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5.2.5.1 Matching g00(t, x) and ĝαβ(u,w) in the Newtonian approximation 443
5.2.5.2 Matching gi j(t, x) and ĝαβ(u,w). 446
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Preface
The general theory of relativity was developed by Einstein a century ago,

and since then it has become the standard theory of gravity, especially impor-
tant to the fields of fundamental astronomy, astrophysics, cosmology, and exper-
imental gravitational physics. Today, the application of general relativity is also
essential for many practical purposes involving astrometry, navigation, geodesy,
and time synchronization. Numerous experiments have successfully tested gen-
eral relativity to a remarkable level of precision. Exploring relativistic gravity
in the solar system now involves a variety of high-accuracy techniques, such as
very long baseline radio interferometry, pulsar timing, spacecraft Doppler track-
ing, planetary radio ranging, lunar laser ranging, the global positioning system
(GPS), torsion balances and atomic clocks.

Over the last few decades, various groups within the International Astro-
nomical Union have been active in exploring the application of the general the-
ory of relativity to the modeling and interpretation of high-accuracy astronomi-
cal observations in the solar system and beyond. A Working Group on Relativity
in Celestial Mechanics and Astrometry was formed in 1994 to define and im-
plement a relativistic theory of reference frames and time scales. This task was
successfully completed with the adoption of a series of resolutions on astronom-
ical reference systems, time scales, and Earth rotation models by 24th General
Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolu-
tions form only a framework for the practical application of relativity theory, and
there have been continuing questions on the details of the proper application of
relativity theory to many common astronomical problems. To ensure that these
questions are properly addressed, the 26th General Assembly of the IAU, held
in Prague in August 2006, established the IAU Commission 52, "Relativity in
Fundamental Astronomy". The general scientific goals of the new commission
are:

- clarify the geometrical and dynamical concepts of fundamental astronomy
within a relativistic framework,

- provide adequate mathematical and physical formulations to be used in fun-
damental astronomy,

- deepen the understanding of relativity among astronomers and students of
astronomy,

- promote research needed to accomplish these tasks.

The present book is intended to make a theoretical contribution to the efforts
undertaken by this Commission. The first three chapters of the book review
the foundations of celestial mechanics, as well as those of special and general
relativity. Subsequent chapters discuss the theoretical and experimental princi-
ples of applied relativity in the solar system. The book is written for graduate
students and researchers working in the area of gravitational physics and its
applications in modern astronomy. Chapters 1 to 3 were written by Michael
Efroimsky and Sergei Kopeikin, chapters 4 to 8 by Sergei Kopeikin, and Chap-
ter 9 by George Kaplan. Sergei Kopeikin also edited the overall text.
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It hardly needs to be said that the Newtonian celestial mechanics is a very
broad area. In Chapter 1, we have concentrated on derivation of the basic equa-
tions, on explanation of the perturbed two-body problem in terms of osculating
and non-osculating elements, and on discussion of the gauge freedom in the six-
dimensional configuration space of the orbital parameters. The gauge freedom
of the configuration space has many similarities to the gauge freedom of solu-
tions of the Einstein field equations in general theory of relativity. It makes an
important element of the Newtonian theory of gravity, which is often ignored in
the books on classic celestial mechanics.

Special relativity is discussed in Chapter 2. While our treatment is in many
aspects similar to the other books on special relativity, we make a special em-
phasis on explanation of the Lorentz and Poincaré transformations, and on the
appropriate transformation properties of geometric objects like vectors and ten-
sors – such as the velocity, acceleration, force, electromagnetic field, etc.

Chapter 3 is devoted to general relativity. It explains the main ideas of the
tensor calculus on curved manifolds, the theory of the affine connection and
parallel transport, and the mathematical and physical foundations of Einstein’s
approach to gravity. Into this Chapter, we have also included topics which are
not well-covered in standard books on general relativity: namely, the variational
analysis on manifolds and the multipolar expansion of gravitational radiation.

Chapter 4 introduces a detailed theory of relativistic reference frames and
time scales in an N-body system comprised of massive, extended bodies – like
our own solar system. Here, we go beyond general relativity and base our anal-
ysis on the scalar-tensor theory of gravity. This allows us to extend the domain
of applicability of the IAU resolutions on relativistic reference frames, which in
their original form were applicable only in the framework of general relativity.
We explain the principles of construction of reference frames, and explore their
relationship with the solutions of the gravitational field equations. We also dis-
cuss the post-Newtonian multipole moments of the gravitational field, from the
viewpoint of global and local coordinates.

Chapter 5 discusses the principles of derivation of transformations between
reference frames in relativistic celestial mechanics. The standard parameterized
post-Newtonian (PPN) formalism by K. Nordtevdt and C. Will operates with a
single coordinate frame covering the entire N-body system, but it is insufficient
for discussion of more subtle relativistic effects showing up in orbital and rota-
tional motion of extended bodies. Consideration of such effects require, besides
the global frame, the introduction of a set of local frames needed to treat prop-
erly each body and its internal structure and dynamics. The entire set of global
and local frames allows us to to discover and eliminate spurious coordinate ef-
fects that have no physical meaning. The basic mathematical technique used
in our theoretical treatment is based on matching of asymptotic post-Newtonian
expansions of the solutions of the gravity field equations.

In Chapter 6, we discuss the principles of relativistic celestial mechanics of
massive bodies and particles. We focus on derivation of the post-Newtonian
equations of orbital and rotational motion of an extended body possessing mul-
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tipolar moments. These moments couple with the tidal gravitational fields of
other bodies, which makes the motion of the body under consideration very
complicated. Simplification is possible if the body can be assumed spherically
symmetric. We discuss the conditions under which this simplification can be
afforded, and derive the equations of motion of spherically-symmetric bodies.
These equations are solved in the case of the two-body problem, and we demon-
strate the rich nature of the possible coordinate presentations of such a solution.

The relativistic celestial mechanics of light particles (photons) propagat-
ing in a time-dependent gravitational field of an N-body system is addressed
in Chapter 7. This is a primary subject of relativistic astrometry, which be-
came especially important for analysis of space observations from the Hipparcos
satellite in the early 1990s. New astrometric space missions, orders of magni-
tude more accurate than Hipparcos, such as Gaia, SIM, JASMINE, etc., will re-
quire even more complete developments. Additionally, relativistic effects play
an important role in other areas of modern astronomy, such as pulsar timing,
very long baseline radio interferometry, cosmological gravitational lensing, etc.
High-precision measurements of gravitational light bending in the solar system
are among the most crucial experimental tests of the general theory of relativity.
Einstein predicted that the amount of light bending by the Sun is twice that given
by a Newtonian theory of gravity. This prediction has been confirmed with a rel-
ative precision about 0.01%. Measurements of light bending by major planets
of the solar system allow us to test the dynamical characteristics of spacetime
and draw conclusions about the ultimate speed of gravity, as well as explore the
so-called gravitomagnetic phenomena.

Chapter 8 deals with the theoretical principles and methods of the high-
precision gravimetry and geodesy, based on the framework of general relativ-
ity. A gravitational field and the properties of geocentric and topocentric ref-
erence frames are described by the metric tensor, which is obtained from the
Einstein equations with the help of post-Newtonian iterations. By matching
the asymptotic, post-Newtonian expansions of the metric tensor in geocentric
and topocentric coordinates, we derive the relationship between the reference
frames, and relativistic corrections to the Earth’s force of gravity and its gra-
dient. Two definitions of a relativistic geoid are discussed, and we prove that
these geoids coincide under the condition of a constant rigid-body rotation of
the Earth. We consider, as a model of the Earth’s matter, the notion of the rela-
tivistic level surface of a self-gravitating perfect fluid. We discover that, under
conditions of constant rigid rotation of the fluid and hydrostatic behavior of
tides, the post-Newtonian equation of the level surface is the same as that of the
relativistic geoid. In the conclusions to this chapter, a relativistic generalization
of the Clairaut’s equation is obtained.

Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with
enough background information to place these resolutions into the context of
the late 20th century positional astronomy. These resolutions involve the defi-
nitions of reference systems, time scales, and Earth rotation models; and some
of the resolutions are quite detailed. Although the recommended Earth rota-
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tion models have not been developed ab initio within the relativistic framework
presented in the other resolutions (in that regard, there still exist some difficult
problems to solve), their relativistic terms are accurate enough for all the cur-
rent and near-future observational techniques. At that level, the Earth rotation
models are consistent with the general relativity framework recommended by
the IAU and considered in this book. The chapter presents practical algorithms
for implementing the recommended models.

The appendices to the book contain a list of astronomical constants and the
original text of the relevant IAU resolutions adopted by the IAU General As-
semblies in 1997, 2000, 2006, and 2009.

Numerous colleagues have contributed to this book in one way or or another.
It is a pleasure for us to acknowledge the enlightening discussions, which one or
more of the authors had, on different occasions, with Victor A. Brumberg of the
Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi
Xie of Nanjing University (China); Edward B. Fomalont of the National Radio
Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and
James L. Hilton of the U.S. Naval Observatory; Gerhard Schäfer of the Institute
of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington Uni-
versity (St. Louis, USA); Ignazio Ciufolini of the Universitá del Salento and
INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty’s
Nautical Almanac Office (UK).

We also would like to thank Richard G. French of Wellesley College (Mas-
sachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University
of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John
D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Gia-
como Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex
of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander
F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow,
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of Science; Michael V. Sazhin, Vladimir A. Zharov, and Igor Yu. Vlasov of
the Sternberg Astronomical Institute (Moscow, Russia); and Vladimir B. Bra-
ginsky of Moscow State University (Russia) for their remarks and comments,
all of which helped us to formulate properly the theoretical concepts and other
material presented in this book.

The discussions among the members of the IAU Working Group on Relativ-
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General Notations
Greek indices α, β, γ, ... run from 0 to 3 and mark spacetime components of four-

dimensional objects. Roman indices i, j, k, ... run from 1 to 3 and denote components
of three-dimensional objects (zero component belongs to time). Repeated indices
mean the Einstein summation rule with respect to corresponding indices, for in-
stance, AαBα = A0B0 + A1B1 + A2B2 + A3B3, T k

k = T 1
1 + T 2

2 + T 3
3, etc.

Minkowski metric has signature ηαβ = diag(−1,+1,+1,+1). Kronecker symbol
(the unit matrix) is denoted δi j = diag(1, 1, 1). Levi-Civita fully-antisymmetric sym-
bol is εi jk such that ε123 = +1. Kronecker symbol is used to rise and lower Roman
indices. Complete metric tensor gαβ is used to rise and lower the Greek indices in
exact tensor equations whereas the Minkowski metric ηαβ is employed for rising and
lowering indices in equations of the post-Newtonian and post-Minkowskian approx-
imations.

Round brackets surrounding a group of Roman indices mean full symmetrization
with a corresponding normalizing coefficient, for example,

A(i j) ≡
1
2!

(
Ai j + A ji

)
, A(i jk) ≡

1
3!

(
Ai jk + A jki + Aki j + Aik j + Ak ji + A jik

)
,

and so on. Square brackets around a group of Roman indices denote anti-
symmetrization with a corresponding normalizing coefficient, that is

A[i j] ≡
1
2!

(
Ai j − A ji

)
, A[i jk] ≡

1
3!

(
Ai jk + A jki + Aki j − Aik j − Ak ji − A jik

)
, etc. Angular brackets surrounding a group of Roman indices denote the symmetric
trace-free (STF) part of the corresponding three-dimensional object, for instance,

A<i j> = A(i j) −
1
3
δi jAkk , A<i jk> = A(i jk) −

1
5
δi jAkpp −

1
5
δ jkAipp −

1
5
δikA jpp ,

and the general definition of STF tensor is discussed in section 3.10.2.
We also use multi-index notations, for example, AL ≡ Ai1i2 ...il , BP−1 ≡

Bi1i2 ...ip−1 ,D<L> = D<i1i2 ...il> . Contraction over multi-indices is understood as fol-
lows, ALQL = Ai1i2 ...il Q

i1i2 ...il , PaL−1T bL−1 = Pai1i2 ...il−1 T bi1i2 ...il−1 , and so on. The sign
∂ in front of indices denotes a partial derivative with respect to a corresponding co-
ordinate which is taken as many times as the number of indices following the ∂, for
example, ∂αφ = ∂φ/∂xα, ∂αβφ = ∂2φ/∂xα∂xb, where ∂0φ = c−1∂φ/∂t , ∂iφ = ∂φ/∂xi,
and, similarly, ∇βTα denotes a covariant derivative. The partial derivatives will be
also denoted sometimes with a comma, for example, F,α ≡ ∂F/∂xα, etc. L-order par-
tial derivative with respect to spatial coordinates is denoted ∂L = ∂i1i2 ...il = ∂i1 ...∂il .
Other conventions are introduced and explained as they appear in the text of the
book. Particular symbols for various mathematical objects are given below.

Mathematical Symbols Used in the Book.

eα vector basis on manifold
ω̃α covector basis on manifold

Λα
β′ ,Λ

α′
β the matrix of transformation from one basis on manifold to another
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gµν physical (Jordan-Fierz frame) metric tensor
g̃µν conformal (Einstein frame) metric tensor

g the determinant of gµν
g̃ the determinant of g̃µν

ηµν the Minkowski (flat) metric tensor
G
β
αγ the affine connection

Kαβγ the contortion tensor
Rαβγ the Ricci rotation coeffieicnts
Dαβγ the deviation tensor

Tα
βγ the torsion tensor

Qα
βγ the nonmetricity tensor

Γαµν the Christoffel symbol
Rµν the Ricci tensor

R the Ricci scalar
R̃µν the conformal Ricci tensor
Tµν the energy-momentum tensor of matter

T = Tα
α the trace of the energy-momentum tensor

tαβ the canonical pseudotensor of gravitational field
tαβLL the pseudotensor of Landau and Lifshitz

Λαβ the effective tensor of matter and gravitational field
φ the scalar field
φ0 the background value of the scalar field φ
ζ the dimensionless perturbation of the scalar field

θ(φ) the coupling function of the scalar field
g the Laplace-Beltrami operator

the D’Alembert operator in the Minkowski spacetime
ρ the density of matter in the comoving frame
ρ∗ the invariant (Fock) density of matter
Π the internal energy of matter in the comoving frame
πµν the tensor of (anisotropic) stresses of matter
uα the four-velocity of matter
vi the 3-dimensional velocity of matter in the global frame
ω the asymptotic value of the coupling function θ(φ)
ω′ the asymptotic value of the derivative of the coupling function θ(φ)

c the ultimate speed of general and special theories of relativity
ε a small dimensional parameter, ε = 1/c

hµν the metric tensor perturbation, gµν − ηµν
(n)

hµν the metric tensor perturbation of order εn in the post-Newtonian expansion of the
metric tensor

N a shorthand notation for
(2)

h00

L a shorthand notation for
(4)

h00

Ni a shorthand notation for
(1)

h0i

Li a shorthand notation for
(3)

h0i
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Hi j a shorthand notation for
(2)

hi j

H a shorthand notation for
(2)

hkk

Ñ, L̃ shorthand notations for perturbations of conformal metric g̃µν
γ the ‘space-curvature’ PPN parameter
β the ‘non-linearity’ PPN parameter
η the Nordtvedt parameter, η = 4β − γ − 3

G the observed value of the universal gravitational constant
G the bare value of the universal gravitational constant

xα = (x0, xi) the global coordinates with x0 = ct and xi ≡ x
wα = (w0,wi) the local coordinates with w0 = cu and wi ≡ w

U the Newtonian gravitational potential in the global frame
U (A) the Newtonian gravitational potential of body A in the global frame
Ui a vector potential in the global frame

U (A)

i a vector potential of body A in the global frame
χ, Φ1, . . . ,Φ4 various special gravitational potentials in the global frame

V, V i potentials of the physical metric in the global frame
σ, σi the active mass and current-mass densities in the global frame

I<L> the active mass multipole moments in the global frame
S <L> the active spin multipole moments in the global frame

V̄ potential of the scalar field in the global frame
σ̄ scalar mass density in the global frame

Ī<L> scalar mass multipole moments in the global frame
Ṽ gravitational potential of the conformal metric in the global frame
σ̃ the conformal mass density in the global frame

Ĩ<L> the conformal mass multipole moments in the global frame
M conserved mass of an isolated system
Pi conserved linear momentum of an isolated system
Si conserved angular momentum of an isolated system
Di integral of the center of mass of an isolated system
Â symbols with the hat stand for quantities in the local frame

(B) sub-index referring to the body and standing for the internal solution in the local
frame

(E) sub-index referring to the external with respect to (B) bodies and standing for the
external solution in the local frame

(C) sub-index standing for the coupling part of the solution in the local frame
PL external STF multipole moments of the scalar field
QL external STF gravitoelectric multipole moments of the metric tensor
CL external STF gravitomagnetic multipole moments of the metric tensor

ZL, S L other sets of STF multipole moments entering the general solution for the space-
time part of the external local metric

YL, BL,DL, EL, FL,GL STF multipole moments entering the general solution for the space-space part of
the external local metric

Vi, Ωi linear and angular velocities of kinematic motion of the local frame
νi 3-dimensional velocity of matter in the local frame
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IL active STF mass multipole moments of the body in the local frame
σB active mass density of body B in the local frame
ĪL scalar STF mass multipole moments of the body in the local frame
σ̄B scalar mass density of body B in the local frame
ĨL conformal STF mass multipole moments of the body in the local frame
σ̃B conformal mass density of body B in the local frame
σi

B current mass density of body B in the local frame
S L spin STF multipole moments of the body in the local frame

ξ0, ξi Relativistic corrections in the post-Newtonian transformation of time and space
coordinates

xi
B, vi

B, ai
B position, velocity and acceleration of the body’s center of mass with respect to the

global frame
Ri

B xi − xi
B(t), i.e. the spacial coordinates taken with respect to the center of mass of

body B in the global frame
A, B<L> functions appearing in the relativistic transformation of time

D<L>, F<L>, E<L> functions appearing in the relativistic transformation of spacial coordinates
Λβ

α matrix of transformation between local and global coordinate bases in the post-
Newtonian approximation scheme

βαג matrix of the inverse transformation between local and global coordinate bases in
the post-Newtonian approximation scheme

B, D, Bi, Pi, Ri
j the terms in the post-Newtonian expansion of the matrix of transformation Λβ

α

Ū, Ū i, etc. external gravitational potentials
Ū,L(xB), Ū i

,L(xB) l-th spatial derivative of an external potential taken at the center of mass of body
B

U(B) PN correction in the formula of matching of the local Newtonian potential
F ik the matrix of relativistic precession of local coordinates with respect to global

coordinates
M∗, J

i
∗, P

i
∗ Newtonian-type mass, center of mass, and linear momentum of the body in the

local frame
M general relativistic PN mass of the body in the local frame
M active mass of the body in the local frame
M̃ conformal mass of the body in the local frame
I(2) rotational moment of inertia of the body in the local frame
N L a set of STF multipole moments
Pi PN linear momentum of the body in the local frame

∆Ṗi scalar-tensor PN correction to Ṗi

M̃i j conformal anisotropic mass of the body in the local frame
Fi

N , ∆Fi
N , F

i
pN , ∆Fi

pN gravitational forces in the expression for Qi

Si the bare post-Newtonian definition of the angular momentum (spin) of a body
T i the post-Newtonian torque in equations of rotational motion

∆T i the post-Newtonian correction to the torque T i

∆Si the post-Newtonian correction to the bare spin Si

Ri velocity-dependent multipole moments
Si

+ the (measured) post-Newtonian spin of the body
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r radial space coordinate in the body’s local frame, r = |w|
Ω

j
B angular velocity of rigid rotation of the body B referred to its local frame

I(2l)
B l-th rotational moment of inertia of the body B
ILB multipole moments of the multipolar expansion of the Newtonian potential in the

global coordinates
RB |RB|, where RB = x − xB

Ri
BC xi

C − xi
B

F i
N , F i

EIH , F i
S
, F i

IGR, δF i
IGR forces from the equation of motion of spherically-symmetric bodies
MB Nordtvedt’s gravitational mass of the body B

Abbreviations and Symbols Frequently Used in Astronomy

α right ascension,
δ declination,

∆ψ nutation in [ecliptic] longitude (usually expressed in arcseconds),
∆ε nutation in obliquity (usually expressed in arcseconds),
ε mean obliquity of date,
ε′ true obliquity of date (= ε + ∆ε),
ε0 mean obliquity of J2000.0,
θ Earth Rotation Angle,

µas microarcecond (= 10−6 arcsecond ≈ 4.8×10−12 radian),
σ a non-rotating origin or, specifically, the Celestial Intermediate Origin,
σ unit vector toward a non-rotating origin or, specifically, the Celestial Intermediate

Origin,
Υ the equinox,
Υ unit vector toward the equinox,
′′ arcsecond (= 1/3600 degree ≈ 4.8×10−6 radian),

AU astronomical unit,
B frame bias matrix,

BCRS Barycentric Celestial Reference System1),
BIPM Bureau International des Poids et Mesures,

C matrix for transformation from GCRS to Eσ,
cen century, specifically, the Julian century of 36525 days of 86400 seconds,

CIO Celestial Intermediate Origin2),
CIP Celestial Intermediate Pole,

CIRS See Eσ

E
Υ

instantaneous (true) equator and equinox of date,
Eσ Celestial Intermediate Reference System (CIRS),
E$ Terrestrial Intermediate Reference System (TIRS),
EΥ equation of the equinoxes,
Eo equation of the origins,

1) “Barycentric” always refers to the solar system barycenter, the center of mass of all bodies in the solar
system.

2) The abbreviation CIO was used throughout much of the 20th century to designate the Conventional
International Origin, the reference point for the measurement of polar motion.
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ESA European Space Agency,
FKn nth Fundamental Catalog (Astronomisches Rechen-Institut, Heidelberg),

GAST Greenwich apparent sidereal time,
GCRS Geocentric Celestial Reference System,
GMST Greenwich mean sidereal time,

GPS Global Positioning System,
HCRF Hipparcos Celestial Reference Frame,

IAG International Association of Geodesy,
IAU International Astronomical Union,

ICRF International Celestial Reference Frame,
ICRS International Celestial Reference System,
IERS International Earth Rotation and Reference System Service,
ITRF International Terrestrial Reference Frame,
ITRS International Terrestrial Reference System,

IUGG International Union of Geodesy and Geophysics,
J2000.0 the epoch 2000 January 1, 12h TT (JD 2451545.0 TT) at the geocenter3),

JD Julian date (time scale used should be specified),
JPL Jet Propulsion Laboratory,
mas milliarcsecond (= 10−3 arcsecond ≈ 4.8×10−9 radian),

N nutation matrix (for transformation from mean to true system of date),
n unit vector toward the CIP (celestial pole),

NOVAS Naval Observatory Vector Astrometry Subroutines (software),
P precession matrix (for transformation from J2000.0 system to mean system of

date)
W “wobble” (polar motion) matrix (for transformation from ITRS to E$),

R1(φ) rotation matrix to transform column 3-vectors from one cartesian coordinate sys-
tem to another. Final system is formed by rotating original system about its own
x-axis by angle φ (counterclockwise as viewed from the +x direction):

R1(φ) =


1 0 0
0 cos φ sin φ
0 − sin φ cos φ


R2(φ) rotation matrix to transform column 3-vectors from one cartesian coordinate sys-

tem to another. Final system is formed by rotating original system about its own
y-axis by angle φ (counterclockwise as viewed from the +y direction):

R2(φ) =


cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ


R3(φ) rotation matrix to transform column 3-vectors from one cartesian coordinate sys-

tem to another. Final system is formed by rotating original system about its own

3) “J2000.0 system” is shorthand for the celestial reference system defined by the mean dynamical equator
and equinox of J2000.0.
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z-axis by angle φ (counterclockwise as viewed from the +z direction):

R3(φ) =


cos φ sin φ 0
− sin φ cos φ 0

0 0 1


s CIO locator: the difference between two arcs on the celestial sphere, providing the

direction toward the CIO,
SI Système International d’Unités (International System of Units),

SOFA Standards of Fundamental Astronomy (software),
T unless otherwise specified, time4) in Julian centuries (36525 days of 86400 sec-

onds) from JD 2451545.0 (2000 Jan 1.5),
Teph time argument of JPL planetary and lunar ephemerides,
TAI International Atomic Time,

TCB Barycentric Coordinate Time,
TCG Geocentric Coordinate Time,

TDB Barycentric Dynamical Time,
TIO Terrestrial Intermediate Origin 5),

TIRS See E$,
TT Terrestrial Time,

UCAC USNO CCD Astrographic Catalog,
USNO U.S. Naval Observatory,

UT1 Universal Time (affected by variations in length of day),
UTC Coordinated Universal Time (an atomic time scale),

VLBI very long baseline [radio] interferometry,
WGS 84 World Geodetic System 1984,

X
Y
Z

 components of nGCRS , unit vector toward the CIP with respect to the GCRS,

xp

yp

}
standard polar motion parameters, defining location of the CIP in the ITRS.

4) The time scale used should be specified, otherwise TT is understood.
5) The fundamental reference points referred to here as the Celestial Intermediate Origin (CIO) and the

Terrestrial Intermediate Origin (TIO) were called, respectively, the Celestial Ephemeris Origin (CEO)
and the Terrestrial Ephemeris Origin (TEO) in the IAU resolutions of 2000. The IAU Working Group
on Nomenclature for Fundamental Astronomy [Capitaine et al., 2007] has recommended the change
of nomenclature with no change in the definitions. The new terminology is already in use in The
Astronomical Almanac [2010] and in IERS documents. It is used throughout this book, except in the
verbatim text of the IAU resolutions in appendix C.
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Newtonian Celestial Mechanics
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1.1
Prolegomena. Classical Mechanics in a Nutshell

1.1.1
Kepler’s Laws

By trying numerous fits on a large volume of data collected earlier by Tycho Brahe
and his assistants, Kepler realized in early 1605 that the orbit of Mars is not at all a
circle, as he had expected, but is an ellipse with the Sun occupying one of its foci.
This accomplishment of Kepler-astronomer was an affliction to Kepler-theologist,
as it jeopardized his cherished theory of “celestial polyhedra" inscribed and circum-
scribed by spherical orbs, a Mysterium Cosmographicum theory according to which
the planets were supposed to describe circles. For theological reasons, Kepler never
relinquished the polyhedral-spherist cosmogony. Years later, in 1621, he re-worked
the Mysterium Cosmographicum model in an attempt to reconcile it with elliptic
trajectories.

Although the emergence of ellipses challenged Kepler’s belief in the impeccable
harmony of the celestial spheres, he put the scientific truth first, and included the
new result into his book “Astronomia Nova". Begun in early 1600, the treatise saw
press only in 1609 because of four-year-long legal disputes over the use of the late
Tycho Brahe’s observations, the property of Tycho’s heirs. The most cited para-
graphs of that 390-page-long volume are Kepler’s first and second laws of planetary
movement. In the modern formulation, the laws will read:

� The planets move in ellipses with the Sun at one focus.
� A vector directed from the Sun to a planet sweeps out equal areas in equal times.

These celebrated conjectures should not overshadow another revolutionary state-
ment pioneered in “Astronomia Nova" - the hypothesis that the Sun is not stationary
in space but describes a trajectory across the stars. Pioneering this idea, Kepler-
astronomer again came into a conflict with Kepler-theologian. The heliocentric
views of Kepler rested on a religious basis. Kepler was convinced that the uni-
verse was an image of God, with the Sun corresponding to the Father, the “stellar
sphere" to the Son, and the enclosed space to the Holy Spirit. Kepler’s hypothesis
that the Sun could travel relative to the stars indicates how his scientific insight was
overpowering his theological constructions.

Another famous book by Kepler, “Harmonices Mundi", saw light a decade later,
in 1619. In the final volume of that treatise, Kepler publicized his finding that the
ratio of the cubed semi-major axis to the squared orbital period is the same for all
planets. In modern terms, this, third law of Kepler is usually formulated as:

� The cube of a planet’s semi-major axis is proportional to the square of its orbital
period: a3 ∼ T 2.

This way, for a planet with period T1 and semi-major axis a1, and a planet with period
T2 and semi-major axis a2, the following relation takes place: (a1/a2)3 = (T1/T2)2.
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1.1.2
Fundamental Laws of Motion: from Descartes, Newton, and Leibniz to
Poincaré and Einstein

The next milestone contribution to the science of mechanics was offered a quarter-
century later by René Descartes.

Basing his reasoning on the scholastic argument that nothing moves by virtue of
its own nature towards its opposite or towards its own destruction, Descartes [1644]
in his “Principles of Philosophy" came up with three laws of bodily motion. The first
of those stated “that each thing, as far as is in its power, always remains in the same
state; and that consequently, when it is once moved, it always continues to move".
The second law held that “all movement is, of itself, along straight lines". The
third law was an attempt to describe colliding bodies and to introduce a conserving
quantity.

The first two laws of Descartes, together, constitute what is currently termed the
law of inertia or the first law of Newton. Indeed, the wording of the law of inertia,
suggested by Newton [1760] in his “Principia", was an exact equivalent to the first
and second laws by Descartes.

First Law: Every body persists in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by force
impressed.

There are two parts to this statement - one which predicts the behavior of stationary
objects and the other which predicts the behavior of moving objects. Mathematical
formulation of the first law of Newton demands introduction of new concepts, the
absolute time t and the absolute space endowed with a special class of coordinates,
x = (xi) = (x1, x2, x3), introduced in space - the so-called, inertial reference frames.
Motion of the body in space is described by vector function x(t). The first law of
Newton simply states that velocity of the body v = dx/dt is nil or remains constant
in the inertial reference frame, if the body is not subject to the action of a net force.
In both cases, acceleration, a = dv/dt, of a freely moving or static body vanishes in
the inertial frame,

a = 0 . (1.1)

Equation (1.1) makes it evident that there is a multitude of the inertial frames moving
with respect to each other with constant velocities.

This law of inertia, however, marked the point, beyond which Newton’s thought
sharply diverged from Descartes’ heritage. In formulating the rules of dynamics,
Newton succeeded where Descartes had failed. The third law of Descartes, while
marking one of the first attempts to locate an invariant or unchanging feature of
bodily interactions, was just short of what is now called the momentum conservation.
Newton, on his part, proposed two other laws, the law of impulse and the law of
reciprocal actions, which must be put together in order to ensure the conservation of
body’s momentum

p = mv , (1.2)
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where m is mass of the body, and v is its velocity. The law of impulse and the law
of reciprocal actions are known as the second and third laws of Newton respectively.
They are formulated as follows.

Second Law: The time rate of change of body’s linear momentum p is equal to the
net force F exerted on the body,

d p
dt

= F . (1.3)

The second law is valid in any frame of reference that is written in an invariant form
that is valid in arbitrary frames of reference both inertial and non-inertial. Therefore,
the forceF splits algebraically in two parts - the force of inertia, Fin, and the external
force, F, so that

F = F + Fin . (1.4)

The force of inertia Fin exists only in non-inertial (accelerated and/or rotating)
frames and has a pure kinematic origin, while the external force F describes real
physical interaction between the body under consideration with other bodies. The ex-
ternal force F determines the dynamical part of the body’s motion that is not related
to the choice of the reference frame. If mass of the body is conserved, dm/dt = 0,
the second law of Newton can be written in a more familiar form,

ma = F , (1.5)

which establishes a more simple than equation (1.3), relationship between the accel-
eration of the body, its constant mass, and the force applied.

By setting F = 0 in Newton’s law of impulse (1.5) written for a body of a constant
mass, one would arrive to the conclusion, a = 0, and would get an impression that
the law of inertia (1.1) is a special case of the law of impulse: a vanishing net force
yields a zero acceleration. It looks like the law of inertia is redundant, and can be
derived instead of to be postulated. Newton surely observed the possibility of such a
conclusion, but nevertheless chose to add the law of inertia as a separate statement.
Moreover, he placed this law first. The only reason why he could have done so was
his intention to single out a special class of forces - the kinematic forces of inertia -
from the rest of genuine dynamical interactions, and to introduce a special class of
inertial reference frames in which the forces of inertia Fin vanish so that the second
law of Newton is reduced to pure dynamical form

d p
dt

= F . (1.6)

This logic makes it clear that the first Newton’s law is not a tautology following the
second Newton’s law but a crucial element of the entire theory introducing a special
class of reference frames excluding the inertial forces. It may look simple now but
it took Newton’s successors centuries to arrive to the modern formulation of the law
of inertia:
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There exist reference frames, called inertial, such that a particle at rest or with
constant velocity in one inertial frame will remain at rest or have constant veloc-
ity in all inertial frames, provided the net external force F acting on the particle
is nil.

Crucial in this formulation is that it deliberately omits any mentioning of the absolute
motion. This is because all inertial frames are effectively equivalent in the sense that
the second law of Newton (1.6) is invariant (remains the same) irrespectively of the
choice of the inertial frame.

