cy, Cz, Dzw, Dzu, Dyw,

and Dyu are matrices of appropriate size that specify the linear system dynamics. In

general, all of the controllers in this thesis have Bw = 0, Dzw = 0, and Dyu = 0, unless

directly specified otherwise. In reality, there are nonlinear perturbations to this model and

process noise is present through thruster force noise. These terms are ignored in the general

controller set-up here, yet do show up in the simulation. Additionally, note that all of the

controllers in this chapter are presented for the full 3DOF system as it is simple to decouple

the out-of-plane component to reduce to a 2DOF controller if desired.

Unfortunately, we do not have full state feedback, and the measurement models de-

scribed for each phase of our mission in Section 3.2 are nonlinear, thus the above linear

equation for y is not suitable and we must use the nonlinear form,

y = hn px,vq , (5.3)

where v is the Gaussian measurement noise defined by E
“
vvT

‰
= Rn, and where the appro-

priate models and noise characteristics are defined for the n-th mission phase in Section 3.2.

Additionally, since the controllers will eventually need to be implemented in discrete

time, we obtain the general form of the controller to be referenced in the following sections

as

x(k + 1) = Adx(k) +Bdu(k)

z(k) = Czx(k) +Dzuu(k)

y(k) = hn px(k),v(k)q ,
(5.4)

where Ad and Bd are found in Section 3.1.1, k is the current time-step, and T is the

discretization time, or time between successive steps k and k + 1.

The goal of the controller is then to stabilize these dynamics with respect to a reference

184



trajectory defined by r(k). When designing a linear feedback controller, we are thus looking

for a compensator of the form

xc(k + 1) = Acxc(k) +Bcy(k)

u(k) = �Ccxc(k)
, (5.5)

where xc(k) is the compensator state at step k which is equal to the error between the state

and reference, xc(k) = x(k)� r(k).

5.2.2 Linear-Quadratic-Gaussian (LQG)

The discrete-time LQG compensator is the combination of a Linear-Quadratic Regulator

(LQR) and a Linear-Quadratic Estimator (LQE) or Kalman Filter (KF). The goal when

finding an infinite-horizon LQG compensator is to minimize the quadratic cost function,

J = lim
N!1

1

N

E

«
N
X

k=1

´
x(k)TRxxx(k) + 2x(k)TRxuu(k) + u(k)TRuuu(k)

¯�
, (5.6)

where N is the length of the horizon, and Rxx, Ruu, and Rxu are weighting matrices for the

cost on the state error, control input, and cross-terms respectively. They can be derived in

a useful form with the following relationship from [129]:

R =

»

–C

T
z

D

T
zu

fi

fl
Rzz

”
Cz Dzu

ı
=

»

–Rxx Rxu

R

T
xu Ruu

fi

fl � 0, Ruu > 0, (5.7)

where Cz and Dzu are defined in the previous section and Rzz is a (usually diagonal)

relative weighting matrix capable of emphasizing state or control penalty over one another.

Additionally, although not directly present in the cost function, we need to know the relative

magnitudes of the process and measurement noise to determine the expectation of the cost.

These are defined in the following relationship from [129]:

V =

»

– Bw

Dyw

fi

fl
Vww

”
B

T
w D

T
yw

ı
=

»

–Vxx Vxy

V

T
xy Vyy

fi

fl � 0, Vyy > 0, (5.8)

where Bw and Dyw are defined in the previous section and Vww is a (usually diagonal)

relative weighting matrix capable of emphasizing process or measurement noise over one
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another.

Derived from [205], the solution to the discrete-time LQG compensator problem takes

the form of (5.5), where

Ac = Ad �BdK � LCy

Bc = L

Cc = K

K =
`
B

T
d PBd +Ruu

˘�1 `
B

T
d PAd +R

T
xu

˘

L =
`
AdQC

T
y + Vxy

˘ `
CyQC

T
y + Vyy

˘�1
,

(5.9)

where P and Q solve the steady-state, Discrete-time Algebraic Riccati Equations (DARE):

P = A

T
d PAd �

`
A

T
d PBd +Rxu

˘ `
Ruu +B

T
d PBd

˘�1 `
B

T
d PAd +R

T
xu

˘
+Rxx,

Q = AdQA

T
d � `

AdQC

T
y + Vxy

˘ `
Vyy + CyQC

T
y

˘�1 `
CyQA

T
d + V

T
xy

˘
+ Vxx.

(5.10)

The separation principle shows that we can design the estimator and controller sepa-

rately using the above equations as the stability of the estimator and feedback controller

are independent. We do just this.

The LQR feedback controller is designed using (5.9) and (5.10) and implemented as

shown in (5.5). The Cz and Dzu matrices are chosen to abide to Bryson’s Rules for the

formation of LQR weighting matrices. Bryson’s Rules tailor the Rxx and Ruu matrices

through normalization of the signals by their maximum expected value and additional rel-

ative weightings if desired. The goal is to obtain

Rxx =

»

————————————–

↵2
x

x2
max

0 0 0 0 0

0
↵2
y

y2max
0 0 0 0

0 0 ↵2
z

z2max
0 0 0

0 0 0
↵2

9x
9x2
max

0 0

0 0 0 0
↵2

9y
9y2max

0

0 0 0 0 0
↵2

9z
9z2max

fi

������������fl

and Ruu =

»

———–

�2
x

(ux)2max
0 0

0
�2
y

(uy)2max
0

0 0 �2
z

(uz)2max

fi

���fl ,

(5.11)

where the sum of the ↵’s is one, the sum of the �’s is one, and the maximum state error
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and control input on each axis are specified. This results in

Cz =

»

——————————————————————–

↵x
xmax

0 0 0 0 0

0 ↵y

ymax
0 0 0 0

0 0 ↵z
zmax

0 0 0

0 0 0 ↵ 9x
9xmax

0 0

0 0 0 0
↵ 9y

9ymax
0

0 0 0 0 0 ↵ 9z
9zmax

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

����������������������fl

and Dzu =

»

——————————————————————–

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

�x

(ux)max
0 0

0 �y

(uy)max
0

0 0 �z

(uz)max

fi

����������������������fl

.

(5.12)

For the implementation in this thesis, the ↵’s are chosen as
a
1/6 and the �’s as

a
1/3 to

maintain an equal weighting on the importance of each axis of control. Also, the maximum

position and velocity error expected varies depending on the mission phase and is set roughly

equal to the standard deviation of the noise defined in Section 3.2.8. The maximum control

input is constrained to 10 Newtons, so this value is used in the above matrices. On a final

note, the Rzz matrix is set up to weigh the control input 100 times as costly as the state

error.

Unfortunately, as mentioned previously, we have nonlinear measurements, and thus

cannot implement the LQE portion of this controller as described above. Instead, we

implement the discrete-time EKF from [206].

The EKF uses nonlinear dynamics and measurements to propagate the state and com-

pute the predicted measurement, but then linearizes these dynamics and measurements

at each time step to perform the normal KF measurement update steps and covariance

propagation. The process starts by linearizing the nonlinear dynamics and measurements,

x(k + 1) = f(x(k),u(k),w(k), T ) and

y(k) = hn(x(k),v(k)),
(5.13)

where the measurements, y, are di↵erent for each mission phase n as defined in Section 3.2.
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To proceed we want to find the linearizations,

Ã(x̂(k|k � 1)) =
@f

@x

�

�

�

�

x=x̂(k|k�1)

and C̃(x̂(k|k � 1)) =
@hn

@x

�

�

�

�

x=x̂(k|k�1)

. (5.14)

The continuous dynamics are already linear as shown in (5.2) so Ã(x̂(k)) = Ad and is linear

time-invariant (LTI) as described in Section 3.1.1. The linearization of Phase 2 and Phase

3 measurements is su�cient to show the form for the other phases. In Mission Phase 2, we

have

C̃2(x̂(k|k � 1)) =

»

————–

�y
x2+y2

x
x2+y2 0 0 0 0

�xz

⇢3
´?

1�pz/⇢q2
¯ �yz

⇢3
´?

1�pz/⇢q2
¯ 1

⇢

b
1� pz/⇢q2 0 0 0

x
⇢

y
⇢

z
⇢ 0 0 0

fi

����fl

�

�

�

�

�

�

�

�

�

�

x=x̂(k|k�1)

,

(5.15)

and in Mission Phase 3, we have

C̃3(x̂(k|k � 1)) =

»

————–

ry
r2x+r2y

�rx
r2x+r2y

0 0 0 0

�rxrz
r3

´?
1�prz/rq2

¯ �ryrz

r3
´?

1�prz/rq2
¯ 1

r

b
1� prz/rq2 0 0 0

rx
r

ry
r

rz
r 0 0 0

fi

����fl

�

�

�

�

�

�

�

�

�

�

x=x̂(k|k�1)

,

(5.16)

where the only notable di↵erences are the sign changes in the first row and the fact that, in

Phase 3, the chaser is getting measurements as the relative distance to a partner spacecraft

instead of to the target spacecraft. The definitions for rx, ry, rz, r and ⇢ are in Section 3.2.

With these linearizations, we can now show the individual steps of the EKF. To start,

we propagate the previous estimate to the current time step using

x̂(k|k � 1) = Adx(k � 1|k � 1) +Bdu(k � 1), (5.17)

and propagate the previous covariance matrix to the current time step using

Q(k|k � 1) = AdQ(k � 1|k � 1)AT
d + Vxx. (5.18)

Next, we compute the predicted measurement by feeding the propagated state, x̂(k|k � 1),

into the nonlinear measurement equations. We subtract this from the real measurement
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to get a term known as the innovation, then multiply the innovation by the Kalman gain,

L(k), and add the result to the propagated estimate to get our new estimate. This process

can be represented in a set of equations as

x̂(k|k) = x̂(k|k � 1) + L(k) ry(k)� hn(x̂(k|k � 1)s , with (5.19)

L(k) = Q(k|k � 1)C̃T
n (x̂(k|k � 1))

”
C̃n(x̂(k|k � 1))Q(k|k � 1)C̃T

n (x̂(k|k � 1)) + Vyy

ı�1
.

(5.20)

Finally, we update the covariance with the recent measurement by setting

Q(k|k) = rI � L(k)Cn(x̂(k|k � 1))sQ(k|k � 1), (5.21)

where I is the 6 ⇥ 6 identity matrix. Note that although the dynamics do not involve

process noise, we fictitiously create a small amount of noise such that we do have a nonzero

Vxx. Correspondingly, the filter will always have a base level of uncertainty, as Vxx is a

constant additive matrix during covariance propagation. This base level of uncertainty will

help push the filter out of stagnation when otherwise it could potentially get stuck at an

incorrect estimate as the covariance converges to zero.

The estimated state from the EKF is passed to the LQR controller. The LQR controller

computes the error and uses the gains calculated above to control the system. The control

inputs to the system at that time step are passed to the EKF and the process repeats.

Although the LQG framework guarantees stability for the plant as designed, it does not

have any guarantees on robustness or stability margins. Additionally, it is a steady-state

optimal feedback controller, and thus performance could be improved if optimizing for a

specific horizon length. Di↵erent approaches, each using these LQG gains and framework

as a baseline, are discussed in the following sections. The goal will be to compare these

control techniques across the same performance metrics, where each controller should be

designed with the same baseline performance as described in this section. The aim would

be to objectively compare control techniques rather than tuning parameters to make one

type better than another.
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5.2.3 Sensitivity Weighted Linear-Quadratic-Gaussian (SWLQG)

The Sensitivity Weighted LQG (SWLQG) compensator falls directly out of the LQG formu-

lation and is known as a desensitizing robust control technique, as there are no guarantees

on stability margins and other robustness metrics. The goal of SWLQG is to minimize

the sensitivity of a compensator to uncertain parameters in the system dynamics, thereby

making the closed-loop system more robust to these uncertainties. The sensitivity of the

dynamics to the uncertain parameters is added to the LQG cost function and the objective

is to minimize this combined cost. The following implementation is similar to that shown

in [129], except in discrete-time. A first-order sensitivity can be computed by the partial

derivative of the state with respect to a particular uncertain parameter. The SWLQG cost

function for a single uncertain parameter becomes

Js = lim
N!1

1

N

E

«
N
X

k=1

˜
x(k)TRxxx(k) +

@x(k)

@s

T

Rss
@x(k)

@s

+ 2x(k)TRxuu(k) + u(k)TRuuu(k)

¸�
,

(5.22)

where s is the particular uncertain parameter present in the dynamics, and Rss is a weighting

matrix that can a↵ect the importance of the sensitivity in comparison to the other metrics.

The remaining is equivalent to the LQG cost function in (5.6).

As shown in [129], this expression can be reorganized in a very convenient form of

Js = lim
N!1

1

N

E

«
N
X

k=1

´
x(k)TR

0
xxx(k) + 2x(k)TR

0
xuu(k) + u(k)TR

0
uuu(k)

¯�
, (5.23)

where

R

0
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T

A

�T
d RssA

�1
d

@Ad
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R

0
xu = Rxu +
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d
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0
uu = Ruu +

@Bd

@s

T
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�T
d RssA

�1
d

@Bd

@s

,

(5.24)

and correspondingly for the LQE problem,

V

0
xx = Vxx +

@Ad

@s

A

�1
d VssA

�T
d

@Ad

@s

T

,

V

0
xy = Vxy +

@Ad

@s

A

�1
d VssA

�T
d

@Cy

@s

T

, and

V

0
yy = Vyy +

@Cy

@s

A

�1
d VssA

�T
d

@Cy

@s

T

.