Descartes-Newton’s idea of inertia differs from the modern understanding of this
phenomenon, in that they both regarded uniform motion and rest as different bodily
states. Of a special interest is the position of Descartes who was partially relationist
and partially absolutist 1). On the one hand, he argued that space and matter are
inseparable aspects of one phenomenon, and that motion is always the motion of
bodies relative to one another. On the other hand, despite holding motion to be rela-
tional, Descartes also held there to be a privileged sense of motion (“true motion")
over and above the merely relative motions. In distinction from Descartes, Newton
was a pure absolutist whose system of views consistently stemmed from his belief
that space (and, likewise, time) has existence of its own, independently of the bodies
residing in it. The concept of absolute space and time proposed in “Principia", laid
a foundation for a version of the æther theory developed by Newton in his “Opticks",
a book in which he proposed a corpuscular theory of light. As the theory had trouble
explaining refraction, Newton claimed that an “æthereal medium" was responsible
for this effect. He then went further to suggest it might be responsible for other
physical effects such as heat transfer.

The law of conservation of the linear momentum of a closed system of mutually-
interacting bodies required from Newton to postulate his

Third Law: Whenever a particle exerts a force, F12, on another particle, the latter
one simultaneously exerts a force, F21 on the former, with the same magnitude
and in the opposite direction,

F12 = −F21 . (1.7)

Be mindful that although the magnitude of the forces are equal, the accelerations
of the bodies are not: the less massive body will have a greater acceleration due to
Newton’s second law (1.5). Let us apply the third law to a system of two interacting
particles having instantaneous linear momenta, p1 and p2, respectively. The second

1) Absolutism is a philosophical paradigm, according to which space and time are fundamental entities
existing independently of matter. Relationism denies this paradigm so that space and time exists only as
a supplementary mathematical tool to express relationships between the material bodies (and material
fields). Relationism denies existence of privileged coordinates but may admit that some configurations
of the bodies (fields) may have a privileged value for observer.
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Newton’s law for two particles written down in an inertial reference frame, is

d p1

dt
= F12 , (1.8a)

d p2

dt
= F21 . (1.8b)

Adding equations (1.8a) and (1.8b) together, and applying the third law of Newton
(1.7), yields

d
dt

(
p1 + p2

)
= 0 , (1.9)

that is equivalent to the statement that the total linear momentum of the system,
p = p1 + p2 is constant in any inertial reference frame. One has to pay attention
that this constancy of the overall linear momentum is preserved only in the inertial
frames since in a non-inertial frame the overall momentum may be not conserved
because the inertial forces, Fin, may not obey the third law of Newton. The law (1.9)
can be extended to a system of N interacting particles.

An important property of the force postulated in the third law of Newton is that
physical interaction between bodies is instantaneous. It was in a perfect agreement
with experimental situation at the time of Newton. Much later, after development of
electrodynamics, special and general theories of relativity, and other field theories,
it became clear that there must be no instantaneous forces in nature. This does not
undermine validity of the Newtonian mechanics which remains fully self-consistent
and works very well in the limit of low velocities and small accelerations. Post-
Newtonian celestial mechanics in the solar system can be treated in most cases on
the premise of the instantaneous gravitational interaction. Only dedicated experi-
ments require to include the finite speed of propagation of gravity to get theoretical
predictions consistent with observations 2).

The idea of absolute motion was challenged in that same XVII-th century by Leib-
niz, Huygens, and other relationists. Leibniz found the Newtonian notion of absolute
space unacceptable, because two universes whose bodies occupied different abso-
lute positions but identical relative positions would be indistinguishable from one
another. Despite the objections, the indisputable authority of Newton kept the theory
of æther afloat for more than two hundred years. As Ferraro [2007] put it: “The con-
troversy between relationists and absolutists quieted down in the following centuries,
due to the success of the Newtonian science. Actually it remained in a latent state,
because it would resurge at the end of the nineteenth century." The issue indeed re-
turned into the center of attention in 1887, after the Michelson-Morley experiment
challenged the possibility of æther’s existence. The discussion continued and even
spilled out into the XX-th century, with Poincaré and Einstein being on the opposite
sides of the fence.

Although in his Saint Louis address of 1904, Poincaré came up with an early
formulation of the relativity principle, he never granted this principle the fundamen-
tal status Einstein gave it in 1905 [Kobzarev, 1975]. Defending the idea of æther,

2) See section 7.9 for particular details and explanations.
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Poincaré believed that some dynamical effects conspire to prevent us from observing
it by mechanical or electromagnetic means. On the 11 of April 1912, three months
before his death, Poincaré gave to the French Society of Physics a talk entitled “The
Relations between Matter and Æther". This duality of Poincaré’s concept of motion
brings up strong parallels with Descartes.

Einstein, on his part, strictly followed the line of Leibniz, rejecting the absolute
motion. Thus, he had no need to introduce æther in special relativity, because in
special relativity this entity, in its classical meaning, was redundant. Years later, after
general relativity was developed, Einstein [1920a] admitted in his Leiden’s address
that the general theory of relativity does not yet compel us to abandon æther. Einstein
said that “according to the general theory of relativity space is endowed with physical
qualities (the metric potentials); in this sense, therefore, there exists an æther." At
the same time, Einstein acknowledged that this general-relativistic meaning of the
word “differs widely from that of the æther of the mechanical undulatory theory of
light". At any rate, Einstein’s interpretation deprives æther of its ability to define a
reference frame.

Einstein’s viewpoint was later corroborated by Dirac, on the grounds of hole the-
ory of vacuum. According to Dirac [1951], vacuum is a substance of complex struc-
ture and therefore may be regarded as a physical medium, a kind of æther. However
this medium is Lorentz-invariant and thus defines no preferred inertial frame of refer-
ence. This viewpoint has now become conventional in quantum physics [Lee, 1981].
The reason why the term æther is seldom applied to quantum vacuum in the mod-
ern literature is the necessity to avoid confusion with the old concept of æther, one
associated with absolute motion.

1.1.3
Newton’s Law of Gravity

Having formulated the three fundamental laws of motion, Newton went on in his
Principia to explore a particular force, gravity. In this endeavor, Newton was getting
inspiration from the works by Kepler and from correspondence with Hooke 3).

In 1666, Robert Hooke explained to the Royal Society his concept on what made
the planets describe closed orbits about the Sun. According to Hooke, a force was
needed, not to push a planet along from behind, but to pull it in towards a fixed
gravitating center, so as to make the planet describe a closed curve instead of moving
off along a straight tangent line into outer space. Circa 1680, in his correspondence
with Newton, Hooke hypothesized that above ground level the gravity force changes
inversely as the square of the distance from the Earth’s center, and that below ground
the force falls off as the center is approached. Hooke enquired as to what curve
should be followed by a body subject to a central force obeying the inverse-square
law 4). Soon Newton proved that an orbit in the form of a conic section, with the

3) For historical analysis of the life and work of Newton and the contemporary scholars, see [Cohen and
Smith, 2002].

4) Newton, in his letter to Halley of 20 June 1686, seeking to rebut Hooke’s claim to have provided him
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center of attraction located in one of the foci, necessarily implies an inverse-square
attraction 5) - a result perfectly fitting Kepler’s first law. We shall never know what
made Newton procrastinate for almost five years with making his calculation public.
For the first time, the discovery saw light in the Principia in 1687. In Newton’s own
words,

“I deduced that the forces, which keep the planets in their orbs must [be]
reciprocally as the squares of their distances from the centers about which they
revolve: and thereby compared the force requisite to keep the Moon in her Orb
with the force of gravity at the surface of the Earth; and found them answer
pretty nearly."

In the modern notations, the law will read (see Figure 1.1)

F12 = −G
m1m2

r3
12

r12 , (1.10)

where F12 is the gravitational force wherewith body 2 acts on body 1, G = (6.67259±
0.00030) × 10−11 m3kg−1s−2 denotes the Newtonian gravity constant, m1 and m2 are
the masses of the two interacting bodies located at positions with spatial coordinates
x1 and x2 respectively, the vector

r12 = x1 − x2 (1.11)

is aimed from the second body to the first one, the quantity r12 being this vector’s
Euclidean magnitude r12 = |r12|. According to the third Newton law of reciprocal
action, body 1 acts on body 2 with a force

F21 = −F12 = −G
m1m2

r3
21

r21 , (1.12)

where r21 = x2 − x1 = −r12, and r21 = |r21| = |r12| = r12.
Combining the gravity law with Newton’s second law (the law of impulse), one

gets

d
dt

(m1 ẋ1) = −G
m1m2

r3
12

r12 , (1.13)

d
dt

(m2 ẋ2) = −G
m2m1

r3
21

r21 , (1.14)

with overdot standing for an ordinary time derivative. If the masses of the bodies are
constant6) equations (1.13 - 1.14) can be simplified to the form usually employed in

originally with the idea of inverse-square gravity law, emphasized that the idea had been published
before by Boulliau. In fact, Boulliau did not believe in a universal attraction force. At the same time,
in his book he indeed argued that, had such a force existed, it would likely obey the inverse-square law
[Boulliau, 1645].

5) Be aware that Newton proved that orbits being conics entail the inverse-square law. He did not prove
that the inverse-square radial force results in orbits being conics [Weinstock, 1982].

6) This is not always true. For example, mass of the Sun changes due to the emission of the solar wind
and radiation. In many cases, however, the mass loss is slow and can be neglected.
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Figure 1.1 Newton’s law of the universal gravitational attraction. The coordinates xi = (x, y, z)
represent an arbitrary inertial reference frame with the origin O. This frame is assumed to be
non-moving and its axes are non-rotating. Time t is absolute and parameterizes the worldlines
of the bodies.
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celestial mechanics,

m1 ẍ1 = −G
m1m2

r3
12

r12 , (1.15)

m2 ẍ2 = −G
m2m1

r3
21

r21 . (1.16)

Summing up equations (1.13) and (1.14), and integrating the result over the time,
one arrives at the law of conservation of linear momentum of the gravitating two-
body system,

m1 ẋ1 + m2 ẋ2 = P , (1.17)

where P is a constant vector of the linear momentum of the system. The center of
mass of the two-body system is, by definition, a point given by the vector

X =
m1x1 + m2x2

m1 + m2
. (1.18)

Integration of the equation (1.17) with respect to time gives birth to a vector integral
of motion of the center of mass,

MX = D + P(t − t0) . (1.19)

Here

M = m1 + m2 (1.20)

is a constant total mass of the two-body system,

D = MX0 , (1.21)

and X0 is the constant position of the center of mass at the fiducial time, t0, which is
often called an epoch in dynamic astronomy. A constant vector

V = Ẋ =
P
M

, (1.22)

is termed the velocity of the center of mass. Equation (1.19) tells us that the center
of mass X of the two-body system moves uniformly along a straight line with the
constant velocity V.

Solving equations (1.11) and (1.18) elucidates that inertial coordinates of the bod-
ies, x1 and x2, can be always represented as a sum of two vectors, X and r12,

x1 = X +
m2

m1 + m2
r12 , x2 = X −

m1

m1 + m2
r12 , (1.23)

where r12 is a vector of a relative position of body 2 with respect to body 1. Substi-
tuting these equations to the equations of motion (1.15 and (1.16) and accounting for
the conservation of the integral of the center of mass of the two-body system, Ẍ = 0,
one obtains the equations of relative motion

µr̈12 = −G
Mµ

r3
12

r12 , (1.24)
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where

µ =
m1m2

M
, (1.25)

is called the reduced mass. Equations of relative motion for vector r21 is obtained
by exchanging the body indices, 1 ↔ 2, but it does not provide us with a new in-
formation. Equations of relative motion (1.24) are naturally termed the equations of
motion of the reduced two-body problem. They could be also derived by subtracting
equation (1.16) from (1.15). It may make an impression that the conservation of the
integral of the center of mass is not important in derivation of the equations of the
relative motion. However, this point of view is mistaken since the integral of the
center of mass were not exist, the equations of the relative motion would have extra
terms associated with the force of inertia.

Inertial coordinates with the origin fixed at the center of mass of the gravitating
system are named barycentric. In the barycentric frame of reference, the total mo-
mentum of the system is zero, P = 0, while the position of the center of mass is
constant and can be set to zero as well, X0 = 0. In this coordinate system, at any
instant of time, one has, X = V = 0, as follows from the conservation of momentum.
Hence, in this frame, equations (1.23) are simplified

x1 =
m2

m1 + m2
r12 , x2 = −

m1

m1 + m2
r12 , (1.26)

and the problem of motion is reduced to solving of only one differential equation of
the relative motion (1.24) that can be re-written as

r̈12 = −G
M
r3

12

r12 , (1.27)

since the reduced mass µ is canceled out. In the barycentric reference frame the
problem of motion can be viewed as a problem of a single body with the reduced
mass, µ, moving around a fixed center of gravity located at the barycenter of the
two-body system and having a total mass, M = m1 + m2. In more general, N-body
problem, a similar procedure of introducing the relative coordinates can be employed
to reduce the problem to an (N − 1)-body setting.
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1.2
The N-body Problem

Let us consider an isolated self-gravitating system consisting of a number of point-
like massive bodies. In neglect of the gravitational pull from the Milky Way and
the Hubble expansion of the universe, the solar system is a typical example but the
consideration given in this chapter is applicable equally well to other isolated astro-
nomical systems like a binary or multiple stellar system or a planetary system around
other star. We shall enumerate the massive bodies with the capital letters A, B,C, ...
taking the values of 0, 1, 2, ...,N, the index 0 being assigned to the primary body.
Depending on a particular situation under consideration the primary can be either
the Sun, or the Earth, or any other major planet.

1.2.1
Gravitational Potential

Let us begin from discussion of gravitational potential of a point-like mass m located
at the origin of an inertial reference frame (x = (xi) = (x1, x2, x3). Gravitational
force of the mass on a test particle of unit mass is given by expression

f i = −
Gm
r3 xi , (1.28)

where, r = |x| =
√

(x1)2 + (x2)2 + (x3)2, is the Euclidean distance from the mass to
the field point x = (xi). Elementary gravitational force, f i, can be represented as a
gradient of gravitational potential

φ =
Gm

r
, (1.29)

so that

f i =
∂φ

∂xi =

(
∂φ

∂x1 ,
∂φ

∂x2 ,
∂φ

∂x3

)
. (1.30)

If the mass m is displaced to the point with coordinates x′ = (x′i), the gradient
expression (1.30) for gravitational force, f i, remains the same but the value of the
potential, φ, at the point xi becomes

φ =
Gm
|x − x′|

. (1.31)

Let us now consider an extended massive body made up of a continuous distribu-
tion of matter having a compact support (enclosed in a finite volume) with a mass
density ρ(t, x). One assumes that the body’s matter can move that explains the time
dependence of the mass density which obeys the equation of continuity

∂ρ

∂t
+
∂(ρvi)
∂xi = 0 , (1.32)
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where vi = vi(t, x) is velocity of an infinitesimally-small element of body’s mat-
ter, and the repeated Roman indices mean the Einstein rule of summation from 1
to 3. Einstein’s summation rule was invented to avoid the explicit (but in many
cases unnecessary) appearance of the sign of summation,

∑
, in tensor equations.

It tacitly assumes that a pair of repeated (dummy) indices assume summation over
corresponding values of the indices. In what follows, one will uses the Einstein rule
for summation of coordinate indices. For example, a scalar product of two vectors
a = (ai) and b = (bi) will be written as a · b = aibi ≡

∑3
i=1 aibi = a1b1 + a2b2 + a3b3.

Integration of equation (1.32) over the finite volume V of the body, tells us that
the overall mass of the body

M =

∫
V

ρ(t, x)d3x , (1.33)

is constant. Indeed, taking the time derivative from both sides of equation (1.33)
yields

dM
dt

=
d
dt

∫
V

ρ(t, x)d3x =

∫
V

∂ρ

∂t
d3x +

∮
∂V

ρvidS i , (1.34)

where the surface integral is taken over the body’s surface, ∂V, and accounts for
the presumable time-dependence of the boundary of integration due to the motion
of matter. Applying now the Gauss theorem to the surface integral recasts equation
(1.34) to

dM
dt

=

∫
V

[
∂ρ

∂t
+
∂(ρvi)
∂xi

]
d3x = 0 , (1.35)

due to the equation of continuity. It proves that the overall mass of the extended
body remains constant that is mass of the body is the integral of motion of matter.

Gravitational potential U of the extended body is found as an integral taken over
the body’s volume comprised of the contributions of the "elementary" potentials
(1.31) of the "point-like" elements of the body with mass m replaced with m→ ρd3x.
It yields

U(t, x) =

∫
V

ρ(t, x′)d3x′

|x − x′|
. (1.36)

Equation for the gravitational force, F i, exerted by the extended body on a probe unit
mass at point xi is defined as a gradient of the gravitational potential (1.36), that is

F i =
∂U
∂xi =

(
∂U
∂x1 ,

∂U
∂x2 ,

∂U
∂x3

)
. (1.37)

By taking second-order partial derivatives from the potential U, one can prove that
the gravitational potential, U, obeys the second-order partial differential equation

δi j ∂2U
∂xi∂x j = −4πGρ , (1.38)
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where δi j = diag(1, 1, 1) is the unit matrix, and one has used the Einstein summation
rule to avoid the appearance of the double sum of summation,

∑3
i=1

∑3
j=1, in the right

side of this equation. Differential operator acting on gravitational potential U in the
left side of this equation, is called the Laplace operator

4 ≡ δi j ∂2

∂xi∂x j , (1.39)

and the equation (1.38) is known as the Poisson equation, conventionally written as

4U = −4πGρ . (1.40)

Gravitational potential (1.36) is solution of the (inhomogeneous) Poisson equation
that is valid both inside and outside of the body’s volume. However, if one is inter-
ested in the gravitational potential and force only outside of the body, a homogeneous
Laplace equation

4U = 0 , (1.41)

is sufficient.

1.2.2
Gravitational Multipoles

In many practical tasks of celestial mechanics and geodesy one does not need the in-
tegral form of the Newtonian gravitational potential but its multipolar decomposition
describing gravitational field in terms of multi-index objects called multipoles. It can
be obtained by expanding gravitational potential (1.36) outside of the body into infi-
nite Taylor series by making use of decomposition of the reciprocal distance |x−x′|−1

around the point x′i = 0 with respect to the, so-called, harmonic polynomials. One
has 7),

1
|x − x′|

=

∞∑
l=0

(−1)l

l!
x′<i1 x′i2 ...x′il>

∂l

∂xi1∂xi2 ...∂xil

(
1
r

)
(1.42)

=
1
r

+
xix′i

r3 +
1
2

[
3(xix′i)(x jx′ j)

r5 −
r′2

r3

]
+ ... ,

where r = |x|, r′ = |x′|, the multi-index notation of spatial indices has been used, each
index i1, i2, ..., il runs from 1 to 3, and the angular brackets around the indices denote
an algebraic operation making an object having such indices, symmetric and trace-
less (STF) tensor with respect to spatial rotations (see Appendix A). This expansion
is more commonly written in terms of the Legendre polynomials Pl(cos θ). Formula
(1.42) can be easily converted to these polynomials after re-writing the scalar prod-
uct of two vectors xix′i in trigonometric form, xix′i = rr′ cos θ, and substituting it to

7) Notice the usage of Einstein’s summation rule for indices i1, i2, ..., il numerating spatial coordinates.
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expression (1.42). It yields,

1
|x − x′|

=
1
r

∞∑
l=0

(−1)l

l!

(
r′

r

)l

Pl(cos θ) . (1.43)

Though this form of expansion of the reciprocal distance looks more simple, it re-
quires further elaboration of Pl(cos θ) in terms of the associated Legendre functions
Pm

l (cos θ) which is effectively equivalent to the expansion in terms of the harmonic
polynomials. The harmonic polynomials has many mathematical advantages in the-
oretical studies [Hartmann et al., 1994], and will be preferred almost everywhere
in this book to describe the multipolar decompositions of gravitational potentials in
classical and relativistic gravity theories.

After substituting the Taylor expansion (1.42) in the definition (1.36) of the New-
tonian gravitational potential, one obtains its multipolar expansion

U(t, x) = G
∞∑

l=0

(−1)l

l!
I<i1i2 ...il>∂i1i2 ...il

(
1
r

)
, (1.44)

where one has used a shorthand notation for partial derivatives ∂i = ∂/∂xi, ∂i1i2 ...il =

∂i1∂i2 ...∂il , and I<i1i2 ...il> are the mass multipole moments of gravitational field of the
body which are integrals from the density, ρ(t, x), taken over the body’s volume

I<i1i2 ...il> =

∫
V

ρ(t, x)x<i1 xi2 ...xil>d3x , (1.45)

with x<i1 xi2 ...xil> representing the harmonic polynomial of the l-th degree. The angu-
lar brackets around the indices of the polynomial denote a special kind of symmetry
which is imposed on the harmonic polynomial by the condition that it must be a
solution of a homogeneous Laplace equation, that is

4
(
x<i1 xi2 ...xil>

)
= 0 . (1.46)

It is this condition which demands for the l-th order harmonic polynomial,
x<i1 xi2 ...xil>, to be a fully-symmetric and trace-free (STF) tensor with respect to ro-
tations in three-dimensional Euclidean space [Blanchet and Damour, 1989; Pirani,
1965; Thorne, 1980]. The word "trace-free" means that contraction of any pair of
indices nullifies the STF tensor,

x<i1 xi1 xi3 ...xil> = δi1i2 x<i1 xi2 ...xil> ≡ 0 , (1.47)

which is a mathematical property of any polynomial solution of the homogeneous
Laplace equation (1.46). We provide more details on the structure of the harmonic
polynomials in appendix A.

Let us define a symmetric moment of inertia of the l-th order,

Ii1i2 ...il =

∫
V

ρ(t, x)xi1 xi2 ...xil d3x . (1.48)
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Then, the STF multipole moment (1.45) is expressed in terms of the moments of
inertia as follows [Pirani, 1965]

I<i1i2 ...il> =

[l/2]∑
k=0

al
kδ

(i1i2δi3i4 ...δi2k−1i2k Ii2k+1 ...il) j1 j1 ... jk jk , (1.49)

where the round brackets around a group of indices denote full symmetrization with
respect to permutation of the indices, [l/2] denotes the integer part of l/2, the re-
peated indices denote Einstein’s summation, and the numerical coefficient

al
k = (−1)k l!

(l − 2k)!(2k)!!
(2l − 2k − 1)!!

(2l − 1)!!
. (1.50)

The STF multipole moments I<i1i2 ...il> are well-known in celestial mechanics, and
other ares of theoretical physics. For example, the zero-order (l = 0) multipole mo-
ment I is simply a constant mass M of the body having been introduced in equation
(1.33). Dipole moment (l = 1)

Ii =

∫
V
ρ(t, x)xid3x , (1.51)

defines position of the center of mass of the body with respect to the origin of the
coordinates. The quadrupole moment (l = 2)

I<i j> =

∫
V
ρ(t, x)

(
xix j −

r2

3
δi j

)
d3x , (1.52)

and the multipole moments of higher-order provide an integral characteristics of
various asymmetries in the distribution of matter inside the body with respect to
its equatorial and meridional planes 8). If the origin of coordinates is placed to the
center of mass of the body, the dipole moment vanishes, Ii = 0, and the multipolar
expansion (1.44) can be written as follows

U(t, x) =
GM

r
+ G

∞∑
l=2

(−1)l

l!
I<i1i2 ...il>∂i1i2 ...il

(
1
r

)
, (1.53)

where mass M is constant, but the multipole moments I<i1i2 ...il> (l ≥ 2) can depend on
time. In many cases, contribution of higher-order multipoles to the overall gravita-
tional field is fairly small and can be neglected, thus, leaving only the first term in the
right side of equation (1.53). Extended body with spherically-symmetric distribution
of mass has no multipole moments at all, so that its gravitational potential

U =
GM

r
, (1.54)

is the same as that of the point-like mass M placed at the coordinate origin.

8) Notice that contraction of two indices of the quadrupole moment gives I<ii> ≡ 0, that is its trace is
indeed zero.
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1.2.3
Equations of Motion

Let us derive the Newtonian equations of motion of extended bodies comprising the
N-body system under consideration. We introduce a global inertial reference frame
with time t and spatial coordinates x = (xi) = (x1, x2, x3) and assume that each
body A occupies a finite volume VA of space. The interior distribution of matter is
characterized by mass density ρ = ρ(t, x) and by the symmetric tensor of stresses
πi j(t, x) = π ji(t, x), which is reduced in case of a perfect fluid to an isotropic pressure
p = p(t, x) such that the trace of this tensor, πi j = pδi j. Macroscopic equations of
motion of matter are 9)

∂(ρvi)
∂t

+
∂(ρviv j)
∂x j = −

∂πi j

∂x j + ρ
∂U
∂xi , (1.55)

where vi = dxi/dt is velocity of matter and, U = U(t, x), is gravitational potential
that is a linear superposition of potentials of all bodies of the system

U(t, x) =

N∑
B=0

UB(t, x) , (1.56)

UB(t, x) = G
∫
VB

ρ(t, x′)
|x − x′|

d3x′ . (1.57)

Making use of equation of continuity (1.32), the equations of motion (1.55) can be
recast to the form

ρ
dvi

dt
= −

∂πi j

∂x j + ρ
∂U
∂xi , (1.58)

where the operator of the total derivative

d
dt
≡
∂

∂t
+ v j ∂

∂x j , (1.59)

describes differentiation along the worldline of the element of body’s matter. We
define the dipole moment of body A with respect to a point with coordinates xA =

(xi
A) by expression

Ii
A =

∫
VA

ρ(t, x)
(
xi − xi

A

)
d3x . (1.60)

The point xi
A coincides with the center of mass of the body in case when Ii

A = 0,
and one imposes and keep this condition for any instant of time. Hence, the time-
dependent position xA = xA(t) of the center of mass of body A is defined in the
inertial coordinates by equation

mA xi
A =

∫
VA

ρ(t, x)xid3x , (1.61)

9) Observe the use of Einstein’s summation rule in application to the repeated indices.
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where

mA =

∫
VA

ρ(t, x)d3x , (1.62)

is a constant mass of the body A. Equations of orbital motion of body A can be
obtained after double differentiation of both sides of equation (1.61) with respect to
time and application of the macroscopic equation of motion of matter (1.58). For
doing this calculation, an important formula giving a value of the time derivative
of integral quantities, will be required. More specifically, for any smooth function,
f = f (t, x), multiplied with density ρ = ρ(t, x), the following differentiation rule is
valid

d
dt

∫
VA

ρ f d3x =

∫
VA

ρ
d f
dt

d3x , (1.63)

where the total time derivative in the right side must be understood in the sense of
equation (1.59). The proof of this rule is rather straightforward. Time derivative of
the integral is

d
dt

∫
VA

ρ f d3x =

∫
VA

[
∂ρ

∂t
f + ρ

∂ f
∂t

]
d3x +

∮
∂VA

ρ f vidS i , (1.64)

where the surface integral in the right side of this equation takes into account that the
volume of the body changes as time passes on. Applying the equation of continuity
(1.32) and the Gauss theorem one can bring equation (1.64) to the following form,∫

VA

[
∂ρ

∂t
f + ρ

∂ f
∂t

]
d3x +

∮
∂VA

ρ f vidS i = (1.65)∫
VA

[
−
∂(ρvi)
∂xi f + ρ

∂ f
∂t

+
∂(ρ f vi)
∂xi

]
d3x ,

which is immediately reduced to the right side of equation (1.63) after applying the
Leibnitz rule to the partial derivative

∂(ρ f vi)
∂xi =

∂(ρvi)
∂xi f + ρvi ∂ f

∂xi . (1.66)

Applying equation (1.63) two times to the center-of-mass definition (1.61), one ob-
tains

mAvi
A =

∫
VA

ρ(t, x)vid3x , (1.67)

mAai
A =

∫
VA

ρ(t, x)
dvi

dt
d3x , (1.68)

where vi
A = dxi

A/dt is velocity, and ai
A = dvi

A/dt is acceleration of the body’s center
of mass respectively. Now, one replaces the time derivative, dvi/dt, in the right side
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of integral in equation (1.68) with the macroscopic equations of motion (1.58), and
split the gravitational potential, U, in two parts - internal and external,

U = UA + Ū , (1.69)

where

Ū =

N∑
B=0
B,A

UB(t, x) . (1.70)

It yields

mAai
A = −

∫
VA

∂πi j

∂x j d3x +

∫
VA

ρ
∂UA

∂xi d3x +

∫
VA

ρ
∂Ū
∂xi d3x . (1.71)

First term in the right side of this equation vanishes,∫
VA

∂πi j

∂x j d3x =

∮
∂VA

πi jdS j = 0 , (1.72)

because stresses disappear on the surface of each gravitating body [Landau and Lif-
shit’s, 1959]. The integral of the derivative of the internal gravitational potential also
vanishes,∫

VA

ρ
∂UA

∂xi d3x = −

∫
VA

∫
VA

ρ(t, x)ρ(t, x′)
xi − x′i

|x − x′|3
d3xd3x′ = 0 , (1.73)

due to anti-symmetry of the integrand with respect to exchange of coordinates, x↔
x′. Thus, all internal forces exerted on the body, cancel out exactly, and equations of
motion of the center of mass of body A are reduced to

mAai
A =

∫
VA

ρ
∂Ū
∂xi d3x . (1.74)

External potential, Ū, can be expanded in Taylor series around the point xA with
respect to the harmonic (STF) polynomials,

Ū =

∞∑
l=0

1
l!

r<i1
A ri2

A ...r
il>
A ∂i1i2 ...il Ū(t, xA) , (1.75)

where ri
A ≡ xi − xi

A, the angular brackets around indices denote STF symmetriza-
tion defined in equation (1.49), the partial derivative ∂i = ∂/∂xi, and the l-th partial
derivative ∂i1i2 ...il Ū(t, xA) ≡

[
∂i1i2 ...il Ū(t, x)

]
x=xA

. Appearance of the harmonic poly-

nomials in this expansion is justified because the external potential Ū satisfies the
Laplace equation: 4Ū = 0. Hence, the symmetric polynomial r<i1

A ri2
A ...r

il>
A must be

apparently traceless. Substituting expansion (1.75) in equation (1.74), yields

mAai
A =

∞∑
l=0

1
l!

I<i1i2 ...il>
A ∂ii1 ...il Ū(t, xA) , (1.76)
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which is the equation of motion of body A given in terms of its (time-dependent)
STF multipole moments

I<i1i2 ...il>
A =

∫
VA

ρ(t, x)r<i1
A ri2

A ...r
il>
A d3x , (1.77)

coupled with the partial derivatives of the external potential Ū taken at the center of
mass of the body. Development of this theory is getting progressively complicated
if one continue to keep all multipole moments of the bodies in equations of motion
[Kopejkin, 1988a]. We shall show how to deal with these complications in Chapter
6.1. The present section is restricted with the case of spherically-symmetric bodies
neglecting their tidal and rotational deformations. In such case, the external potential
Ū is simplified to a linear superposition of potentials of point-like masses

Ū(t, x) =

N∑
B=0
B,A

GmB

|x − xB|
, (1.78)

where xB = xB(t) are time-dependent positions of the external bodies B , A defined
by equation being similar to equation (1.60) where index A must be replaced with
index B. Substituting potential (1.78) in equation (1.76) and assuming that body A
is also spherically-symmetric (so that only l = 0 monopole term, IA ≡ mA, remains)
one arrives to the final form of dynamical equations of motion of N + 1 point-like
masses mA located at coordinate positions xA,

mA ẍA = −

N∑
B=0
B,A

GmAmB

r3
AB

rAB , (1.79)

with vector rAB = xA − xB being directed from body B to A, rAB = |rAB|.

1.2.4
The Integrals of Motion

The system of equations (1.79) admits 10 integrals of motion: three integrals of the
linear momentum P; three integrals of the initial position of the center of mass, X0;
three integrals of the angular momentum, J, and one integral of the energy, E. The
integrals of the linear momentum and the the center of mass are obtained by summing
up equations (1.79) over all the bodies of the system, followed by integration with
respect to time. The net gravitational force in the sum is reduced to zero due to the
third Newton’s law, so one obtains the following two vectorial integrals of motion:

N∑
A=0

mA ẋA = P , (1.80)

N∑
A=0

mA xA = P(t − t0) + D , (1.81)
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with t0 being the epoch, and the constant vector

D = MX0 , (1.82)

where the total mass of the system

M =

N∑
A=0

mA , (1.83)

is constant. To obtain one more integral of motion, take the dot-product of equation
(1.79) with the velocity ẋA, with the subsequent summation over all the bodies of the
system,

N∑
A=0

mA ẍA · ẋA = −

N∑
A=0

N∑
B=0
B,A

GmAmB

r3
AB

rAB · ẋA . (1.84)

With aid of the equalities

N∑
A=0

N∑
B=0
B,A

GmAmB

r3
AB

rAB · ẋA =
1
2

N∑
A=0

N∑
B=0
B,A

GmAmB

r3
AB

rAB · ṙAB , (1.85)

and

GmAmB

r3
AB

rAB · ṙAB = −
d
dt

GmAmB

rAB

, (1.86)

equation (1.84) becomes

dE
dt

= 0 , (1.87)

with E standing for a scalar integral of motion – the energy:

E =
1
2

N∑
A=0

mA ẋ2
A −

1
2

N∑
A=0

N∑
B=0
B,A

GmAmB

rAB

. (1.88)

Clearly, the first term in the right side makes up the kinetic energy of the bodies,
while the second one represents the gravitational potential energy. The former being
always positive, the latter is always negative10).