(5.25)

190



The formulation in (5.23) is precisely the same as the LQG cost function. Only the

weighting matrices have changed as described in (5.24) and (5.25). This allows us to use

the same methods as described in Section 5.2.2 to solve for the appropriate LQR and EKF

gains, only changing the weighting matrices.

So far, the SWLQG problem has only been presented for the presence of one uncertain

parameter. However, due to the modular nature of adding the sensitivity to the cost func-

tion, it is simple to expand this approach to multiple uncertain parameters. For multiple

parameters, the cost function becomes

Js = lim
N!1

1

N

E

«
N
X

k=1

(

x(k)TRxxx(k) +
ns
X

i=1

˜
@x(k)

@si

T

Rssi
@x(k)

@si

¸
+ 2x(k)TRxuu(k) + u(k)TRuuu(k)

)�
,

(5.26)

where ns is the number of uncertain parameters. This again can be simplified to (5.23), but

with

R
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d
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d
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@si
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(5.27)

For this particular problem, we will explore three uncertain parameters: the orbital

radius of the target spacecraft, the thrust force magnitude, and the mass of the target

spacecraft. These parameters are directly present in the dynamics discussed in Section 5.2.1.

First, the orbital radius of the target spacecraft, r0, is present in the dynamics in the

mean motion parameter, n =
a
µ/r

3
0, which comes up several times in Ad and Bd. Thus,

computing the partial derivatives of Ad and Bd with respect to the target’s orbital radius
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yields:

@Ad
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=
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————————————–
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(5.28)
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fi
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(5.29)

where c represents cos(nT ) and s represents sin(nT ).

Secondly, the thruster force magnitude is only present in the Bd matrix and is essentially

a scalar multiple of the entire matrix, so taking the partial derivative yields

@Bd

@fthr
=

1

(mc +mt)

»

————————————–

1
n2 p1� cq 2

n2 pnT � sq 0

� 2
n2 pnT � sq 4
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1
ns

2
n p1� cq 0

� 2
n p1� cq 4

ns� 3T 0

0 0 1
ns

fi

������������fl

. (5.30)

Thirdly, the target spacecraft mass is also only present in the Bd matrix, and because

it a↵ects the dynamics in a very similar manner to the thruster force magnitude, is also a
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scalar multiple of the entire matrix. Taking the partial derivative yields

@Bd

@mt
= � fthr

(mc +mt)2

»
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n2 pnT � sq 0
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� 2
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ns

fi

������������fl

. (5.31)

These results can be used directly in (5.27) to compute the desired weighting matrices

for the LQR solution process described in Section 5.2.2. Notably, the partials of Ad will

also be needed for the EKF weighting matrices, however since the measurements do not

depend on these parameters, the partials of Cy will be zero and only the Vxx matrix will be

modified for SWLQG.

As mentioned earlier, SWLQG is a form of desensitizing robust control and does not

have guarantees on robustness and stability margins. That being said, it does limit the im-

pact of particular uncertain parameters by desensitizing the controller’s response to errors

corresponding to these type of dynamics. For the most part however, it turns out the dy-

namics are not particularly sensitive to these parameters for our mission in geosynchronous

orbit. E↵ectively, these additions to the LQG weighting matrices act to scale the control

gains lower as a function of how large Rss is set. There are some minor changes elsewhere

in the control gains matrix, but predominantly this scaling is the e↵ect. The result is a

controller very similar in appearance and behavior to the baseline SWLQG.

5.2.4 Model Predictive Control (MPC)

MPC, sometimes known as receding horizon control, is an optimal control technique that

solves full optimization problems in the real-time control loop. The concept starts by

defining a discretized prediction horizon over which to optimize the state and control input

with respect to a quadratic cost function. The optimal trajectory and the optimal control

input required to enact the trajectory are computed, such that a vector of future states and

a vector of future control inputs are planned. The controller then executes a set number of

these planned control inputs. Usually, this is only the first step of the control input plan,

however depending on the time required to solve the optimization problem and the speed
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of the dynamics in the problem, sometimes several steps are carried out. After this set of

control inputs is implemented, the optimal control problem is solved again and the same

number of control input steps are carried out. This process repeats itself until the state is

controlled within a tolerance of the goal state. So, in typical use, the process loops between

solving the optimal control problem and implementing the first step of this solution at each

time step, marching forward in time with the same prediction horizon length. Typically, an

EKF will be used in conjunction with this controller, and we will use the one described in

Section 5.2.2.

In the problem posed in this thesis, we are attempting to track a reference trajectory

that has been computed previously. Thus, the reference-tracking form of MPC is used here,

where the goal is to optimize the state error with respect to the reference trajectory, rather

than the state to the origin as in the typical MPC formulation. The objective of this MPC

reference-tracking problem is to find the

min
U

(

˜
k+N�1
X

i=k

´
x(i)� r(i)

¯T
Rxx

´
x(i)� r(i)

¯
+ u(i)TRuuu(i)

¸

+
´
x(k +N)� r(k +N)

¯T
P

´
x(k +N)� r(k +N)

¯) (5.32)

subject to x(i+ 1) = Adx(i) +Bdu(i), 8i = k, . . . , k +N � 1,

||u(i)||1  ū, 8i = k, . . . , k +N � 1,

x(i)  r(i) +�max, 8i = k + 1, . . . , k +N, and

x(i) � r(i)��max, 8i = k + 1, . . . , k +N,

(5.33)

in which U =
”
u(k)T , u(k + 1)T , . . . , u(k +N � 1)T

ıT
is the 3N ⇥ 1 stacked vector of

control input, x(k) is the chaser’s current position, x(i) is the chaser’s planned position at

the i-th step of the N -step horizon, r(i) is the reference position at the i-th step, Rxx is the

tracking error cost weighting matrix from Section 5.2.2, Ruu is the control cost weighting

matrix from Section 5.2.2, and P is the solution to the discrete algebraic Riccati equation

for the unconstrained, steady-state LQR problem from Section 5.2.2. For all but the last

step in the trajectory, the cost is a function of a combination of reference tracking error

and applied control. For the last step, there is a penalty based upon the state only, as no

control is computed for this step. The first constraint upholds the dynamics. The second
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sets a maximum commanded control force on a single axis, which is specified by ū as defined

in Section 3.2.6. The last two constraints impose what are known as tube-constraints on

the position and velocity, where �max is a vector describing the maximum desired deviance

from the reference trajectory for each state.

This objective function is very similar to the one in the trajectory optimization problem

in Section 4.1.1, and as such can be simplified to the same expression in (4.6) and solved

via a quadratic solver. However, in Section 4.1.1, we did not consider the reference tracking

form of the problem and implemented di↵erent constraints. Specifically, from [200], the

tube constraints can be implemented in linear form as

»

– ⌦

�⌦

fi

flU �
»

– Xmax � x(k)
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fi

fl
, where

Xmax =

»

———–

r(k + 1) +�max

...

r(k +N) +�max

fi

���fl and Xmin =

»

———–

r(k + 1)��max

...

r(k +N)��max

fi

���fl ,

(5.34)

while the 6N ⇥ 3N ⌦ matrix and 6N ⇥ 6  matrix are defined in Section 4.1.1 and are a

consequence of simplifying the optimization problem for a quadratic solver.

For the implementation here, a horizon length of N = 6 was chosen through trial and

error to reduce the computational burden and still constrain the control su�ciently. The

tube constraint magnitudes vary throughout di↵erent phases from 1 m in position and 5

cm/s in velocity in Phases 1 and 3 to 10 cm and 1 cm/s in Phase 2. The tube constraint

for the last step in the horizon is shrunk by a factor of 10 in order to constrain the planned

motion closer to the trajectory without over-constraining the previous steps in the horizon.

Unfortunately, due to parameter uncertainty and other disturbances in the dynamics it

cannot be guaranteed that, with these tube constraints, the optimization problem posed in

(5.32) will have feasible results. Therefore, in the event that the solver returns an infeasible

solution, a scheme is implemented to increase the size of the tube constraints slowly until

a feasible solution can be found. Generally, this is known in the literature as constraint

tightening MPC, and sometimes works in the reverse direction as described in this section

[207]. In its basic form, this scheme scales the tube constraints from the previous values each

time the solver returns an infeasible result, always starting from the base values on a new
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optimization step in the MPC horizon. Thus, the smallest possible feasible tube constraints

will be met for cases in which the original problem is infeasible. Since the upscaling is

small, this technique can be computationally intensive and could be dramatically improved.

Nonetheless, it proves quite e↵ective.

The quadratic solver is able to solve this MPC problem in roughly 0.1 s on average, even

considering the constraint tightening iteration described in the previous section. Because

this solution time is much smaller than the step size in our horizon, we can implement

the form of MPC where only the first planned control input is implemented and then the

problem is re-optimized on the next time step.

MPC is expected to be able to outperform a nominal LQG feedback controller, because

in essence it solves the finite-horizon form of the LQR problem which will be able to better

optimize the cost when compared to constant-gain, infinite-horizon feedback. The same

weighting matrices are used in this optimization as were used for the LQR problem and the

same EKF is estimating the state. Naturally, with this expected increase in performance,

there is a tradeo↵; computation time increases dramatically by a few orders of magnitude,

and the robustness to uncertainties will drop significantly. Therefore, MPC is the high

performance, low robustness option in the controller library.

5.2.5 Parameter Estimation using an Augmented Extended

Kalman Filter (AEKF)

Parameter estimation or parameter identification is a technique frequently used in adaptive

control to help determine the values of specific uncertain constants in the dynamics of the

system. The form of adaptive control used here relies on augmenting the EKF states with

the uncertain parameters, estimating the values of these parameters, and then sending them

to the control law to recompute controller gains based on the new plant information. The

parameter identification part of the solution is known as an AEKF and is described fully in

[208], while the controller being used is the LQR controller described in Section 5.2.2 but

updated every time step with the current estimate of the parameters. So, in general this

adaptive control technique will be referred to as AEKF in shorthand for the remainder of

the thesis, fully knowing that AEKF technically only describes the method of parameter

estimation.

For this implementation, we only consider two uncertain parameters: the target’s orbital
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radius and the magnitude of the thruster force. Because both the mass and thruster force

magnitude a↵ect the problem in a similar manner (one exactly inversely of the other), this

will not allow the AEKF to estimate both simultaneously. By only choosing one of these

uncertainties to estimate, we are e↵ectively estimating the net e↵ects of both parameters.

As thruster force magnitude is scaled in a nicer manner, being unitary as default, we choose

it. Alternately one could call the ratio between the thruster force magnitude and mass the

uncertain variable and achieve similar results.

In this application, and for the parameters chosen, we do not receive direct measurements

of any of the uncertain parameters and will need to rely on the cross-terms in the dynamics to

help us identify the values of these parameters. We choose the dynamics of these parameters

to be a persistence model with a small amount of additive Gaussian noise such that the

parameter estimate can perform a random walk and essentially trust the estimate more as

it moves in the direction of true value. With larger controlled movements, the problem

becomes richer in terms of the signal-to-noise ratio and the estimate will perform better,

while under slow and small control input, the estimate will su↵er.

The EKF state is augmented to become x̂a and propagates according to the equation,

x̂a(k + 1|k) =

»

———–

x̂(k + 1|k)
r0(k + 1|k)
fthr(k + 1|k)

fi

���fl =
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———–

Adx̂(k|k) +Bdu(k|k)
r0(k|k) + wr0(k|k)

fthr(k|k) + wfthr(k|k)

fi

���fl

= fa px̂(k|k),u(k|k), r0(k|k), fthr(k|k), wr0(k|k), wfthr(k|k)q ,

(5.35)

where we have augmented the state of the EKF to include the two uncertain parameters,

r0 and fthr, and their dynamics. Additionally, the covariance now propagates as

Q
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d|T
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a
xx, (5.36)

where the linearized dynamics are of the form
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and Vxx is appended to add the small Gaussian noise for the random walk in two extra

diagonal entries. Fortunately, we have already computed the partial derivative matrices

used in this expression in Section 5.2.3. The remaining measurement update equations do

not change in the AEKF as we do not have any measurements of these parameters. Thus,

the rest of the AEKF is exactly the same as the EKF implemented in Section 5.2.2.

Similar to some of the other controllers, the AEKF does not have any guarantees on

performance, robustness or stability, however should in general perform better than most of

the others when the true value of the uncertain parameter varies widely from the nominal

expected value. Nominal performance will su↵er because the random walk will inform

the controller of a slightly incorrect plant. This overhead should subside as parameter

uncertainty grows, until the AEKF actually performs better after a cross-over point.

5.3 Controller Metric Evaluation

Now that the set of controllers to be evaluated has been defined, it is time to discuss exactly

how these controllers will be assessed and compared across di↵erent levels of uncertainty.