The last integral of motion - the angular-momentum vector J - is derived from
equation (1.79) by taking the cross product of both sides of this equation with the
position vector xA, summing up over all the equations, and subsequent integration
over time. This entails

J =

N∑
A=0

mA (xA × ẋA) , (1.89)

10) The gravitational potential energy being negative makes the relativistic masses of self-gravitating as-
tronomical objects, like planets or stars, smaller than the algebraic sum of the rest masses of their
constituent particles - baryons. See section 6.1.3 for further details.
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the sign × denoting the Euclidean cross product of two vectors. Constant vector
J defines an invariant plane of the N-body problem called the invariable plane of
Laplace.

1.2.5
The Equations of Relative Motion with Perturbing Potential

It would be instructive to re-write the equations of motion (1.79) in terms of the
relative distances of the bodies from the primary body, the one denoted with the
index B = 0. To this end, one introduces the relative-to-the-primary vectors

RA = xA − x0 , RB = xB − x0 (1.90)

where x0 denotes the position of the primary. The equation (1.79) written for the
primary is 11)

ẍ0 =
GmA

R3
A

RA +

N∑
B=1
B,A

GmB

R3
B

RB , (1.91)

and for the other bodies

ẍA = −
Gm0

R3
A

RA −

N∑
B=1
B,A

GmB

r3
AB

rAB , (1.92)

where, rAB = xA − xB = RA − RB, is a vector of relative distance directed from body B
to A. The difference between equations (1.92) and (1.91) amounts to

R̈A = −
G(m0 + mA)

R3
A

RA −

N∑
B=1
B,A

GmB

(
rAB

r3
AB

+
RB

R3
B

)
, (1.93)

whose right side can be recast to a gradient form

R̈A =
∂U
∂RA

, (1.94)

where

U =
G(m0 + mA)

RA

+W , (1.95)

consists of an algebraic sum of a potential of a point-like mass, m0 + mA, and the
perturbing potential

W =

N∑
B=1
B,A

GmB

(
1

rAB

−
1
RB

−
RA · RB

R3
B

)
. (1.96)

11) Notice that the mass, m0, of the primary cancels out.
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The perturbing potential W acting on a mass mA is generated by all external masses
mB other than mA or the primary with the mass m0. It depends on the total gravita-
tional potential of the external bodies with masses mB taken at the position of body
A, from which one subtracts a monopole term, ∼ R−1

B , and a dipolar component,
∼ (RA · RB)R−3

B , which can be interpreted as a force of inertia Fin emerging in the
non-inertial frame associated with the primary. It is interesting to notice that in case
of two-body problem the perturbing potential vanishes identically,W ≡ 0.

1.2.6
The Tidal Potential and Force

When the distance RA happens to be much smaller than any of the distances RB, the
problem of relative motion of the body A around the primary becomes a two-body
problem with the perturbation caused by the tidal forces from the external bodies.
An example of such a motion is rendered by the Earth-Moon system that moves in
the external gravitational field of the Sun and the major planets. In this case, the
Earth assumes the role of the primary, the Moon plays the role of the secondary
body A, while the external bodies B , A are the Sun and the major planets of the
solar system. An expansion of the perturbing potential W in the Taylor series with
respect to a small parameter RA/RB is obtained by expanding the function r−1

AB about
the point RA = 0 in terms of the harmonic polynomials. This gives us

1
rAB

=

∞∑
l=0

1
l!

R<i1
A Ri2

A ...R
il>
A

[
∂l

∂Ri1
A ∂Ri2

A ...∂Ril
A

(
1

rAB

)]
RA=0

(1.97)

=
1
R B

+
RA · RB

R3
B

+
1
2

[
3(RA · RB)2

R5
B

−
R2

A

R3
B

]
+ ... ,

where the angular brackets around spatial indices denote STF (symmetric and trace-
less) tensor, and one has used vector notation Ril

A = RA (l = 1, 2, ...), with each
index il taking the values (1, 2, 3) corresponding to the three Cartesian coordinates
(x1, x2, x3). Substituting this expansion into equation (1.96), one sees that both the
monopole (l = 0) and dipole (l = 1) terms canceled out, so the tidal expansion of the
disturbing potential acquires the following form

W =

∞∑
l=2

(−1)l

l!
R<i1

A Ri2
A ...R

il>
A

∂lŪ

∂Ri1
B ∂Ri2

B ...∂Ril
B

, (1.98)

where

Ū =

N∑
B=1
B,A

GmB

RB

(1.99)

is the gravitational potential created by the external bodies at the position of the
primary. The lowest-order term of the tidal potentialW is l = 2, which corresponds
to the quadrupole moment in the expansion of the external gravitational potential
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Ū in the immediate neighborhood of the primary. It is worthwhile to point out that
the partial derivatives in the expansion for the tidal potential possess the following
property: contraction with respect to any couple of indices gives identically zero,
because the external potential Ū satisfies the homogeneous Laplace equation

4Ū ≡ δi j ∂2Ū

∂Ri
B∂R j

B

= 0 , (1.100)

where the repeated indices assume summation from 1 to 3, and δi j = diag(1, 1, 1) is
the unit matrix (the Kronecker symbol).

The tidal force Ftide =
(
F i

tide

)
exerted on the body A orbiting the primary is calcu-

lated as a partial derivative of the tidal potential

F i
tide =

∂W

∂Ri
A

=

∞∑
l=2

(−1)l

(l − 1)!
R<i1

A Ri2
A ...R

il−1>
A

∂lŪA

∂Ri1
B ...∂Ril−1

B ∂Ri
B

, (1.101)

so the equation of the relative motion of the body A around the primary is

R̈A = −
G(m0 + mA)

R3
A

RA + Ftide (1.102)

= −
G(m0 + mA)

R3
A

RA +

N∑
B=1
B,A

GmB

R3
B

[
3(RA · RB)RB

R2
B

− RA

]
+ ... ,

where one has shown only the leading (quadrupole) term in the tidal force perturbing
the motion of the body A. If the orbit of the body A around its primary is circular
and there is only one external body B lying on the x axis, the quadrupole tidal force
is maximal at the point of intersection of the orbit with x axis, and is minimal at
the points of intersection of the orbit with the y axis. The ratio of the maximal-to-
minimal values of the tidal force amounts to 2. A plot of the quadrupole tidal force
at different points in space around the primary is demonstrated in Figure 1.2.
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Out[53]=

primary

external body B

Figure 1.2 The vector field of the quadrupole tidal force is shown at different points in space
around the primary kept fixed at the coordinate origin. The tidal force is caused by the external
body B laid out on the x axis far away from the primary. The circle depicts a circular orbit in the
plane x − y that would be described by the body A about the primary in the absence of the
perturbing tidal force. The quadrupole tidal force squeezes the circular orbit in the plane x − y
along the direction toward the body B so that the orbit becomes an ellipse with the ratio of its
axes equals to 2.
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1.3
The Reduced Two-Body Problem

In the simplest case of two bodies, only a primary of mass m0 located at x0, and
a secondary of mass m1 located at x1 are present. The disturbance W vanishes,
because the subscript B in equation (1.96) runs through one value solely, B = 1,
and there are no other values to be taken by the index B , A. The motion becomes
mathematically equivalent to the Newtonian one-body problem, i.e., to movement
about a fixed center of mass, M = m0 + m1, given by equation

r̈ = −
GM
r3 r , (1.103)

where r ≡ r1. Equation (1.103) has been derived independently in section 1.1.3. A
fortunate aspect of the two-body problem is that it is integrable in terms of elemen-
tary functions. The outcome is Newton’s celebrated result: the generic solution is a
conic with the gravitating center in one of its foci. This then grants one a possibility
to thoroughly discuss multiple aspects of the orbital motion of the bodies making use
of various parameterizations of the conics.

1.3.1
Integrals of Motion and Kepler’s Second Law

Let the center of attraction be located in the origin of an inertial reference frame
parameterized with axes xi = (x1, x2, x3) = (x, y, z), as shown in Figure 1.3. The
directions of the axes are defined via three unit vectors ex, ey, ez with the following
components

ex = (1, 0, 0) , ey = (0, 1, 0) , ez = (0, 0, 1) . (1.104)

The position of a moving body is given by the radius-vector r. The projection of
the velocity v = ṙ of the body 12) onto the direction of the radius-vector r gives the
rate ṙ at which the radial distance evolves. In other words, the Euclidean dot product
ṙ · r = ṙr. Keeping this in mind, one sees that the dot-product of equation (1.103) by
ṙ is

ṙ · r̈ + GM
ṙ
r2 = 0 . (1.105)

Integration of the latter results in a conservation law of the orbital energy,

E =
1
2

ṙ2 −
GM

r
, (1.106)

with the constant E being the energy per unit mass.

12) One reminds that a dot over any function of time denotes an ordinary derivative with respect to time,
for example, ṙ = dr/dt, etc.
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Figure 1.3 Inertial reference frame (x1, x2, x3) = (x, y, z) has its origin at the fixed center of
gravity with mass M. Orbital plane is orthogonal to the unit vector k and intersects with the
reference plane (x, y) along the apsidal line defined by the unit vector l. Position of the moving
body is characterized by the radius-vector r.
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Taking the cross-product of both sides of equation (1.103) with vector r, one triv-
ially ends up with

r × r̈ = 0 , (1.107)

integration whereof gives us another conservation law of the orbital angular momen-
tum,

J = r × ṙ . (1.108)

Here the constant vector, J, is orthogonal to both r and ṙ and is easily identifiable
with the orbital angular momentum per unit mass. Conservation of this vector tells
us that the plane defined by r and ṙ stays unchanged. This circumstance gives birth
to the term orbital plane. Notice that both magnitude and direction of vector J are
conserved, so that each component Jx, Jy, and Jz of this vector is an independent
integral of motion.

Orientation of the orbital plane is uniquely defined by the orientation of the angular
momentum vector J that is parallel to the unit vector k, that is J = Jk as shown in
Figure 1.3. The orbital plane intersects with the reference plane (x, y) along the
apsidal line defined by the unit vector l that is directed towards the ascending node
of the orbit which assumes that the body in Figure 1.3 moves counter-clockwise if
one watches the motion from the tip of vector k. The unit vector m = k × l, and
lies in the orbital plane. The triad of unit vectors l,m, k is related to the triad of unit
vectors ex, ey, ez defining orientation of three axes of the inertial frame, as follows

l = ex cos Ω + ey sin Ω , (1.109)

m = −ex cos i sin Ω + ey cos i cos Ω + ez sin i , (1.110)

k = ex sin i sin Ω − ey sin i cos Ω + ez cos i . (1.111)

Here, the angle Ω is the longitude of the ascending node of the orbit, and the angle i
is the inclination of the orbit with respect to the reference plane.

Let us now introduce within the orbital plane the polar coordinates of the moving
body which are the radial distance, r, and the argument of latitude, θ, that is the
angle between vectors r and l measured counter-clockwise in the orbital plane from
the direction l. In terms of r and θ one has,

r = r(l cos θ + msin θ) , (1.112)

ṙ = l
(
ṙ cos θ − rθ̇ sin θ

)
+ m

(
ṙ sin θ + rθ̇ cos θ

)
. (1.113)

The angular momentum J being expressed in the polar coordinates becomes,

J = kr2θ̇ , (1.114)

with its absolute value

J = |J | = r2θ̇ = const. (1.115)
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In time δt, the radius-vector r sweeps out the angle δθ = θ̇δt and the area

δA =
1
2

r(r + δr) sin(δθ) =
1
2

r2δθ . (1.116)

After dividing each side of equation (1.116) by δt and taking the limit δt → 0 one
gets a differential equation for the area’s temporal change,

Ȧ =
1
2

r2θ̇ =
J
2
. (1.117)

Integration of this equation ensues Kepler’s second law of planetary motion: equal
areas are swept out in equal times, as can be envisaged from the right side of equation
(1.117) telling us that the time derivative of the area equals to constant J/2. Thus,
Kepler’s second law has been shown to follow from Newton’s theory. Our next step
will be to demonstrate that Kepler’s first and third laws do so as well.

1.3.2
The Equations of Motion and Kepler’s First Law

Let us write the equation of motion (1.103) with respect to inertial Cartesian axes
defined by the unit vectors l,m, k. In fact, due to the law of conservation of the
angular momentum only two components of this equation in the orbital plane will be
present. Differentiating the law of conservation of the angular momentum (1.114)
one obtains,

rθ̈ + 2ṙθ̇ = 0 . (1.118)

Differentiating equation (1.113) with respect to time and making use of equation
(1.118), allows us to express the acceleration of the body in the following form,

r̈ = r
( r̈
r
− θ̇2

)
. (1.119)

Equation (1.115) also tells us that the time derivative of the angle θ is

θ̇ =
J
r2 . (1.120)

Substituting this expression in equation (1.119), and the result of the substitution
into vectorial equation of motion (1.103), brings about a differential equation for the
radial motion of the body

r̈ +
GM
r2 −

J2

r3 = 0 , (1.121)

where J is the constant angular momentum of the orbital motion. Solution of this
differential equation was not known at the time of Newton. For this reason, in his
Principia Newton proved only that orbits in the form of conics necessitate an inverse-
square gravity law. To prove the inverse statement, i.e., that the gravity law entails
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this type of orbits, Newton would have to cope with equation (1.121) which solution
had to wait until 1710. On the 13-th of December 1710, two Swiss mathematicians,
Johann Bernoulli and Jakob Hermann,13) presented their solutions of equation 1.121
to a meeting of the Paris Academy of Sciences. Both speakers provided valid proofs
(to which they had come independently) that Newton’s gravity law yields conical
orbits. For historical account of those events see [Weinstock, 1982].

In the middle of the XVIII-th century, solution of this problem was greatly sim-
plified due to an elegant mathematical trick pioneered independently by d’Alembert
and Clairaut. The first step of this method is to employ equation (1.120) as a mean
of switching from differentiation with respect to time t to differentiation with respect
to the angle θ. The rationale beneath this replacement of variable is to find the shape
of an orbital curve, i.e., the dependence of r upon θ. Thus, one replaces the time
derivatives of r with those with respect to θ

ṙ = θ̇r′ , (1.122)

r̈ = θ̈r′ + θ̇2r′′ , (1.123)

where a dot signifies the time derivative, and the prime denotes the derivative with
respect to θ. Making use of equations (1.118), (1.120), and (1.122) one can recast
equation (1.123) to the following form:

r̈ =
J2

r2

(
r′′

r2 − 2
r′2

r3

)
. (1.124)

The second crucial step is to replace r with a reciprocal radial variable u = 1/r,
thus obtaining:

u′ = −
r′

r2 , (1.125)

u′′ = −
r′′

r2 + 2
r′2

r3 . (1.126)

Comparing this equation with (1.124), and using the substitution u = 1/r, one ob-
tains

r̈ = −J2u2u′′ . (1.127)

This expression, along with θ̇ = Jr−2 = Ju2, helps us to transform (1.121) to the
Binet equation

u′′ + u =
GM
J2 , (1.128)

which is the equation of harmonic oscillator subject to a constant perturbation
GM/J2. Solution of this equation is a linear superposition of general solution of

13) The two were former disciples of Johann’s older brother, Jakob Bernoulli; and Hermann was a distant
relative of Euler.
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a homogeneous equation u′′ + u = 0, and a particular solution of the inhomogeneous
equation (1.128)

u = B cos(θ − ω) +
GM
J2 , (1.129)

where B and ω are constants of integration depending on the initial conditions. This
solution looks similar to a well-known in analytic geometry expression for the recip-
rocal distance from a point on a conic to one of its foci,

p
r

= 1 + e cos f , (1.130)

where f is the true anomaly, i.e., the angular separation of the point from the periapse
(subtended at the said focus), while p = a(1 − e2) is a constant parameter being
expressed in terms of the semimajor axis a and eccentricity e, and called semilatus
rectum 14).

To convert the resemblance to equivalence, one must choose the constants B and
J in equation (1.129) in the following form

B =
e

a(1 − e2)
=

e
p
, (1.131)

J =
√

GMp , (1.132)

and equate the angular variables

f = θ − ω . (1.133)

After these identifications, the orbital elements e and p turn out to be interconnected
with the integrals of motion via formulae

p =
J2

GM
, (1.134)

e =

√
1 +

2EJ2

G2M2 , (1.135)

so the constant B from equation (1.129) becomes

B =
GM
J2

√
1 +

2EJ2

G2M2 , (1.136)

and the integral of the reduced total energy

E =
GM
2p

(e2 − 1) . (1.137)

14) To derive equation (1.130) for an ellipse, a circle, or a hyperbola, start with equation (1.147) written in
a Cartesian coordinate system (ξ, η), whose origin is located in one of the foci, the axis ξ going through
the foci, as shown in Figure 1.4. For a point on the conic, ξ = r cos f and η = r sin f , plugging of which
into equation (1.147) entails equation (1.130).
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For different conics, the parameters of the orbit are defined as

circle : p = a , e = 0 , (1.138a)

ellipse : p = a(1 − e2) , 0 < e < 1 , (1.138b)

parabola : p = 2q , e = 1 , (1.138c)

hyperbola : p = a(e2 − 1) , e > 1 . (1.138d)

Equation (1.132) demonstrates that the angular momentum, J, of the orbit depends
only on the focal parameter, p, and is always positive for any type of the orbit

J2 = GMp > 0 . (1.139)

On the other hand, equation (1.137) reveals that the reduced total energy E of the
two-body system depends only on the semi-major axis, a, and has either positive or
negative, or zero value for different types of conics

ellipse : E = −
GM
2a

< 0 , (1.140a)

parabola : E = 0 , (1.140b)

hyperbola : E =
GM
2a

> 0 . (1.140c)

The case of parabola is exceptional in that its eccentricity e = 1, and the semi-latus
rectum is defined as p = 2q, where q is the minimal distance of the orbit to the
gravitating center at body’s closest approach. As parabolic (or near-parabolic) orbits
are considered in extremely rare situations, they will be omitted below 15).

The point of the closest approach of the orbit to the attracting center is called
pericenter, and the opposite point on the orbit is called apocenter 16). Let us define
a unit vector P directed from the attracting center towards pericenter and another
unit vector Q lying in the orbital plane so that the triad P,Q, k make a right-handed
system of three vectors (see Figure 1.3). Vectors P and Q are related to vectors l and
m by rotation at the angle ω

P = l cosω + msinω , (1.141)

Q = −l sinω + mcosω . (1.142)

15) One possibility of integrating such orbits is through switching to the Kustaanheimo-Stiefel variables
[Stiefel, 1976]. Treatment by more conventional means is offered, for example, by Osman and Ammar
[2006].

16) In case of a planetary orbit around the Sun these orbital points are called respectively perihelion and
aphelion. Corresponding points on the orbit of the Moon and on the orbit of artificial satellites of the
Earth are called perigee and apogee.
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The angle ω is the same as in equation (1.133). It measures in the orbital plane the
angular distance of the pericenter from the ascending node. In terms of the constant
unit vectors P and Q the radius-vector of the body is expressed as follows

r = r(P cos f + Q sin f ) . (1.143)

Derivation of velocity, v = ṙ, is achieved by direct differentiation of equation (1.143),

ṙ = ṙ(P cos f + Q sin f ) + r ḟ (−P sin f + Q cos f ) . (1.144)

Making use of equation (1.130) describing the first Kepler’s law along with equation
ḟ = θ̇, the integral of the angular momentum taken in the form of equations (1.120)
and (1.132) allows us to get the time derivative of the radial distance,

ṙ =
e
p

sin f (r2 ḟ ) =
Je
p

sin f =

√
GM

p
e sin f . (1.145)

Substituting this expression in equation (1.144) and making use of the law of con-
servation of the angular momentum, result in

ṙ =

√
GM

p
[
−P sin f + Q(cos f + e)

]
. (1.146)

1.3.3
The mean and eccentric anomalies. Kepler’s third law.

To start with, introduce a coordinate system (ξ, η) with an origin fixed at the attrac-
tion center F, and with the unit vectors P and Q directed along the axes ξ and η,
respectively. Draw an auxiliary circle of radius a equal to the semi-major axis, and
centered at the midpoint O between the foci. Let the body be located on the conic
at point B at time t, as shown in Figure 1.4. One draws a straight line parallel to
the η axis and passing through the orbiter. The line is orthogonal to the ξ axis, and
intersects the auxiliary circle at point C. The eccentric anomaly E is defined as the
angle subtended at the circle’s center, between the axis ξ and a straight line pointing
at the point C on the circle.

As the distance between the origin and a focus is ea, one writes down the equation
for the conic

(ξ + ae)2

a2 +
η2

a2(1 − e2)
= 1 , (1.147)

valid for a circle, an ellipse, or a hyperbola.
The abscissa of point the B on the conic is equal to ξ = r cos f . At the same time,

it is equal to

ξ = a cos E − ae = a(cos E − e) , (1.148)
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Figure 1.4 The orbiting body is at the point B. The eccentric anomaly is the angle E between
directions OA and OC. The true anomaly f is the angle between the ξ axis and the
radius-vector r. The distance between the center of the auxiliary circle and the conic is ae,
where a is the semi-major axis and e is the eccentricity.
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because the distance OF between the attraction center at point F and the center of
the auxiliary circle at point O is equal to ae, in accordance with definitions of ec-
centricity e and the semi-major axis a. Equating the two expressions for the abscissa
of the point B, and making use of equation (1.130) of the conic, one gets a formula
interconnecting the two anomalies:

cos E =
e + cos f

1 + e cos f
. (1.149)

The ordinate of point B on the conic is η = r sin f . Accounting for equation
(1.147) of the conic and equation (1.148), one obtains

η = a
√

1 − e2 sin E . (1.150)

Again, equating the two expressions for η gives us another interconnection,

sin E =

√
1 − e2 sin f

1 + e cos f
, (1.151)

which leads us to the expression for the distance from the focus, as a function of the
eccentric anomaly:

r = a(1 − e cos E) . (1.152)

In combination with (1.149), the latter renders:

r =
a(1 − e2)

1 + e cos f
. (1.153)

The equation (1.149) can be rewritten in the following, equivalent forms:

1 − cos f = (1 + e)
1 − cos E

1 − e cos E
, (1.154a)

1 + cos f = (1 − e)
1 + cos E

1 − e cos E
. (1.154b)

With aid of the standard double-angle formulae, these relations can be reshaped cor-
respondingly into

sin2 f
2

=
1 + e

1 − e cos E
sin2 E

2
, (1.155a)

cos2 f
2

=
1 − e

1 − e cos E
cos2 E

2
. (1.155b)

The ratio of these two formulae furnishes yet another elegant interconnection be-
tween the true and eccentric anomalies,

tan
f
2

=

√
1 + e
1 − e

tan
E
2
. (1.156)
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Our next project is to link the anomalies with the time. To this end, one employs
equations (1.120) and (1.133) to write

d f = dθ =
J
r2 dt . (1.157)

As the formulae (1.132) and (1.153) enable us to express J and r via the elements,
one can rewrite (1.157) as

d f =

√
GM
a3

(1 + e cos f )2(
1 − e2)3/2 dt . (1.158)

Introducing a widely used quantity

n =

√
GM
a3 , (1.159)

called mean motion or mean angular frequency, one can write down (1.158) as

ndt =

(
1 − e2

)3/2

(1 + e cos f )2 d f . (1.160)

In the special case of a bound orbit, i.e., when the conic is a circle or an ellipse, the
above formula shows an important property. As integration of its right side over a
period, i.e., from f = 0 through f = 2π, gives exactly 2π, one has,

nT = 2π , (1.161)

where T being the time of the orbital period. Obviously, the mean motion n is the
angular velocity, in the case of a circular orbit, and an average angular velocity (as
seen from the focus), in the case of ellipse. Combining expression (1.161) with the
definition (1.159), one arrives at Kepler’s third law in two-body problem,

T 2 =
4π2a3

GM
, (1.162)

which reads: the square of the orbital period of a body is directly proportional to the
cube of the semi-major axis of its orbit.

Our next step is to interconnect the time with the eccentric anomaly. From the
afore-proven equality (1.156) one deduces

dE =

√
1 − e2

1 + e cos f
d f . (1.163)

Moreover, equations (1.152) and (1.153) yields

1 − e cos E =
1 − e2

1 + e cos f
. (1.164)
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Formulae (1.163), (1.164) and (1.160) being put together, entail

ndt = (1 − e cos E)dE = d(E − e sin E) , (1.165)

wherefrom a simple integration yields

E − e sin E = n(t − t0) +M0 , (1.166)

where t0 is the fiducial time, called the epoch, and M0 is the integration constant.
The latter compels us to define, following Kepler, a convenient quantity

M =M0 + n(t − t0) , (1.167)

called mean anomaly, withM0 now termed as the mean anomaly at epoch. Accord-
ing to (1.166),M obeys the Kepler equation

M = E − e sin E , (1.168)

whence it is clear that, for elliptic and circular orbits,M changes by 2π over a period,
because the eccentric anomaly changes by 2π, and sin E is a periodic function with
period 2π.

Finally, let us notice that (1.163) and (1.168) enable us to interconnect the mean
and eccentric anomalies:

dM = (1 − e cos E)dE =

(
1 − e2

)3/2

(1 + e cos f )2 d f . (1.169)

For bound orbits, this yields for one period of orbital revolution

∮
orbital
period

dM =

∫ 2π

0

(
1 − e2

)3/2

(1 + e cos f )2 d f = 2π , (1.170)

whence we, once again see thatM changes by 2π over a period.
Be mindful that one did not necessarily imply t0 to be the instant of the first pe-

riapse passage τ. The time τN of the N-th periapse passage is defined from the
condition that the eccentric anomaly

E = 2π(N − 1) , (1.171)

N being an integer chosen so that N = 1 corresponds to E = 0 that is the first periapse
passage. As evident from equation (1.168), condition 1.171) can be rewritten also as

M = 2π(N − 1) . (1.172)

From here and equation (1.167), it is easy to demonstrate that the N-th periapse
passage takes place at the time

τN = t0 +
2π(N − 1) −M0

n
. (1.173)
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In celestial mechanics, the time of the first periapse passage, τ1, is denoted simply
as τ, which is

τ = t0 −
M0

n
. (1.174)

Hence, the mean anomaly expressed in terms of the first periapse passage will look

M = n(t − τ) . (1.175)

Over one orbital revolution, the mean anomaly changes by 2π, while the time
changes by period T . So equation (1.175) naturally renders (1.161).

1.3.4
The Laplace-Runge-Lenz Vector

One has already learned that the reduced two-body problem obeying the Newton
gravity law (1.103) permits four integrals of motion - the energy, E, and the three
components of the angular-momentum vector, J. It is remarkable that the reduced
two-body problem admits one more integral of motion. To demonstrate this fact,
consider the so-called Laplace-Runge-Lenz vector

AL = ṙ × J −GM
r
r
, (1.176)

where J is the conserved angular-momentum vector. Despite its name, the Laplace-
Runge-Lenz vector was discovered by neither of these three scholars. The honor of
its discovery belongs to the afore mentioned Jakob Hermann. It was also he who
demonstrated that AL is conserved in the two-body problem governed by Newton’s
gravity law of inverse squares [Hermann, 1710].

One way to explore this vector is to make use of equations (1.143), (1.146) defining
the position r and velocity ṙ of the orbiting body in terms of the orthogonal unit
vectors P and Q shown in Figures 1.3 and 1.4. Together, these equations yield the
following expression for the angular-momentum vector

J = k
√

GMp , (1.177)

where one has used equation (1.132) and employed the relationship k = P × Q.
Insertion of equations (1.146) and (1.177) in the right side of equation (1.176) entails,

AL = GMeP , (1.178)

which tells us that the Laplace-Runge-Lenz vector is a constant vector directed to-
wards the pericenter, the closest point of the orbit.

It would also be instructive to express the magnitude of the Laplace-Runge-Lenz
vector through the other conserved quantities. Squaring both sides of equation
(1.176) gives

A2
L = GM2 −

2GM
r

r · (ṙ × J) + J2ṙ2 . (1.179)
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At the same time, permuting of the scalar triple product as

r · (ṙ × J) = J · (r × ṙ) = J2 , (1.180)

enables us to rewrite the latter equation as

A2
L = GM2 + 2J2

(
1
2

ṙ2 −
GM

r

)
= GM2 + 2J2E , (1.181)

with E being the constant reduced energy per unit mass.
Conservation of both the absolute value and the direction of AL tells us that its

three components (ALx, ALy, ALz) are integrals of motion. However, only one of
these three components can be regarded as an independent integral of motion. In-
deed, as can be seen from equation (1.181), the magnitude of the Laplace-Runge-
Lenz vector, A2

L = A2
Lx + A2

Ly + A2
Lz, can be expressed through two known integrals

- the energy, E, and the magnitude of the angular-momentum vector, J. Another
constraint follows from the fact that the vector AL belongs to the orbital plane and,
thus, is always orthogonal to the vector of the angular momentum:

AL · J = ALxJx + ALyJy + ALzJz = 0 . (1.182)

This explains why the conservation of the Laplace-Runge-Lenz vector increases the
number of the independent integrals of motion in the reduced two-body problem not
by three but only by one - from four to five.17) Together with the initial condition
(expressed, for example, by fixingM =M0 at the epoch t0), this gives us totally six
constants that should single out a particular trajectory of the body out of the entire
multitude of parameterized conics. This observation agrees with the afore mentioned
fact that an arbitrary solution to the reduced two-body Kepler problem should depend
upon six constants like the initial position and velocity of the body.

It can also be demonstrated that the existence of five independent integrals of mo-
tion makes it possible to integrate the equations of motion of the reduced two-body
problem in quadratures. This fact turns out to be intimately related to the highly
symmetrical nature of the reduced two-body problem. A central-force problem is
trivially invariant under the spatial rotations making up the group SO(3), hence, the
conservation of the angular momentum. However, the inverse-square force propor-
tional to 1/r2, and the space harmonic oscillator with the force of elasticity propor-
tional to r2, possess a symmetry under a bigger group [Landau and Lifshitz, 1975].
In the case of the inverse-square gravity law, this is: SO(4) for a negative energy
E < 0; or SO(1,3), for a positive energy E > 0 [Dubrovin et al., 1984, §34]. Both
SO(4) and SO(1,3) are rotational groups of symmetry in four-dimensional Euclidean
and pseudo-Euclidean space respectively, and the Lie algebras of their generators
have the dimension of 6. This circumstance gives birth to 6 conserved quantities -
the three components of J and the three components of AL. Mind, though, that these
components and the energy are interconnected by the two constraints, (1.181) and

17) Generally, a system that has k degrees of freedom and has, at the same time, more than k integrals of
motion is called superintegrable, while a system with 2k − 1 integrals is called maximally superinte-
grable, the reduced two-body problem being the case with k = 3.
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(1.182). Further details on this interesting topic can be found in excellent textbooks
by Vozmischeva [2003] and Mathúna [2008].

1.3.5
Parameterizations of the Reduced Two-body Problem

1.3.5.1 A Keplerian Orbit in the Euclidean Space
As has been shown in section 1.2, the two-body problem is equivalent in the barycen-
tric frame of reference to its reduced version (1.103) which, mathematically, looks
as a motion of a particle of reduced mass µ about a fixed gravitating center of mass
M. The generic solution to equation (1.103) is a Keplerian conic characterized by
six constant parameters:

a – the semi-major axis,
e – the eccentricity,
M0 – the mean anomaly at epoch,
Ω – the angle of the ascending node,
i – the orbital inclination,
ω – the longitude of pericenter.

Three of these parameters, Ω, i, and ω, define the orientation of the orbit in space.
Two parameters, a and e, fix the shape of the orbit. The remaining one,M0, deter-
mines the position of the body on the orbit at the initial epoch t0. In arbitrary inertial
reference frame, there exist six additional constant parameters - the linear momen-
tum (1.80) and the position of the center of mass (1.81). As a rule, a barycentric
reference frame is chosen, so these integrals of motion get nullified and do not ap-
pear explicitly in any equation. Still, it is useful to keep in mind that these integrals
actually exist.

Substituting equations (1.109)-(1.111), (1.141), (1.142) and (1.153) to expressions
(1.143), (1.146) and applying simple trigonometric identities, the explicit form of
the position and velocity of the body can be written down in the barycentric inertial
coordinates as

r = xex + yey + zez , (1.183)

ṙ = ẋex + ẏey + żez , (1.184)

where

x =
a(1 − e2)

1 + e cos f
[
cos Ω cos (ω + f ) − sin Ω sin (ω + f ) cos i

]
, (1.185a)

y =
a(1 − e2)

1 + e cos f
[
sin Ω cos (ω + f ) + cos Ω sin (ω + f ) cos i

]
, (1.185b)

z =
a(1 − e2)

1 + e cos f
sin (ω + f ) sin i , (1.185c)
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and

ẋ = −
na

√
1 − e2

[
cos Ω sin(ω + f ) + sin Ω cos(ω + f ) cos i (1.186a)

+e(cos Ω sinω + sin Ω cosω cos i)] ,

ẏ = −
na

√
1 − e2

[
sin Ω sin(ω + f ) − cos Ω cos(ω + f ) cos i (1.186b)

+e(sin Ω sinω − cos Ω cosω cos i)] ,

ż =
na

√
1 − e2

[
cos(ω + f ) + e cosω

]
sin i , (1.186c)

with n being the mean motion (1.159).
Expressions (1.185) - (1.186) give us one possible form of the generic solution

of equation of motion (1.103) - a form corresponding to parametrization of a conic
by a set of six Keplerian constants (a, e,Ω, i, ω,M0) and the variable true anomaly
f . Since the true anomaly is a function of time, through the relation (1.160), then
equations (1.185 - 1.186) do define a dependence of r and ṙ upon the constants and
the time, as required. This dependence, however, is implicit, and requires solution
of the transcendental Kepler equation (1.168) along with a non-linear trigonometric
equation (1.156).