This section covers the evaluation process from the creation of performance hypersurfaces

through Monte Carlo simulation in Section 5.3.1 to the calculation of the expected per-

formance metrics based on specific levels of uncertainty in Section 5.3.2 to conclude with

the method proposed to select and schedule the best controllers for each mission phase in

Section 5.3.3. In general, this section follows the process outlined in Figure 5-2, although

further expanded and with more rigor.

5.3.1 Performance Hypersurfaces

The goal of creating performance hypersurfaces is to determine how well a specific controller

will behave when subject to errors in the model of the system. The hypersurfaces are

metric-specific functions of the error in uncertain parameters, and as such are n-dimensional

functions of the n uncertain parameters. Hence, the term hypersurface arises as a generic

concept of a surface that exists in n+ 1 dimensions, the last of which being the evaluation

metric. Thus, with one uncertain parameter, this hypersurface is a curve that can be plotted

in 2D. With two uncertain parameters, the hypersurface is a surface that can be plotted in

3D. Higher-order hypersurfaces exist, following the same trend, but are much more di�cult
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to plot.

Individual hypersurfaces need to be created for each important performance metric and

for each controller in the library. Depending on the number of metrics and controllers, this

can result in a lot of data and can take a significant amount of time to compute. Therefore,

the creation of these hypersurfaces is limited to planning prior to the mission, and the

onboard controller scheduler will only use the previously computed data in its selection

process.

The process for computing a performance hypersurface starts with defining an appro-

priate uncertainty range. This uncertainty range should cover nearly all of the largest

uncertainty distribution expected. For a uniform distribution, developing an appropriate

uncertainty range is easy, as it should span the full width of the distribution. For Gaussians,

one could choose a range that covers 99.9% or higher of the distribution. Technically, the

Gaussian distribution extends to infinity, so it would be impossible to cover the entire un-

certainty range. The goal is to limit the amount of the distribution left out, such that when

integrating over it, the result is very close to unity. As seen later, this will allow for precise

expected value computation. Remember, in multivariate analysis, this uncertainty range

will be specified across n-dimensions and is permitted to be nonlinear (i.e., not necessarily

a hypercube). For a 2D Gaussian with di↵erent variance in each dimension, an ellipse could

be defined as the range for example, as opposed to a rectangle.

The next step is to create a mesh over this uncertainty range, such that each point in

the mesh corresponds to a particular instantiation of error in each uncertain parameter. In

the univariate case, the mesh is a discretization of points through the range of uncertain

parameter values. In 2D, the mesh would be a grid of points over the uncertainty range

area. Iteration with analysis of the resulting performance hypersurfaces can be used to

determine if an appropriately fine mesh discretization level has been chosen. If there seem

to be nonlinearities in the results that are not captured by the chosen mesh level, a finer

mesh should be implemented. This process can be performed in an iterative manner such

that results will not need to be recomputed, and only intermediate values of the grid are

explored.

For each point in the uncertainty range mesh, specific performance metrics need to be

evaluated for each controller. These metrics can include things such as LQR tracking cost,

fuel consumption, phase completion time, meeting mission success criterion, and computa-
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tion time required, among others. These five are the only metrics evaluated in this thesis,

however a slew of other possible performance based evaluations could be implemented as de-

sired. LQR tracking cost is computed as defined for the LQR controller in Section 5.2.2, with

the same weighting matrices to truly measure the performance metric that each controller

was attempting to achieve. Fuel cost is measured in terms of the amount of propellant

the spacecraft has expended in truth rather than as commanded, such that the thruster

noise and potential error in thruster force level are incorporated. Phase completion time is

measured as the time from first entering a particular phase to the time of first exiting it.

Phase 2 and 3 in particular are set to end when the spacecraft reaches a tolerance around

the desired goal locations, while Phase 1a and 1b are tied specifically to a radial distance

with no tolerance included. Mission success is determined by the successful maneuvering

through all phases of the mission in the required time, without violating any constraints.

Computation time is the average time per control period required to complete the estima-

tion and control algorithms over all control periods in a phase. In this thesis, these times

are calculated from the clock times in MATLAB on a late-2013 MacBook Pro with a 2 GHz

Intel Core i7 processor and 16 GB of 1600 MHz DDR3 memory.

To evaluate these metrics, a Monte Carlo simulation of the full, multi-stage mission is

run for each point in the uncertainty range mesh, and the metrics are tracked for each phase

of the mission. The Monte Carlo simulation is meant to account for the full interaction of

aleatoric noises present in the problem. The idea is that, when complex random processes

are run for a large number of trials, the average results will tend to the true average results

as the number of trials increases. The number of trials required to run can be evaluated

such that statistically significance is achieved. The results presented in this thesis have

undergone error analysis, and in specific cases, this analysis is directly called out. Thus, the

Monte Carlo simulation is run to account for the random processes of thruster noise and

measurement noise. However, a di↵erent process is used for the uncertain parameters. At

each instantiation of a particular set of uncertain parameters (e.g., a thruster magnitude

-15% o↵ nominal and an orbital radius +10% o↵ nominal) over the full uncertainty range

mesh defined earlier, this Monte Carlo process is run. The performance metrics returned

as an average of this Monte Carlo process make up the associated evaluation of the partic-

ular controller for that specific combination of uncertain parameter values. The uncertain

parameters are treated di↵erently because they are not random processes. They are similar
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Figure 5-5: Notional examples of a univariate (left) and multivariate (right) performance
hypersurface and associated uncertainty range meshes

to biases in the knowledge of system parameters as they remain constant throughout a

mission. Therefore, the simulation only needs to be run once for each of the combinations

in the uncertainty range.

After running through the full evaluation process for all controllers and all mesh points,

the performance hypersurfaces are known as a function of the values of the uncertain pa-

rameters. Figure 5-5 shows an example of a performance hypersurface and associated uncer-

tainty sampling mesh for both a univariate and multivariate case. It is these hypersurfaces

that would be uploaded to the spacecraft for online controller scheduling. The process in

the following sections is common to both ground and onboard implementation and discusses

the calculation of probabilistic expected performance and eventual weighting of metrics and

selection of the best controller.

5.3.2 Probabilistic Metric Calculation

The computation of the expected values of performance metrics over a specific level of un-

certainty relies heavily upon a performance hypersurface being created. Therefore, before

anything can be done here, the previous section must be followed to generate these perfor-

mance hypersurfaces. Onboard implementation consists of the same process from here on

out, assuming that the performance hypersurfaces were created on the ground prior to the

mission.

Additionally, the probabilistic analysis herein relies on the uncertainty range and mesh

to be sized large enough as discussed in the previous section. If they are sized too small,

there could be important missing portions of the probability distribution left out of the
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proceeding calculation.

With both the performance hypersurface and uncertainty distribution of interest, the

probabilistic performance, or expectation of the performance, can be computed using the

law of the unconscious statistician. For the univariate case, this means that

E rmkjs =
+1
Z

�1

fk(pk)mkj(pk) dpk, (5.38)

where mkj is the value of the j-th performance metric subject to the k-th uncertain param-

eter, pk represents a specific instantiation of the k-th uncertain parameter, and fk(pk) is

the value of the PDF associated with the k-th uncertain parameter evaluated at the specific

instantiation of that uncertain parameter. The result is the integral of the multiplication

of the PDF with the performance curve as shown pictorially in Figure 5-6.
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f k(
p k
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Figure 5-6: Graphical representation of the computation of the expected performance for a
univariate uncertain parameter analysis

Note that the univariate form can be used if desired to reduce the increased computation

required for the multivariate case. Even when there are more uncertain parameters present

in the problem, separate expected performance metrics can be computed, each subject to

a univariate uncertainty analysis. The metrics would then rate how well certain controllers

handle individual uncertain parameters. The assumption one must make here is that the

controllers that perform well under individual uncertainties will also perform well under a

combination of uncertainties. If this is deemed acceptable for the mission planning process,

and analysis is performed to show stability for at least some chosen cases with combined un-

certainties, then computational time complexity reduces to a linear dependence on number

of uncertainties instead of exponential.

However, since the Monte Carlo process in determining performance hypersurfaces can

be run in parallel, this work can run on multiple cores of a personal computer or on a
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large-scale distributed computing server. This parallelization can reduce the running time

to reasonable durations. And since we have not planned to run the hypersurface creation

onboard the spacecraft, this should not be too much trouble. Therefore, if access to a large-

scale distributed computing server exists, the multivariate analysis would be far preferred

to the univariate option presented above. Nonetheless, the thesis presents both as options

going forward.

For the multivariate case, we also have from the law of the unconscious statistician that

E rmjs =
+1
Z

�1

· · ·
+1
Z

�1

f(p1, . . . , pnp)mj(p1, . . . , pnp) dp1 · · · dpnp , (5.39)

wheremj is the j-th performance metric, f(p1, . . . , pnp) is the value of the joint, multivariate

PDF at the specific instantiation of each uncertain parameter, and np is the number of

uncertain parameters involved in the multivariate PDF. In 2D, the result is the volume

integral of the multiplication of the PDF with the performance surface as shown pictorially

in Figure 5-7.
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Figure 5-7: Graphical representation of the computation of the expected performance for a
2D multivariate uncertain parameter analysis

This integration (for either the univariate or multivariate case) can be completed numer-

ically through trapezoidal integration provided the mesh is fine enough. Rather than the

linear interpolation used in the trapezoidal integration, other interpolation schemes could be

used as desired. For this thesis, an interpolation scheme known as a shape-preserving piece-

wise cubic interpolation is used for univariate analysis, and a spline interpolation scheme

is used for multivariate analysis. The choice of interpolation scheme may depend on the

number of uncertain parameters required to be integrated over, precision required and com-

putation time allowed.

With these computed expected values, we now have probabilistically predicted the per-
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formance of the controller over the expected range of uncertainty in the mission. All that is

left is to examine this data and decide which controllers have the best characteristics based

on a set of preferences that describe the relative value of the di↵erent metrics. The next

section details this process for both the univariate and multivariate analysis.

5.3.3 Controller Selection Method

The last step of the reference-tracking controller selection process is the most subjective. It

involves picking the best controllers based on the expected performance computed for all of

the metrics. Because this process involves a preference as to which metric is more important

than other metrics, it is inherently subjective. Nonetheless, given a set of preferences, the

same process can be followed to determine the best performing controller. This process

can be performed individually for each mission phase if expected performance metrics have

been computed for each phase, or it can be used to select the best controller over the full

mission.

We will first discuss the process assuming that a set of relative preferences or importance

weightings between performance metrics is known. Later, we will discuss how these weight-

ings can be created. For the time being however, it su�ces to know that these weightings

are scalar multipliers on each performance metric, such that when all metrics are summed

together, they will stress the importance of particular metrics over others.

Given this framework, the discrete optimization problem of choosing the best controller

from the controller library is represented in the univariate uncertain parameter form as

argmin
c

8

<

:

¨

˝
np
X

k=1

nm
X

j=1

⇡k�j

+1
Z

�1

fk(pk)mkj(pk) dpk

˛

‚

c

9

=

;

subject to

Pk[failure] = 1�
+1
Z

�1

fk(pk)Pk[success|pk] dpk ® 0.01 8 k = 1 . . . np,

(5.40)

where c is the specific controller being evaluated, ⇡k is the relative importance weighting

on the k-th uncertain parameter, �j is the relative importance weighting on the j-th per-

formance metric, np is the number of uncertain parameters, nm is the number of metrics,

and the integral in the argmin function is the j-th expected performance metric subject to

the k-th uncertain parameter as computed in Section 5.3.2. Additionally, the constraint
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implies that the probability of mission failure is equal to one minus the expected value of

the probability of mission success as computed in the integral, and that it should be less

than 1% as an example. This percentage is tunable of course. Mission success involves

completing the full mission in the requisite time period and meeting all constraints placed

during the mission and on resulting metrics.

For the multivariate case, the optimization problem becomes

argmin
c

8

<

:

¨

˝
nj
X

j=1

�j

+1
Z

�1

· · ·
+1
Z

�1

f(p1, . . . , pnp)mj(p1, . . . , pnp) dp1 · · · dpnp

˛

‚

c

9

=

;

subject to

P[failure] = 1�
+1
Z

�1

· · ·
+1
Z

�1

f(p1, . . . , pnp)P[success|p1, . . . , pnp ] dp1 · · · dpnp ® 0.01,

(5.41)

where all of the same definitions apply, except that mj(·) and f(·) no longer depend on

a specific uncertain parameter, pk, but all np uncertain parameters being investigated.

Additionally, the probability of failure constraint is now computed from integration of a

joint probability function of all uncertain parameters.

Essentially, what these optimization problems express is that we want to pick the con-

troller that has the lowest possible cost over the weighted sum of all expected metrics,

while adhering to constraints on the probability of mission success. Really the optimization

problem is just choosing one controller out of a reasonably small set from the controller

library, so advanced techniques do not need to be performed to solve it. Simply running the

weighted-sum cost function on all of the controllers and picking the one with the lowest cost

will su�ce. Given this formulation, the question then turns to how we set these relative

importance weightings. As usual, the answer is that it depends. That is, it depends on the

types of preferences the user has.