The same solution can be parameterized via some other constants, for example
those of Delaunay: M0, ω,Ω,

√
GMa,

√
GMb,

√
GMb cos i, where b = a

√
1 − e2 is

the semi-minor axis of the conic. Another possibility is to consider the solution as
a function of the initial conditions: then the constants (x0, y0, z0, ẋ0, ẏ0, ż0) are the
six parameters defining a particular orbit. The latter option is natural when the in-
tegration is carried out numerically in the Cartesian coordinates, but is impractical
for analytic treatments. Numerous other parameterizations have been introduced for
various purposes. Whatever the set of the constants of integration is chosen, their
number should, on general grounds, be six. A switch from the Keplerian constants
to the Delaunay ones, or to any other parametrization will still give the same geo-
metric image of the curve in the coordinate (x, y, z) space. The velocity vector of the
body being a tangent vector to that curve will not depend on curve’s parametrization
either. However, the specific mathematical presentation of r and ṙ as functions of the
new parameters will, of course, be different from those given by equations (1.185) -
(1.186).

To avoid confusion one would like to point out that the set of Delaunay constants
differs from the set of Delaunay elements, as the latter set includes M instead of
M0. In the same way, the set of Keplerian constants differs from the set of Keplerian
elements: the former set containsM0, the latterM. Employing the mean anomaly
M = M0 + n(t − t0) is convenient, because this enables one to keep track, via
one variable, both of the explicit time dependence and of the dependence upon the
integration constantM0 - see the comprehensive treatise by Plummer [1918].

1.3.5.2 A Keplerian Orbit in the Projective Space
A generic solution to the reduced two-body problem is a section of cone i.e., a plane
conic curve described by a quadratic polynomial. It would be instrumental to study
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a conic from the viewpoint of projective geometry, as this approach will allow us to
treat any Keplerian orbit - circular, elliptical, parabolic, hyperbolic, and two-body
collisional linear orbit - in a unified way. The approach adopted in this section has
been proposed by Satō [1998].

A Keplerian orbit in the plane (ξ, η) is given by equations (1.143), (1.130)

ξ =
q(1 + e) cos f

1 + e cos f
, η =

q(1 + e) sin f
1 + e cos f

, (1.187)

where q ≡ rmin = a(1− e) is the distance to pericenter. Eliminating the true anomaly
f , one obtains an ordinary quadratic form for the orbit[

(1 − e)ξ + eq
]2

+
1 − e
1 + e

η2 = q2 . (1.188)

We now assume that coordinates ξ and η are dimensionless18) and replace ξ = ξ1/ξ0,
η = ξ2/ξ0 using homogeneous coordinates (ξ0, ξ1, ξ2) that map equation (1.188) to
the projective plane P2 [Casse, 2006]

−(1 + e)qξ2
0 + 2eξ0ξ1 +

1 − e2

(1 + e)q
ξ2

1 +
1

(1 + e)q
ξ2

2 = 0 . (1.189)

Equation (1.189) can be written in a matrix form as

[
ξ0, ξ1, ξ2

] 
−(1 + e)q e 0

e (1 + e)k 0

0 0
1

(1 + e)q



ξ0

ξ1

ξ2

 = 0 , (1.190)

where k ≡ 1/rmax = (1− e)/[(1 + e)q] is the reciprocal of the apocenter distance rmax.
We emphasize that there are only two free parameters (q, e) with k being expressed in
terms of these two. Furthermore, parameters q and k are dimensionless in accordance
with definition of the homogeneous coordinates to which they are related through
equation (1.190).

Equation (1.189) can be reduced to a canonical quadratic form by rotation in the
projective space which diagonalizes the matrix in equation (1.190). The characteris-
tic equation for eigenvalues λ of the matrix, is

[(1 + e)qλ − 1][λ2 − (1 + e)(k − q)λ − 1] = 0 , (1.191)

and it has three solutions

λ0 =
1
2

[
−(1 + e)(q − k) −

√
(1 + e)2(q + k)2 + 4e2

]
, (1.192)

λ1 =
1
2

[
−(1 + e)(q − k) +

√
(1 + e)2(q + k)2 + 4e2

]
, (1.193)

λ2 =
1

(1 + e)q
, (1.194)

18) Dimensionless of coordinates is an integral part of the definition of the projective plane P2 [Casse,
2006, section 4].
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where one has used identity (1 + e)2kq = 1 − e2 for transforming the root square
terms in λ0 and λ1.

Next step is to replace parameters (q, e) with another set (φ, ψ) by making use of
identifications

cosh φ cos 2ψ =
1
2

(1 + e)(q + k) , (1.195a)

cosh φ sin 2ψ = e , (1.195b)

sinh φ =
1
2

(1 + e)(q − k) , (1.195c)

which makes the eigenvalues λ0 = − exp φ, λ1 = exp(−φ). It is now rather straight-
forward to find the eigenvectors of the matrix in equation (1.190) that are

E0 =
[
cosψ,− sinψ, 0

]
, E1 =

[
sinψ, cosψ, 0

]
, E2 = [0, 0, 1] . (1.196)

Canonical homogeneous coordinates of conic in the projective space P2 correspond-
ing to these eigenvectors are

{ζ0 : ζ1 : ζ2} =

{
1
√
−λ0

:
cos Θ
√
λ1

:
sin Θ
√
λ2

}
, (1.197)

where Θ is called the projective anomaly [Satō, 1998]. Matrix of rotation from the
canonical homogeneous coordinates (ζ0, ζ1, ζ2) to the original ones is made of the
components of the eigenvectors. The transformation has the following form of the
rotation about ξ2 axis

ξ0

ξ1

ξ2

 =


cosψ sinψ 0
− sinψ cosψ 0

0 0 1



ζ0

ζ1

ζ2

 (1.198)

=


1 + exp φ tanψ cos Θ

− tanψ + exp φ cos Θ√
exp 2φ − tan2 ψ sin Θ

 exp
(
−
φ

2

)
cosψ .

Therefore, substituting

α ≡ exp φ =
1
2

[
(1 + e)(q − k) +

√
(1 + e)2(q + k)2 + 4e2

]
, (1.199)

β ≡ tanψ =
2e

(1 + e)(q + k) +
√

(1 + e)2(q + k)2 + 4e2
, (1.200)

one obtains parametrization of the Keplerian conic in the projective space

{ξ0 : ξ1 : ξ2} =

{
1 + αβ cos Θ : −β + α cos Θ :

√
α2 − β2 sin Θ

}
, (1.201)

where α is the semi-major axis and β is a coordinate of the center of the conic in P2.
Semi-major axis a and eccentricity e of the Keplerian orbit in the Euclidean space

are related with the parameters α and β of the projective space. The relationship is
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established after matching the Euclidean coordinates of pericenter and apocenter in
equations (1.187) with similar points in the homogeneous coordinates

ξ =
ξ1

ξ0
=

α cos Θ − β

1 + αβ cos Θ
(1.202)

η =
ξ2

ξ0
=

√
α2 − β2 sin Θ

1 + αβ cos Θ
(1.203)

r =

√
ξ2 + η2 =

α − β cos Θ

1 + αβ cos Θ
. (1.204)

It yields for semi-major axis, a, and eccentricity, e, the following relationships

a =
α(1 + β2)
1 − α2β2 , e =

β(1 + α2)
α(1 + β2)

. (1.205)

Moreover, parameters

q =
α − β

1 + αβ
, k =

1 − αβ
α + β

, (1.206)

and

1 − e =
(α − β)(1 − αβ)
α(1 + β2)

, 1 + e =
(α + β)(1 + αβ)
α(1 + β2)

. (1.207)

The orbit is circular for β = 0, elliptical for αβ < 1, parabolic for αβ = 1, and hyper-
bolic for αβ > 1. The orbit is degenerated to a straight line (collisional trajectory) if
α = β.

Kepler’s equation for the projective anomaly Θ is obtained by using the law of
conservation of angular momentum,

ξη̇ − ξ̇η =
√

GMq(1 + e) . (1.208)

Substituting the formulas for the corresponding quantities into this law, one obtains

α − β cos Θ

(1 + αβ cos Θ)2

dΘ

dt
=

√
GM

α(1 + β2)
. (1.209)

In the case of elliptic orbit (αβ < 1), the integral with respect to Θ is reduced by the
substitution

tan
Θ

2
=

√
1 + αβ

1 − αβ
tan

E
2
, (1.210)

where E is the eccentric anomaly, into an ordinary form of Kepler’s equation

E − e sin E = n(t − t0) +M0 , (1.211)

with

n =

√
GM
α3

(
1 − α2β2

1 + β2

)3

=

√
GM
a3 , (1.212)
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being the mean orbital motion defined earlier in equation (1.159). If α = β (a
parabolic orbit), the integral is reduced by the substitution

s = tan
Θ

2
, (1.213)

into a cubic equation

s3 − 3
1 − α2

1 + α2 s = 6

√
GM

α(1 + α2)3 (t − t0) +M0 . (1.214)

A hyperbolic case with αβ > 1 is treated similarly to the elliptic case after replace-
ments: 1 − αβ→ αβ − 1 and tan(Θ/2)→ tanh(Θ/2).

1.3.6
The Freedom of Choice of the Anomaly

One has already encountered several options for defining the instantaneous position
of a body on its orbit as a function of time. One option was to keep M0 among
the integration constants, and to use the time t as a variable defining the position
of the body at each moment. This method is seldom employed in practice, because
it is impossible to analytically express the components of r and ṙ as explicit func-
tions of t. A better option would be to use the true anomaly f instead of the time.
This method is more practical, as it is directly implemented by the explicit expres-
sions (1.185), (1.186). Similarly, one can keep M0 among the constants and use
the eccentric anomaly E instead of the time. It is also possible to unite the integra-
tion constantM0 and the epoch t0 into one constant parameter τ defined in equation
(1.174) as the instant of the body’s first passage through the pericenter. This is pos-
sible, because in the unperturbed two-body problem these two quantities show up in
the linear combinationM = M0 + n (t − t0), when the transition from the eccentric
anomaly to the time is performed - see equation (1.166). Sometimes it is also conve-
nient to employ the angular anomaly subtended the empty focus. A transition to this,
so-called anti-focal anomaly was offered by Callandreau [1902a,b], and has proven
to be very useful for numerical integration of weakly-perturbed elliptic trajectories
with low eccentricities [Fukushima, 2004].

Thus, one sees that the freedom of parametrization is not exhausted by one’s pref-
erences in choosing the constants of integration. Another freedom lies in one’s
choice of the “fast" variable - the anomaly. One can exploit this freedom in analyti-
cal calculations by parameterizing the relationship between the time and the anomaly
and keeping it arbitrary through the calculation. The arbitrariness is eliminated by
breaking the freedom at the end to simplify the resulting expressions or to serve an
other particular goal. The generalized anomaly W is defined as a solution to a simple
differential equation

dE
sin E

=
dW

sin W
, (1.215)
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that establishes the following trigonometric mapping between the eccentric anomaly
E and the generalized anomaly W,

tan
W
2

= κ tan
E
2
, (1.216)

with κ emerging as an integration constant and, thus, playing the role of a free con-
stant parameter. It parameterizes a particular choice of the general anomaly W
among a whole family of such anomalies. Equation (1.216) shows that the new
anomaly W generalizes relationship (1.156) between the true and eccentric anoma-
lies, and relationship (1.210) between the projective and eccentric anomalies.

Making use of equation (1.216), in order to express the eccentric anomaly E in
terms of the generalized anomaly W and the parameter κ, and substituting the so-
obtained expression to equations (1.149), (1.150), and (1.152), one can derive the
following formulae for the perifocal coordinates defined in Figure 1.4,

ξ =
κ2 − (1 + e)/(1 − e) +

[
κ2 + (1 + e)/(1 − e)

]
cos W

κ2 + 1 +
(
κ2 − 1

)
cos W

q , (1.217)

η =
2κ
√

(1 + e)/(1 − e) sin W
κ2 + 1 +

(
κ2 − 1

)
cos W

q , (1.218)

and for the distance from the gravitating center to the orbiter,

r =
κ2 + (1 + e)/(1 − e) +

[
κ2 − (1 + e)/(1 − e)

]
cos W

κ2 + 1 +
(
κ2 − 1

)
cos W

q , (1.219)

where q = a(1 − e) is the distance from the pericenter to the focus wherein the
attracting mass is located.

The generalized anomaly W was originally introduced into celestial mechanics by
Subbotin [1936a,b] who used a different parameter σ instead of κ 19). Introducing an
auxiliary quantity

χ =
√

1 − e2 + σ2 , (1.220)

Subbotin [1936a,b] was able to derive the following expressions for the perifocal
coordinates:

ξ = a
(
χ cos W + σ

χ + σ cos W
− e

)
, (1.221)

η = a

(
1 − e2

)
sin W

χ + σ cos W
. (1.222)

To establish a relationship between the parameter κ standing in equations (1.216) -
(1.219) and the parameter σ introduced by Subbotin, equate the expression (1.217)

19) In fact, Subbotin denoted his parameter α. Here, the notation σ is used to avoid confusion with the
projective parameter α from previous section.
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with (1.221), and that (1.218) with (1.222) for the perifocal coordinates. This will
render

χ =
κ2 + 1

2κ

√
1 − e2 , σ =

κ2 − 1
2κ

√
1 − e2 . (1.223)

From here one sees that the parameter κ admits two values corresponding to one
value of Subbotin’s parameter σ,

κ+ =
σ + χ
√

1 − e2
, (1.224)

κ− =
σ − χ
√

1 − e2
. (1.225)

The value κ+ corresponds to the generalized focal anomaly, W+, and the value κ−
corresponds to the generalized anti-focal anomaly, W−, that is

tan
W+

2
= κ+ tan

E
2
, tan

W−

2
= κ− tan

E
2
. (1.226)

One can see that

tan
W−

2
tan

W+

2
= − tan2 E

2
. (1.227)

Now one can see that equations (1.221) and (1.222) are actually valid for the focal
anomaly W = W+. For the anti-focal anomaly W−, the corresponding equations
should read

ξ = a
(
χσ cos W−

χ − σ cos W−

− e
)
, (1.228)

η = a

(
1 − e2

)
sin W−

χ − σ cos W−

. (1.229)

For more details on Subbotin’s anomalies see the paper by Sokolov [2009] who also
corrected some misprints in Subbotin’s works.

The advantage of parametrization (1.217) - (1.219) stems from the fact that it
enables one to establish a correspondence between the generalized anomaly of
Subbotin [1936a,b] and the projective anomaly Θ of Satō [1998]. Indeed, equa-
tions (1.217) - (1.219) tell us that the (focal) generalized anomaly W coincides
with the eccentric anomaly E, for κ = 1 (σ = 0); with the true anomaly f ,
for κ =

√
(1 + e)/(1 − e) (σ = e); and with the projective anomaly Θ, for κ =√

(1 + αβ)/(1 − αβ) corresponding to Subbotin’s parameter σ = β
√
α2 − β2/(1+β2).

The freedom of the anomaly choice in the Newtonian celestial mechanics remains
greatly under-exploited, the work by Fukushima [2004] being a rare exception. We
believe, though, that the future use of this freedom will yield fruits. We also think
that equally productive may be the use of this freedom in the relativistic two-body
problem, including this problem’s practical application in data processing of binary-
pulsar-timings. We shall return to this topic in section 6.4.
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1.4
A Perturbed Two-Body Problem

1.4.1
Prefatory Notes

Celestial mechanics of two-body problem is insufficient in many practical applica-
tions where one has to take into account gravitational perturbations exerted on the
Keplerian motion by external agents. Hence, one needs a mathematical extension of
the unperturbed two-body formalism to perturbed settings. One such setting is that
of a binary system embedded to the gravitational field of N external bodies which af-
fect the orbital motion of the binary through tidal forces. Other types of perturbations
include triaxiality of the interacting bodies, as well as atmospheric drag, magnetic
fields, tides, relativistic corrections, or forces of inertia if a non-inertial reference
frame is used for calculations. Since the disturbing forces normally are small com-
pared to the gravitational interaction between the two bodies, one may presume that
each body moves along a conic that is osculating (tangent) at each instant of time to
the actual physical trajectory and slowly evolving (see Figure 1.5). This approach
was offered circa 1687 by Newton in his unpublished Portsmouth Papers. Very suc-
cinctly, in purely geometric terms, Newton mentioned it also in Corollaries 3 and 4
of Proposition 17 in the first book of his Principia. Implementation of this idea in
the language of calculus was initiated by Euler [1748, 1753] and got its final shape
in the works of Lagrange [1778, 1783, 1788a,b, 1808a,b, 1809].

Before explaining their developments, let us point out that the smallness of pertur-
bations is, by itself, a rather shaky foundation for the varying-conic method. Indeed,
ones are immediately faced by the following questions:

1) To what degree of rigor can a perturbed orbit be modeled with a family of instan-
taneously osculating conics having the primary body in one of their foci?

2) Does this modeling admit an exact mathematical formulation?
3) Is this representation of the perturbed orbit by a family of the osculating conics

unique?

These questions will not seem trivial, if one recalls that the concept of evolving
instantaneous conics had been introduced into practice (and that major developments
of the disturbing-function theory had been accomplished) long before Frenet and
Serret developed the theory of curves with their concept of the moving Frenet-Serret
frame being closely associated with the curvature and torsion of the curve [Dubrovin
et al., 1984]. This order of historical events explains the reason why terms curvature
and torsion of the orbit are rarely used in the dynamic astronomy books. Fortunately,
Lagrange fortified his developments with the tools of calculus, which were powerful
enough to completely surpass the theory of curves. Moreover, these tools in no way
relied on the smallness of the disturbing forces. Hence, Lagrange’s treatment of
the problem already contains an affirmative answer to the first two questions. The
answer to the third question, surprisingly, turns out to be negative. Below this point
is explained in more detail and one demonstrates that celestial mechanics permits
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Perturbed orbit

Perturbed orbit

Osculating Ellipse

Osculating Ellipse

a

b

c

d

e Tangent Line

Tangent Line

Focus

Figure 1.5 This picture illustrates the method of variation of parameters in application to the
reduced two-body problem. A perturbed orbit can be presented as an envelope of a family of
instantaneous conics sharing the common focus F. Each instantaneous conic is osculating - it
touches the physical orbit, sharing with it the tangent line at the point of contact. The Keplerian
parameters of the instantaneous conic evolve in time, as the body moves through the positions
a, b, c, d, e. Be mindful that the method of variation of parameters, in application to this
problem, implies variation of the elements of the instantaneous conic, but not of the position of
the focus. Hence the instantaneous conics are always confocal.
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internal freedom in description of perturbed orbits.

1.4.2
Variation of Constants. Osculating Conics

We shall start in the spirit of Lagrange [1808a,b, 1809], but shall soon deviate on two
points. First, in distinction from Lagrange, one will not assume that the disturbing
force is conservative and depends upon the positions solely, but shall permit it to
depend also upon velocities. Second, one’s intention is to relax eventually the La-
grange constraint i.e., the assumption that the instantaneous conics should be tangent
to the resulting perturbed curve. This will bring up orbital variables, which will not
be osculating yet mathematically useful.

In the modern, vectorial notations, Lagrange’s line of reasoning looks as follows.
A generic solution to the reduced two-body problem described by equation

r̈ +
GM
r3 r = 0 , (1.230)

is a Keplerian conic that is defined by the set of six orbital elements {Ci} = C1, ...,C6

implementing the chosen orbital parametrization. In some fixed inertial Cartesian
coordinate system, this conic reads

r = r (C1, ...,C6, t) , ṙ = v (C1, ...,C6, t) . (1.231)

The expressions for orbital radius-vector, r, and velocity, v, were written down in the
previous section. By definition, function v is the partial derivative of r with respect
to time,

v ≡
(
∂r
∂t

)
Ci=const.

. (1.232)

Of course, since the orbital elements are constants of motion in the unperturbed two-
body problem, the partial and ordinary time derivatives of vector r, coincide.

The functions entering expression (1.231) can be used as an Ansatz for solving the
perturbed two-body problem

r̈ +
GM
r3 r = F , (1.233)

with vector F being a known disturbing force of whatever nature (including inertial
forces). To solve (1.233), one assumes that the perturbed orbit coincides at each
instant of time with an instantaneous Keplerian conic. This way, by going smoothly
from one instantaneous conic to another, one endows the orbital parameters Ci with
a time-dependence of their own,

r = r [C1(t), ...,C6(t), t] , (1.234)

keeping the functional form of r the same as in equation (1.231). As the parameters
Ci are now time-dependent, the velocity of the body,

ṙ =
dr
dt

=
∂r
∂t

+

6∑
i=1

∂r
∂Ci

dCi

dt
= v +

6∑
i=1

∂r
∂Ci

dCi

dt
, (1.235)
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acquires an additional input besides v, while the term v retains the same functional
form as it used to have in the unperturbed setting (1.231).

Substitution of expression (1.235) into the perturbed equation of motion (1.233)
gives birth to three independent scalar differential equations of the second or-
der. These three equations contain one independent variable – time, and six time-
dependent parameters, Ci(t), whose evolution is to be determined. Evidently, this
cannot be done in a unique way because the number of the parameters exceeds, by
three, the number of equations. This means that though the perturbed orbit given by
the locus of points in space and by the values of velocity at each of these points, is
unique, its parametrization in terms of the orbital elements admits a certain freedom.
The fact, that the system of differential equations for the parameters Ci(t) is underde-
termined was noticed by Lagrange in his treatment. To make it solvable, he decided
to amend it with three supplementary conditions imposed on functions Ci and their
first time derivatives. His choice was

6∑
i=1

∂r
∂Ci

dCi

dt
= 0 , (1.236)

a so-called Lagrange constraint that is often imposed in the theory of ordinary differ-
ential equations. Imposition of this supplementary constraint was motivated by both
physical considerations and by Lagrange’s desire to simplify calculations. Since,
physically, the perturbed orbit r with a time-dependent set of orbital elements {Ci(t)}
can, at each fixed time t, be interpreted as an instantaneous conic, Lagrange decided
to make the Ci(t) osculating, that is to keep the instantaneous conics tangential to
the perturbed trajectory, as displayed in Figure 1.5. This means that the physical
trajectory of a body defined by C1(t), ...,C6(t) must, at each instant of time, coincide
locally with the unperturbed orbit that the moving body would follow if perturba-
tions were to cease instantaneously. This can be achieved only when the dependence
of the velocities upon the elements, in the perturbed setting, is the same as that in the
original unperturbed case, ṙ = v. This, in turn, can be true only if the second term on
the right side of (1.235) vanishes, i.e., if one sets the extra condition (1.236). This
vector condition, the Lagrange constraint, consists of three scalar equations which,
together with the three equations of motion (1.233), constitute a well-defined system
of six equations for six variables C1(t), ...,C6(t).

As it was recently pointed out in [Efroimsky, 2002a,b], the choice of the sup-
plementary condition in the form of (1.236) is not always optimal. Moreover, as
explained by Efroimsky and Goldreich [2003, 2004], in some important situations
this choice is simply unavailable. We shall address this topic below in Section 1.5.
For now, though, one sticks to the supplementary condition in the form of Lagrange’s
constraint (1.236).



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 1 — 2016/2/13 — 14:05 — page 52

52

1.4.3
The Lagrange and Poisson Brackets

As a prerequisite to the subsequent calculations, it would be of use to introduce the,
so-called, Lagrange and Poisson brackets of the orbital elements. The Lagrange
bracket of two elements, Ck and Ci, is denoted by [CkCi], and the entire set of the
Lagrange brackets form a 6 × 6 matrix. Each element of the matrix is defined as a
certain linear combination of scalar products of partial derivatives of the components
of vectors r(C1, ...,C6, t) and v(C1, ...,C6, t) with respect to the orbital elements Ci.
Namely,

[CkCi] ≡
∂r
∂Ck
·
∂v
∂Ci
−
∂r
∂Ci
·
∂v
∂Ck

, (1.237)

where the dot between two vectors denote the Euclidean dot product.
The Poisson bracket of two elements, Ck and Ci, is denoted by {CkCi}. It is defined

as a scalar product between two vectors that are partial derivatives of the orbital
elements Ci with respect to coordinates and velocity of the body 20)

{CkCi} ≡
∂Ck

∂r
·
∂Ci

∂v
−
∂Ck

∂v
·
∂Ci

∂r
. (1.238)

The 6 × 6 matrix of the Poisson brackets is the negative inverse to the matrix of the
Lagrange brackets,

6∑
i=1

[C jCi] {CiCk} = −δ jk , (1.239)

where δ jk = diag(1, 1, 1, 1, 1, 1) ( j, k = 1, 2, ..., 6)) is the Kronecker symbol (the
unit matrix) in six-dimensional Euclidean space of the orbital parameters, Ci. This
relation can be easily derived if one express the orbital parameters in terms of radius-
vector and velocity, Ci = Ci(r, v), and apply the chain rule of differentiation,

∂Ci

∂r
·
∂r
∂C j

+
∂Ci

∂v
·
∂v
∂C j

=
∂Ci

∂C j
= δi j , (1.240)

in calculation of the product of two brackets in equation (1.239). Both the Lagrange
and Poisson brackets are antisymmetric,

[CkC j] = −[C jCk] ,
{
CkC j

}
= −

{
C jCk

}
. (1.241)

The antisymmetry of the brackets evidently yields vanishing diagonal elements:

[CkCk] = 0 , {CkCk} = 0 . (1.242)

20) In differential geometry, the partial derivatives with respect to the coordinates and velocity are associ-
ated with covectors. This detail is ignored here, because one works in a Euclidean space where vectors
and covectors are formally equivalent to each other.
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A remarkable property of both the Lagrangian and Poisson brackets, which greatly
facilitates their evaluation, is that they do not depend on time explicitly [Brouwer
and Clemence, 1961; Schaub and Junkins, 2003], that is their partial time derivatives
vanish:
∂

∂t
[CkCi] = 0 ,

∂

∂t
{CkCi} = 0 . (1.243)

To verify this, let us take the partial time derivative of the Lagrange brackets (1.237).
One obtains
∂

∂t
[CkCi] =

∂r
∂Ck
·
∂a
∂Ci
−
∂r
∂Ci
·
∂a
∂Ck

, (1.244)

where a = ∂v/∂t is the orbital acceleration on an instantaneous conic. For Keplerian
conics,

a = −
GM
r3 r =

∂

∂r

(GM
r

)
, (1.245)

with r = |r|. Hence,
∂

∂t
[CkCi] =

∂r
∂Ck
·
∂

∂r
∂

∂Ci

(GM
r

)
−
∂r
∂Ci
·
∂

∂r
∂

∂Ck

(GM
r

)
(1.246)

=
∂2

∂Ck∂Ci

(GM
r

)
−

∂2

∂Ci∂Ck

(GM
r

)
= 0 ,

since the second partial derivatives commute. It proves that the Lagrange brackets
bear no explicit dependence on the time variable. The proof that the Poisson brack-
ets do not depend explicitly on time follows immediately after taking partial time
derivative from both sides of equation (1.239).

Because of this remarkable property, it does not matter at which point of the in-
stantaneous orbit one evaluates the brackets. Thus, one can chose the most conve-
nient point of the orbit in order to reduce the amount of algebra involved. After the
Lagrange brackets are found, the elements of the Poisson brackets (1.238) can be ob-
tained by matrix inversion from equation (1.239). The results are presented in Table
1.1 and Table 1.2 below.

1.4.4
Equations of Perturbed Motion for Osculating Elements

One is now prepared to derive the equations describing evolution of the osculating
elements Ci , with the Lagrange constrain (1.236) imposed. As the second term on
the right side of equation (1.235) vanishes, one can write the acceleration as

d2r
dt2 =

∂v
∂t

+

6∑
i=1

∂v
∂Ci

dCi

dt
=
∂2r
∂t2 +

6∑
i=1

∂v
∂Ci

dCi

dt
, (1.247)

insertion whereof in the perturbed equation of motion (1.233) entails:

∂2r
∂t2 +

GM
r3 r +

6∑
i=1

∂v
∂Ci

dCi

dt
= F , (1.248)
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where r ≡ |r|. The function r is, by definition, a Keplerian solution to the unper-
turbed two-body problem, with constant orbital elements. So this function obeys the
unperturbed equation (1.230), which means that the sum of the first two terms on
the left side of equation (1.248) must be equated to zero. This simplifies equation
(1.248) to

6∑
i=1

∂v
∂Ci

dCi

dt
= F . (1.249)

This is the equations of disturbed motion, written in terms of the osculating orbital
elements Ci = Ci(t). Together with Lagrange’s constraint (1.236), they constitute
a well-defined system of six equations that can be solved with respect to Ci for all
i = 1, 2, ..., 6. However, the mathematical form of equation (1.249) is not optimal
for finding its solution because the time derivatives dCi/dt in the left side of this
equation are algebraically coupled with vectors ∂v/∂Ci. Therefore, the next step is
to decouple derivatives dCi/dt from ∂v/∂Ci. It can be achieved with the formalism
of the Lagrange brackets.

Let us make a Euclidean dot-product of both sides of equation (1.249) with vector,
∂r/∂Ck. It yields,

6∑
i=1

(
∂r
∂Ck
·
∂v
∂Ci

)
dCi

dt
=

∂r
∂Ck
· F , (1.250)

where k = 1, 2, ..., 6, while the dot between the two vectors denotes their Euclidean
dot product. Making a dot-product of the Lagrange constraint (1.236) with vector
∂v/∂Ck brings about

6∑
i=1

(
∂v
∂Ck
·
∂r
∂Ci

)
dCi

dt
= 0 , (1.251)

Subtraction of equation (1.251) from (1.250) results in

6∑
i=1

[CiCk]
dCk

dt
=

∂r
∂Ci
· F . (1.252)

With aid of equation (1.239), the derivative dCi/dt can be decoupled so that one
obtains,

dCi

dt
= −

6∑
j=1

{
CiC j

} ∂r
∂C j
· F , (1.253)

which is a system of six ordinary differential equations of the first order for the
osculating elements of the perturbed orbit. The equations are valid in an arbitrary
Cartesian coordinates and for arbitrary parametrization of the Keplerian conic. For
this reason, equations (1.253) have a wide range of applications in celestial mechan-
ics. The method of variation of parameters is also used in the theory of ordinary
differential equations for finding their general solutions.
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Table 1.1 The Lagrange brackets for the Keplerian osculating elements
(C1,C2,C3,C4,C5,C6)=(a, e, i,Ω, ω,M0). The notation b = a

√
1 − e2 stands for the semi-minor

axis.

[ea] = 0, [M0 Ω] = 0, [M0 ω] = 0,

[i a] = 0, [i e] = 0, [ω Ω] = 0,

[Ω a] = n b
2 cos i, [Ω e] = −n a3 e

b cos i, [Ω i] = − n a b sin i,

[ω a] = nb
2 , [ω e] = −na3e

b , [ω i] = 0,

[M0 a] = na
2 , [M0 e] = 0, [M0 i] = 0.

1.4.5
Equations for Osculating Elements in the Euler-Gauss form

Though equations (1.253) are invariant with respect to the change of coordinates
and/or the orbital parametrization of the unperturbed orbit of two-body system,
choosing an appropriate parametrization can simplify their right side, thus, facilitat-
ing solution. One of the most convenient parameterizations is given in terms of the
Keplerian elements (a, e, i,Ω, ω,M0) by formulae (1.185) - (1.186). From these for-
mulae, one can calculate the matrix of the Lagrange brackets in a fairly straightfor-
ward way. The calculation can be greatly simplified if one recalls that the Lagrange
brackets do not explicitly depend on time and, therefore, also upon the true anomaly,
f , that may be set nil, f = 0. The outcome of the calculation is displayed in Table 1.1
where one has shown only 15 elements of the matrix since the anti-symmetry of the
Lagrange brackets gives immediately the other 15 off-diagonal elements. Remaining
6 diagonal elements are, of course, identically zero. As many elements of the matrix
of the Lagrange brackets are zero, it is relatively easy to invert the matrix in order
to calculate the Poisson brackets. The result is presented in Table 1.2. Calculating
the partial derivatives ∂r/∂a, ∂r/∂e, etc., from equations (1.185) - (1.186), forming
their scalar dot-products with the perturbing force F, and making transvection of
these products with the Poisson brackets from Table 1.2 yield a system of ordinary
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Table 1.2 The Poisson brackets for the Keplerian osculating elements
(C1,C2,C3,C4,C5,C6)=(a, e, i,Ω, ω,M0). The notation b = a

√
1 − e2 stands for the semi-minor

axis.