Sometimes, a user cares about a particular metric, but only that it is below a certain

point. As an example, this could mean that the user would prefer that the maneuver

completion time be under a specific time and would want to ignore all solutions that result

in longer times. Or the user wants to limit the fuel in a particular maneuver to be under a

specific value, but does not care how far under this value the controller is able to achieve.

In these cases, these metrics need only be added to the mission failure criterion constraint,
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such that if the metric exceeds these set values, the controller is deemed infeasible and

excluded from the selection. The relative weightings on these metrics would then be set

to zero such that only this constraint influences the choice, not performance improvements

beyond meeting the constraint.

Other times, a user will care both about a constraint and performance beyond that

constraint value. As far as weightings go, this is equivalent to the case where there are no

constraints and performance is only desired to be minimized, except that the constraint

should still be implemented as discussed in the last paragraph.

After determining the set of metrics that fall in these two categories, we now wish

to create non-zero relative weightings between these metrics. Because all of the metrics

will likely have di↵erent units, it is easiest to first normalize the metrics such that each

starts out on a level playing field. This normalization is worked into the weighting for

each performance metric, �j . It is suggested to normalize the results based on the value of

the performance metric when evaluated on the nominal system model, such that nominal

performance will be one for all metrics. In this manner, the rate of increase in a metric

above one will show how sensitive the metric is in that regime of uncertainty.

After �j has normalized all the metrics onto the same playing field, additional multipliers

can be placed based on the user’s preferences. The process is trivial if the user only cares

about one metric over all improvement in others, as it is extremely unlikely there will be

any ties in this process. In this case that metric is weighted to one and all others to zero.

Otherwise, the user needs to come up with weightings that express the degree to which he

cares about each metric and multiply this factor by the normalization factor to form �j .

Preferences are very di�cult to quantify, however, and there is danger they will just be

tweaked to produce the results the user was looking for in the first place.

Ideally, a Pareto front of controllers could be explored such that non-dominated con-

trollers are compared against the di↵erent metrics. With the Pareto front, an engineer is

able to see if there are any large jumps in improvement of one metric with a small worsen-

ing in another. With the small number of controllers in the controller library of this thesis,

however, this would not be very fruitful. Although not implemented in this thesis and left

for future work, the concept exists to vary tunable parameters in each of these controllers

and fill the Pareto front more completely such that an analysis like this would be possible.

The time required to compute performance hypersurfaces for all of these controllers was
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much too great for the author to run given hardware and financial constraints. In any case,

pre-mission analysis could still result in a satisfactory set of weightings for the onboard

controller scheduler to implement during the mission.

The previous discussion has only discussed �j , the weighting on metrics, while there

is also a weighting on uncertain parameters, ⇡k, in the univariate case. This is easier,

however, as we do not wish to normalize the results and therefore can jump straight to

ranking the uncertain parameters in order of their importance to the mission and assigning

subjective relative weights. Usually though, the covariance or level of uncertainty in the

particular uncertain parameter should provide enough weighting information itself that will

show objectively how that parameter a↵ects the mission. Therefore, in most cases, each of

the weightings can be set to one. In fact, because of this, the author would not suggest

altering the weightings from one. Nonetheless, the weightings remain in the formulation to

maintain a general form.

As a final note, with respect to treating metrics as constraints or attempting to minimize

them, there is an important distinction that needs to be made. Depending on the point at

which this analysis is being performed in the full mission lifecycle, the treatment of these

metrics may change. Typically, most of the control and software work for space missions

is completed well after the design of the spacecraft is set in stone. Thus, controllers must

conform to the limitations of the hardware. Instead, it is suggested to perform this reference-

tracking controller analysis when performing trade studies for the spacecraft design phase.

In this situation, a variety of controllers can be explored that each try to minimize certain

performance metrics and show the gains that can be achieved if parameters are tweaked

and the guidance and control software can instead dictate some design choices. If this

methodology is implemented, constraints on fuel consumption and computation time could

turn into minimization problems instead. Once the hardware is set, however, it will make

more sense to use the constraint formulation and not include them in the overall cost

evaluation function.

With this commentary, the reference-tracking controller selection process has been fully

explained. The following section will cover its implementation and hopefully illuminate

answers to any questions that are still on the mind of the reader with respect to how

certain parts of the process are carried out.
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5.4 Results

Given the previous methodology sections making up this chapter, the full reference-tracking

controller scheduling process is carried out on the multi-stage rendezvous, docking, and joint

maneuvering mission defined in detail in Chapter 3. Key results throughout the process

will be presented in this section, which explore how di↵erent controllers handle uncertainties

when following the previously computed optimal trajectories from Chapter 4 and how to

select the best performing controllers over expected uncertainties for the mission. First

though, nominal controller performance will be investigated.

As a quick reminder, this mission is that of a chaser (tug) spacecraft rendezvousing and

docking to a target spacecraft (a space station module), and proceeding to relocate it to an

assembly location. This full mission takes place in GEO and is permitted to last up to 8

hours. Nominally, the trajectory is designed for a 4 hour combined rendezvous and docking

phase from a position 3 km behind the target and 2-hour relocation phase to a position 5

km away. The extra 2-hour margin is a maximum time constraint placed on the system

when under severe uncertainties. Finally, the mass of the target is four times that of the

chaser, such that when they dock, the chaser is in command of a mass five times as large.

All nonlinear constraints described in Section 3.2 are implemented and enforced throughout

the mission. The trajectory is first optimized using the methods in Chapter 4, excluding

an obstacle avoidance scenario, yet leaving a 1-� risk margin to the LOS constraint.

The controllers from the controller library described in Section 5.2 are coded into the

MATLAB simulation framework described in Section 3.4. Each controller is designed and

tested with the nominal system parameters defined in Section 3.2.8 and to the same nominal

LQR weighting matrices. The goal of each controller is to track the optimized full-mission

trajectory throughout all mission phases, meeting all constraints along the way, and reaching

the final location before the mission time limit is exceeded.

As mentioned, first we will examine the nominal reference-tracking controller perfor-

mance without any uncertainties in the system. No measurement noise, no thruster noise,

no nonlinear orbital dynamics. However, we still run the estimator and take the (noiseless)

measurements. Each of the controllers achieves very similar performance under this easiest

of tests. Figure 5-8 shows the tracking performance of the baseline controller (the LQG

controller) plotted in the orbital plane, which is nearly identical to the other controllers. In
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Figure 5-8: Full mission tracking performance of the baseline LQR reference-tracking con-
troller and EKF estimator in the full nonlinear model simulation with no noise

Figure 5-8 and several others like it, the true simulation position of the spacecraft achieved

throughout the mission is shown in blue, the estimated position from the EKF in red, and

the reference trajectory in black. Note that in this case, the curves overlap each other sub-

stantially, and the only major noticeable di↵erence is in Phase 1a, where there is a slight

drift in the true position of the satellite from the reference and estimate due to the range

unobservability.

When measurement noise, thruster noise, orbital nonlinearities and perturbations are

added into the simulation, the spacecraft are still able to track the reference trajectory very

well. Again, the baseline LQG tracking performance is shown in Figure 5-9 and fairly closely

matches a high-level comparison of a single trial’s performance of the other controllers. With

the aleatoric noises added to the problem, the estimator does a bit worse in estimating the

true position as seen by the small deviances in Phases 1b and 3. The drift in Phase 1a has

grown now that there is some noise in the measurements and thruster execution. Because

of the range unobservability in this phase, small errors in position are not likely to be picked

up, and the estimator will think it is tracking the reference well (as it does here), because

the model of the system predicts that it should be. Once a range measurement is available
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Figure 5-9: Full mission tracking performance of the baseline LQR reference-tracking con-
troller and EKF estimator in the full nonlinear model simulation with the addition of full
measurement and thruster noise

when the true position of the spacecraft enters Phase 1b, the estimate is quickly able to

recognize this error and snap to the correct position as can be seen in the upper left plot

of Figure 5-9. Additionally, because of the highly precise measurements available in the

docking phase, the estimate, true position, and reference trajectory overlap.

Figure 5-10 shows the growth and tightening of the covariance in the estimated position

and velocity states from the standard EKF. Notice the drift in the position error during

Phase 1a until about 115 minutes into the mission, where the range measurement is avail-

able. Then there is a period of higher measurement noise in Phase 1b until about 180

minutes, where the highly precise docking sensors are in use. There is a steady decline in

the covariance in the position states during this time. After docking at 240 minutes, the

sensors have larger error again, and the commanded thrusts are much larger and thus have

larger noise characteristics in the x and z directions, which are mostly orthogonal to the

direction of thrust. This causes the covariance in the estimate to grow, but the true error

is not actually that bad. These noise characteristics match what are seen in the position

plots in Figure 5-9.
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Figure 5-10: Estimation error and covariance in velocity and position states as result from
the EKF paired with the LQR controller

Under full noise, the other controllers in the library perform similarly to the LQG

controller when looking at tracking performance plots like Figure 5-9. However, there

are some slight di↵erences that will a↵ect performance in the long run. For example,

occasionally the MPC method will encounter some di�culties when entering Phase 1b with a

large deviance from the reference trajectory. Instead of correcting for the error immediately

like the other controllers, the MPC will predict that this will take a lot of propellant and

will instead skirt the allowable tube constraint boundary before slowly edging its way over

Figure 5-11: Infrequent transition issue with the MPC controller resulting in lower tracking
performance in Phase 1b although improved fuel consumption
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Figure 5-12: Phase 3 drifting of the AEKF on a nominal system model showing the decrease
in tracking performance from the baseline LQG case

to the reference. Figure 5-11 shows this behavior. However, this happens fairly infrequently,

and the tracking performance is much better once it nears the reference trajectory.

The AEKF controller experiences some ine�ciencies due to the constant switching of

LQR gains based on the current best estimate of the thruster force level and target orbital

radius. These estimates will be slightly noisy on the nominal system, and since they are

used directly to compute the gains every control period, there will be some less-than-optimal

gains chosen at times due to the error in the estimate. This e↵ect can be seen best in Phase

3, when the gains are larger due to the extra mass. Figure 5-12 shows the additional noise

and tracking error present for the AEKF on a fairly typical trial run. Figure 5-13 shows the

source of this estimate in the steady state estimate of the thruster force level in Phase 3.

However, Figure 5-13 shows the estimate of the thruster force, when there was a significant

error (-50%) in the controller’s nominal model. One can see that the deviation in the

estimate is much smaller than the error that would exist on a standard LQG controller if

the thrust magnitude were significantly o↵ nominal. This is where the AEKF technique

gains performance as the error in uncertain parameters, like the thruster force magnitude,
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Figure 5-13: The progression of the thruster force level estimation performed by the AEKF
for a single, typical simulation run over a full mission
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grow. The estimation improves as more thrust is commanded in the mission and as the

measurements increase precision, such that by the end of Phase 2, the AEKF has almost

nailed the true force magnitude. When more noise is present in Phase 3, the estimate starts

to su↵er a little bit. This same behavior still happens in Phase 3 when implemented on the

nominal thrust magnitude case.

One of the main benefits of the SWLQG controller is due to the fact that it attempts to

desensitize the optimal gains to errors in both thruster force magnitude and orbital radius.

The main e↵ect of this desensitization is that the gains are decreased. And decreased gains

lead to better fuel performance. Additionally, due to the desensitization, the SWLQG

controller is also less sensitive to noise in the thrusters, not only errors in the force bias.

These decreased gains cause the SWLQG to track the trajectory somewhat slower than the

others, however this only amounts to a lag and the desired shape of the reference is still

attained. Results thus look very similar to Figure 5-9 for the baseline LQG controller.

Before completely transitioning to discussing performance of the controllers when there

are large errors in uncertain parameters during a mission, a comparison of the controllers’

average performance to the nominal system will first be analyzed. Fuel consumption di↵ers

somewhat significantly between the controllers as the optimization is geared toward LQR

cost instead. Figure 5-14 shows a typical mission timeline of fuel consumption for each of

the controllers. Immediately, the MPC and SWLQG controllers are seen to be much more

fuel e�cient, while the baseline LQG and AEKF have similar fuel use. The AEKF has a

slightly worse variance in results from run to run due to the ine�ciencies discussed. The

SWLQG has the best fuel performance due to the lower gains. Another interesting note
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Figure 5-14: Comparison of fuel consumption histories over a single, typical run of a full
mission for each controller in the controller library
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is that MPC does not have a large jump in fuel consumption around the 115-minute mark

like the other controllers do. The absence of this jump is because it does not transition as

abruptly when entering Phase 1b as discussed earlier and shown in Figure 5-11.

Table 5.1: Nominal performance metric evaluation and comparison for each controller in
the controller library on a full mission with aleatoric but no epistemic uncertainty

Controller LQR Cost Fuel (m/s) Completion Time (min) Computation Time (s)

AEKF 483 9.1 356 6.2⇥10�3

LQG 324 9.0 354 2.0⇥10�4

MPC 280 7.6 355 5.8⇥10�2

SWLQG 379 5.6 353 2.5⇥10�4

Table 5.1 shows a wider, full-mission comparison of averages of each of the metrics of

interest over a 10,000 trial Monte Carlo simulation. The metrics consist of LQR cost, fuel

consumption, mission completion time and computation time required per control period.