{ea} = 0,
{
M0 Ω

}
= 0,

{
M0 ω

}
= 0,

{i a} = 0, {i e} = 0, {ω Ω} = 0,

{Ω a} = 0, {Ωe} = 0, {Ω i} = − 1
n a b sin i ,

{ω a} = 0, {ωe} = − b
n a3 e

, {ω i} = cos i
n a b sin i ,

{M0 a} = 2
n a ,

{
M0 e

}
= b2

n a4 e
,

{
M0 i

}
= 0.

differential equations for the Keplerian elements 21) in the Euler-Gauss form:

da
dt

=
2

n
√

1 − e2

(
eFR sin f + FT

p
r

)
, (1.254a)

de
dt

=

√
1 − e2

na
[
FR sin f + FT (cos f + cos E)

]
, (1.254b)

di
dt

=
r cos( f + ω)

na2
√

1 − e2
FN , (1.254c)

dΩ

dt
=

r sin( f + ω)

na2
√

1 − e2 sin i
FN , (1.254d)

dω
dt

= − cos i
dΩ

dt
+

√
1 − e2

nae

[
−FR cos f + FT

(
1 +

r
p

)
sin f

]
, (1.254e)

dM0

dt
= −

√
1 − e2

(
dω
dt

+ cos i
dΩ

dt

)
−

2r
na2 FR , (1.254f)

where the radial distance r has to be expressed in terms of the orbital elements of the
two-body problem,

r =
a(1 − e2)

1 + e cos f
, (1.255)

while FR, FT , and FN are the radial, transversal, and normal to the orbit components
of the perturbing force F,

FR = n · F , FT = (k × n) · F , FN = k · F . (1.256)

with the unit vector n = r/r and the unit vector k is set to be orthogonal to the
instantaneous orbital plane. The mean anomaly of the perturbed motion obeys the

21) These equations are called in celestial mechanics the planetary equations.
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following equation,

M =M0 +

∫ t

t0
n(t′)dt′ , (1.257)

where M0 is solution of equation (1.254f), and n(t) is the mean orbital frequency
given by equation (1.159) where the semi-major axis a = a(t) is solution of the
corresponding equation (1.254a).

Equations (1.254a)-(1.254f) can be also independently derived by differentiat-
ing the two vectorial integrals of motion, the angular-momentum vector J and the
Laplace-Runge-Lenz vector AL, which are not conserved in the perturbed motion.
Differentiating their vectorial definitions, (1.108) and (1.176), and making use of the
equations of perturbed motion (1.233), result in:

dJ
dt

= r × F , (1.258)

d AL

dt
= 2(ṙ · F)r − (r · F)ṙ − (r · ṙ)F . (1.259)

As the Lagrange’s principle of the variation of orbital elements demands that all
relationships of the unperturbed Keplerian orbit remained valid in the perturbed mo-
tion, one can also use the expressions (1.177) and (1.178) of these vector integrals
for calculating the time derivatives. Differentiating equations (1.177) and (1.178)
and keeping in mind that the unit vectors k and P are also functions of time via
equations (1.111) and (1.141), lead us to the following results,

dJ
dt

=
na

2
√

1 − e2

dp
dt

k + na2
√

1 − e2

(
l sin i

dΩ

dt
− m

di
dt

)
, (1.260)

d AL

dt
= GMe

[(
dω
dt

+ cos i
dΩ

dt

)
Q +

(
sinω

di
dt
− cosω sin i

dΩ

dt

)
k
]

(1.261)

+ GM
de
dt

P ,

where the unit vectors P and Q have been defined in equations (1.141), (1.142)
and are also shown in Figure 1.3. After decomposing the perturbing force in the
three components (1.256), and equating right sides of the corresponding equations,
(1.258) and (1.260) as well as (1.259) and ( 1.261), it can then be demonstrated that
the Euler-Gauss equations (1.254) are again obtained.

As a historical aside, one would mention that in his work on the lunar motion,
Euler [1753] derived the planetary equations for the longitude of the node, Ω, the
inclination, i, and the semilatus rectum, p, with the time derivatives of these three
elements expressed through the three components of the disturbing force F. Sixty
years later, the method was amended by Gauss, who wrote down similar equations
for the other three Keplerian elements, thus obtaining a full system of the planetary
equations. Although many books refer to the system of equations (1.254) as the
Gauss equations, it looks more fair to pay the tribute evenly, calling them as the
Euler-Gauss equations.
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1.4.6
The Planetary Equations in the form of Lagrange

So far, one did not impose any limitation on the functional form of the perturbing
force. Now, let us assume that the force is conservative and depends only on coor-
dinates of perturbing bodies. This assumption was made by Lagrange [1778, 1783,
1788a,b, 1808a,b, 1809] in his treatment of planetary motions in the solar system.
Being dependent solely on the positions of the moving bodies, this force can be
expressed as a gradient of the disturbing function,

F =
∂R
∂r

= −
∂W

∂r
, (1.262)

with the disturbing function, R, being negative to the disturbing potential W intro-
duced above in equation (1.96). The chain rule for partial derivatives provides us
with

∂r
∂Ci
· F =

∂r
∂Ci
·
∂R
∂r

=
∂R
∂Ci

. (1.263)

Hence, substituting the force (1.262) into equation (1.253) for osculating elements
results in

dCi

dt
= −

6∑
k=1

{CiCk}
∂R
∂Ck

. (1.264)

Finally, insertion of the Poisson brackets from Table 1.2 to equation (1.264) takes us
to the celebrated system of planetary equations in the form of Lagrange:

da
dt

=
2
na

∂R
∂M0

, (1.265a)

de
dt

=
1 − e2

na2e
∂R
∂M0

−

√
1 − e2

na2e
∂R
∂ω

, (1.265b)

di
dt

=
cos i

na2
√

1 − e2 sin i

∂R
∂ω
−

1

na2
√

1 − e2 sin i

∂R
∂Ω

, (1.265c)

dΩ

dt
=

1

na2
√

1 − e2 sin i

∂R
∂i

, (1.265d)

dω
dt

= −
cos i

na2
√

1 − e2 sin i

∂R
∂i

+

√
1 − e2

na2e
∂R
∂e

, (1.265e)

dM0

dt
= −

1 − e2

na2e
∂R
∂e
−

2
na

∂R
∂a

. (1.265f)

The advantage of the Lagrange planetary equations is that the right sides of (1.265)
depend on a single function R, in contrast to the Euler-Gauss equations (1.254)
whose right sides depend on three components of the disturbing force F.

Disadvantages of employing the Lagrange (and the Euler-Gauss) equations are that
the right ascension of the ascending node becomes indeterminate as the inclination
tends to zero, and the argument of perigee becomes indeterminate as the eccentricity
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tends to zero. The difficulty is, of course, of a purely mathematical nature, and has
nothing to do with the actual motion. It can be sidestepped by switching from the
Keplerian elements to the, so-called, equinoctial orbital elements (p, f, g, h, k,L), that
are related to the Keplerian orbital parameters as follows [Broucke and Cefola, 1972;
Walker et al., 1985];

p = a(1 − e2) ,
f = e cos (Ω + ω)
g = e sin (Ω + ω)
h = tan i

2 cos Ω ,

k = tan i
2 sin Ω ,

L = Ω + ω + f .

The equinoctial orbital elements are useful for trajectory analysis and optimization
of space flights. They are valid for circular, elliptic, and hyperbolic orbits. The La-
grange equations for equinoctial elements exhibit no singularity for zero eccentricity
and orbital inclinations equal to 0 and 90 degrees. However, two of the components
are singular for an orbital inclination of 180 degrees but this can be handled by an
appropriate re-definition.

1.4.7
The Planetary Equations in the form of Delaunay

Another advantageous set of orbital elements is the Delaunay variables
l, g, h, L,G,H. In terms of the Keplerian orbital elements, they are defined as

l ≡ M0 – the mean anomaly at epoch,
g ≡ ω – the argument of the pericenter,
h ≡ Ω – the longitude of the ascending node,
L ≡

√
GMa ,

G ≡ L
√

1 − e2 – the magnitude of the angular-momentum vector J,
H ≡ G cos i – the angular-momentum component normal to equatorial plane.

By using the chain rule of differentiation, one can easily re-write the planetary equa-
tions (1.265) in terms of these variables:

dL
dt

=
∂R
∂l

,
dl
dt

= −
∂R
∂L

(1.266a)

dG
dt

=
∂R
∂g

,
dg
dt

= −
∂R
∂G

, (1.266b)

dH
dt

=
∂R
∂h

,
dh
dt

= −
∂R
∂H

, (1.266c)

where one deliberately wrote the equations in pairs, to emphasize their symplectic
structure with the Hamiltonian being equal to the disturbing function R. In both
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sets of equations, (1.265) and (1.266), the element, M0 = l, can be substituted by
the mean anomaly, M, provided R is simultaneously substituted with R′ = R +

GM/2a. The advantage of the Delaunay equations is that they can be analyzed with
the powerful mathematical technique of a symplectic geometry [Arnold, 1995]. Just
as the Euler-Gauss and Lagrange planetary equations, the equations in the form of
Delaunay become singular both in the limits of circular and/or equatorial orbits.
Accordingly, a transition to the, so-called, canonical elements of Poincar’e can be an
option [Brouwer and Clemence, 1961, p. 540].

1.4.8
Marking a Minefield

The most logical way of introducing the Delaunay variables would be to start
out with the polar coordinates and their conjugate momenta, and to carry out the
Hamilton-Jacobi procedure to find a canonical transformation to variables, which
will remain mutually conjugated with respect to a vanishing Hamiltonian, i.e., they
will be canonical integrals of motion [Arnold, 1995; Landau and Lifshitz, 1975].
These canonical variables are found through solution of the Hamilton-Jacobi equa-
tion, as demonstrated in numerous books - see, for example22), [Plummer, 1918,
sections 135 - 136], [Kovalevsky, 1967, sections 25 - 32], or [Vinti, 1998, chapter
6]. Within this approach, the Lagrange-type planetary equations are derived from
those of Delaunay.

Unfortunately, neither of these books address the following important question:
will the Hamilton-Jacobi procedure always result in osculating canonical elements?
As one will see in the subsequent sections, the answer to this question is affirma-
tive if the disturbance depends solely on positions of bodies, and is negative for
velocity-dependent perturbations. This happens, because the Hamilton-Jacobi pro-
cedure implies that the resulting Delaunay elements are canonical, while the condi-
tion of canonicity becomes incompatible with the condition of osculation when the
disturbance depends not only on the coordinates but also upon velocities.

As a result, the customary Delaunay and Lagrange planetary equations, when em-
ployed for such velocity-dependent perturbations, furnish orbital elements which are
not osculating. In other words, the instantaneous conics parameterized by the so-
obtained elements will not be tangent to the orbit. This means that these elements
will render the correct position of the body, r, but the partial derivative of r with
respect to time will not provide its instantaneous velocity as in case of the osculating
elements. While the use of such non-osculating elements is sometimes beneficial
mathematically, their physical interpretation is not always apparent. Interestingly,
the Andoyer elements which are the analogues of the Delaunay elements employed
in the canonical description of a rigid-body rotation, are subject to the same reserva-
tion.

22) Plummer used notations β and β2 for the negative Delaunay elements, −l and −g, correspondingly.
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1.5
Re-examining the Obvious

Don’t ever take a fence down until you
know the reason it was put up.
G. K. Chesterton

1.5.1
Why did Lagrange Impose his Constraint? Can It Be Relaxed?

When deriving the planetary equations, Lagrange amended the equations of motion
(1.249) with constraint (1.236), in order to make the overall system of the equations
well-defined mathematically. In the case of the conservative perturbing force, which
are represented as a gradient of the perturbing potential, it provided a maximal sim-
plification of the resulting equation (1.264) for osculating elements. Besides, the
physical interpretation of the elements, Ci, obeying constraint (1.236) was geometri-
cally straightforward. Indeed, by assuming that at each instant of time the perturbed
velocity ṙ is equal to the unperturbed Keplerian velocity v, Lagrange set the instan-
taneous conics tangent to the perturbed orbital curve and, thus, made the appropriate
orbital elements osculating – see Figure 1.5.

It would then be natural to enquire if the Lagrange constraint should always be
imposed on the orbital elements. Specifically: are there situations in which this
constraint is not the best choice or is incompatible with a particular form of the
equations for orbital elements? Indeed, a careful examination by Efroimsky and
Goldreich [2003, 2004] reveals that the attempt of modeling of an orbit by tangential
(osculating) confocal conics may be in conflict with the canonical equations. More
specifically, if the perturbing function R = R(r, v), depends not only on positions
of the bodies but also on their velocities23) the demand of osculation comes into a
contradiction with one’s desire to keep the Delaunay variables canonical. Analytical
solution of the Delaunay equations will then furnish an answer that will be mathe-
matically consistent but it will come out in terms of non-osculating orbital elements
violating the Lagrange constraint (1.236). The Delaunay elements in this case will
render a correct instantaneous position of the perturbed body (satellite, planet) but a
wrong value of its instantaneous velocity. In celestial calculations, this “booby trap"
is often encountered but noticed fairly rare [Brumberg, 1972, 1991].

To explore the mathematical consequences of choosing a particular constraint im-
posed on the perturbed orbital parameters one will deliberately permit a measured
degree of non-osculation in the differential equations describing their evolution. This
gives us some, so-called, gauge freedom in choosing the constraint so that by impos-
ing a constraint different from that of Lagrange one can sometimes greatly simplify

23) Examples of such forces are dissipative forces, the Coriolis forces in a precessing frame, or relativistic
perturbations (see section 6.4).
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the resulting equations for the orbital, but no longer osculating, elements. The sit-
uation resembles that emerging in the Maxwell electrodynamics where a suitable
choice of the gauge imposed on electromagnetic vector potential can considerably
simplify calculations without changing the physical observables. Planetary equa-
tions, obeying a constraint more general than that of Lagrange, were derived in
Efroimsky [2002a,b]. Before addressing that formalism, one would show an ele-
mentary example of the gauge freedom of differential equations due to Newman and
Efroimsky [2003], to illustrate the idea underlying the method.

1.5.2
Example: the Gauge Freedom of a Harmonic Oscillator

A one-dimensional harmonic oscillator with coordinate, x = x(t), and disturbed by a
force F(t) obeys the second-order differential equation,

ẍ + ω2
0x = F(t) , (1.267)

where overdot denotes a time derivative and ω0 is the oscillation frequency of unper-
turbed motion. We also impose some initial conditions, x(0), and, ẋ(0), at the initial
instant of time t0 = 0.

The method of variation of parameters suggests that solution of equation (1.267)
be sought for using a solution of homogeneous equation with the integration con-
stants replaced with yet unknown functions of time,

x = C1(t) sinω0t + C2(t) cosω0t , (1.268)

where C1(t) and C2(t) are to be determined. Differentiation of x(t) will lead us to

ẋ = Ċ1(t) sinω0t + Ċ2(t) cosω0t + ω0 [C1(t) cosω0t −C2(t) sinω0t] . (1.269)

It is common, at this point, to set the sum, Ċ1(t) sinω0t + Ċ2(t) cosω0t, equal to zero,
in order to remove the indeterminacy which stems from having only one equation
for the two variables, C1(t) and C2(t). This is equivalent to imposing the Lagrange
constraint which is convenient though not obligatory. Let us see what will happen if
one does not impose this particular constraint by assuming that

Ċ1(t) sinω0t + Ċ2(t) cosω0t = Φ(t) , (1.270)

with Φ(t) being an arbitrary smooth function of time. We call equation (1.270) the
gauge condition and Φ(t) as the gauge function because picking up various Φ(t) leads
to different solutions for C1(t) and C2(t) without changing the solution of the original
equation (1.267) for function x(t), as demonstrated below.

Substituting the gauge condition (1.270) in equation (1.269) and differentiating
one more time, entails

ẍ = Φ̇ + ω0

[
Ċ1(t) cosω0t − Ċ2(t) sinω0t

]
− ω2

0 [C1(t) sinω0t + C2(t) cosω0t] .
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(1.271)

Replacing this result along with equation (1.268) in the original equation of motion
(1.267), yields the dynamical equation rewritten in terms of the new variables, C1 and
C2. Together with the gauge condition (1.270), it constitutes the following system of
two differential equations,

Φ̇ + ω0

[
Ċ1(t) cosω0t − Ċ2(t) sinω0t

]
= F(t) , (1.272a)

Ċ1(t) sinω0t + Ċ2(t) cosω0t = Φ(t) . (1.272b)

This system can be algebraically solved with respect to time derivatives of functions
C1 and C2:

dC1

dt
= ω−1

0

[
F cosω0t −

d
dt

(Φ cosω0t)
]
, (1.273a)

dC2

dt
= ω−1

0

[
−F sinω0t +

d
dt

(Φ sinω0t)
]
, (1.273b)

with the initial conditions

C1(0) =
ẋ(0) − Φ(0)

ω0
,C2(0) = x(0) , (1.274)

imposed on the variables C1 and C2 in terms of the known values of x(0) and ẋ(0)
taken at the time t0 = 0. Notice that the initial value, Φ(0), of the gauge function
remains arbitrary. Clearly, equations (1.273) are a simple analogue to the Lagrange
system of planetary equations, whence one expects that the concept of gauge free-
dom may be equally applicable to the planetary equations of celestial mechanics.

In the example under consideration, the unperturbed problem was deliberately
chosen extremely simple - a harmonic oscillator. So, one ended up with a very sim-
ple system of equations for variables, C1 and C2, with the gauge-dependent terms
being the total time-derivatives. While, in general, one would have arrived to a sys-
tem of differential equations that can be integrated only numerically, in this simple
case the analytical integration is possible,

C1(t) = C1(0) + ω−1
0

[∫ t

0
F(t′) cosω0t′dt′ − Φ(t) cosω0t

]
, (1.275a)

C2(t) = C2(0) − ω−1
0

[∫ t

0
F(t′) sinω0t′dt′ − Φ(t) sinω0t

]
. (1.275b)

One sees that the solution for functions, C1(t) and C2(t), explicitly depends on the
gauge function, Φ, which vanishes if the Lagrange constraint, Φ = 0, is imposed.
On the other hand, substitution of equations (1.275) in equation (1.268) leads to a
complete cancelation of the Φ-dependent terms:

x = ω−1
0

∫ t

0
F(t′) sinω0(t − t′)dt′ + C1(0) sinω0t + C2(0) cosω0t , (1.276)
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where the first term is a particular solution of the inhomogeneous equation, and the
last two terms is a general solution of a homogeneous equation (1.267). This simple
exercise proves that the physical trajectory, x = x(t), of the perturbed oscillator
remains invariant irrespectively of the choice of the gauge function, Φ(t), though the
mathematical description (1.275) of its motion in terms of the variables C1(t) and
C2(t) is gauge-dependent and rather arbitrary up to the following transformation of
the variables

C1 −→ C̃1 = C1 + Φ(t) cosω0t , C2 −→ C̃2 = C2 − Φ(t) sinω0t . (1.277)

This gauge-dependence of the variables C1 and C2, if not taken into account properly,
may greatly influence the numerical error in finding solution for x(t). Indeed, in
settings more complicated than the perturbed harmonic pendulum, a choice of gauge
may change the numerical error of integration by several orders of magnitude [Gurfil
and Klein, 2006]. Specifically, choosing the Lagrange constraint Φ(t) = 0 is not
necessarily optimal.

An equally important feature illustrated by this example may also concern
timescales. Suppose the unperturbed oscillator’s frequency, ω0, is much higher
than an upper cut-off frequency, γ0, of the spectrum of the perturbing force F(t) ∼
A cos γ0t. Naively, one may expect that a “slow" disturbance would cause an appro-
priately slow modulation of C1(t) and C2(t) in the perturbed problem. That this is not
necessarily so, can be easily seen after integration of equations (1.275), where the
slow and fast frequencies mix under the integral. The perturbing force brings about
the following "fast" components to the solution

C1(t) ∼
A cos γ0t
ω2

0 − γ
2
0

sinω0t , C2(t) ∼ −
A cos γ0t
ω2

0 − γ
2
0

cosω0t , (1.278)

This tells us that in principle, C1(t) and C2(t), can undergo fast changes even under
a slowly-evolving, γ0 � ω0, disturbance. To a numerist, this indicates that the
integration step used in solving equations (1.275) should not be much larger than
the one employed in the unperturbed setting. Again, in some situations a clever
choice of gauge function Φ may relax this restriction. As demonstrated by Gurfil
and Klein [2006], a special choice of gauge turns the integration problem, in the
linear case, into a simple quadrature. This means that for a complicated systems with
significant timescale differences, for which integration of the variational equations
with the Lagrange constraint using a fixed time step is impossible, the variational
form of the equations with the specially-adapted gauge, Φ(t), can be integrated using
a fixed time step.
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1.5.3
Relaxing the Lagrange Constraint in Celestial Mechanics

1.5.3.1 The Gauge Freedom
Recall that a solution to the unperturbed equation of motion (1.230) of a restricted
two-body problem is a conic whose functional form can be denoted with

r = r (C1, ...,C6, t) , (1.279a)

ṙ =
∂r (C1, ...,C6, t)

∂t
, (1.279b)

where, here and everywhere else, overdot is standing for a total time derivative d/dt,
Ci (i = 1, 2, ..., 6) are the constants of integration that do not depend on time. In
the presence of a perturbing force, F, the two-body system obeys equation (1.233).
Solving the perturbed equation (1.233) by the method of variation of parameters
implies that the functional form of the solution for the perturbed radius-vector, r,
remains the same as in the unperturbed problem

r = r [C1(t), ...,C6(t), t] , (1.280)

while the constants of integration become functions of time. The perturbed velocity
of the body is given by the total time derivative

ṙ = v + Φ , (1.281)

where the vector function,

v =
∂r [C1(t), ...,C6(t), t]

∂t
, (1.282)

has the same functional form as the unperturbed two-body velocity (1.279b), and

Φ =

6∑
i=1

∂r
∂Ci

Ċi , (1.283)

denotes a, so-called, gauge function taking into account that the orbital elements of
the perturbed motion are not kept constant any longer but become functions of time.

Standard procedure in application of the method of variation of variables is to
use the Lagrange constraint, Φ = 0. Let us step away from the standard procedure
and explore what will happen if one does not set the function Φ nil but keep it
unconstrained. Then, one can proceed further to calculate the acceleration of the
body,

r̈ =
∂v
∂t

+

6∑
i=1

∂v
∂Ci

Ċi + Φ̇ . (1.284)

After substituting this result in the perturbed equation of motion (1.233) and recalling
that the method of variation of parameters implies, ∂v/∂t = −GMr/r3, one will
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obtain three equations of motion for the variables Ci(t),
6∑

i=1

∂v
∂Ci

dCi

dt
+

dΦ

dt
= F . (1.285)

This equation should be compared with equation (1.249) that was derived on the
basis of the Lagrange constraint. Equation (1.285) clearly demonstrate that the sys-
tem of ordinary differential equations of the second order for the orbital elements,
Ci = Ci(t), admits rather large freedom of transformations associated with the gauge
function Φ.

To find Ci(t), one will have to solve a system comprised by the equations of mo-
tion (1.285) and the expression (1.283), which so far is merely a notation for the yet
unspecified, vector function Φ. The identity (1.283) will become an additional differ-
ential equation for variables, Ci(t), if one chooses a particular functional form for the
gauge function Φ = Φ [C1(t), ...,C6(t) t] as a function of time and the variables Ci(t).
The necessity to fix a functional form of Φ, i.e., to impose three additional differen-
tial conditions upon Ci(t), evidently follows from the fact that one has six variables
Ci(t) while the number of equations of motion (1.285) is only three. What functional
form to attribute eventually to Φ will depend on the specific type of the perturbation.
This gauge freedom of the differential equations of the perturbed motion corresponds
to a specific freedom of transformations in the space of six parameters Ci. Partic-
ular example of these transformations is delivered by the canonical transformations
preserving the form-invariance of the Hamiltonian equations like the Delaunay equa-
tions [Arnold, 1995, Section 44]. Our approach, however, goes beyond the canonical
transformations and includes more general class of transformations of the orbital el-
ements which is discussed in section 1.5.3.2. The gauge freedom of the solutions of
differential equations of motion can be used in:

1) computer simulations of orbits where one’s choice of a gauge considerably in-
fluences the error propagation process. A good or bad choice of gauge function,
Φ, can optimize or destroy the numerical procedure. Specifically, the Lagrange
gauge, Φ = 0, is not guaranteed to be always optimal.

2) analytical treatment, in order to simplify the integration procedure, perhaps, re-
ducing it to quadratures.

The functional dependence of Φ can be chosen arbitrary insofar as its substitution
in equation (1.283) entails no conflict with the equations of motion in the sense that
if a specific function, Φ, is chosen in equation (1.283), exactly the same function
should appear in the equations of motion (1.285), and vise versa. The caveat here
is that taking a particular form of the equations of motion (1.285) also fixes the
gauge function Φ which may be not nil. If this fact is overlooked and the Lagrange
constraint, Φ = 0, is used, it will lead to erroneous solution for Ci. For example,
taking the perturbed equations for the Delaunay canonical variables, fixes the gauge.
Under position-dependent disturbances the gauge coincides with the Lagrange con-
straint Φ = 0, and the resulting Delaunay elements are osculating. However, in
case of velocity-dependent perturbations the Delaunay gauge turns out to be differ-
ent from the Lagrange constraint, so the ensuing Delaunay elements must be treated
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as nonosculating. If one works with the gauge function Φ properly, its particular
choice will never influence the eventual solution for the physical variable r, similar
to that having been discussed in previous section 1.5.2 for one-dimensional case of
harmonic oscillator.

1.5.3.2 The Gauge Transformations
As emphasized above the split of the orbital velocity, ṙ, given by equation (1.281),
is not unique since there is no any limitation on the freedom of choice of the gauge
function Φ. It means that the solution of the perturbed problem of motion given
in terms of the orbital elements Ci admits a large freedom of the infinitesimal gauge
transformations of the variables generated by various choices of Φ. The gauge trans-
formation of the variables is given by equation

C̃i = Ci(t) + αi(Ck, t) , (i = 1, 2, ..., 6) (1.286)

where αi are smooth functions of the "old" variables Ci = Ci(t) (i = 1, 2, ..., 6), and
the time t. The group of the transformations is defined by the condition that the
coordinate position of the body has the same value under the change (1.286) of the
variables,

r
[
C̃1(t), ..., C̃6(t) , t

]
= r [C1(t), ...,C6(t) , t] , (1.287)

and the functional form of equation (1.283) remains the same

Φ =

6∑
j=1

∂r
∂C j

Ċ j , Φ̃ =

6∑
i= j

∂r
∂C̃ j

˙̃C j , (1.288)

but the gauge functions Φ = Φ(Ci, t) and Φ̃ = Φ̃(C̃i, t) are different: Φ , Φ̃.
In order to derive relationship between functions αi and the gauge function Φ, let

us expand the left side of equation (1.287) in the Taylor series with respect to αi

which is considered as a small parameter of the expansion. Canceling the radius-
vector r(Ci, t) in both parts of the equation one obtains an algebraic equation

6∑
j=1

∂r
∂C j

α j = 0 . (1.289)

Taylor expansion of the second equation (1.288) with making use of equation
(1.286), yields

Φ̃ = Φ +

6∑
j=1

∂r
∂C j

∂α j

∂t
. (1.290)

Taking a partial time derivative from equation (1.289) provides us with a useful
equality

6∑
j=1

∂r
∂C j

∂α j

∂t
= −

6∑
j=1

∂v
∂C j

α j . (1.291)
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Making use of this identity in equation (1.290) transforms it to

6∑
j=1

∂v
∂C j

α j = Φ − Φ̃ . (1.292)

Next step is to make a dot product of equation (1.289) with vector ∂v/∂Ci and a dot
product of equation (1.292) with vector ∂r/∂Ci, then, to subtract one equation from
another. Accounting for definition of the Lagrange brackets (1.237), one arrives to
an algebraic equation for the transformation functions αi,

6∑
j=1

[
CiC j

]
α j =

∂r
∂Ci
·
(
Φ − Φ̃

)
, (1.293)

which can be solved with the help of the matrix of the Poisson brackets (1.238).
Indeed, after performing the matrix multiplication of equation (1.293) with the Pois-
son brackets and accounting for their property of orthogonality with the Lagrange
brackets (1.239), yield

αi =

6∑
j=1

{
CiC j

} ∂r
∂C j
·
(
Φ̃ −Φ

)
. (1.294)

This equation substituted in equation (1.286) allows us to calculate the correspon-
dence between one set of the orbital elements, Ci, associated with the gauge function
Φ, and another set of the elements, C̃i, associated with the choice of another gauge
function, Φ̃. For a fixed gauge function Φ, there is a residual gauge freedom of
transformations of the orbital elements Ci given by the smooth functions αi which
has no explicit dependence on time, that is ∂αi/∂t = 0. The residual gauge freedom
is limited by the class of functions αi that satisfy equation (1.289). Right side of
equations (1.294) is functionally similar to the right side of equations (1.253) for the
osculating elements. Hence, expanding the difference Φ̃−Φ in the radial, transversal
and normal to-the-orbit components one can write the right side of equation (1.294)
in the form being similar with the right side of the Euler-Gauss equations (1.254).

1.5.4
The Gauge-Invariant Perturbation Equation in Terms of the Disturbing Force

Let us assume that one has picked up a particular function Φ = Φ[C1(t), ...,C6(t), t].
Then, the perturbed problem of motion is reduced to a system of two vector differ-
ential equations for six variables Ci(t):

6∑
i= j

∂v
∂C j

Ċ j = −Φ̇ + F , (1.295a)

6∑
i= j

∂r
∂C j

Ċ j = Φ . (1.295b)
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Now, take the dot product of the first equation with ∂r/∂Ci, and the dot product of
the second equation with ∂v/∂Ci. The difference between these two products will
amount to

6∑
j=1

[
CiC j

]
Ċ j =

(
F − Φ̇

)
·
∂r
∂Ci
−Φ ·

∂v
∂Ci

, (1.296)

where the left side contains the Lagrange brackets defined in equation (1.237). It is
worth emphasizing that the Lagrange brackets are defined in a gauge-invariant, i.e.,
Φ-independent fashion. Indeed, the dependence on Φ could appear, if and only if,
the brackets contained time derivatives from the variables Ci(t). However, neither
the function, r, nor the function v = ∂r(Ci, t)/∂t include differentiation of parameters
Ci with respect to time. The Poisson brackets defined in equation (1.238) are gauge-
invariant for the same reason. Equation (1.296) implements the gauge-invariant gen-
eralization of the planetary equations (1.252) in the Euler-Gauss form.

Be mindful that Φ is set to be a single-valued function Φ(Ci, t) of the time t and
parameters Ci = Ci(t), but not of their time-derivatives, Ċi. In principle, the gauge
functions with dependence upon the parameters’ time derivatives of all orders are
also conceivable, especially in the post-Newtonian celestial mechanics of binary pul-
sars [Damour, 1983; Grishchuk and Kopeikin, 1986; Lorimer and Kramer, 2004] and
coalescing binary stars [Pati and Will, 2000]. Such gauge functions generate second
and higher-order derivatives in the system of equations for parameters Ci [Damour
and Schäfer, 1985; Grishchuk and Kopeikin, 1986] which solution is a highly non-
trivial mathematical endeavor [Chicone et al., 2001].

The full time derivative of the chosen Φ = Φ(Ci, t) contains the time derivatives
of the parameters Ci,

Φ̇ =
∂Φ

∂t
+

6∑
j=1

∂Φ

∂C j

dC j

dt
. (1.297)

It will then be reasonable to move these derivatives to the left side of equation
(1.296), thus, recasting the equation into

6∑
j=1

(
[CiC j] +

∂r
∂Ci
·
∂Φ

∂C j

)
dC j

dt
=

∂r
∂Ci
· F −

∂r
∂Ci
·
∂Φ

∂t
−
∂v
∂Ci
·Φ , (1.298)

which is the general form of the gauge-invariant perturbation equation [Efroimsky
and Goldreich, 2003, 2004]. If the Lagrange gauge, Φ = 0, is imposed, equation
(1.298) naturally coincides with equation (1.252) which is equivalent to the Lagrange
equation (1.264) when the perturbing force has a potential R = R(r) depending only
on positions, r, but not on velocities, ṙ, of the bodies.

Sometimes other gauges become advantageous for analytical calculations. In those
gauges, the orbital elements, Ci(t), are non-osculating with the instantaneous conics
are not tangent to the actual orbit. A useful example of non-osculating elements is
the set of contact orbital elements which is discussed below. Other settings wherein
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employment of nonosculating variables considerably simplifies calculations are the
Gyldén-Meshcherskii problem, i.e., the orbital motion of a body of variable mass
[Gurfil and Belyanin, 2008]; the Lense-Thirring effect, i.e, the relativistic motion
of a satellite about a rotating mass [Ashby and Allison, 2007; Chashchina et al.,
2009; Ciufolini, 1986]; evolution of relative orbits of spacecrafts under perturbations
[Gurfil, 2007]. An important example of such forces appears in the equations of
motion of the post-Newtonian celestial mechanics, a topic to be discussed at length
in section 6.3 below especially in conjunction with the different parameterizations of
the relativistic two-body problem.