There are several di↵erences between these controllers that are illuminated by these nominal

results. First though, let it be known that the LQR cost shown is weighted di↵erently than

that used to design the controllers. It only takes into account the state error between the

reference trajectory and the true spacecraft position throughout the mission. The change

was made to decouple this metric from the fuel consumption metric so as to not count fuel

twice and to have a specific metric for how well the tracking is performed. With that said,

when comparing the LQR cost, the MPC controller performs the best followed in order

by LQG, SWLQG and AEKF. This ordering was more or less expected from a high-level

ranking of performance tradeo↵ with robustness. To gain extra robustness to errors in the

nominal model, the controller needs to give up some performance when executed on the

nominal model. In terms of fuel consumption, the average results match the trends that

were seen in Figure 5-14 for the individual trials. The AEKF and LQG have statistically

insignificant di↵erences in fuel usage, while the MPC and SWLQG each perform better.

Di↵erences in mission completion times are statistically insignificant. Computation times

are orders of magnitude di↵erent, with MPC being overwhelmingly slower as expected, and

the LQG and SWLQG having comparatively fast computation times. Computation times

are calculated based on the clock times in MATLAB on a late-2013 MacBook Pro with a 2
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GHz Intel Core i7 processor and 16 GB of 1600 MHz DDR3 memory.

Given the nominal performance of each of the controllers, the discussion now shifts to

o↵-nominal performance. The aim here is not only to see which controller performs the best

under ideal circumstances, but also to see how the controllers react to errors in uncertain

parameters in the dynamics. Therefore, we are looking for a good balance of performance

and robustness depending on the uncertainty level. Specifically, modeling errors in the

Figure 5-15: Comparison of the baseline LQG controller tracking performance to specific
biases in uncertain parameters over the full mission
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target’s orbital radius and the thruster force magnitude are considered in this problem

as discussed in Section 5.1.3. These errors can be considered constant unknown biases

throughout the mission and are not stochastic processes like the measurement and actuator

noise.

Figure 5-15 shows the LQG controller tracking performance when there are errors in the

knowledge of the target’s initial orbital radius that defines the CWH frame and the force

magnitude of the thrusters. Each plot introduces a specific error as noted by the text on

the right of the plot. The LQG controller is designed to nominal values without knowing

this error is present.

In the top plot of Figure 5-15, when the thruster force is overestimated, there is a strong

drift in Phase 1a, where the unobservability prevents the EKF from knowing of this bias.

Eventually, the angle to the target reaches a point where the measurements do not match

the model, and the EKF begins to trust the measurements more and model less. In Phase

1b and 2, the performance degradation is more subtle. However, in Phase 3, due to the large

thrusts required, drift is seen again to the point where the spacecraft crosses the relocation

point and begins to loop backward. As the error in this direction grows, the loop here grows

as well until the spacecraft does not have enough time to reach the goal location.

When thruster force is underestimated, as in the second plot from the top, there is

drifting in the opposite directions. In this case, during Phase 1a, the chaser gets much

ahead of the reference trajectory such that it enters Phase 1b early, gains a better estimate

of its location, and immediately performs a large correction to get back to the reference

trajectory (which was still lagging in Phase 1a). This action requires a lot of fuel and

therefore causes a major decrease in performance.

Similar but more pronounced drifting can be seen for errors in the target orbital radius

during Phase 3, however the drifting in Phase 1a is reduced in comparison. Note that the

first and third plots in Figure 5-15 exhibit drifting in the same direction. In these cases, the

orbital dynamics are stronger than expected in comparison to the thruster force level. The

last plot is for an essentially near-infinite orbital radius, which approaches a case with zero

orbital mechanics present. Interestingly, the behavior is relatively constant after a five-fold

increase in the orbital radius since the magnitude of the orbital dynamic forces is much

smaller than the thruster forces.

These same general trends in performance degradation can be seen in the other con-
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trollers to varying degrees. This raises the question of which controller can handle the most

error in these uncertain parameters before failing the mission by violating path constraints

or exceeding the maximum mission duration. To determine this, the Monte Carlo process

described in Section 5.1.2 is run for the full range of uncertainty expected for each uncertain

parameter separately. This analysis will represent the univariate case, while the multivari-

ate case will be explored later to see how a combination of these two uncertainties a↵ects

robustness.

Figure 5-16 plots the mission success rate as a function of error in the model of the

thruster force magnitude for each of the controllers as a comparison of their robustness

ranges. Each point on the plot is computed by determining the number of successful missions

from a reduced Monte Carlo simulation of 1,000 trials for each specific value of thruster force

error bias. Due to increased computation time only 500 trials are run for AEKF and 100 for

MPC. Again, the controllers are designed to nominal values without knowing this constant

error is present. The width of the 100%-mission-success plateau represents the range of

thruster force magnitude errors that the controller can withstand before the mission fails.

The nominal thruster force magnitude is represented as 1, a value of 2 represents a 100%

increase in the magnitude, and so forth. From this analysis, the AEKF controller seems to

be substantially more robust than the other controllers, covering a range from 0.26 (-74%)

through 4.5 (+350%). LQG and SWLQG have similar ranges, however SWLQG is shifted

to the right due to the reduction in controller gain from desensitization. The MPC has the

worst robustness range, only covering from about 0.8 (-20%) to 1.15 (+15%).

It is worth it to note at this point, that most of the techniques are not failing because

they go unstable, but because they violate the mission completion time constraints in the

problem. Thus, although SWLQG may have worse range in the reduction of thrust direc-

tion, it may have larger stability margins, and only have a longer response time. Because
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Figure 5-16: Percent mission success throughout the Monte Carlo trials plotted against
uncertainty in the thruster force magnitude for each controller
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Figure 5-17: Percent mission success throughout the Monte Carlo trials plotted against
uncertainty in the orbital radius for each controller

of the constraints in this problem, this is not an analysis of phase and gain margin robust-

ness of each of controllers, but more of a practical evaluation of mission success criterion.

Nonetheless, the takeaway here is that there is a tremendous gain in robustness from using

an AEKF controller, and that MPC is the most fragile of the techniques explored.

A similar plot is created and shown in Figure 5-17 for the mission success rate as a

function of error in the model of the target’s initial orbital radius for each of the controllers.

Again, we see the best robustness from the AEKF and the worst from the MPC controller.

Interestingly, each of the LQG, SWLQG and AEKF are robust to any increase in the true

target’s orbital radius. Essentially, this just means that they are robust to an “F=ma”

truth model without any orbital dynamics present. AEKF completes missions successfully

until about a 53% reduction in orbital radius, LQG a 47% reduction, and both MPC and

SWLQG about a 40% reduction. MPC also starts to fail at about double the radius. These

robustness ranges are actually quite impressive and one would never expect an error in the

estimate of the target’s orbital radius by these margins. This is likely a consequence of

the analysis being performed in GEO, where the orbital dynamics are much weaker than

in LEO. If the mission were instead in LEO, one could expect these ranges to decrease

significantly.

Now the discussion has moved into the realm of creating performance curves and surfaces

for this problem. The univariate case will continue to be presented to show the controllers’

performance metrics against errors in one uncertain parameter at a time. In a sense, the

robustness plots in Figure 5-16 and Figure 5-17 are performance curves for mission success

probability, except they will be used primarily for probability of success constraint adher-

ence when considering which controllers to pick for specific uncertainty distributions. The

performance curves for the LQR cost will first be explained, and then other metrics will be
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discussed briefly as they follow the same process of creation.

Figure 5-18 gives a detailed view of the LQR cost performance curves for unknown

biases in the thruster force magnitude. These curves were created for each controller by

running a Monte Carlo simulation for specific values of the uncertain parameter, in this

case the thruster force magnitude. This Monte Carlo simulation varies aleatoric noises to

evaluate the average LQR cost at a specific instantiation of an unknown bias in the thruster

force magnitude. The performance curve itself is then the average LQR cost as a function

of the value of the uncertain parameter. LQR performance curves are computed for each

controller over the same uncertainty range using the same random seeds for the Monte

Carlo simulation. The LQG and SWLQG controller each could be run for 10,000 Monte

Carlo trials, while due to computation time constraints the AEKF could only run for 1,000

trials and the MPC for 500 trials. To account for this, 95% confidence error bars are added
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Figure 5-18: Performance curves for the LQR cost metric of each controller across uncer-
tainty in the thruster force magnitude. Di↵erent zoom levels shown, with no error bars on
one of the furthest zoomed.
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to the plots to show statistical significance. This is especially important for the LQR cost

performance curves as they fall very close to each other in critical ranges.

In the left of Figure 5-18, over the whole uncertainty range of interest the AEKF con-

troller seems to have the lowest LQR cost outside the range of about 0.9 to 1.1 times the

nominal thruster force magnitude, while MPC seems to have the highest LQR cost outside

this range. LQG an SWLQG appear to have very similar performance, with LQG having

lower cost for negative thruster force errors and SWLQG having ever so slightly lower LQR

cost for positive thruster force errors. The two plots on the right show a zoom in on the

range of about 7% from the nominal value (one with error bars to show statistical signif-

icance and one without for clarity). With small errors in thruster force from the nominal

model, MPC has the lowest LQR cost (from about 0.975 to 1.05), and otherwise the base-

line LQG controller has the lowest LQR cost. These plots show the overhead present in

the more robust controllers as nominal performance decreases roughly in the order of how

robust each controller is as shown in Figure 5-16.

Figure 5-19 shows the same LQR performance plots for the uncertainty in the target’s
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Figure 5-19: Performance curves for the LQR cost metric of each controller across uncer-
tainty in the orbital radius. Di↵erent zoom levels shown, with no error bars on one of the
furthest zoomed.
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orbital radius. These are computed with nominal thruster force values, but varying an

unknown bias in the orbital radius uncertain parameter. Qualitatively the results are very

similar to the thruster force magnitude analysis. The AEKF has the lowest LQR cost when

the error is large as shown in the plots on the left. The LQG has the lowest LQR cost in the

middle range and MPC has the lowest cost when small errors exist. Again, 95% confidence

error bars are shown to support statistical significance of the results. Interesting here is

that with positive error, the MPC controller transitions directly to the AEKF controller on

the rightmost plots rather than transitioning through the LQG controller as happens in the

negative direction and in the thruster force case. The dependence of the MPC optimization

on knowing the true model is shown by how poorly it performs with modest error in the

model and how well it performs with little error. Note again that ranges of error in the

orbital radius will likely be a small percentage of the nominal and this full range is not quite

realistic. Nevertheless, it is worthwhile academically to see where and how these controllers

tradeo↵ their performance in comparison to each other.

The same analysis can be completed to find the performance curves for the other metrics

as well. In fact, these metrics should be tracked in the same simulation runs as the LQR

cost, such that these simulations only need to be run once. The resulting performance

curves for both the thruster force magnitude and the orbital radius univariate analyses are

found in Figure 5-20. These curves do not have error bars shown as they are much smaller

than any di↵erence between the curves and only serve to clutter the results.

As depicted in the topmost two plots in Figure 5-20, the computation time per control

period for the LQG, SWLQG and AEKF does not depend on the value of the uncertain

parameter, yet for MPC there is an increase in computation time the larger the errors from

the nominal model. This increase is due to the constraint tightening in the MPC algorithm.

With larger errors in the uncertain parameters, the constraint tightening algorithm must

iterate through more constraints before a feasible solution can be found. Eventually there is

a cuto↵ on the number of iterations and missions that exceed this cuto↵ point are deemed

failures as they cannot find a feasibly optimal plan. Data is not shown on these performance

curve plots when the success probability computed for that parameter error is less than 90%.

Mission completion times for the di↵erent controllers vary with the same general trend

for the most part, however there is one major di↵erence with respect to thruster force

magnitude uncertainty. In this case, the AEKF is able to estimate the correct thruster force
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Figure 5-20: Performance curves for the computation time, fuel consumption and mission
completion time metrics for each controller as compared for uncertainty in the orbital radius
and the thruster force magnitude separately
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fairly well such that the completion time is not a↵ected significantly when large uncertainties

are present. For the orbital radius case, the AEKF is not quite as good at estimating, so

this behavior is not seen to the same e↵ect. A final note with regard to completion times

is that when the thruster force is larger than expected, the controllers tend to lead the

reference by a slight margin such that mission times drop on average as the thruster force

error increases until controllers start overcorrecting for it.

Finally, when looking at fuel costs in the bottom plots in Figure 5-20, it is quite apparent

that the SWLQG controller performs the best in this respect over the full uncertainty ranges.

MPC also performs well with small errors from the nominal model, but is even worse than

the baseline LQG and AEKF fuel consumption under larger errors. The SWLQG has this

better fuel performance as discussed before because of the reduction in gains from the

desensitization process.

To finish the univariate analysis, the LQR cost is treated as the only performance metric

of interest and the best performing controller over the full mission in terms of the LQR cost is

therefore desired. The analysis could easily be done individually for each phase by tracking

phase-by-phase metrics and going through the same process four times. This phase-by-

phase analysis is left for the multivariate case however. Figure 5-21 shows the ranges of

three uncertainty distribution types in which each controller type has the best expected

LQR cost. The expected LQR cost is computed as the integral of the performance curve

multiplied point by point by the probability density function of interest. This expected LQR

cost scalar value is computed for each controller and the controller with the lowest value is

chosen as the optimal reference-tracking controller for that specific uncertainty distribution.