1.5.5
The Gauge-Invariant Perturbation Equation in Terms of the Disturbing
Function

Let us assume that the perturbed dynamics of the reduced two-body problem can be
described by the Lagrangian

L(r, ṙ, t) =
ṙ2

2
+

GM
r

+ ∆L(r, ṙ, t) , (1.299)

where the first two terms in the right side defines the unperturbed Lagrangian and
the perturbation, ∆L = ∆L(r, ṙ, t), depends on both position, r, and velocity, ṙ, of the
body, and on the time t. The linear momentum of the body is defined by

p =
∂L
∂ṙ

= ṙ +
∂∆L
∂ṙ

. (1.300)

If the perturbation ∆L, is not singular, and one assumes that it is not, equation (1.300)
can be solved, thus, obtaining velocity ṙ as a function of the momentum p and posi-
tion r,

ṙ = p−
∂∆L
∂ṙ

, (1.301)

where the second term in the right side is a function of p and r. One can derive
the Hamiltonian function, H, by making use of the Legendre transformation of the
Lagrangian supplemented by equation (1.301),

H(r, p, t) = p · ṙ − L . (1.302)

Straightforward calculation reveals that the Hamiltonian corresponding to the La-
grangian (1.299) is

H =
p2

2
−

GM
r

+ ∆H , (1.303)

where the perturbation

∆H ≡ −∆L −
1
2

(
∂∆L
∂ṙ

)2

. (1.304)
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The disturbing function R, being often used in celestial mechanics, is defined as
the Lagrangian’s perturbation,

R(r, ṙ, t) ≡ ∆L(r, ṙ, t) . (1.305)

while the Hamiltonian’s perturbation is denoted as

V(r, p, t) ≡ ∆H(r, p, t) . (1.306)

In virtue of equation (1.304), the interconnection of the Hamiltonian’s perturbation
with the disturbing function is written as

V = −R −
1
2

(
∂R
∂ṙ

)2

. (1.307)

In many situations the disturbance bears no dependence upon the velocity ṙ, so that
the disturbing function in these cases coincides with the negative Hamiltonian’s per-
turbation as the second term in (1.307) becomes nil. One assumes more general case
and intend to address disturbances with a velocity-dependence present. Hence, the
necessity to use the full formula (1.307).

The Euler-Lagrange equations

d
dt
∂L
∂ṙ
−
∂L
∂r

= 0 , (1.308)

written for the perturbed Lagrangian (1.299) are,

r̈ +
GM
r3 r = F , (1.309)

with the perturbing force given by

F =
∂R
∂r
−

d
dt

(
∂R
∂ṙ

)
, (1.310)

which should be substituted in the right side of equation (1.298). One notices that
the perturbation R is an implicit function of the orbital elements,

R = R(r, ṙ, t) = R [r(Ci, t), ṙ(Ci, t), t] , (1.311)

where Ci = Ci(t). Hence, the partial derivative

∂R
∂Ci

=
∂R
∂r

∂r
∂Ci

+
∂R
∂ṙ

∂v
∂Ci

+
∂R
∂ṙ

∂Φ

∂Ci
. (1.312)

The time derivative entering equation (1.310), can be written as

d
dt
∂R
∂ṙ

=
∂

∂t

(
∂R
∂ṙ

)
+

6∑
j=1

∂

∂C j

(
∂R
∂ṙ

)
dC j

dt
. (1.313)
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Inserting the expression (1.310) for the force F in the generic equation (1.298), and
making use of the expressions (1.312) and (1.313), one arrives at the general form
of the gauge-invariant equation of orbital evolution for an arbitrarily-chosen set of
orbital elements Ci [Efroimsky, 2005b; Efroimsky and Goldreich, 2003, 2004]:

6∑
j=1

{
[CiC j] +

∂r
∂Ci
·
∂Ψ

∂C j

}
dC j

dt
= −

∂V
∂Ci
−

(
∂v
∂Ci

+
∂R
∂ṙ

∂

∂Ci
+
∂r
∂Ci

∂

∂t

)
·Ψ , (1.314)

where one has used definition (1.307) of the Hamilton’s perturbation V , and intro-
duced a new notation

Ψ ≡ Φ +
∂R
∂ṙ

, (1.315)

for the gauge function shifted from its original value, Φ, by the partial derivative of
the perturbing function, R, with respect to velocity of the body. The gauge function
Ψ is arbitrary with the only limitation that comes from the decision to keep Φ as a
function of the time and the orbital elements but not of their time derivatives.

1.5.6
The Delaunay Equations without the Lagrange Constraint

As an example, let us consider the generic perturbation equations (1.314) for the
Delaunay elements, defined in section 1.4.7. We permit the perturbation to depend
both on the position and the velocity of the orbiting body but do not impose the
condition of osculation, so the gauge function Ψ remains arbitrary. The system of
the generic Delaunay equations read Efroimsky and Goldreich [2003]:

dL
dt

= −
∂V
∂l
−
∂R
∂ṙ
·
∂Ψ

∂l
−
∂r
∂l
·

dΨ

dt
−
∂v
∂l
·Ψ , (1.316a)

dl
dt

=
∂V
∂L

+
∂R
∂ṙ
·
∂Ψ

∂L
+
∂r
∂L
·

dΨ

dt
+
∂v
∂L
·Ψ , (1.316b)

dG
dt

= −
∂V
∂g
−
∂R
∂ṙ
·
∂Ψ

∂g
−
∂r
∂g
·

dΨ

dt
−
∂v
∂g
·Ψ , (1.316c)

dg
dt

=
∂V
∂G

+
∂R
∂ṙ
·
∂Ψ

∂G
+
∂r
∂G
·

dΨ

dt
+
∂v
∂G
·Ψ , (1.316d)

dH
dt

= −
∂V
∂h
−
∂R
∂ṙ
·
∂Ψ

∂h
−
∂r
∂h
·

dΨ

dt
−
∂v
∂h
·Ψ , (1.316e)

dh
dt

=
∂V
∂H

+
∂R
∂ṙ
·
∂Ψ

∂H
+
∂r
∂H
·

dΨ

dt
+
∂v
∂H
·Ψ . (1.316f)

In case of a disturbance depending only on the position, one has, V = −R. In this
situation, it would be most convenient to fix the gauge in the Lagrange-constrain
form: Φ = 0. This sets the Delaunay elements osculating, while the equations
(1.316) become the well-known canonical equations of Delaunay (1.266). When the
disturbance depends also upon the velocity, equations (1.316) still can be reduced to
the canonical form (1.266) by choosing another gauge, Ψ = 0, though this can be
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done only at the cost of osculation loss. Indeed, while after imposing such a gauge
the equations (1.316) will look similar to equations (1.266) but the instantaneous
conics parameterized by the Delaunay elements will be nontangent to the perturbed
orbit. This situation is depicted in Figure 1.6.

Our example reveals that a blithe use of the Delaunay elements in problems with
velocity-dependent perturbations R = R(r, ṙ), may lead to erroneous geometric in-
terpretation of the orbital motion as the loss of osculation may be not noticed. An-
other moral of the story is that often the Delaunay elements are considered in the
framework of the Hamilton-Jacobi theory of canonical transformations which treats
these elements as canonical variables obeying the Hamilton equations. However,
equations (1.316) are not necessarily Hamiltonian depending upon the gauge cho-
sen. Hence, the canonicity of the Delaunay elements should not be taken for granted
without checking upon which gauge conditions have been imposed. For example,
the nonosculating orbital inclination can differ in the first order from the osculating
inclination of the orbit that can be important for correct interpretation of the theory
of Iapetus’s inclination evolution developed by Ward [1981].

The main conclusion is: whenever one encounters a disturbance that depends not
only upon positions but also upon velocities or momenta, implementation of the
canonical-perturbation method necessarily yields equations that render nonosculat-
ing canonical elements. It is possible to keep the elements osculating, but only at
the cost of sacrificing canonicity. For example, under velocity-dependent orbital
perturbations (like inertial forces, or atmospheric drag, or relativistic correction) the
equations for osculating Delaunay elements (Φ = 0 constraint is imposed) will no
longer be Hamiltonian [Efroimsky, 2002a,b].

For the first time, non-osculating orbital variables were encountered probably by
Poincaré in his studies of the three-body problem, though he never explored these
variables from the viewpoint of a non-Lagrange constraint choice. Having performed
a transition from the barycentric to the heliocentric reference frame Poincaré [1896];
Poincare [1897] noticed a subtle difference between the instantaneous conics param-
eterized by the canonical Delaunay variables defined in the two frames. A conic
parameterized by the Delaunay elements in the barycentric frame deviated from the
perturbed trajectory at the rate of t2 of the time t. At the same time, a conic pa-
rameterized by the Delaunay elements in the heliocentric frame deviated from the
perturbed trajectory at the linear rate t. As became evident later the variables in the
barycentric frame were osculating, while the heliocentric variables were not. Evolu-
tion of the heliocentric set of variables was governed by a Hamiltonian perturbation
that turned out to be velocity-dependent, which is natural because the heliocentric
frame is non-inertial with the Hamiltonian perturbation depending on linear mo-
menta of the bodies. In the language of symplectic geometry, Poincaré’s finding,
including the issue of choosing either osculating or non-osculating elements in the
three-body problem, was briefly addressed in Abdullah and Albouy [2001].
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Figure 1.6 This picture illustrates the method of variation of parameters in the reduced
two-body problem without imposing the condition of osculation. A perturbed orbit is a set of
points, each of which is donated by a representative of a sequence of confocal instantaneous
conics a, b, c, d, e, that are not supposed to be tangent, nor even coplanar to the orbit. As a
result, the physical velocity ṙ = dr/dt that is tangent to the perturbed orbit, differs from the
Keplerian velocity v that is tangent to the conic. The sequence of nonosculating conics is
characterized by vector Φ(C̃1, ..., C̃6, t) = ṙ(C̃1, ..., C̃6, t) − v(C̃1, ..., C̃6, t) expressed as a function
of time and six (nonosculating) orbital elements.
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1.5.7
Contact Orbital Elements

The generic equations (1.314) evidently reveal the convenience of the constraint

Ψ = 0 ⇐⇒ Φ = −
∂R
∂ṙ

. (1.317)

It cancels many terms in equations (1.314), reducing them to

6∑
j=1

[C̃iC̃ j]
dC̃ j

dt
= −

∂V
∂C̃i

, (1.318)

where one has denoted, C̃i, the orbital elements corresponding to the constraint
(1.317) in order to distinguish them from the osculating elements elements Ci. The
so-defined orbital elements C̃i are called the contact elements. They are often used
for analysis of orbits perturbed by velocity-dependent forces [Efroimsky, 2005a].

The term “contact elements" was offered in celestial mechanics by Brumberg et al.
[1971]. Later, Kinoshita [1993] employed these variables. At that time, though, it
was not yet clear that such variables obey conditions (1.317). It can be proven that
variables obeying the same conditions show up also when one tries to preserve the
interrelation |J | ≡ |r×p| in the a frame precessing at a rate µwhere the momentum per
unit mass, p = ṙ+µ×r is not equal to ṙ making this situation similar to the case of the
velocity-dependent perturbations of orbital motion Goldreich [1965]. Calculations
carried out in terms of these variables are often greatly simplified. At the same time,
one should be aware that the instantaneous conics parameterized by these variables
are not tangent to the actual trajectory. Brumberg et al. [1971]; Kinoshita [1993], and
Goldreich [1965] employed the contact variables to describe motion of a satellite
orbiting a precessing oblate massive body. Although the instantaneous values of
the contact variables differ from their osculating counterparts already in the first
order, their averages differ only in the second order, provided the motion is periodic.
However, in other situations, the absence of a periodic precession can invalidate
geometric interpretation of the averaged values of these elements already in the first
order.

Derivatives of the contact elements can be decoupled from the Lagrange brack-
ets in equations (1.318) with the help of the matrix orthogonality condition (1.239).
Thus, one obtains a system of ordinary differential equations for the contact ele-
ments,

dC̃i

dt
=

6∑
j=1

{
C̃iC̃ j

} ∂V
∂C̃ j

, (1.319)

which looks similar to the Lagrange planetary equations (1.264) except that now the
perturbation, V , is given by more complicated expression (1.307) that involves the
partial derivative of the disturbing function, R, with respect to velocity of the body,
and the elements C̃i obey the constraint (1.317), instead of the Lagrange constraint,
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Φ = 0. More specifically, for the set of the contact elements (ã, ẽ, ĩ, Ω̃, ω̃, M̃0) one
gets [Brumberg, 1972, 1991]:

dã
dt

=
2
ñã

∂V

∂M̃0
, (1.320a)

dẽ
dt

=
1 − ẽ2

ñã2ẽ
∂V

∂M̃0
−

√
1 − ẽ2

ñã2ẽ
∂V
∂ω̃

, (1.320b)

dĩ
dt

=
cos ĩ

ñã2
√

1 − ẽ2 sin ĩ

∂V
∂ω̃
−

1

ñã2
√

1 − ẽ2 sin ĩ

∂V
∂Ω̃

, (1.320c)

dΩ̃

dt
=

1

ñã2
√

1 − ẽ2 sin ĩ

∂V
∂ĩ

, (1.320d)

dω̃
dt

= −
cos ĩ

ñã2
√

1 − ẽ2 sin ĩ

∂V
∂ĩ

+

√
1 − ẽ2

ñã2ẽ
∂V
∂ẽ

, (1.320e)

dM̃0

dt
= −

1 − ẽ2

ñã2ẽ
∂V
∂ẽ
−

2
ñã

∂V
∂ã

. (1.320f)

As the right side of the resulting equation (1.319) contains only the Hamiltonian
variation V , it may be logical to christen the constraint (1.317) the Hamiltonian
gauge. Insertion of this gauge in the expression (1.281) for the perturbed velocity
makes this velocity read,

ṙ = v −
∂R
∂ṙ

. (1.321)

Comparing this with equations (1.300) and (1.305), one sees that in the Hamiltonian
gauge the partial time derivative of the perturbed coordinates, v = ∂r/∂t, is equal to
the canonical momentum,

v
[
C̃1(t), ..., C̃6(t) , t

]
= p

[
C̃1(t), ..., C̃6(t) , t

]
. (1.322)

Equation (1.322) allows us to interchange the velocities and the corresponding mo-
menta in the expressions for the Lagrange and Poisson brackets, whenever one is
working in the Hamiltonian gauge. It also tells that the contact elements C̃i represent
an osculating instantaneous orbit in the phase space (r, p) in contrast to the canonical
osculating elements in the Lagrange gauge, which represent an osculating conic in
the configuration space (r, ṙ). Relationship between the osculating elements Ci in
the configuration space and the contact elements C̃i in the phase space can be found
from equation (1.294). Indeed, substituting the Lagrange constraint, Φ = 0, and the
Hamiltonian gauge, Φ̃ = −∂R/∂ṙ, one obtains

C̃i −Ci = −

6∑
j=1

{
CiC j

} ∂r
∂C j
·
∂R
∂ṙ

. (1.323)

The right side of this equation looks the same as that (1.253) with the “force" F =

Φ̃ = −∂R/∂ṙ. Therefore, the differences between the elements, (ã, ẽ, ĩ, Ω̃, ω̃, M̃0)
and (a, e, i,Ω, ω,M0), are given by the right side of equations (1.254).



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 1 — 2016/2/13 — 14:05 — page 77

77

It is possible to prove that the Hamiltonian gauge condition (1.317) is compul-
sory imposed by the canonical perturbation theory of the Hamiltonian equations for
any dynamic system. Indeed, let us assume that the orbital elements C̃1, ..., C̃6 are
associated with generalized coordinates Q = (Qi) = (C̃1, C̃2, C̃3) and generalized
momentum P = (Pi) = (C̃4, C̃5, C̃6), which obey the Hamiltonian equations

dQi

dt
=
∂H̃
∂Pi

,
dPi

dt
= −

∂H̃
∂Qi

, (1.324)

where the perturbed Hamiltonian

H̃ = H̃(Q, P, t) = V(r, p, t) + ∂χ/∂t , (1.325)

and χ = χ(r, p, t) is a generating function defining the canonical transformation
from (r, p) to (Q, P) [Arnold, 1995; Landau and Lifshitz, 1969] so that radius-vector
(ri) = r(Q, P, t) and momentum (pi) = p(Q, P, t).

The total time derivative of r is expressed as follows

ṙ =
∂r
∂t

+
∂r
∂Qi

dQi

dt
+
∂r
∂Pi

dPi

dt
=
∂r
∂t

+
{
rH̃

}
, (1.326)

where{
rH̃

}
=

∂r
∂Qi

∂H̃
∂Pi
−
∂r
∂Pi

∂H̃
∂Qi

, (1.327)

is the Poisson brackets of r and H̃ expressed in terms of the canonical variables
(Qi, Pi), and the Einstein summation rule is used for the repeated indices. However,
due to the invariance of the Poisson brackets with respect to the canonical transfor-
mations [Landau and Lifshitz, 1969] one has{

rH̃
}

= {rV} =
∂r
∂ri

∂V
∂pi −

∂r
∂pi

∂V
∂ri =

∂V
∂p

. (1.328)

However, the partial derivative ∂V/∂p = ∂R/∂ṙ [Landau and Lifshitz, 1969, §40].
Hence, going back to equation (1.326) it reveals that any system of canonical vari-
ables leads to equation (1.321) which implies the Hamiltonian constraint (1.317)
telling us that the variables (Q, P) must be interpreted as the contact elements
C̃1, ..., C̃6. This gauge-stiffness 24) property of the system of the Hamiltonian equa-
tions should be taken into account in the theory of the gauge transformations of the
parameter space.

1.5.8
Osculation and nonosculation in rotational dynamics

Interestingly, the phenomenon of osculation vs nonosculation emerges not only in
the theory of orbits but also in rotational dynamics, provided the method of vari-
ation of parameters is employed [Efroimsky and Escapa, 2007]. This should not

24) This term was suggested by Peter Goldreich.
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be surprising, because the mathematics underlying rotational mechanics is virtually
identical to that underlying orbital mechanics. In orbital mechanics, a perturbed tra-
jectory of a body consists of points, each of which is donated by a representative of
a sequence of instantaneous Keplerian conics. If one now disembodies this idea of
its particular implementation, one should agree that:

(a) a trajectory may be assembled of points contributed by a family of algebraic
curves of an essentially arbitrary type, not necessarily conics;

(b) it is not obligatory to set the family of curves tangent to the perturbed trajectory.
In fact, it is often beneficial to choose them nontangent.

In its generality, the approach can be applied, for example, to describe the time evo-
lution of Euler’s angles characterizing orientation of a rotating body with respect to
inertial space. A disturbed rotation can be thought of as consisting of a series of small
turns along different Eulerian cones each of which is an orbit on the Euler angles’
manifold corresponding to an unperturbed state of the angular momentum (spin) of
the body. Just as in orbital mechanics, a transition from one instantaneous Keplerian
conic to another is caused by a disturbing force, so a transition from one instanta-
neous Eulerian cone to another is governed by either an external torque, or the torque
due to precession of the frame, or other perturbations like re-distribution of matter
within the rotating body. Thus, in rotational mechanics, the Eulerian cones play the
same role as the Keplerian conics do in the orbital dynamics. Most importantly, a
perturbed rotation may be parameterized by the elements of the Eulerian cones in an
osculating or in a nonosculating manner that is picked up by imposing a constraint
on the rotational elements that is similar to choosing the gauge function, Φ, in the
orbital dynamics. In many cases, the osculating Eulerian cones are convenient but
the nonosculating parametrization may sometimes be more beneficial.

When the equations for the rotational elements are required to be canonical, the
so-called Andoyer variables are typically chosen. However, like in case of the De-
launay orbital elements, the Andoyer variables may share the important peculiarity:
under certain circumstances, the standard Hamiltonian equations of rotational mo-
tion render the elements nonosculating. In the theory of orbits, the standard form of
the Lagrange and Delaunay planetary equations yield contact elements when pertur-
bations depend on velocities. To keep the elements osculating in the configuration
space, the equations must be amended with extra terms that are partial derivatives of
the disturbing function with respect to velocities. It complicates the planetary equa-
tions and makes, for example, the Delaunay equations noncanonical. In rotational
dynamics, whenever a perturbation depends upon the angular velocity, the canoni-
cal approach makes the Andoyer variables entering the Hamiltonian equations to be
nonosculating to the Eulerian cones. To make them osculating, extra terms should
be added to the standard Hamiltonian equations but then the equations will no longer
be canonical [Efroimsky and Escapa, 2007].
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1.6
Epilogue to the Chapter

As any physical theory, the Newtonian mechanics has a restricted realm of applica-
bility. The first example of this realm’s limitations, the problem of Mercury’s apsidal
precession, was encountered by astronomers back in the second part of the XIX-th
century. By then, it had long been known that within the unperturbed Keplerian two-
body problem the Laplace-Runge-Lenz vector is preserved and is always pointing
toward the pericenter. Hence, if one neglects the planets’ mutual disturbances, the
periapses of their orbits would be staying idle. The disturbances however make the
periapses move. The effect is especially pronounced in the case of Mercury, which
has a small mass and therefore is most sensitive to the pull of the other planets. At
the same time, since Mercury has an orbit of a high eccentricity and a small period,
the advance of its pericenter is fairly easy observable, and it was accurately measured
back in the XIX-th century. However, the rate of this advance turned out to differ
from the predictions of the classical planetary theory by about 43 arcseconds per
century. To explain the discrepancy, astronomers had to wait until the theory of gen-
eral relativity was created. Explanation of Mercury’s anomalous apsidal precession
then became one of the first triumphs of Einstein’s theory.

Over the XX-th century, astronomers came across many other examples of celes-
tial motion, for whose accurate description in terms of the Newtonian mechanics
turned out to be insufficient. An incomplete list includes the orbital motion of neu-
tron stars and accretion-disc particles in binary systems; the motion of artificial satel-
lites, the Moon, asteroids, and inner planets in the Solar System; and propagation of
light through gravitational field. Recently, several so-far-unexplained anomalies in
the orbital motion of spacecraft, planets, and the Moon have been registered [Ander-
son and Nieto, 2010]. They may indicate that even more subtle relativistic effects
in the orbital motion of the bodies should be taken into account. Still, the prob-
lem of Mercury’s pericenter advance marks the starting point whence the science of
relativistic celestial mechanics reckons its history.
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2
Introduction to Special Relativity
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2.1
From Newtonian Mechanics to Special Relativity

2.1.1
The Newtonian Space-Time

Let us consider a physical process taking place within a sufficiently small volume of
space and a sufficiently short period of time. One assumes that it is possible to reduce
the actual physical process to its limiting content by shrinking the volume and the
time interval to zero. This brings to life an idealized notion of event, an often used
abstraction of a physical phenomenon taking place at one point in space and at one
instant of time. Examples of the events are the photon’s emission or absorbtion, col-
lision of two elementary particles, meteorite’s burst in planetary atmosphere, etc. .
The event is mathematically identified with a point and the physical world is consid-
ered as consisting of a continuous set of points modeling its underlying mathematical
structure. The set of events is further equipped with additional mathematical para-
phernalia which converts it to a well-explored mathematical object called manifold.

Referring the reader to Chapter 3 for more extended treatment, one defines an
n-dimensional manifold as a continuous set of points which can be covered by a
finite or countable collection of overlapping n-dimensional coordinate charts. This
means that each point of the manifold belongs to two or more charts, for each of
which there exists a one-to-one continuous map to an open domain of n-dimensional
coordinate space Rn that is represented by a set of n-tuples of real numbers. In
principle, one has to define the terms open and continuous and accept that points of
the manifold are separable from each other that constitutes the important Hausdorff
property. Nonetheless, for now, this intuitive concept of the manifold is sufficient. A
rigorous definition (in terms of topological spaces, etc.) can be found, for example,
in Arnold [1995]; de Felice and Clarke [1990] and other mathematical textbooks.

In the Newtonian physics, the spacetime is modeled with a four-dimensional man-
ifold R4. This space has a special structure selected by the mapping: R4 → R1,
with the one-dimensional subspace R1 called the absolute time. It is parameterized
with a continuous parameter t, which measures time intervals between events in the
sense of the Euclidean space. In other words, if one event occurs at time ta and an-
other event does at time tb, the time interval between the two events is given by the
absolute value |tb − ta|. The events are called simultaneous if they have the same nu-
merical value of the parameter t. The set of events simultaneous with a given event
form a three-dimensional subspace, R3, of simultaneous events called the absolute
space. The absolute time flows from past to future at the same rate at each point of
the absolute space. It is assumed that the absolute time can be measured with an
ideal clock. The rate of the clock is independent from the motion of observer. Two
travelers can meet to synchronize their clocks, then can move apart, and meet again
later – just to find that the synchronization remains intact. This selected role of the
absolute time tells us that the Newtonian spacetime is built as a direct product of
R3 ×R1 that is a fiber-bundle structure with R1 being the base and copies of R3 play-
ing the role of bundles [Schutz, 1995]. It is unimportant in classical physics whether
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one interprets the time as a fourth dimension of the world or as just a parameter t
that labels a sequence of snapshots of the three-dimensional absolute space in the
overall evolution of the world. The absolute time has a natural direction to future at
any point of the absolute space. It is the existence of the special direction of time
which makes the world look geometrically as a stack of three-dimensional sections
impaled on the time axis, each section being marked with a value of t the same for
all points of the section (see Figure 2.1). To be more specific, in the so-assembled
four-dimensional space, a pair of initially synchronized clocks moving arbitrary with
respect to each other, will continue to show the same time irrespectively of the speed
of their relative motion. Calling the absolute time t fourth dimension brings no new
physical aspect to the Newtonian spacetime.

The Newtonian spacetime is a vector space with vectors defined as differences
between the coordinates of events in the absolute space. Let us consider two arbitrary
events, a and b, that occur at times, ta and tb, respectively and have coordinates,
xa = (xi

a) = (x1
a, x

2
a, x

3
a) and xb = (xi

b) = (x1
b, x

2
b, x

3
b). Currently, one does not assume

any limitation on whether the events are simultaneous or not. The distance between
the events is defined with the help of the Euclidean norm of a three dimensional
vector, xb − xa,

d(xa, xb) = |xb − xa| =

√
(x1

b − x1
a)2 + (x2

b − x2
a)2 + (x3

b − x3
a)2 . (2.1)

Coordinates, in which the distance is expressed by formula (2.1), are called Cartesian
1). Other properties of the Euclidean vector space are applied as well. For example,
the dot product, a · b, between any two vectors, a = (ai) = (a1, a2, a3) and b = (bi) =

(b1, b2, b3), is defined in the Cartesian coordinates as

a · b = δi jaib j , (2.2)

where the unit matrix δi j = diag(1, 1, 1), and one reminds that the Einstein sum-
mation with respect to the repeated indices has been assumed. In terms of the dot-
product the Euclidean distance (2.1) is expressed as

d2(xa, xb) = (xb − xa) · (xb − xa) , (2.3)

and its always positive except when the spatial coordinates of two events coincide,
in which case, d(xa, xa) = 0. The distance in the Newtonian physics can be formally
defined between either simultaneous or non-simultaneous events. The reason why
one needs to operate with the distance between non-simultaneous events comes from
astrometry which studies the positions and motions of celestial bodies with respect
to observer on the Earth with the help of light rays. As light propagates with finite
speed 2), astrometrists must inevitably deal with the distances between the events of
emission and observation of light, which are obviously not simultaneous in case of

1) Non-Cartesian coordinates can be also used in the absolute space but they do not provide a direct access
to the Euclidean distance.

2) Classical physics does not postulate the speed of light as invariant but it does accept that it has a finite
speed.
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Figure 2.1 Mathematical structure of the world of the classical physics consists of the direct
product of three-dimensional absolute space (shown as a stack of parallel, horizontal lines) and
a one-dimensional absolute time. Depending on observer, the time axis may look like a straight
or curved line connecting different events on the sequence of the space sections which
represent an invariant geometric structure. Relative motion of observer A with respect to
observer B is described by the reciprocal Newtonian transformation, which preserves the time
difference and mutual connection of the events in the fiber-bundle assembly of the Newtonian
spacetime.
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observation of distant celestial objects. This is especially important for observations
of the solar system bodies where the finite speed of light affects measured distances
to planets, thus, changing their positions on the celestial sphere with respect to those
predicted on the basis of the Newtonian mechanics – the effect known as the plane-
tary aberration [Murray, 1983, §2.5.5].

2.1.2
The Newtonian Transformations

Classical mechanics describes the world of the Newtonian physics through vector
laws acting in three-dimensional Euclidean space. There is a class of transforma-
tions between the Cartesian coordinates preserving the fiber-bundle structure of the
Newtonian spacetime called the Newtonian transformations. Let us introduce two
reference frames, S and S ′, with the time t and spatial Cartesian coordinates de-
noted as r = (x, y, z) and r′ = (x′, y′, z′) respectively. The Newtonian transformations
consist of the following basic types (see Figure 2.2):

time shifts : t′ = t + t0 , r′ = r , (2.4a)

translations : t′ = t , r′ = r + R , (2.4b)

rotations : t′ = t , r′ = R ∗ r , (2.4c)

where t0 is a constant time offset, R = R(t) is an arbitrary vector function of time,
R = R(t) is an orthogonal matrix of rotation depending on time, and the sign ∗
denotes a matrix multiplication of a vector with matrix. It is straightforward to check
that if one takes two simultaneous events a and b with times ta = tb, and coordinates
ra = (xa, ya, za), rb = (xb, yb, zb) and r′a = (x′a, y

′
a, z
′
a), r′b = (x′b, y

′
b, z
′
b) in the frames

S and S ′ respectively, the Newtonian transformations do not change the Euclidean
distance between the events, that is

d(x′a, x
′
b) = d(xa, xb) , (2.5)

in both frames. The fiber-bundle structure of the Newtonian spacetime is also pre-
served under discrete transformations: spatial inversion, r′ = −r, and time reversal,
t′ = −t. The Newtonian transformations leave invariant the structure of the Newto-
nian spacetime, but they preserve nor the distance between non-simultaneous events
having different spatial coordinates, nor the form-invariance of the Newtonian equa-
tions of motion, thus, altering the laws of the Newtonian mechanics. This apparently
leads to difficulties in the interpretation of forces and physical interactions between
bodies especially under the Newtonian law of universal gravity. Therefore, it is im-
portant to find out a restricted class of the Newtonian transformations which keep
the Newtonian laws invariant. These transformations are called the Galilean trans-
formations.
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Figure 2.2 Cartesian coordinates r = (x, y, z) represent a reference frame S with the origin at
point O. Cartesian coordinates r′ = (x′, y′, z′) represent a reference frame S ′ with the origin at
point O′. Frame S ′ relates to frame S by the Newtonian transformations (2.4) that depend on
time without further limitations.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 87

87

2.1.3
The Galilean Transformations

Recall that, according to the first law of Newton, there exist reference frames, called
inertial, such that a particle at rest or with constant velocity in one inertial frame
will remain at rest or have constant velocity in all inertial frames, provided the net
force acting on the particle is nil. This law may, at the same time, be regarded as a
definition of inertial frames – the frames wherein a freely moving particle keeps its
state of motion or rest without change. Denoting with r the spatial coordinates of
the particle in an inertial frame S and with t the absolute time measured by an ideal
clock in that frame, one can write the mathematical expression for the first law of
Newton,

d2r
dt2 = 0 . (2.6)

Although this expression may seem to ensue from Newton’s second law with zero
external forces, the first law of Newton should not be understood as merely a special
case of the second law of Newton. The main burden of the first law is to postulate
the existence of inertial frames of reference.

With this caveat in mind, let us explore what happens to the first law under the
most general Newtonian transformation (2.4) which is written as

t′ = t + t0 , r′ = R ∗ r + R , (2.7)

with vector R = R(t) pointing from the origin O of frame S to the origin O′ of
frame S ′, and the orthogonal time-dependent matrix of rotation, R = R(t), as shown
in Figure 2.2. One notices that due to the absolute nature of the time, the time
derivative d/dt = d/dt′. Differentiating the radius vector r′ two times with respect
to time t′, and making use of equation (2.6), one arrives to the following equations

v′ = V + ω ×
(
r′ − R

)
+R ∗ v , (2.8)

dv′

dt′
= V̇ + ω̇ ×

(
r′ − R

)
+ 2ω ×

(
v′ − V

)
− ω ×

[
ω ×

(
r′ − R

)]
, (2.9)

where V = dR/dt is velocity of motion of the frame S ′ with respect to S , v = dr/dt
is velocity of motion of the particle with respect to the frame S , v′ = dr′/dt′ is
velocity of motion of the particle with respect to the frame S ′, and ω = Ṙ ∗ R−1 is
the angular velocity of rotation of spatial axes of the frame S ′ with respect to those of
the frame S . The terms that appear in the right side of equation (2.9) are associated
with the forces of inertia caused by the non-uniform relative motion of two frames
and/or non-uniform relative rotation of their spatial axes.

The demand to keep the first law of Newton invariant with respect to the transfor-
mations between the frames imposes strong limitations on the vectors entering the
Newtonian transformation: (1) the angular velocity of rotation, ω must be equal to
zero, thus, making the matrix of rotation R a constant orthogonal matrix, and (2) the
velocity V of motion of one frame with respect to another must be constant mak-
ing R = R0 + Vt, where R0 is a constant vector of translation. These restrictions
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eliminate all forces of inertia from the Newtonian equations of motion and reduce
the Newtonian transformations to a special sub-class called the Galilean transforma-
tions.