In Figure 5-21, the colored bars above the example PDFs show the ranges in which

each controller is deemed optimal. For the uniform distribution, the range is defined by

the half-width of the distribution. For the Gaussian distribution, the range is defined by

the standard deviation. For the Weibull distribution, it is defined by the location of the

maximum of the PDF. Since, the Weibull distribution is asymmetric, it highlights how

the ranges change in positive and negative directions better than the others. Additionally,

under each of the colored bars is an example distribution from that class as colored by

which controller would be optimal under that distribution. Table 5.2 and Table 5.3 show

the ranges in numerical form for the thruster force magnitude uncertainty and orbital radius

uncertainty respectively.
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Figure 5-21: Best performing controllers with respect to LQR cost over di↵erent uncertainty
distributions and levels. Ranges and several example distributions shown colored by which
controller would have the optimal LQR cost over that distribution.
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Table 5.2: Ranges of uncertainty for which each controller has the best LQR cost under
di↵erent distributions types for errors in thruster force magnitude

Uniform Gaussian Weibull

Controller “�” = halfwidth “�” = � “�” = location of PDF max

AEKF |�|> 15% |�|> 8% � < �10% or � > 7%

LQG 5% < |�|< 15% 3% < |�|< 8% �10% < � < �3% or 4% < � < 7%

MPC |�|< 5% |�|< 3% �3% < � < 4%

SWLQG - - -

Table 5.3: Ranges of uncertainty for which each controller has the best LQR cost under
di↵erent distributions types for errors in the target’s initial orbital radius

Uniform Gaussian Weibull

Controller “�” = halfwidth “�” = � “�” = location of PDF max

AEKF |�|> 42% |�|> 17% � < �43% or � > 10%

LQG 11% < |�|< 42% 5% < |�|< 17% �43% < � < �6% or 3% < � < 10%

MPC |�|< 11% |�|< 5% �6% < � < 3%

SWLQG - - -

As the error bars were shown in Figure 5-18 and Figure 5-19 to demonstrate statistical

significance of the performance curves, there is a similar approach that can be taken to

show areas that have statistically significant best performing controllers under di↵erent

uncertainty levels. Figure 5-22 shows this analysis, where the same format is used as in

Figure 5-21. Although now, the ranges of uncertainty that do not show a statistically

significant choice between the adjacent best performing controllers are colored grey. To

determine statistical significance here, the concern is essentially the error bars around the

boundaries between controllers in Figure 5-21. The process to compute these grey areas

is to add or subtract two standard deviations to the performance curves such that the

performance curves for adjacent controllers are given “best” and “worst” case bounds. At

this point, the integration over these modified curves is performed again, and the area

between these two bounds is colored grey.

In Figure 5-22, it can be seen that the grey areas are not insignificant. Although the

225



Uniform
Gaussian
Weibull

0.5 0.75 1 1.25 1.5
Orbital Radius (fraction of nominal)

    0

10000

20000

30000

40000

50000

LQ
R 

Co
st

Orbital Radius Uncertainty

0.8 0.9 1 1.1 1.2
Thruster Force (fraction of nominal)

0

5000

10000

15000

LQ
R

 C
os

t

Thruster Force Uncertainty

Uniform
Gaussian
Weibull

Uncertain UncertainUncertain Uncertain

Figure 5-22: Best performing controllers with respect to LQR cost over di↵erent uncertainty
distributions and levels. Shown in grey are the uncertainty ranges of the boundaries (i.e.,
when the choice between adjacent best performing controllers is not statistically significant
to two standard deviations).

main e↵ects of the analysis remain, there are significant ranges of uncertainty that do not

show a statistically clear preference for one controller over another. This uncertainty can

be resolved through simply running more Monte Carlo simulation trials. Of course, using

more trials takes more time to run, and there must be a balance between acceptable ranges

of ambiguity and processing time required. In this thesis, however, the levels of ambiguity

between adjacent controllers were deemed acceptable, and the analysis will continue.

These results conclude the univariate analysis presented in this thesis. We have found

optimal full-mission controllers in terms of LQR cost and constrained by mission completion

time. For this analysis, the fuel and computation time neither had constraints nor any

weighting in the final performance criterion. The multivariate case will study individual

controller selection for each phase and will also show how the results change when di↵erent

weightings are placed on fuel and LQR cost to create the final performance metric.

In reality, the uncertainties will not act individually on the system as is assumed in the

univariate case. If there are multiple uncertain parameters, they will act on the system

together. Therefore, an analysis needs to be performed on the multivariate, joint uncer-

tainty distribution between all of the uncertain parameters involved in the system. For

this thesis, both the orbital radius and thruster force magnitude uncertainty will be looked

at together. Remember, however, that the multivariate process is both data intensive and
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time consuming to complete. If the user is heavily constrained in terms of data space or

processing time, the univariate analysis may be all that is able to be performed. For this

thesis, the multivariate analysis was performed in parallel on 12 cores from three di↵erent

computers and took a couple days in total to run a performance and robustness evaluation

for all four controllers (MPC taking a large majority of the time).

The same process is carried out as detailed when discussing the univariate results and

in Section 5.1.2 and Section 5.3. This time the uncertainty range is in two dimensions,

and thus performance surfaces are generated instead of performance curves. A Monte

Carlo simulation is therefore run on each point in the 2D mesh grid of uncertain parameter

values such that the average performance metrics are calculated for every point. Due to the

substantial increase in evaluation points, the number of trials for the Monte Carlo simulation

is reduced to 1,000 for the LQG and SWLQG controllers, 100 for the AEKF and 50 for the

MPC.

The robustness comparison between the di↵erent controllers can now be represented in

the 2D uncertainty space spanned by the orbital radius and thruster force uncertain param-

eter error. Figure 5-23 shows the 100% mission success contour lines for each controller.

A larger area enclosed by the contour implies a more robust controller. Figure 5-16 and

Figure 5-17 show the cross sections of this plot on the dotted, nominal model lines. From

here we can see that the AEKF is far more robust than the others, and MPC is by far the
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Figure 5-23: Robustness comparison showing 100% mission success contours for each con-
troller over the multivariate uncertainty space of orbital radius and thruster force
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most fragile. LQG and SWLQG have comparable enclosed areas but are shifted from each

other slightly. There are some interesting outcrops on both of these controllers’ contours

when there is low thruster force and higher orbital radius. This behavior seems to be due

to a cancelling out of e↵ects. The low thrust combines with a low orbital dynamic force to

perform similarly to the nominal case. The same behavior happens when the orbital radius

shrinks and the thruster force grows. The fast-paced dynamics from lowering the radius

seem to be countered by the increase in thruster force and better robustness is seen in these

directions. When the thruster force is low and a low orbital radius makes the dynamics

faster, the controllers have a more di�cult time as shown by the reduced robustness in

the bottom left quadrant of the plot. Note that the contours are fairly noisy due to the

lower number of Monte Carlo trials being run in this analysis, but also because it is a 100%

contour that will skip areas that have say a 99.9% success rate. The drop o↵ in success rate

seems to be fairly steep in this analysis however, so the approximation suits us well.

The performance surfaces are computed in the same uncertainty ranges for thruster force

magnitude and target orbital radius as were used for the univariate analysis, except this

time of course the mesh grid is in two dimensions instead, and the combinations of these

uncertain parameter errors are explored. It becomes more di�cult to show comparisons of

the surfaces with respect to each other in 3D, so instead each of the surfaces will be shown

on separate axes with the same axes limits and coloring, such that rough comparisons can

be made. Additionally, contour plots can be examined in a qualitative manner. Figure 5-24

shows a comparison of the LQR performance surfaces for all four controllers and Figure 5-25

shows the comparison for the fuel consumption performance surfaces. Only results from the

full mission analysis are shown here. Individual phase performance surfaces di↵er between

phases due to the di↵erent levels of measurement noise, sensors available, and maneuver

goals, and thus the results will vary depending on the particular phase. For the purposes

of limiting the already large number of plots in this results section, the individual phase

results will be presented without showing the individual performance surfaces. In any case,

the full mission surfaces encompass contributions from all phases to give a more hearty test

of each controller.

At first glance in Figure 5-24, all of the performance surfaces look very similar. They

all share a common shape, almost like a paraboloid or a bowl with a distinct minimum

near the nominal model. Looking closer however, there are several things noticeable. First,
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Figure 5-24: Multivariate LQR cost performance surfaces for each controller over orbital
radius and thruster force magnitude uncertainty for the full mission

and most obvious is that the MPC performance surface is much narrower than the others

and a bit noisier. The narrowness, shows how the performance degrades quickly as large

errors are present in the model and the fact that the MPC surface was only computed over

a smaller uncertainty range due to this fragility. The noisiness is due to the low number

of Monte Carlo trials run. If we look at the first contour of each of the plots, however, we

see that the MPC one is wider than the others and the AEKF one is the smallest. This

implies that the MPC controller is better performing in terms of LQR cost when the error

is small. We can also see looking at the outer edge of the contours that the AEKF covers

a larger area in the top left corner, suggesting that the performance of the AEKF is better

than the others when thruster force is low and orbital radius is low (i.e., the case where the

uncertainties work against each other).

Fuel performance surfaces are shown in Figure 5-25, and contrasting the LQR cost

performance surfaces, actually look quite di↵erent. A commonality however is that fuel

consumption seems to be less, forming a valley in each of the surfaces in the direction where
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Figure 5-25: Multivariate fuel consumption performance surfaces for each controller over
orbital radius and thruster force magnitude uncertainty for the full mission

the uncertainties work together (i.e., when thruster force is low and orbital radius is high

or when thruster force if high and orbital radius is low). The contours in this direction

are much wider than the orthogonal direction, where the uncertainties work against each

other. As expected from the univariate results, the SWLQG far outperforms the others in

terms of fuel consumption, hovering below 10 m/s for most of the area, while LQG and

AEKF have the highest fuel consumption hanging above 10 m/s for the most part. MPC

has some interesting behavior in that it has better fuel performance than nominal when

the uncertainties work together. This e↵ect is strange although could be explained by the

dynamics doing more work than is expected from the optimization and thus advancing

through the trajectory more quickly than is actually desired from an LQR cost perspective

(which the MPC controller is attempting to optimize each time step).

Now, when computing the optimal controller for this analysis, the LQR cost and fuel

consumption will be weighted individually and the mission completion time and compu-

tation time metrics will only be used for probabilistic constraints that guarantee within
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a certain probability that the mission will succeed and meet these additional metric con-

straints. These constraints will be applied di↵erently based on a particular phase of the

mission. In this situation, the sum of the expected performance in the weighted LQR cost

and fuel consumption will dictate which controller is the best. For the full mission, we

can plot the best controller over the 2D area of error in the uncertain parameters. Figures

5-26, 5-27, 5-28, 5-29, 5-30, and 5-31 show this for six di↵erent weightings between the

two metrics. Figure 5-26 shows what happens when only LQR cost is considered (i.e., 0

weighting on fuel). Figure 5-27 depicts the situation when there is a 50% relative weighting

on the fuel, Figure 5-28 depicts that when there is an equal weighting, Figure 5-29 when

there is a 200% weighting on fuel, Figure 5-30 when there is a 400% weighting on fuel, and

Figure 5-31 when there is a 1000% weighting on fuel. If the full fuel plot were shown it

would be composed entirely of purple except a small yellow area, so it is left out.

As the importance of fuel increases, we can see the SWLQG controller gradually take

over optimality from the LQG and MPC controllers. AEKF tends to have a stranglehold

on the areas where thruster force and orbital radius act in opposing directions, and LQG

on the areas in which they work together. In the first two plots, the MPC controller is still
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Figure 5-26: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost)
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Figure 5-27: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 1

2⇥Fuel)
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Figure 5-28: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 1⇥Fuel)
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Figure 5-29: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 2⇥Fuel)
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Figure 5-30: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 4⇥Fuel)
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Figure 5-31: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 10⇥Fuel)

optimal when there are small errors as expected. However, from the third plot on, the

SWLQG controller takes over the nominally best spot. Note that Figure 5-18 and Figure 5-

19 essentially show cross sections of Figure 5-26 along the nominal model lines.

Figure 5-32 presents a similar error analysis to that shown in the univariate case in

Figure 5-22. In the multivariate case, the number of Monte Carlo trials run was an order

of magnitude smaller than the univariate case, and as such the bounds are this time shown

using only one standard deviation. The same process is followed, where this time one

standard deviation is added or subtracted from each performance surface to determine

“best” and “worst” case performances surfaces for each controller. The area between these

two bounds is colored grey. This analysis must be done pairwise between each of the

controllers as the intersecting areas are all combined into the contiguous grey region shown

in Figure 5-32. Again, in the LQR-cost-only case, the underlying results for each controller

are upheld, although the grey areas are shown to be non-negligible. To decrease the size

of these grey areas of ambiguity, more Monte Carlo simulation trials would need to be run.

The results at the end of this section fall into the regions where there is a statistically

significant controller choice, and this error analysis will not be further explored.

234



Uncertain

Figure 5-32: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (LQR cost + 0⇥Fuel). Shown
in grey are the areas in which the choice between best performing controllers is not statis-
tically significant to one standard deviation.

While interesting and useful to illustrate overall performance, the previous area charts

are shown for the case of using the same controller over the full mission, while we are

interested in the individual controllers that perform the best in each phase. The following

results show examples of finding the best controllers over each individual phase.

First though, since the objectives in each phase are di↵erent, the overall performance

metric weightings must be chosen to match these objectives. Table 5.4 shows a proposed

weighting scheme for this mission. Alternate schemes can be used per the user’s discretion.

Specifically, in Phase 1a, there is a concern for having low fuel consumption but also not to

drift significantly and cause excess error heading into Phase 1b. So, in Phase 1a, the LQR

tracking cost and fuel cost are weighted equally. In Phase 1b, the tracking performance

is more important since we need to ensure the spacecraft is staged well enough to begin

the docking phase. So, we lower the fuel consumption weighting to a quarter. Both of

these phases are fairly slow and allow for high computational cost, so we do not place

any constraints on the other metrics. In Phase 2, docking is of the utmost importance,
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and therefore, it is critical to meet the stringent docking constraints and minimize error

upon docking. Thus, in Phase 2, we weight the fuel consumption as zero and only assess

the LQR cost. Additionally, we place a constraint on the computation time to account

for extra computation costs from docking sensor processing and the more time critical

reaction required in some cases. Following the mission CONOPS, there is also a constraint

that docking happens before an eclipse blocks out the fiducial markings, and therefore,

the phase end time is also constrained. In Phase 3, tracking performance is important in

case an obstacle constraint were encountered as in Section 4.4.3, but it is also the most

fuel intensive phase, thus we also care about fuel e�ciency. Finally, there is a full mission

duration timeout that is enforced in Phase 3. Table 5.4 summarizes this discussion.

Table 5.4: Phase-by-phase description of performance metric weightings and constraints
over which to optimize a baseline controller schedule

Phase 1a Phase 1b Phase 2 Phase 3

LQR Cost Weighting 1 1 1 1

Fuel Cost Weighting 1 0.25 0 0.5

Phase Time Constraint No No Yes Yes

Computation Constraint No No Yes No

Using the weightings and constraints in Table 5.4, Figure 5-33 shows the areas in which

each controller is optimal for individual phases. With no error in the model of the system,

the best performing controllers for each phase are SWLQG in Phases 1a and 1b, LQG in

Phase 2, and MPC in Phase 3. Thus, only considering the di↵erent aleatoric noise levels and

the di↵erent objectives in each phase, there are particular controllers that favor particular

phases. This confirms some of the motivational material presented with regards to this

topic in Chapter 1.

The individual phase area charts in Figure 5-33 show di↵erent behavior than those seen

in the full-mission versions from Figure 5-26 through Figure 5-31 for the most part. Phase 3

shows the most similarity, with the AEKF, SWLQG and LQG regions remaining very close

to the full-mission case, but the MPC region has grown significantly. The MPC technique

does its best in the joint maneuver phase, while does oddly perform well with moderately

high thruster force error in comparison to the others in Phase 1a. This odd behavior is
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Figure 5-33: Areas of the multivariate uncertainty space over orbital radius and thruster
force magnitude that each controller has the best performance (per weightings in Table 5.4)
for each individual phase

mainly due to the better fuel performance as seen and discussed in Figure 5-20 for the mid-

range thruster force error. The AEKF technique maintains dominance of the outer edges

of the uncertainty range for the most part, and thus, in general, seems to still be the best

choice when the error is large in the uncertain parameter. The LQG controller makes up

a large portion of the Phase 1b, 2 and 3 charts, but not as much in Phase 1a, where there

seems to be a benefit to fuel e�cient techniques and those better able to react to deviances

from the reference trajectory.
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Another benefit of splitting this analysis into individual phases is that we can indi-

vidually vary uncertainty levels in the di↵erent phases to see if lower uncertainty in these

parameters is expected in certain phases, to only analyze that particular phase by those

levels. For example, if we look at an uncertain target spacecraft mass. This will add ad-

ditional uncertainty to our thruster force magnitude (which represents both uncertainties

in mass and thruster force as discussed in Section 5.1.3), but only for Phase 3, the joint

maneuver phase. By analyzing the results here in Phase 3 under the assumption of a higher

level of uncertainty in Phase 3, we can account for cases like this.

These plots are interesting when looking at best performance in terms of a specific

instantiation of the error in the uncertain parameters, but what we really want is to know the

controller that has the best probabilistically expected performance over the full uncertainty

distribution. These area plots do not tell the full story though, as due to the asymmetric

nature of the chart, a controller could only be slightly worse performing in all areas and

not show up in this plot, but still be best performing overall on a particular range. Thus,

it is important to perform the expected performance calculation based on integrating over

the full probability density function representing the uncertain parameter distribution. In

the multivariate case for two uncertain parameters, this means performing the volume

integral over the joint PDF. If this is performed for each controller in each phase, the

result will be a single controller that has the probabilistically best performance over that

specific uncertainty distribution. This controller will be the answer to the question of

which reference-tracking controller would best balance the tradeo↵ between performance

and robustness.

For the online controller scheduling process, all of the individual phase performance

surfaces are uploaded to the spacecraft, and all that needs to be done onboard is to perform

this integration given the current uncertainty distribution in the relevant parameters and

select the best performing controller for the upcoming phases. As the process is the same

from here on out, there will not be any distinction between the results that would be

obtained for either the analysis before or during the mission. The only di↵erence during

the mission (not covered here) is that the uncertainty distribution may not have its mean

at the nominal model location, and therefore the integration will be performed with an

o↵-center distribution. This assumes the onboard controller designs are not updated with

the information from the new mean of the distribution.
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Table 5.5: Probabilistically optimal reference-tracking controllers chosen for each mission
phase under three Gaussian uncertainty distributions

Low Uncertainty Medium Uncertainty Large Uncertainty

Covariance (⌃)

»

–(10km)2 0

0 (0.2N)2

fi

fl

»

–(10km)2 0

0 (2N)2

fi

fl

»

–(100km)2 0

0 (4N)2

fi

fl

Phase 1a SWLQG AEKF AEKF

Phase 1b SWLQG SWLQG AEKF

Phase 2 LQG LQG LQG

Phase 3 MPC AEKF AEKF

In either case, if we perform this integration with the metric weightings and constraints

given in Table 5.4, we can obtain optimal controller choices for each phase under specific

uncertainty ranges. A summary of these results is shown in Table 5.5 for a few uncertainty

distribution options ranging from low uncertainty in the range of 1% to high uncertainty

of 40%. Note that the uncertainty of the target’s initial orbital radius is kept to reasonable

values instead of exploring the full range of ±50%, since this range was only explored for

academic interest, and in reality, the uncertainties in this parameter will not grow that

large. There is, however, one situation in which the orbital radius uncertainty may reach

these large ranges. If an orbital debris removal spacecraft or a servicing spacecraft were

only going to implement one controller over its lifetime and were to visit multiple targets

at possibly very di↵erent orbital altitudes, the uncertainty distribution of target radii may

be analyzed here to select the best controller needed in this case.

As the uncertainty level increases, we see that the AEKF controller gradually becomes

the optimal controller for all of the phases except for the docking phase. In the docking

phase, Phase 2, the measurements are very precise, and thus the EKF does not trust the

model nearly as much, and the estimation does not su↵er. The LQG controller performs

the best in Phase 2 throughout any reasonable uncertainty range. When the estimation

does not su↵er, the LQG controller (although with suboptimal gains) is able to track the

reference much better. Remember that there is a computation constraint in Phase 2, so

the MPC technique was not in the running for the selection. MPC does have the best

performance with small error in Phase 3, but cedes to the AEKF by about 9% variance in

thrust and about 7% variance in radius.
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In Phase 1b, the area chart makes it seem like LQG may be better under moderate

amounts of uncertainty. In reality, the performance surfaces are very close to each other.

And because the Gaussian PDF weighs the area closer to the nominal model heavier than

elsewhere, the SWLQG controller’s expected performance actually holds for a longer period

than it looks at first. It then directly transitions to AEKF as the uncertainty increases

rather than going through an LQG period. This is one example of the drawbacks of relying

heavily on the area charts in Figure 5-33 for analysis rather than performing the true

expected value computations.

With the probabilistically optimal reference-tracking controller schedule now found, it

can be implemented on the spacecraft in the simulation discussed in Section 3.4. For

resolution of the chapter and checking that the chosen schedule does indeed seem realistic,

the simulation results of using this controller scheduler under a mission with the specified

uncertainty are presented. The smallest uncertainty level analyzed above is used for this

analysis as it is most typical of current missions (where the higher uncertainty levels are

applicable mostly to future missions). The thruster force is increased and the orbital radius

decreased by one standard deviation of this distribution. Additionally, a �100-kg error in

the target spacecraft mass is added for Phase 3. Thus, following Table 5.5, the SWLQG

controller will be used in Phases 1a and 1b, the LQG controller in Phase 2, and the MPC

controller in Phase 3. For all of these controllers, the EKF is used to estimate the spacecraft

state.

Figure 5-34 shows the resulting position and velocity states throughout the mission.

From the position plot, the chaser starts at -3 km in the in-track direction, docks to the

target at the end of Phase 2 at about the 4-hour mark of the mission (240 minutes), and

finally tugs the target to the assembly location at 5 km in the in-track direction. The

velocity plot shows the maximum velocity in the initial CWH frame is about 1 m/s and

that the velocity is kept below the 0.05 m/s constraint in the docking phase. Noisier velocity

states correspond to when there is higher noise in the estimate of the state due to the high

covariance in the range measurement in Phases 1b and 3. Since the maneuver is in the

orbital plane, the z-axis components of the position and velocity are nearly always close to

zero as expected.

Figure 5-35 shows the estimator error and covariance over the full mission as the mea-

surement uncertainty changes between each phase. For the most part, each phase boundary
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Figure 5-34: Position and velocity states throughout the full mission as result of implement-
ing the previously computed best controller schedule while under the smallest uncertainty
level

shows a distinct jump in the performance of the estimation. In Phase 1a, the unobservability

due to the absence of a range measurement causes the error to grow without the spacecraft

realizing it. In Phase 2a, the noisy range measurement and continual control corrections
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Figure 5-35: Estimation error and covariance in position and velocity throughout the full
mission as result of implementing the previously computed best controller schedule while
under the smallest uncertainty level
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cause the error to be a bit more sporadic, although the drifting error in the position from

Phase 1a is resolved within a few minutes. In Phase 2, the error and covariance continue to

converge through the entire phase such that appropriate position and velocity error exists

at docking (under 1 cm and 0.5 mm/s). In Phase 3, the estimation error and covariance

grow again due to the larger range uncertainty present in this phase.

Figure 5-36 shows the tracking error of the true spacecraft position and velocity with

respect to the reference trajectory. Important to note is the drift in the position tracking

error in Phase 1a due to the unobservability, followed by a convergence to a modest 10-20m

error in Phase 1b. The velocity tracking is actually quite good in Phase 1a as the model

of the system is quite accurate for velocity. The error grows in velocity in Phase 1b due

to the larger thruster commands and growing impact of range measurement error. In the

plots on the right side, the convergence of the tracking error during the docking phase is

illustrated to confirm that the tracking error is less than about 20cm in position and 1 mm/s

in velocity. These values are well within the ranges required for the ISS docking system

[1]. In Phase 3, the tracking error grows as the spacecraft begins to lead the trajectory

by up to 100 m due to the increased thruster force, decreased orbital radius and decreased

target spacecraft mass. Because tracking is not as important in this phase, these results are

acceptable.

Finally, the fuel consumption and commanded control inputs from the mission are plot-
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Figure 5-36: Reference tracking error in position and velocity throughout the full mission
as result of implementing the previously computed best controller schedule while under the
smallest uncertainty level
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Figure 5-37: Total fuel consumption and control commanded throughout the full mission
as result of implementing the previously computed best controller schedule while under the
smallest uncertainty level

ted in Figure 5-37. Phases 1b and 3 are the largest contributors to the total fuel consump-

tion mainly due to the noisy estimation present in these phases. The commanded control

in these phases is also quite noisy due to this uncertainty in state. Phase 2 contributes

almost nothing to the fuel cost of the mission, as is expected, since it is the phase with the

highest measurement precision and lowest velocity. Therefore, all seems well within reason

for a typical rendezvous and docking mission, and it would seem the combination of these

controllers into the baseline optimal schedule proves e↵ective.

With the results just presented, the second objective of the thesis has been satisfied.