The set of all the Galilean transformations and their combinations constitute the
Galilean group. This means the following:

(a) A sequence of any two transformations constitute another transformation of the
same type.

(b) Among transformations between frames, there exists an identity transformation,
the one that leaves everything unchanged.

(c) For any transformation, there exists an opposite one - such that the former followed
or preceded by the latter yields the identical transformation.

(d) A sequence of any three consecutive transformations is associative.

The proof of the group’s properties is pretty straightforward and involves the use of
simple vector algebra [Arnold, 1995]. The Galilean group has ten primary transfor-
mations (generators): one shift of time t0, three constant translations R0, three con-
stant rotations that are the independent elements of the matrix R, and three boosts
which are the components of the constant velocity V. The Cartesian frames con-
nected between themselves by the Galilean transformations constitute the class of
the inertial frames of reference. A standard example of the Galilean transformation
is given by the frame S ′ moving with respect to S in a non-rotating manner so that
the Cartesian axes x′, y′, z′ of S ′ always stay parallel to the corresponding axes x, y, z
of the frame S . Assuming the time offset t0 = 0, the Galilean transformations are
simplified to

t′ = t , r′ = r + R0 + Vt . (2.10)

Form-invariance of the equations of motion of a freely-moving particle under the
group of constant time offsets and spatial translations of coordinates shows that it is
unimportant which point of the absolute space is taken as reference and which instant
of time is taken as the initial epoch. It indicates that the absolute time and absolute
space are homogeneous. Form-invariance of the equations of motion of a freely-
moving particle under the group of constant rotations indicates that the absolute
space is isotropic – there is no preferred direction in space. Neither Newtonian nor
Galilean transformations change time which remains separated from space.

As an interesting historical aside, let us mention that the currently all-important
concept of changing a reference frame had its origins in a work by Huygens [1669]
who considered an elastic collision between two equally massive spheres with equal
and opposite velocities, ±v. On the grounds of symmetry, Huygens pointed out that
the spheres would recoil with their velocities reversed. He then imagined such a
collision taking place on a boat that was itself moving at velocity V relative to the
river bank. Were the collision watched by an observer standing on the bank, he would
see it as a collision between spheres moving with velocities V − v and V + v. The
velocities, as seen from the bank, would be interchanged by the collision. Thus, on
the basis of his consideration of the original symmetric collision, Huygens predicted
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the results of all collisions between these two spheres, occurring with an arbitrary
relative initial velocity. Underlying Huygens’ proof was another tacit assumption,
the one that the mass of each object involved in a collision remained constant at any
velocity.

One has to consider also the Newtonian equations of motion under interactions
of particles with fields or with other particles, through fields. Therefore, the goal
now is to explore if the form-invariance of the equations under the Galilean group
can be extended to situations with physical interactions turned on. This check will
require inspection of the transformation properties of forces included. Hence the
outcome will depend upon these forces’ nature and may be different for forces of
different types. As the reader will see shortly, all the Galilean transformations do
leave the Newtonian laws of mechanics form-invariant, provided the involved forces
depend only on the differences between particle’ positions and velocities. At the
same time, transformations from the subgroup (2.10) of the Galilean group alter
the Maxwell equations. This may make an impression that the equations of elec-
trodynamics change when one switches from one inertial frame to another. Thus,
while all the inertial frames look equally good insofar as only mechanical systems
are considered, these frames may appear to be unequal in respect to electromagnetic
phenomena – a dramatic paradox that once impelled Poincaré, Einstein, and other
wonderful minds onto their quest for a new theory of space and time.

2.1.4
Form-Invariance of the Newtonian Equations of Motion

Let us consider a system of N interacting particles labeled by indices A, B,C, ... run-
ning from 1 to N. The second Newton law relates acceleration, aA = d2rA/dt2, of
particle A with the force, FA, exerted on the particle. Assuming that all forces of
inertia are absent in the frame S , the second Newton law reads,

mA

d2rA

dt2 = FA (rB, vB, t) , (A, B = 1, 2, ...,N) , (2.11)

where mA is mass of the particle, vectors rA and vA define position and velocity of the
particle in the frame S , and one has assumed that the force explicitly depends on the
position, velocity and the time t. If the initial conditions imposed on the position and
velocity of the particle are known, its motion can be uniquely determined by solving
the second-order differential equation (2.11). The result will be particle’s trajectory
given as a vector function of time rA = rA(t). The acceleration of the particle given by
the left side of the Newtonian equation of motion (2.11), is invariant with respect to
the Galilean transformations. In order to keep the right side of this equation invariant,
the Newtonian force FA must obey certain conditions.

First of all, the force can not depend explicitly on time since the constant time
offset t0 must preserve the geometric image of particle’s trajectory, that is if rA(t)
is solution of equation (2.11), the vector function rA(t + t0) must be also its solu-
tion. However, if the force depends on time, the time offset changes the force to
FA(rB, vB, t + t0) , FA(rB, vB, t) without changing the left side of the differential equa-
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tion (2.11). As a consequence, solution rA(t + t0) of this equation with the force
FA(rB, vB, t + t0) will be different from the solution of the same equation with the
force FA(rB, vB, t) which contradict the principle of the Galilean invariance. Hence,
one must admit that the force can not depend on the time explicitly if it obeys the
Galilean principle of relativity. Not all forces satisfy this criteria. For example,
dissipative forces can explicitly depend on time.

The Galilean invariance also suggests that if rA(t) is solution of equation (2.11), the
vector function r′A(t) = rA(t) + R0 + Vt given by equation (2.10) must also satisfies
the same equation. From this it follows that the Newtonian force in the inertial
coordinate frame can depend only on the relative coordinates of the particles, rB −

rC , and on their relative velocities, vB − vC , where coordinates and velocities of all
interacting particles must be taken at the same time. Hence, the Galilean invariance
also suggests that the Newtonian force of interaction is instantaneous. Thus, the
most general form of the Galilean-invariant equations of motion of the interacting
particles in the Newtonian physics are

mA

d2rA

dt2 = FA (rB − rC , vB − vC) , (A, B,C = 1, 2, ...,N) . (2.12)

In particular, the force of the universal gravitational interaction in the Newtonian
physics has such Galilean-invariant structure

FA = −

N∑
B,A

GmAmB

|rA − rB|
3 (rA − rB) , (2.13)

G being the universal gravitational constant.
A switch from one inertial frame S to another S ′ in accordance with the Galilean

transformation (2.10) leaves the equations of motion (2.12) form-invariant. Indeed,
after making the Galilean transformation (2.10), equation (2.12) acquires the follow-
ing form

mA

d2r′A
dt′2

= FA

(
r′B − r′C , v

′
B − v′C

)
, (A, B,C = 1, 2, ...,N) . (2.14)

This equation has the same functional form as (2.12) except that it contains the co-
ordinates and velocities of the particles measured in the new inertial frame S ′. As
pointed above, form-invariance of the equations of motion under the Galilean group
tells us that all the inertial frames are equal, none of them being preferred in any
way.

It is rather straightforward to prove that the Newtonian equations of motion are
form-invariant under the noncommutative group of spatial rotations

t = t′ , r′ = R ∗ r , (2.15)

R being an arbitrary, constant-in-time three-dimensional rotation matrix. Indeed,
such a transformation does not change both the time derivative and the absolute
value of the force, due to the orthogonality of the rotation matrix. Direction of the
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acceleration and the force will change by the same matrix of the rotation. Hence,
transformation (2.15) does not affect the form of the equations of motion (2.12).

If the mechanical system of N interacting particles is closed, the Newtonian laws
admit the time and/or space reversal 3) symmetry besides that with respect to the
Galilean transformations. It means that the temporal evolution of the closed me-
chanical system does not have any naturally preferred direction. The concept of the
arrow of time is applicable only to the systems which interact with their surround-
ings in time-irreversible manner with dissipative forces. This is one of the sources
of the arrow of time emerging in classical physics. At the deepest level, though, the
origin of the arrow of time should be traced to its quantum origins [Zeh, 2001].

2.1.5
The Maxwell Equations and the Lorentz Transformations

On the 8-th of December 1864, the Royal Society of London gathered for a session
at which its recently elected Fellow, James Clerk Maxwell of King’s College, read
a presentation entitled “A Dynamical Theory of the Electromagnetic Field". The
speaker summarized the results of Ampere, Faraday, and Gauss, and combined these
with his own findings - mainly the displacement current [?] and the expression for
the electromagnetic force - the one which is presently called the Lorentz force and
which had in fact been pioneered by Maxwell [1862]. The talk, later published
[Maxwell, 1865], became a major stride in the intellectual history of mankind.

Though being the intellectual breakthrough, the problem with Maxwell’s work
was its cumbersome mathematical form that gave the reader few chances to grasp
the content of the theory. Among those who understood it, was a self-taught amateur
explorer and inventor Oliver Heaviside, a chronically ill and chronically poor Lon-
doner, who was living at his parents’ place and who was destined soon to raise to
prominence and comfort, and honors. In 1884, Heaviside gave Maxwell’s equations
a concise and elegant form, in which Maxwell himself never saw them. In current
notations the Maxwell equations in vacuum are given by the set of two scalar and
two vector equations 4)

∇ · E = 4πρe , (2.16a)

∇ · B = 0 , (2.16b)

∇ × E = −
1
c
∂B
∂t

, (2.16c)

∇ × B =
4π
c

je +
1
c
∂E
∂t

. (2.16d)

Here ∇ is the differential operator of spatial gradient, the symbols · and × between
two vectors denote ordinary Euclidean dot and vector products, E and B are the

3) It does not matter whether all the three spatial axes are inverted or only one of these, because the
resulting configurations are interconnected by a proper spatial rotation.

4) Electromagnetic field interacts with matter. It necessitates to distinguish in the media the strength of
the field from its induction [Landau and Lifshitz, 1984]. In vacuum, the strength and induction of the
field are identical.
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electric and magnetic fields, ρe and je = ρev are the charge and electric current
densities, v is the local velocity of motion of the charged matter distribution, and
c is the universal fundamental constant defining the speed of propagation of light
in vacuum 5). By applying the operator of divergence, ∇ to both sides of equation
(2.16d), with the subsequent use of equation (2.16a), one arrives at the conservation
law of the electric charge,

∂ρe

∂t
+ ∇ · je = 0 . (2.17)

Maxwell’s equations (2.16a)-(2.16d) taken along with the equation (2.17) of
charge conservation form a system of eight differential equations in partial deriva-
tives which is incomplete as the number of independent variables is ten: ρe, v, E, B.
To make the system complete one should introduce one more variable - the invariant
density of matter ρ∗ = ργ, where ρ is the density of matter in the comoving frame,
and γ = (1 − v2/c2)−1/2 is the Lorentz factor, and apply the relativistic equation of
conservation and the equation of motion of matter

∂ρ∗

∂t
+ ∇ · (ρ∗v) = 0 , (2.18)

∂(ρ∗v)
∂t

+ v · ∇ (ρ∗v) = z . (2.19)

Herein, the density of the relativistic force per unit volume ia

z = zM + zL , (2.20)

is an algebraic sum of the density of the net mechanical force zM, assumed to be
known from the theory of elasticity, and

zL = ρe

(
E +

1
c

v × B
)
, (2.21)

the volume density of the electromagnetic Lorentz force.
This increases the number of independent variables to eleven: : ρ∗, ρe, v, E, B, and

the number of equations goes to twelve. It looks now like the system of equations
(2.16a)-(2.21) becomes over-determined. However, this is not the case because there
is one degree of freedom of the Maxwell equations associated with the so-called
gauge transformation of the electromagnetic field. Indeed, Maxwell’s equations can
be written in an alternative form, involving the electric (scalar) potential ϕ and mag-
netic (vector) potential A = (Ax, Ay, Az). They appear as a result of the most general
solution of the homogeneous Maxwell equations (2.16b) and (2.16c) written in the
following form

E = −∇ϕ −
1
c
∂A
∂t

, (2.22)

B = ∇ × A . (2.23)

5) In fact, the universal speed defines the ultimate speed of propagation of any other fundamental field
having no rest mass like gravitational field.
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Simple inspection shows that after substituting these expressions back to equations
(2.16b) and (2.16c), they are identically satisfied.

The gauge freedom of the Maxwell equations is associated with the freedom of
transformation of the potentials

A′ = A + ∇χ , ϕ′ = ϕ −
1
c
∂χ

∂t
, (2.24)

where χ is an arbitrary scalar function. Electric E and magnetic B fields defined by
equations (2.22), (2.23) do not depend on the choice of the gauge function χ which
means that one is allowed to impose one constraint on the potentials ϕ, A. This
effectively reduces the number of independent equations (2.16a)-(2.21) from twelve
to eleven, that is exactly equal to the number of independent variables. Hence, the
equations admit a unique solution.

Different gauge conditions are used depending on the specific of the problem un-
der consideration. Among them, the Lorentz gauge is the most famous, given by
equation

∇ · A +
1
c
∂ϕ

∂t
= 0 . (2.25)

Making use of the definitions (2.22), (2.23), and imposing the Lorentz gauge (2.25)
reduces the Maxwell equations (2.16a) and (2.16d) to the wave equations for the
potentials

∇
2ϕ −

1
c2

∂2ϕ

∂t2 = −4πρe , (2.26)

∇
2 A −

1
c2

∂2 A
∂t2 = −

4π
c

je . (2.27)

These equations admit solutions associated with electromagnetic waves propagat-
ing in vacuum with the fundamental speed c. The equation (2.25) does not fix the
Lorentz gauge uniquely - the residual gauge freedom remains. It is easy to check by
inspection that imposing the Lorentz gauge on both the potentials A and A′ in the
gauge transformation equation (2.24) leads to the homogeneous wave equation

∇
2χ −

1
c2

∂2χ

∂t2 = 0 , (2.28)

imposed on function χ and that has a plenty of non-trivial solutions. Two restrictions
(2.25) and (2.28) imposed on the four components of the scalar and vector potential
leave only two of them independent. These two independent components are asso-
ciated with the two polarization states of a freely propagating electromagnetic wave
which is a solution of the wave equations (2.26), (2.27) in vacuum in the absence of
matter.

An important “peculiarity" of Maxwell’s equations, noticed very soon after they
were published, was the lack of their form-invariance under the Galilean boosts
(2.10). As it was the time when the existence of the æther and, therefore of an ab-
solute motion with respect to a preferred frame, was considered a likely option, the
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lack of invariance under the Galilean boosts was not regarded as a flaw in a theory.
This motivated a number of researchers to enquire if Maxwell’s equations possess a
more general internal symmetry extending the Galilean invariance of the second law
of Newton. A decisive step in that direction was taken by Lorentz who found that
Maxwell’s equations in vacuum stay form-invariant when the spatial coordinates and
time are transformed as

ct′ = γ(ct − βx) , x′ = γ(x − cβt) , y′ = y , z′ = z , (2.29)

and, simultaneously, the potentials are transformed as

ϕ′ = γ(ϕ − βAx) , A′x = γ(Ax − βϕ) , A′y = Ay , A′z = Az , (2.30)

where the parameters of the transformation are

β ≡
V
c
, γ ≡

1√
1 − β2

, (2.31)

with V being a quantity with dimensions of velocity. In the modern textbooks, this
transformation is immediately followed by an explanation that V is a relative velocity
of a frame S ′ parameterized with time t′ and coordinates (x′, y′, z′), moving along
x-axis with respect to frame S parameterized with time t and spatial coordinates
(x, y, z). It should be remembered however that, having discovered this mathemat-
ical form-invariance, Lorentz did not interpret the new quantities t′ and (x′, y′, z′)
as the time and Cartesian coordinates in a new frame of reference. Accordingly, he
did not endow the parameter V with the meaning of a relative velocity of frames.
Interpretation of Lorentz’ transformations as switches between frames of reference
was a major breakthrough, carried out independently by Poincaré and Einstein. Most
importantly, they noticed that the Lorentz transformation of the space and time coor-
dinates constitute a group of boost transformations generalizing the Galilean trans-
formations (2.10).

Poincaré also corrected and extended Lorentz’ mathematical results, by demon-
strating that Maxwell’s equations with sources included, too, stay form-invariant un-
der transformations (2.29 - 2.30), provided the electric current and charge densities
of the sources get simultaneously transformed as

cρ′e = γ(cρe − β jx) , j′x = γ( jx − cβρe) , j′y = jy , j′z = jz , (2.32)

while the force density per unit volume, z = (zx, zy, zz), and the instantaneous power
z · v, exerted by the force, get transformed via

z
′ · v′ = γ(z · v − cβzx) , z′x = γ

(
zx −

β

c
z · v

)
, z′y = zy , z′z = zz , (2.33)

v and v′ being the velocity of matter in the frames S and S ′, respectively. By asso-
ciating Lorentz’ formulae with transformations between frames, and by establishing
their group property, Poincaré and Einstein gave the final shape to one of the tough-
est conundrums faced by the scholars of the early XX-th century: why are the laws
of classic mechanics invariant under the Galilean group of transformations, while
those of electrodynamics stay invariant under the Lorentz group?
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2.2
Building the Special Relativity

2.2.1
Basic Requirements to a New Theory of Space and Time

Various experiments confirm that the Euclidean fiber-bundle construction of the
spacetime manifold of the classical physics is inadequate to the realities of physi-
cal world, the mismatch becoming more noticeable the faster relative motions are
reached. For example, the classical physics assumes that the life time of an unstable
elementary particle is one and the same does not matter how fast the particle moves
with respect to observer. However, experiments with elementary particles demon-
strated elongation of time decay of rapidly moving particles, that is the higher the
speed relative to the observer, the longer the observed lifetime of the particle. The
necessity to explain this and other relativistic phenomena requires to build a new
approach to the mathematical structure of spacetime, one that adequately describes
physical phenomena measured by rapidly moving observers, though it includes the
classical spacetime of events in the slow-motion limit.

Let us formulate the basic requirements to the new theory.

Requirement I. Relativistic spacetime is manifold R4 of events parameterized with
one time and three spatial coordinates. Space R3 is homogeneous and isotropic at
each point. Time is homogeneous.

Requirement II. Relativistic spacetime admits a special class of inertial reference
frames, such that a test particle being at rest or moving with constant velocity
in one inertial frame will remain at rest or have constant velocity in all inertial
frames, provided the net force acting on the particle is nil.

Requirement III. Fundamental laws of physics have the same form in all inertial
frames.

Requirement IV. There exist a fundamental constant c with dimension of speed
which has the same numerical value in all inertial reference frames.

Requirements I and II are often taken for granted in the literature on special rela-
tivity as they are exactly the same as in the Newtonian mechanics. This is the reason
why they are usually not referred to the postulates of special relativity. However, it is
not self-evident that the new theory of spacetime must preserve these requirements.
This is why one has spelled them out explicitly.

Requirements III is known as the first Einstein’s postulate [Einstein, 1905] or the
special relativity principle[Einstein, 1920b]. It extends the applicability of the rela-
tivistic transformations from spacetime coordinates to all independent variables en-
tering the physical laws. For example, it demands to transform the electromagnetic
potentials and the source variables in Maxwell’s equations in accordance to equa-
tions (2.30), (2.32) besides the Lorentz transformation (2.29) of time and space co-
ordinates.

Requirement IV is the modern formulation of the second Einstein’s postulate:
light always propagates through vacuum at a universal invariant speed, c, which
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is independent of the state of motion of the emitting body.. At the time, when Ein-
stein published his paper on special relativity, the electromagnetic field was the only
relativistic field known to theorists. Einstein, however, envisaged that its speed of
propagation in vacuum has a fundamental meaning originating in the non-Euclidean
structure of spacetime. In a letter written in 1955 to Seelig, Einstein summarized spe-
cial relativity in the following words: “Its novelty was to formulate that the Lorentz
transformations are of importance beyond the scope of the Maxwell equations, and
concern the structure of the space and time. Another new point was the conclusion
that the ‘Lorentz invariance’ is the general demand for any physical theory" [Seelig,
1956].

Other particles have been predicted that must move in vacuum with the same speed
c as light. The best example is graviton - the particle of gravitational field which
provides us with another physical realization of the invariant speed c [Kopeikin,
2005]. Requirement III establishes the mathematical form of equivalence between
the time and space coordinates of the inertial frames, introduced in the requirement
II. This equivalence is known under the name of the Lorentz transformation shown
in equation (2.29) for a particular case of two frames moving one with respect to an-
other along x axis. The Lorentz transformations put on equal mathematical footing
the time and space coordinates and destroy the fiber-bundle structure of the Newto-
nian spacetime. Let us emphasize in the spirit of Einstein, that identification of the
Lorentz transformation with a switch between inertial frames reveals a fundamental
property of space and time, and not of a particular class of physical interactions. In
other words, the time and space coordinates change via the Lorentz transformations
in all laws of physics, not only in Maxwell’s equations. Therefore, the new mechan-
ical equations of motion must be form-invariant under the Lorentz transformations,
not the Galilean ones. Still, in the limit of slow motions these equations should
acquire their customary Newtonian form.

It is possible to prove (and it is done later) that the fundamental speed c is the ulti-
mate speed for any particle or field residing on the spacetime. The ultimate speed c is
often identified with the speed of light cl in vacuum. Indeed, according to Maxwell’s
equations (2.16) all observers in inertial frames will measure in vacuum the same
speed of light cl = c, regardless of their state of motion. Nonetheless, the invari-
ant speed c is the intrinsic property of the Minkowski spacetime alone, and as such
should not be confused with the physical speed of light cl, which is always less than c
when light is propagating in a transparent substance. The fundamental speed c enters
all relativistic equations of the fundamental interactions not only the Maxwell equa-
tions. Therefore, its physical meaning should be treated with taking into account the
nature of the fundamental interaction [Ellis and Uzan, 2005; Kopeikin, 2004].

2.2.2
On the "Single-Postulate" Approach to Special Relativity

Some authors [Schröder, 1994; Torretti, 1983] suggest that the special relativity prin-
ciple, that is Einstein’s first postulate, alone is sufficient to establish the invariance
of all physical constants entering the laws of physics, including the speed of light.
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The adjective “single-postulate", which is sometimes applied to such derivations is
somewhat misleading, because the derivations also rely on other assumptions. Be-
ing mathematically more involved than Einstein’s treatment, the “single-postulate"
derivation of special relativity is omitted in most textbooks, though some authors
mention this option.

An attempt to construct special relativity without using Einstein’s second pos-
tulate explicitly, was first undertaken by von Ignatowski [1910], whose derivation
was based on several assertions: (a) the principle of relativity is applied to electro-
dynamics, (b) the space is isotropic, (c) space and time and homogeneous, (d) the
transformation between two inertial frames is reciprocal. Arguing that Ignatowski’s
proof was incomplete, Frank and Rothe [1911] came up with a more accurate deriva-
tion based on the assertions that (a) the Lorentz transformations form a group, (b)
a switch between inertial frame entails only a change of the sign of the relative
speed, (c) the length contraction depends only on the relative speed between the
frames. Later, Pauli [1921] pointed out that the sufficiency of the “single-postulate"
treatment offered by von Ignatowski [1910] and Frank and Rothe [1911] hinges on
the recourse to electrodynamics. Within a treatment embracing Maxwell’s theory,
the second postulate is not, in fact, abandoned but replaced by the universality of
the Lorentz transformations and, hence, by the presence of the invariant speed c in
these transformations. Indeed the sole way of reconciling the relativity principle
with electrodynamics is to say that the Lorentz transformations are universal and ap-
plicable to all forces, for which reason the speed of light is equated to a universal
constant c that must show up in all fundamental equations of theoretical physics, not
only in Maxwell’s theory. However, within an axiomatic treatment not referring to
Maxwell’s equations, the second Einstein’s postulate is needed.

The most optimal way of introducing the invariant speed c to the theory of
spacetime was implemented by Minkowski [1908], who re-formulated special rel-
ativity in geometrical terms, by postulating the invariance of the interval, ds2 =

−c2dt2 + dx2 + dy2 + dz2, between two infinitesimally close events under linear
coordinate transformations as a fundamental property of spacetime. Minkowski’s
formulation entails the mathematical form of the Lorentz transformations and re-
quires physical laws be invariant under these transformations. This formulation shed
a new light on the fascinating discovery of Einstein – the existence in Nature of a
fundamental constant c having the dimension of speed.

The discussion on the necessity of the second Einstein’s postulate is still going
on in the literature [Behera, 2002; Lee and Kalotas, 1975]. A short but very accu-
rate historical study on the origin and role of the second postulate, with numerous
references, can be found in Abiko [2003]. Review by Silagadze [2008] discusses
other, deeply hidden theoretical aspects of the foundations of special relativity and
its relation to non-Euclidean geometry of spaces with constant curvature.
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2.2.3
The Difference in the Interpretation of Special Relativity by Einstein, Poincaré
and Lorentz

Opening his original paper with the two postulates, Einstein [1905] employed them
to derive the Lorentz transformations, and also demonstrated that the transforma-
tions constitute a group. This may sound like new variations of the old theme by
Lorentz, who had pioneered the transformations, and Poincaré, who had formulated
the relativity principle in his Saint Louis address [Poincaré, 1904], and proved the
group property of the Lorentz transformations [Poincaré, 1905]. In reality, Einstein
brought a crucially new element into the theory, as will be explained below.

Lorentz was convinced that the result of the Michelson-Morley experiment was
negative because of “a fortuitous compensation of opposing effects" [Lorentz, 1909],
and not because of the absence of an absolute frame as such. His opinion was shared
by Poincaré, who thought that the inability of contemporary physics of that time
to register æther was due to some coupling between the æther and matter. For this
reason, Poincaré always drew a distinction between the “apparent" or “local" coordi-
nates and phenomena seen by observers moving in the æther, and the “true" or “real"
ones registered by observers at rest in the æther. Similarly, he argued that clocks be-
ing at rest in the æther show the “true time", while clocks moving in æther show the
“apparent time". This viewpoint reserved the potential possibility for some, thitherto
undiscovered, physical effect to single out a preferred frame out of all inertial frames
– a possibility that has found no confirmation in the presently available experimental
data on the Lorentz-violating mechanisms in particle physics and anisotropy of cos-
mic microwave background radiation (CMBR) [Coleman and Glashow, 1999; Ehlers
and Lämmerzahl, 2006; Kostelecký and Mewes, 2007; Will, 1993].

Einstein [1905] broke with the traditions of classical physics by rejecting absolute
motion as such, and by giving an equal status to the time and space coordinates
measured by all inertial observers – so the notions of “true" and “apparent" time and
coordinates became redundant. Within this, revolutionary thinking, the equivalence
of inertial frames became a cornerstone property of the spacetime continuum, and
not a concatenation of dynamical interactions allegedly preventing us from observing
the absolute motion or æther. Similarly, the universality of the speed of light in
vacuum became an inherent property of the spacetime, and not a combination of
physical effects leading to coincidence in results of measuring one and the same c by
different observers. Last, and by no means least, Einstein’s treatment was extremely
“economic", in that he managed to derive all the results from the two postulates (also
assuming tacitly the isotropy of space and the homogeneity of spacetime) [Kobzarev,
1975].

Although, mathematically, the special relativity by Einstein and the special rela-
tivity by Poincaré were equivalent,6) Einstein’s views sharply diverged from those

6) A theory of light developed by Lorentz [1904] was, mathematically, close to but not equivalent to the
treatment by Poincaré or Einstein. In particular, Lorentz’ theory could not account exactly for the
optical Doppler effect, nor for the stellar aberration [Miller, 1974, 1986].
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of Poincaré and Lorentz, on both the relativity principle and the meaning of c. As
the cleavage was interpretational, and as Poincaré and Lorentz had indisputably pi-
oneered most of the mathematical apparatus of special relativity, one is faced with
the old question as to who actually should be credited with the authorship of spe-
cial relativity. Some scholars insist on Poincaré’s contribution being greater than
that of Einstein [Logunov, 1990, 2004; Zahar, 1989], though this opinion has not
become mainstream. Whittaker [1953] went so far in his book as to credit only
Poincaré and Lorentz for developing special relativity, attributing only little impor-
tance to Einstein’s work. It seems, special relativity was to Whittaker just another
mathematical theory, so he did not pay a due attention at the far-reaching physical
consequences of Einstein’s abolition of absolute motion. At the same time, a later
study by Miller [1987] also revealed that Whittaker [1953, Chapter II] devoted to the
history of special relativity was “ fraught with substantial historical errors". Among
those was Whittaker’s mis-attribution to Poincaré [1900] of Einstein’s, E = mc2, for-
mula. While Poincaré [1900] indeed hypothesized that the electromagnetic energy
behaves as a fluid endowed with mass, the said formula was certainly derived by
Einstein – it is equivalent to the antepenultimate equation in Einstein [1905]. An ac-
curate rebuttal to Whittaker’s eisegesis can be found in Gray [1995]; Holton [1973];
Miller [1981] and references therein.

Seeking a careful criterion to compare Einstein’s, Poincaré’s, and Lorentz’ contri-
butions to the theory of special relativity, one should approach the case within the
context of the next-level theory, of which special relativity is a basic part, – gen-
eral relativity. It describes the world as a curved manifold whose tangent spaces are
special-relativistic spaces of events. Among the basic premises of the theory is the
nonexistence of any preferred frame of reference – in general relativity all frames,
inertial and noninertial, are fundamentally equivalent. From the hight of this edifice,
Einstein’s priority in rejecting absolute motion, as well as his priority in elevating the
postulates to the level of the spacetime properties, appear to have an even greater im-
portance than Poincaré’s priority in setting out the relativity principle or in deriving
the ensuing formulae. For this reason, acknowledging both Einstein and Poincaré
(and, largely, Lorentz) as the creators of special relativity, Einstein is kept firmly as
its first author – for the reason that his insights were critical for the development
of a fundamentally-new theory of space and time. Other students of history may,
of course, try to weigh Poincaré’s and Einstein’s inputs differently, so the case may
never get settled.

2.2.4
From Einstein’s Postulates to Minkowski’s Space-Time of Events

Classical mechanics finds its mathematical implementation in the Newtonian space
of events, the bundles of Euclidean three-dimensional world impaled on time axis
as shown in Figure 2.1. The time is considered as a book-keeping parameter and is
completely separated from space. Although time may be called as fourth dimension,
this will gain us nothing, because in the so-assembled four-dimensional spacetime
continuum the time flows everywhere at the same rate, no matter how fast the ob-
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server moves. Our goal now is to construct a relativistic ensemble of space and
time in compliance with the requirements I - IV from the subsection 2.2.1. This
new spacetime will be called Minkowski spacetime and denoted withM. Dynamics
of particles is expected to be described by some second-order differential equations
generalizing the Newtonian equations of motion. Let us make a rough sketch of the
new space of events.

2.2.4.1 Dimension of the Minkowski spacetime.
The Minkowski spacetime combines space and time to a single, four-dimensional
manifold (dim M = 4), which is covered by coordinate charts xα (α = 0, 1, 2, 3).
More advanced spacetime theories include additional dimensions, in most cases spa-
tial Smolin [2006]. How many dimensions are needed to describe the underlying
mathematical structure of the physical world is still an open question. For example,
string theory predicts 10 or 26 dimensions, and M-theory introduces 11 dimensions
- 10 spatial and 1 temporal. In fact, the existence of more than four dimensions can
make a difference only at the sub-atomic level and goes beyond the scope of this
book.

2.2.4.2 Homogeneity and isotropy of the Minkowski spacetime.
The Minkowski spacetimeM is homogeneous and isotropic at each point. It means
all points are equivalent and there is no preferred direction in spacetime anywhere.
Homogeneity means the spacetime has translational invariance and isotropy means
it has rotational invariance. The homogeneity and isotropy of space lead to the con-
servation laws of linear momentum, angular momentum, and energy of an isolated
physical system, in particular in N-body problem. In this sense the Minkowski space-
time manifold is similar to the Newtonian spacetime. However, the construction
of the Minkowski spacetime differs significantly from the Newtonian spacetime of
events which preserves spatial distances and time intervals independently. It rigidly
fixes the fiber-bundle structure of the Newtonian spacetime that can be always de-
composed into spatial coordinates plus a time coordinate, and the separation is abso-
lute and valid for any observer. The drastic difference of the Minkowski spacetime
is the presence of the invariant speed c which is not an element of the Newtonian
spacetime. Of course, the speed of light appears already in the Newtonian physics
but it has no the fundamental meaning that is given to it in the Minkowski spacetime.
Existence of the invariant speed c prevents the absolute separation of time from space
leading to the mathematical structure which is a pseudo-Euclidean four-dimensional
world. This extends the isotropy of space to the spacetime allowing the spacetime
rotations which are nothing else but the Lorentz transformations.