The process defined earlier in the chapter has been followed to schedule reference-tracking

controllers throughout the multi-stage rendezvous and docking mission such that the se-

lected controllers have the probabilistically best performance given aleatoric and epistemic

uncertainties in the dynamics. These controllers can each be run in real-time on a space-

craft, as can the simplified process of onboard controller scheduling (given that enough

data storage space is available to hold the set of performance hypersurfaces). Therefore,
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paired with the real-time trajectory optimization techniques discussed in Chapter 4, the

third thesis objective has also now been satisfied.
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Chapter 6

Conclusion

6.1 Summary

The popularity of rendezvous and docking missions is growing on several fronts. Future

missions including satellite servicing and repair, orbital debris removal, and on-orbit assem-

bly all require rendezvous and docking. Several of these missions also require maneuvering

with the target of interest after docking. This thesis has divided missions like these into a

common set of phases, each with their own objectives, dynamics, and constraints. A generic

problem formulation has been created to define the di↵erent phases and allow analysis on

techniques that optimize trajectories and select the best performing reference-tracking con-

trollers throughout the full, multi-stage mission.

Today’s rendezvous and docking missions are planned to very well-known, designed-

to-be-docked-to targets. With these new mission types on the horizon, there also comes

a higher degree of uncertainty in the system. When performing orbital debris removal or

servicing of broken satellites, the state of the target object may be unknown. Tracking from

ground sensors may not be able to resolve this uncertainty, and thus, missions must be able

to perform well while considering the lack of concrete knowledge of system parameters. In

the context of rendezvous, docking and joint maneuvering missions, this thesis studies both

aleatoric uncertainty such as measurement and process noise and epistemic uncertainty such

as errors in thruster force magnitude or other constant parameters in the dynamics.

To address these uncertainties in the planning process of multi-stage missions, the prob-

lem was split into two separate areas: trajectory optimization and reference-tracking con-

trollers. The overall goal in the thesis was to find an appropriate balance of risk aversion
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and performance, such that su�cient safety margins can be achieved, while still performing

well in terms of fuel consumption and tracking error. Safer strategies will inherently involve

decreased performance in these areas, yet high performing strategies will be very risky. So,

in the planning process, the probabilistically optimal mission plan was found, such that the

performance was maximized on average across the full uncertainty range possible in the

system.

To this end, a process was created for probabilistically optimizing baseline trajectories

for both a minimum fuel and minimum energy objective function. These baseline trajecto-

ries were designed and tested for two case studies. An obstacle avoidance problem, where

initial large uncertainty of an obstacle will be reduced when onboard sensors are in range.

The goal was to find the best performing safety margin around the initially estimated obsta-

cle state. The same concept was applied to a target satellite with an unknown attitude and

thus with uncertainty in the direction of the docking axis. Risk margins of varying degrees

were added to the path constraints in these problems, and the trajectory corresponding to

the risk margin with the lowest expected cost was chosen as the optimal baseline trajectory.

Additionally, the problem of selecting the best reference-tracking controllers to follow

these optimal trajectories was explored under significant uncertainties in the dynamics.

Several controllers were designed with varying levels of nominal performance and robust-

ness to uncertainty. Each of the mission phases involves di↵erent levels of noise, and there

could also be uncertain parameters in the dynamics formulation. Both of these types of

uncertainties were added to the problem, and a Monte Carlo based simulation was used to

assess controller performance over a range of these possible uncertainties. The controllers

were assessed and compared across di↵erent levels of uncertainty, and the probabilistically

best performing controllers were chosen for each phase given the expected uncertainty dis-

tributions for the upcoming mission.

Finally, we can consider the multitude of anomalies and mishaps seen historically on

orbit as detailed in Section 1.4. When applying the techniques discussed in this thesis,

the impact of several of these events could have been reduced significantly. The main

groupings of these events consist of actuator failures and estimation failures. It is not

that these failures could have been prevented themselves, but that the trajectory design

and controller selection techniques could have improved the performance in the event that

they did happen. In the actuator failure scenario, prior work had addressed the fully
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failed thruster problem. This thesis addresses the case where there are anomalous firings

or constant bias added to the level of the thruster force. We have analyzed and selected

reference-tracking controllers given large uncertainties in the forces of thrusters. If these

selected controllers were implemented onboard these previous missions with thruster force

problems, the fuel and tracking performance of the mission would have improved given

the added robustness. For estimation drift, sensing errors or similar anomalies, an online

trajectory replanning technique was shown in this thesis that could plan a new trajectory

from the current location and greatly reduce the stoppage time and fuel wasted during

several of these historical-seen errors. Overall, the techniques in this thesis could not have

prevented these mishaps, but would have led to better performance under them.

6.2 Contributions

The following is a list of contributions that this thesis will provide to the field. The major,

numbered contributions align with the thesis objectives described in Section 1.6, while the

subpoints go into more detail about the contribution, even expressing minor additional

contributions in that area.

1. A process is developed for generating probabilistically optimal baseline trajectories

while accounting for the possibility of actionable uncertain events throughout the

multi-stage rendezvous, docking and joint maneuvering mission.

• A general framework and methodology is presented in a form that predicts the

best risk margin by which to avoid path constraints such that on average the

total cost of the mission is minimized by trading o↵ increases in initial trajectory

cost and replanning cost.

• Two case studies are investigated as examples of how e↵ective this process can

be. In one case study, obstacle avoidance is studied when there is a large initial

uncertainty in the location of the obstacle. Onboard sensors will reduce this

uncertainty later in the mission, and the trajectory will be replanned at this point

to avoid the obstacle. It is shown that there is an intermediate safety margin

to avoid the original estimate of the obstacle which produces better expected

performance. Additionally, the same concept is explored for a target satellite with
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an uncertain attitude that is tied to a docking port alignment constraint, and

similar results are presented showing performance improvement over traditional

risk-averse maneuvers while maintaining the same level of safety.

• Two cost functions are also covered in this optimization framework: a minimum

energy cost posed as an LQR cost and a minimum fuel cost posed linearly. Results

show that this technique is viable for use on both cost functions, yielding very

similar results.

2. Another process is developed for selecting and scheduling the best reference-tracking

controllers for use in multi-stage rendezvous, docking, and joint spacecraft systems

under di↵erent levels and distributions of uncertainty.

• Several reference-tracking controller formulations are applied to this problem:

LQG, SWLQG, MPC and AEKF. All controllers are developed with the same

modular inputs and outputs such that they are swappable and contained in

a controller library. The controllers cover a varying range of performance and

robustness capabilities such that interesting trades can be performed with respect

to which perform the best under specific uncertainties.

• A selection methodology is presented that ranks and schedules controllers based

on expected performance over a particular uncertainty distribution. The method-

ology covers probabilistic metric evaluation of each of the controllers under

aleatoric uncertainties such as sensor and actuator noise and epistemic uncer-

tainties for parameter error in thruster force magnitude and initial radius of the

target spacecraft (as both of these parameters help define the CWH dynamics).

• Results analyze the optimal selection of controllers for the full mission and indi-

vidual mission phases given this controller library and these uncertainties. Ex-

amples are shown for typical uncertainty distributions, as well as which controller

performs the best under specific errors in uncertain parameters.

• A simplification for on-line controller selection logic is suggested that will update

the optimal controller schedule based upon current knowledge of uncertainty

in the system. The simplification involves onboard integration of performance

results (which were computed during the pre-mission analysis) over the current

probability density function of the uncertain parameters in the problem.
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3. Onboard guidance and control techniques are developed and analyzed for multi-stage

close proximity spacecraft operations under uncertainties and uncertain events.

• Trajectories are optimized continuously between multiple stages without stop-

ping points resulting in increased performance over traditional methods that use

waypoints between phases.

• Several reactionary techniques are developed and analyzed to replan missions

after uncertain events have occurred. These techniques include online trajectory

optimization to react to obstacles, large tracking error when transitioning phases,

and other knowledge illuminating events.

• The trajectory optimization presented here is capable of being performed in real-

time for the multi-stage missions including obstacle constraints in the form of

an ellipsoidal, nonlinear constraint avoidance formulation and an improved upon

form of a rotating-hyperplane constraint.

• The thesis defines a generic multi-stage rendezvous and docking mission frame-

work that has and can continue to be used by others to benchmark results.

• A generalized multi-stage rendezvous, docking, joint maneuvering, and undock-

ing simulation environment is coded to include uncertain events and uncertain-

ties.

6.3 Future Work

As this thesis was completed in finite time, there is undoubtedly areas that could have been

explored deeper and would serve as interesting areas of future study. In direct line with

this work, additional case studies could be performed for new uncertain events or under

di↵erent uncertain parameter errors. For example, the probabilistic trajectory optimization

process could be thoroughly analyzed on initial obstacle uncertainty of varying size, loca-

tion, and speed. Baseline trajectories could also be computed for the uncertain event of

significant error experienced when transitioning from Phase 1, where there are only angular

measurements, into Phase 1b, where range can be detected.

With regard to the reference-tracking controllers, additional uncertain parameters could

be investigated such as sensor bias, thruster misalignment, and magnitudes of sensor and
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actuator noise. Extra controllers could be investigated as well to assess performance over

a larger controller library, such as some of the control methods mentioned in the literature

review chapter. With this larger library, a Pareto front analysis could be performed to

better analyze the trades in a multi-objective framework.

Additionally, the studies in the thesis could be explored at di↵erent orbital radii such

as in LEO instead of GEO, or even in more eccentric orbits. Sensitivity studies could be

performed on particular parameters chosen for the mission example in this thesis, such as

on spacecraft mass, maximum thruster force, range of sensors, precision of sensors, docking

port location and tumbling of the target satellite.

Areas of future work that go beyond what is presented in this thesis could attempt

to reduce the complexity of the multiple obstacle (or multiple uncertain event) planning

framework such that it scales better with the number of obstacles. A POMDP framework

could be explored for this development as has gained popularity in the field of planning

under uncertainty. Also, the implementation of controller switching at intermediary points

in the mission instead of only directly at the physical phase transitions could be studied.

Additionally, a hybrid control robustness analysis could be performed using formal methods

on the supervisory controller that switches between reference-tracking controllers as neces-

sary. One other area would be to combine the probabilistic trajectory planning with the

controller-scheduling problem such that controller tracking error is worked into the path

constraint formulations in a chance constraint manner.

Finally, the work could be implemented on hardware and applied in a relevant environ-

ment to see if the techniques can be utilized e↵ectively in real-world circumstances. This

experimentation would serve to validate the results and simulation discussed in this thesis.

A plan to validate this work on hardware should involve testing of the baseline computed

trajectories and controller plans in an iterative manner to confirm the performance gains

anticipated. Additionally, the online trajectory generation and controller scheduling meth-

ods should be implemented on the hardware and run in real time during an experiment

such that onboard use can be verified. As a final suggestion, it would be beneficial to sim-

ulate uncertain events of all varieties to see how well these techniques can replan onboard

the spacecraft in the event that something o↵-nominal were to occur during the mission.

This validation is absolutely necessary before the techniques from this thesis are adopted

in future rendezvous and docking missions.
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[208] Alberto Carrassi and Stéphane Vannitsem. State and parameter estimation with the
extended Kalman filter: An alternative formulation of the model error dynamics.
Quarterly Journal of the Royal Meteorological Society, 137(655):435–451, 2011.

267


	Introduction and Motivation
	Historical Missions with Autonomous Rendezvous and Docking
	Proposed Missions and Applications
	Generalized Mission Phases
	Uncertainty and Uncertain Events On Orbit
	Summary of Thesis Motivation
	Thesis Objectives
	Thesis Roadmap

	Literature Review
	Approach to the Literature Survey
	Guidance and Control for Rendezvous, Docking, and Joint Maneuvers
	Guidance and Control under Uncertainty
	Mission Planning and Scheduling
	Summary of Research Gap

	Problem Definition
	Close-proximity Spacecraft Orbital Dynamics
	Linear Dynamics
	Nonlinear Dynamics

	Mission Phase Definitions
	Example Mission Descriptions
	Angles-only Rendezvous, Phase 1a
	Range-capable Rendezvous, Phase 1b
	Docking, Phase 2
	Joint Maneuver, Phase 3
	Control Options
	Options Definitions
	Definition of Constants

	Categorization of Uncertainty
	Definitions of Uncertainty Categories
	Overview of Methods Used to Handle Uncertainty

	Simulation Environment
	Overview of Guidance and Control Planning Process

	Trajectory Optimization
	Trajectory Optimization Formulation
	Minimum Energy
	Minimum Fuel
	Constraint Overview
	Solution Techniques

	Multi-stage Optimization
	Linking Phases
	Results

	Obstacle Avoidance Techniques
	Ellipsoid Method
	Rotating Hyperplane Method
	Results

	Probabilistic Trajectory Planning
	Motivation and Hypothesis
	Methodology
	Case Study 1: Uncertain Obstacle Avoidance
	Case Study 2: Uncertain Target Attitude


	Reference-Tracking Controller Selection
	Overview of Approach
	Motivation and Hypothesis
	Selection Process Overview
	Uncertainties in Dynamics
	On-line Controller Scheduling

	Controller Library
	General Control Setup
	Linear-Quadratic-Gaussian (LQG)
	Sensitivity Weighted Linear-Quadratic-Gaussian (SWLQG)
	Model Predictive Control (MPC)
	Parameter Estimation using an Augmented Extended Kalman Filter (AEKF)

	Controller Metric Evaluation
	Performance Hypersurfaces
	Probabilistic Metric Calculation
	Controller Selection Method

	Results

	Conclusion
	Summary
	Contributions
	Future Work