2.2.4.3 Coordinates and reference frames
Coordinate charts are used in the spacetime manifold M to represent the events.
Usually, Cartesian coordinates xα = (ct, x, y, z) are used 7) though curvilinear coor-

7) Many textbooks assume the invariant speed c = 1 to simplify equations, so that time is measured in
units of length. We do not use this convention.
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dinates are also allowed. In the most general case a number of overlapping coordi-
nate charts is needed to cover the entire manifold. A reference frame is identified
with a Cartesian coordinate chart with a physical observer placed at its origin. An-
other reference frame may be identified by a second Cartesian coordinate chart with
another observer at its origin. Two Cartesian coordinate charts always overlap in
the Minkowski spacetime. The domain of intersection of the charts represents the
region of spacetime in which both observers can measure physical quantities and
coordinates of events, and compare results. The relation between the two sets of
measurements is given by a non-singular coordinate transformation that allows to
match numerically different but physically equivalent measurements of one and the
same object (event).

If coordinates are not Cartesian, the reference frame of each observer is identi-
fied with four unit vectors eα (α = 0, 1, 2, 3) making up an orthonormal basis called
tetrad. One of the vectors, e0, is associated with the direction of time and is called
timelike. The remaining three vectors of the basis ei (i=1,2,3), are orthogonal 8)

to the timelike vector and reside in a three-dimensional physical space. They are
called spacelike vectors. In case of Cartesian coordinates the unit vectors of the ref-
erence frame defines the direction of coordinates axes. When a vector pointing from
observer toward another event is decomposed over the basis, this decomposition is
interpreted as measurement of the event’s coordinates made by the observer at rest
in the origin of the frame associated with this particular basis.

A four-dimensional vector basis is interpreted as an inertial frame of reference if
positional vector of a test particle measured by observer, remains constant or is a
linear function of time under condition that the net force exerted on the particle is
absent. This property is preserved by the Lorentz transformations. The Minkowski
spacetime manifold can be covered with non-inertial frames as well. However, fit-
ting non-inertial frames into the special theory of relativity theory requires more
mathematical justifications, and will be explained later.

2.2.4.4 Spacetime interval
In the Newtonian spacetime, the separation between two points is measured by the
Euclidean distance between the spatial coordinates of the two points as defined in
equation (2.1). This distance is always positive. It is also purely spatial and does not
depend on velocity of a particular observer doing the measurement, if and only if, the
two events are simultaneous. In Minkowski spacetime, the separation between two
events is measured by the interval between the two events, which takes into account
not only the spatial separation between the events, but also their temporal separation.
The interval ∆s between two events is defined in the Cartesian coordinates as

∆s2 = −c2∆t2 + ∆r2 , (2.34)

8) The concept of orthogonality is explained in section 2.3.2.
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where c is the invariant speed, ∆t and ∆r =
(
∆x2 + ∆y2 + ∆z2

)1/2
are differences be-

tween the time and space coordinates of the events 9). Our convention for the choice
of signature for ∆s2 corresponds to (−1,+1,+1,+1), where −1 belongs to the time,
and +1 does to the space. Some other books like Landau and Lifshitz [1975], reverse
the signature of the interval. Our choice of signature agrees with the contemporary
choice accepted in other standard textbooks on special relativity and gravitation, for
example, [Hawking and Ellis, 1975; Misner et al., 1973; Wald, 1984]. Remarkable
property of the spacetime interval (2.34) in the Minkowski spacetime is that it re-
mains invariant under Lorentz transformations which explains its privileged role in
measurements. Equation (2.34) could be formally written in the Newtonian physics
as well. However, the speed c has no property of invariance in classic physics, and
for differently moving observers the interval ∆s between the same two events will
have different numerical values.

Spacetime intervals are separated into three essentially different types based on the
sign of ∆s2. They are:

∆s2 < 0 timelike interval,
∆s2 = 0 null-like interval,
∆s2 > 0 spacelike interval.

Sometimes the null-like interval is called light-like because the experiments proved
that the speed of light in vacuum coincides with the invariant speed c with an enor-
mous precision in the sense that the speed of light in vacuum depends neither on
the choice of the reference frame nor on the motion of observer or the source of
light. Nevertheless, saying "light-like interval" may make an erroneous impression
that light has a privileged position among other fundamental fields also propagating
in vacuum with the invariant speed c like gravitons. To avoid such a misleading
impression, the interval ∆s2 = 0 is called null-like.

2.2.4.5 The null cone
In a null-like interval the spatial distance between two events is exactly balanced by
the time difference between them multiplied with the fundamental speed, ∆r = ±c∆t.
Events connected by the path of a particle that propagates with the invariant speed
c 10) all have null-like separation. Given one event, all those events which follow at
null-like interval with ∆r = +c∆t define a half of the null cone propagated to future,
and all the events which preceded from a null-like interval with ∆r = −c∆t define
a second half of the null cone propagated to past. The null cone is invariant hyper-
surface for each event of spacetime. Therefore, it splits the Minkowski spacetime
in three distinct regions: absolute future, absolute past, and absolute remoteness as
shown in Figure 2.3. Absolute future and past make the interior of the null cone
while the absolute remoteness occupies its exterior part.

9) Notations like ∆t2 or ∆r2 are understood in relativity as (∆t)2 and (∆r)2 respectively but not as ∆(t)2 or
∆(r)2.

10) Photon, graviton, gluon, or any other massless particle.
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Future

Past

time

space

Future

Past

space

Path of a massive particle

O

A

B

Figure 2.3 A future null cone of a single event O is the surface that a swarm of massless
particles (photons, gravitons, etc.), emanating from the event O and traveling in all directions,
would take through the Minkowski spacetime. A past null cone of the event O is the surface
that is made of by paths of massless particles arriving to the event O from all directions in the
Minkowski spacetime. Worldline of an arbitrary-moving massive particle is shown by the
dashed line. It is always laying inside the null cone at each event on its worldline. Each event in
the Minkowski spacetime has its own null cone.
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2.2.4.6 The proper time
The measure of a timelike spacetime interval is described by the proper time

∆τ =

(
∆t2 −

∆r2

c2

)1/2

. (2.35)

The proper time interval is measured by an observer with an ideal clock traveling
between two infinitesimally close events in an inertial reference frame. In case of
sufficiently separated events (for instance, O and B in Figure 2.3), the proper time is
calculated by integration of equation (2.35) along the worldline of the clocks. The
proper time defines a real number, since the interior of the square root in equation
(2.35) is positive.

2.2.4.7 The proper distance
For pairs of event separated with a positive squared spacetime interval (for instance,
O and A in Figure 2.3), the measurement of spacelike separation is called the proper
distance

∆σ =
(
∆r2 − c2∆t2

)1/2
. (2.36)

Like the proper time, the proper distance (2.36) is a real number.

2.2.4.8 Causal relationship
Causality is the relationship between a first event (the cause) and a second event (the
effect), where the second event is a consequence of the first.

For two events, for example, O and B in Figure 2.3, separated by a timelike in-
terval, enough time passes between them to establish a cause-effect relationship be-
tween them. For a particle traveling with a speed less than the invariant speed c, any
two events on the worldline of the particle are separated by a timelike interval and
occur in each other’s future or past. There exists a reference frame such that the two
events are observed to occur in the same spatial location, but there is no reference
frame in which the two events can occur at the same time.

When two events are separated by a spacelike interval, for example, O and A
in Figure 2.3, not enough time passes between their occurrences for establishing a
causal relationship between them as it would require crossing the spatial distance
between the two events at the speed faster than the invariant speed c, which is phys-
ically impossible. Such events are considered not to occur in each other’s future or
past. There exists a reference frame such that the two events are observed to occur
at the same time, but there is no reference frame in which the two events can occur
in the same spatial location. Besides the frames in which O precedes A (as shown in
Figure 2.3) there are also frames in which A precedes O.
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2.3
Minkowski Space-Time as a Pseudo-Euclidean Vector Space

2.3.1
Axioms of Vector Space

Let us designate the points of a four-dimensional manifold, M, with upper-case
Latin letters: A,B,C, etc. Each point has its own Cartesian coordinates xαA , xαB , xαC ,
etc. (α = 0, 1, 2, 3) in an associated coordinate chart. The manifold itself has no any
specific geometric structure and is not a vector space. The most simple way to endow
M with a vector-space structure is to identify each ordered pair of points, say A and
B, with a vector a =

−−→
AB, having components, aα, in the given coordinate chart that

are defined as the differences between the coordinates of the corresponding points,

aα = xαB − xαA . (2.37)

This vector can be visualized geometrically as an arrow connecting the two points
and directed from point A to point B as shown in Figure 2.4. If A is any point and a
any vector, there is one and only one point B for which

−−→
AB = a. If C is any point not

coinciding with A and B, then, one can always define a vector c =
−−→
AC such that it is

given as an algebraic sum of two vectors,

c = a + b , (2.38)

where b =
−−→
BC. Equations (2.37) and (2.38) establishes a one-to-one correspondence

between points of the manifold and vectors. In what follows, vectors are always
denoted by bold letters a,b, c, etc.

The whole set of vectors defined on the manifoldM obeys the law of addition and
scalar multiplication that satisfy the set of axioms [Weyl, 1950, page 17]:

WA1 Commutativity of addition. For any two vectors a and b,

a + b = b + a .

WA2 Associativity of addition. For any three vectors a,b and c,

(a + b) + c = a + (b + c) .

WA3 Inverse element of addition. For any two vectors a and b there exists one and
only one vector x such that

a + x = b .

The vector x ≡ b − a is called the difference between vectors a and b.
WA4 Identity element of addition. There exist a null vector 0, such that for any

vector a one has
a + 0 = a

.
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A

B

Ca

c

b

Figure 2.4 The identification of points A,B,C,... of a manifold with vectors. Vector a =
−−→
AB,

vector b =
−−→
BC, and vector c =

−−→
AC =

−−→
AB +

−−→
BC = a + b. Components of the vectors are defined

as differences between Cartesian coordinates of the corresponding points: aα = xαB − xαA ,
bα = xαC − xαB , and cα = xαC − xαA .
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WA5 Distributivity of scalar multiplication. For any real numbers α and β and any
vector a,

(α + β)a = αa + βa .
WA6 Compatibility of scalar multiplication with vector multiplication. For any real

numbers α and β and any vector a,

α(βa) = (αβ)a .

WA7 Identity element of scalar multiplication. For any vector a there exists a unit
number 1 such that

1a = a .
WA8 Distributivity. For any real number α and two vectors a and b,

α(a + b) = αa + αb .

These axioms allow the ordered pairs of points on the manifold M be treated as
vectors: one can add and subtract them, multiply them by numbers.

The structure of the vector space so defined, is local and can not be extrapolated on
the entire manifoldM in the most general case. However, if the manifoldM is ho-
mogeneous and isotropic at each point it can be covered by a single coordinate chart.
This is exactly the case of the Minkowski spacetime which is a global vector space
having an affine structure which means that any pair of vectors in the Minkowski
spacetime can be compared even if they are not attached to one and the same point.
It establishes the relation of equality between a whole set of vectors being parallel to
each other, so each vector a eventually becomes identified not with one ordered pair
of events but with an equivalence class of pairs. The set of the axioms of the vector
space may be slightly different from that given above but they are all logically inter-
connected so that it is not crucially important for physics. Historical aspects of the
axioms of vector space and their significance in foundations of modern mathematics
are discussed in a review article by Coleman and Korté [2001].

2.3.2
Dot-products and Norms

The comparison of vectors requires introducing one more operation between vectors
in the vector space, which should be defined in addition to the axiom WA1-WA7.
This operation maps a product of any two vectors to a real number 11) and is called
a dot-product. Mathematics tolerates a broad freedom in defining this operation
because it carries a certain physical meaning related directly to calculation of the
length (norm) of vectors and angles between them. In what follows, the dot-product
between any two vectors, say a and b, will be denoted with a dot symbol between
them, a ·b. The properties of the dot-products in the Euclidean space and Minkowski
spacetime are discussed below. For more mathematical details the reader is advised
to consult the book by Penrose [2004, Chapter 18].

11) In the case of complex-valued manifolds, the dot-product can be an imaginary number. In this book
one considers only real-valued manifolds.
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2.3.2.1 Euclidean space
The Euclidean dot-product (also known as a scalar product) is the one obeying the
following four axioms for any two vectors, a and b, and real numbers, α and β:

EA1 The dot-product is commutative, a · b = b · a .
EA2 The dot-product is distributive, (a + b) · c = a · c + b · c .
EA3 The dot-product is bi-linear, (αa) · (βb) = αβ(a · b) .
EA4 The dot-product is positively defined a·a > 0, if a , 0, and a · a = 0, if a = 0 .

In Newtonian mechanics, the spacetime manifoldM can be covered with the direct
product of time and space Cartesian coordinates. Vectors are defined as differences
between the Cartesian coordinates of two points in the absolute space irrespectively
whether they are simultaneous or not. The Euclidean dot-product between two vec-
tors a = (ai) = (a1, a2, a3) and b = (bi) = (b1, b2, b3) (i = 1, 2, 3) is

a · b = a1b1 + a2b2 + a3b3 . (2.39)

The time component of vectors is not involved to the definition of the Euclidean
dot-product and, hence, does not matter.

The Euclidean norm of a vector a is denoted as |a| and is introduced as

|a| ≡ (a · a)1/2 =

√
a2

1 + a2
2 + a2

3 , (2.40)

that is a well-known mathematical expression. The angle θ between two vectors, a
and b, is defined as

cos θ =
a · b
|a||b|

. (2.41)

Two vectors are called orthogonal in Euclidean space if cos θ = 0.
Directly from the axioms EA1-EA4, one can prove the following properties for

any real number α and any two vectors a and b.

Homogeneity: |αa| = |α||a| .
Cauchy-Schwarz inequality: a · b ≤ |a||b| .

Triangle inequality: |a + b| ≤ |a| + |b| .
Pythagorean theorem: |a|2 + |b|2 = |a + b|2 , if a · b = 0 .

The Euclidean norm (2.40) is the common-sense distance that stays invariant under
spatial rotations. If two vectors are formed by making use of spatial coordinates of
two simultaneous events, the Euclidean norm is also invariant with respect to time
offsets, space translations, and the Galilean transformations. This remains valid for
any vector in the Newtonian vector space irrespectively of its physical nature - be it a
vector of acceleration, force, velocity, and so on. However, this classical construction
fails to describe the actual physics of ultra-relativistic particles and fields, which
physically meaningful properties are invariant under the Lorentz transformations, not
the Galilean ones. To ensure compatibility of relativistic physics with mathematics
of a vector space requires new definition of the dot-product by sacrificing axiom
EA4. This leads us to the Lorentzian (also called pseudo-Euclidean) dot-product
and norm in the Minkowski spacetime.
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2.3.2.2 Pseudo-Euclidean space
Real-valued dot-products of an arbitrary sign are inherent to pseudo-Euclidean
spaces. They are called Lorentzian and their properties differ from the Euclidean
ones by excluding the axiom EA4. Instead of this axiom one accepts a broader pos-
sibility admitting that the dot-product is indefinite. More specifically, the Lorentzian
dot-product in the Minkowski spacetime is defined between two four-dimensional
vectors, a and b, as a quadratic form

a · b = −a0b0 + a1b1 + a2b2 + a3b3 , (2.42)

where aα = (a0, a1, a2, a3) and bα = (b0, b1, b2, b3) are the Cartesian components of
vectors a and b respectively. Traditionally, the components of vectors with index
0, that is a0 and b0, are associated with time axis, and the components with indices
1, 2, 3, that is ai and bi, are associated with space. Time components of vectors are
apparently involved to the definition of the Lorentzian dot-product as contrasted to
the scalar product of two vectors in Euclidean space.

The Lorentzian norm of a four-vector a will be denoted as ||a||, and it is related to
the Lorentzian dot-product by relationship

||a||2 = a · a , (2.43)

where the right side can be either positive, or negative, or nil. Since components aα

of each vector a are identified with the difference between coordinates of its origin
and tip, according to equation (2.37), the value of ||a||2 is closely associated with the
concept of the Minkowski interval ∆s introduced above in section 2.2.4.4. In fact,
the quantity ||a||2 for a vector a is equal to the interval

||a||2 = −
(
x0

B − x0
A

)2
+

(
x1

B − x1
A

)2
+

(
x2

B − x2
A

)2
+

(
x3

B − x3
A

)2
. (2.44)

The numerical value of ||a||2 depends on the type of the corresponding interval. There
are three different cases which split the Minkowski spacetime in three Lorentz-
invariant domains filled by timelike vectors a with ||a||2 < 0; spacelike vectors b
with ||b||2 > 0, and null-like vectors c having ||c|| = 0. We emphasize that though ||c||
of a null-like vector c is zero, it does not mean, as it was in the Euclidean space, that
the vector itself is zero, c , 0. The timelike domain of the Minkowski spacetime
is called the absolute future and absolute past , the null-like hypersurface is called
the null cone, and the spacelike domain is called the absolute remoteness. The three
domains are not sub-spaces of the Minkowski spacetime because the sum of any two
vectors can be any kind: timelike, null-like or spacelike, independently of the type
of the vectors involved.

The Lorentzian norm of a four vector a is defined by the following equations:

||a|| =
√
−a · a timelike vector ,

||a|| = 0 null-like vector ,

||a|| =
√

a · a spacelike vector .
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The Lorentzian norm keeps the property of homogeneity, ||αa|| = |α|||a|| for any
four-vector a and a real number α. However, all other properties are either violated
or reversed. Let us consider, for example, the triangle inequality for two timelike
vectors, a and b such that their sum is also a timelike vector c = a + b, which norm
||c||2 = ||a||2 + ||b||2 − 2a · b. However, timelike vectors obey the Cauchy-Schwarz
inequality: a · b ≤ ||a||||b||, and, hence, ||c||2 ≥ ||a||2 + ||b||2 + 2a · b = (||a|| + ||b||)2.
The triangle inequality for timelike vectors read

||a + b|| ≥ ||a|| + ||b|| , (2.45)

which is opposite to the triangle inequality in Euclidean space. The reason for this is
that timelike vectors in the Minkowski world measure intervals of time. The clock,
which traveled along a straight line (vector c) from point A to B always shows larger
time interval than the clock moving from A to B along a broken line given by vectors
a and b. This is the essence of the "twin paradox" of special relativity.

Two four-vectors, a and b, are called orthogonal if their Lorentzian dot-product
a · b = 0. One notices that a timelike vector can be orthogonal only to a space-
like vector; a null-like vector can be orthogonal to another null like-vector or to a
spacelike vector, and a spacelike vector can be orthogonal to any four-vector.

2.3.3
The vector basis

The Minkowski spacetime of events is a four-dimensional vector space acting tran-
sitively which means that the Minkowski spacetime is a homogenous and isotropic
affine space all points of which are equivalent and there is no preferred direction.
Hence, there always exist four linearly-independent vectors, e0, e1, e2, e3, such that
any other vector a can be represented as a linear combination

a = a0e0 + a1e1 + a2e2 + a3e3 , (2.46)

where four real numbers (a0, a1, a2, a3) are called the components of vector a. For the
space is affine, the vector decomposition (2.46) is valid at any point of the Minkowski
spacetime.

In what follows, the Greek indices α, β, γ, ... are used to denote the components
of four-dimensional vectors and to numerate the basis vectors. The Greek indices
run through the values 0,1,2,3. Spatial components of vectors will be denoted with
the Roman letters i, j, k, ... which run through the values 1,2,3. The Roman indices
will be also used to denote the spacelike basis vectors. Thus, the vector a from
equation (2.46) has four components aµ = (a0, a1, a2, a3) each of which is multiplied
with a basis vector eµ = (e0, e1, e2, e3). We shall also use Einstein’s summation rule
assuming that the dummy repeated Greek indices imply summation from 0 to 3, and
the dummy repeated Roman indices imply summation from 1 to 3. The repeated
indices are called dummy indices since their notation can be chosen arbitrary. For
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example, equation (2.46) can be written down in several equivalent forms

a =

3∑
α=0

aαeα ≡ aαeα = aβeβ = aµeµ = ... , (2.47)

that have an identical meaning. Notice that each vector eβ of the basis eβ can be
decomposed with respect to this basis like any other vector a. Coefficients of this
decomposition are given by the unit matrix δαβ because of equality eβ = δαβeα where
the index β numerates the basis vectors, and the index α numerates its components.
The conclusion is that a basis vector eβ for each index β fixed, has components δαβ in
the same basis, that is

e0 = (1, 0, 0, 0) , e1 = (0, 1, 0, 0) , e2 = (0, 0, 1, 0) , e3 = (0, 0, 0, 1) . (2.48)

This does not mean that the vectors eα are unit vectors as the norm of the vector has
not yet been fully specified (see section 2.3.4 for more detail)..

Any four linearly-independent vectors form a basis in the Minkowski spacetime
that can be used for decomposition (2.46) of vectors 12). Standard practice is to chose
a basis consisting of one timelike, and three spacelike vectors. However, it is possi-
ble to include into the basis a vector or vectors that are null. Indeed, it is easy to pick
up, for an arbitrary timelike vector a and a spacelike vector b, such real numbers
α, β that the linear combination c = αa + βb will satisfy c · c = 0 while c being non-
vanishing. The null vectors are also called isotropic, and the set of all these vectors
form a hypersurface in the Minkowski spacetime called null cone. Four null vectors
define a null-cone basis (null tetrad) that is a basic ingredient of the Newman-Penrose
formalism [Frolov, 1979; Penrose, 1968] employed frequently in studying physics
of black holes, in string theory, and in other applications dealing with electromag-
netic and gravitational radiation as well as with motion of ultra-relativistic particles
[Penrose, 2004]. Proposals have been made to use the null tetrads for the purposes
of relativistic navigation [Bini et al., 2008; Coll and Pozo, 2006].

The basis, eα, in the Minkowski spacetime and a corresponding decomposi-
tion (2.46) are not unique. There is an infinite number of bases and correspond-
ing decompositions of an arbitrary vector a. A new basis eα′ (primed indices
α′, β′, ... = 0, 1, 2, 3) is connected to the original one, eα, by a linear transforma-
tion

eα′ = Λβ
α′eβ , (2.49)

where Λα
β′ are coefficients of decomposition of the basis vector eα′ with respect to

the basis eα according to equation (2.49). These coefficients are nothing else but

12) A "basis" does not mean a set of unit vectors. The term refers exclusively to a minimal linearly-
independent set of vectors that spans the entire affine space. Moreover, the ability to find a basis for a
vector space is a general result in the theory of vector spaces, and has nothing to do with whether it is
the Minkowski spacetime or not.
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components of vector eα′ in the basis eα,

e0′ =
(
Λ0

0′ ,Λ
1

0′ ,Λ
2

0′ ,Λ
3

0′
)
, (2.50)

e1′ =
(
Λ0

1′ ,Λ
1

1′ ,Λ
2

1′ ,Λ
3

1′
)
,

e2′ =
(
Λ0

2′ ,Λ
1

2′ ,Λ
2

2′ ,Λ
3

2′
)
,

e3′ =
(
Λ0

3′ ,Λ
1

3′ ,Λ
2

3′ ,Λ
3

3′
)
.

The Λα
β′ is called the matrix of transformation. Elements of the matrix of transfor-

mation are real numbers which are independent of each other. Hence, in the most
general case, the matrix of transformation has 16 independent components in the
Minkowski spacetime. Notice also that the indices of the matrix of transformation
belong to different bases. If the bases coincide, the matrix of transformation appar-
ently becomes the unit matrix: Λβ

α = δ
β
α in accordance with equation (2.48).

Decomposition of vector a generated by the basis eα′ will be different from the one
generated by the basis eα in the sense that equation (2.46) acquires in the new basis
the following form

a = a0′e0′ + a1′e1′ + a2′e2′ + a3′e3′ , (2.51)

with the vector components aα
′

= (a0′ , a1′ , a2′ , a3′ ) being different from those
aα = (a0, a1, a2, a3). The left sides of equations (2.46) and (2.51) represent one
and the same geometric object, the vector a, and they must be equal. It corresponds
to the statement that vectors are geometric objects being independent of the choice
of coordinates and bases. Hence, the primed components of the vector a in the new
basis eα′ are connected to its unprimed components in the old basis eα, by equation

aα = Λα
β′aβ

′

, (2.52)

which follows immediately from equations (2.47), (2.49) and (2.51).
The basis eα′ can be transformed back to the basis eα with the help of the matrix

Λα′
β of the inverse linear transformation that is defined by equations

Λα′
βΛ

β
γ′ = δα

′

γ′ , Λα
β′Λ

β′
γ = δαγ , (2.53)

where δα
′

γ′ and δαγ are the unit matrices referred to the primed and unprimed bases
correspondingly. Making use of the inverse matrix of transformation, one can write
the inverse transformation

eα = Λβ′
αeβ′ , aα

′

= Λα′
βaβ , (2.54)

which can be easily checked by inspection.
One has noticed already that the Newtonian mechanics can be also formulated in

terms of a four-dimensional spacetime of events having a fiber bundle structure (see
Figure 2.1). Because of this structure the decomposition of a vector a in two different
bases of the Newtonian spacetime has the same time component of the vector in
both bases. The fiber bundle structure of the Newtonian spacetime is too rigid and
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is abandoned in the Minkowski spacetime to make it compatible with physics of
ultra-relativistic motion. It makes a drastic difference for the time component of
a vector if it becomes dependent on the choice of the basis and participates in the
linear transformations on the same footing as its spatial components. Because each
basis corresponds to a physical observer, time in the Minkowski spacetime flows
differently for different observers.

2.3.4
The metric tensor

The most natural way to describe the property of an arbitrary set of the basis vectors
eα in the Minkowski spacetime is to introduce a 4×4 matrix made of the dot-products
of the vectors

gαβ ≡ eα · eβ . (2.55)

The matrix components gαβ are real numbers which form a new mathematical object
in vector space, called the metric tensor. The metric tensor is used for measuring
the metric properties of spacetime (time, angles, lengths, etc.) and for rising and
lowering indices of tensors (see sections 2.4.4.3 and 3.3.8.1). For example, the dot
product between two vectors a and b is given in terms of their components and the
metric tensor as

a · b = (aαeα) · (bβeβ) = aαbβ(eα · eβ) = aαbβgαβ . (2.56)

According to Axiom EA1, the metric tensor is symmetric, gµν = gνµ and, thus,
has only ten algebraically-independent components. The metric tensor gαβ has its
inverse, denoted as gαβ and defined by the condition

gαβgβγ = δαγ , (2.57)

where the repeated Greek indices assume the Einstein summation from 0 to 3, and
δ
µ
ν = diag(1, 1, 1, 1) is the unit matrix also known as the Kronecker symbol.
Since the metric tensor is formed as a dot product of two basis vectors, it is

straightforward to write down the law of transformation of its components. Indeed,
picking up a new basis eα′ , one defines the components of the metric tensor in this
basis as

gα′β′ ≡ eα′ · eβ′ . (2.58)

Substituting the law of transformation of the vector bases (2.49) into equation (2.58)
and using definition (2.55), one obtains the law of transformation of the components
of the metric tensor

gα′β′ = Λµ
α′Λ

ν
β′gµν , (2.59)

and the inverse transformation is obtained with the inverse transformation matrix

gαβ = Λµ′
αΛν′

βgµ′ν′ . (2.60)
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The basis vectors that have the unit norm and are mutually-orthogonal are instru-
mental in mathematical work and for physical applications. Such bases are called
orthonormal. One notices that the null-cone bases can not be orthonormal since if
four null vectors were orthogonal, decomposition of any timelike or spacelike vec-
tor a with respect to such a null-basis would yield a null vector, in contradiction
with the original nature of the vector a. We shall mostly consider orthonormal bases
consisting of three spacelike vectors, ei, (i=1,2,3) and one timelike vector e0. The
Lorentzian norm of the basis vectors satisfy to the following condition

−||e0||
2 = ||e1||

2 = ||e2||
2 = ||e3||

2 = 1 , (2.61)

and the Lorentzian dot-product

eµ · eν = 0 , (µ , ν). (2.62)

In the orthonormal basis the components of the metric tensor assume the most sim-
ple, diagonal form gαβ = ηαβ = diag(−1, 1, 1, 1), or

ηαβ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.63)

Let us remark that in an inertial frame of reference the metric gµν should not be nec-
essarily read as (2.63). This is because the concept of the inertial frame of reference
does not say anything about the orthogonality of the basis so that in the most general
case its vectors can be oriented arbitrary with respect to each other. Nevertheless,
orthonormal bases are used for measuring purposes in many practical applications.
It is always possible to build an orthogonal basis in the Minkowski spacetime. In-
deed, if one starts from a non-orthogonal basis eα, and apply a linear transformation
to a basis eα′ consisting of the product of a (pseudo)-orthogonal matrix Oβ

α′ with a
diagonal matrix Dγ

β, one can always transform the non-diagonal metric tensor gαβ
to a diagonal form gα′β′ = ηα′β′ . This means that the new basis

eα′ = Oβ
α′Dγ

βeγ , (2.64)

is orthogonal and represents the normalized eigenvectors of the metric gαβ.
The signature of the metric is defined as the sum of its diagonal components that

is also called a trace of the tensor . The Minkowski metric ηαβ has the signature +2
that remains the same in all acceptable bases 13), according to a signature-stability
theorem by Silvester [Schouten, 1954]. Though the signature of the metric tensor
in the Minkowski spacetime is invariant it does not mean that the metric has always
the form shown in equation (2.63). Mathematically, it is possible to build orthonor-
mal bases in which the metric may have a diagonal form ηαβ = diag(1,−1, 1, 1),
or ηαβ = diag(1, 1,−1, 1) or ηαβ = diag(1, 1, 1,−1). Nevertheless, only the bases in
which the metric is reduced to ηαβ = diag(−1, 1, 1, 1) can be associated with physical
observations.

13) One assumes that transformation of the basis does not involve reflections and dilatations of coordinate
axes.
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2.3.5
The Lorentz group

2.3.5.1 General properties
There are linear transformations (2.49) that leave the basis of the Minkowski space-
time orthogonal. Not every linear transformation will guarantee fulfilment of equa-
tions (2.61), (2.62) or (2.63). The entire set of matrices which preserve the orthonor-
mality of bases, form a continuous group of transformations known as the Lorentz
group. It will turned out that a subset of linear transformations from this group coin-
cides with the Lorentz transformations (2.29) from electrodynamics. However, the
existence of the group of the Lorentz transformations in the Minkowski spacetime
does not rely upon a specific propagation property of any physical field and relates
exclusively to the symmetries of the spacetime endowed with the fundamental speed
c and the null cone. On the other hand, any physical theory that pretends to be con-
sistent with relativity must be Lorentz-invariant, that is its equations must admit the
freedom of the Lorentz transformations.

The Lorentz group is denoted with O(1, 3) which is a standard notation for a gen-
eralized orthogonal group. The condition of orthogonality of the bases is effectively
reduced to the condition of form-invariance of the Minkowski metric, which means
that the Minkowski metric must have the same diagonal form (2.63) in any orthogo-
nal basis (frame of reference). Equation of transformation (2.59) entails

ηα′β′ = Λµ
α′Λ

ν
β′ηµν . (2.65)

Inserting the values of ηµν = diag(−1, 1, 1, 1) and ηα′β′ = diag(−1, 1, 1, 1), one sees
that the matrix Λµ

α′ is pseudo-orthogonal, that is, it satisfies

− Λ0
α′Λ

0
β′ + Λi

α′Λ
i
β′ =


0 , if α′ , β′ ,

−1 , if α′ = β′ = 0 ,
1 , if α′ = β′ = 1, 2, 3 ,

(2.66)

where the repeated spatial indices assume the Einstein summation from 1 to 3. In
case of α′ = β′ = 0 equation (2.66) reads(

Λ0
0′
)2

= 1 + Λi
0′Λ

i
0′ , (2.67)

wherefrom the absolute value of the matrix element

|Λ0
0′ | ≥ 1 . (2.68)

Moreover, equation (2.67) assumes that the set of all transformations parameterized
with matrices Λµ

α′ will be disconnected into two sub-sets: those with positive and
with negative value of the matrix element Λ0

0′ . We also conclude from the diag-
onal form of the Minkowski metric that the determinant of the Minkowski metric,
det

[
ηαβ

]
= det

[
ηµ′ν′

]
= −1. This, along with equation (2.65), demands that the

determinant of the matrix of transformation

det
[
Λµ

α′
]

= ±1 , (2.69)
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which indicates to one more division to two other sub-sets: the one with a positive
and an other with a negative determinant of the matrix.

Thus, the entire Lorentz group of transformations, O(1, 3), is split into four topo-
logically separated pieces:

S O+(1, 3) - proper orthochronous transformations with Λ0
0′ > 0, det [Λµ

α′ ] = 1. It
consists of those Lorentz transformations that preserve the orientation of spatial
axes (spatial reflections are not allowed) and direction of time.

PS O+(1, 3) - improper orthochronous transformations with Λ0
0′ > 0,

det [Λµ
α′ ] = −1. It consists of the Lorentz transformations that preserve

the direction of time but change the orientation of spatial axes to opposite.

PTS O+(1, 3) - the proper non-orthochronous transformations with Λ0
0′ < 0,

det [Λµ
α′ ] = 1. It consists of the Lorentz transformations that change both the

direction of time and orientation of spatial axes.

TS O+(1, 3) - the improper non-orthochronous transformations with Λ0
0′ < 0,

det [Λµ
α′ ] = −1. It consists of the Lorentz transformations that change the di-

rection of time but leaves the orientation of spatial axes the same.

The latter three sets can be obtained from the first one by means of the operation
of inversion of the time, T, and that of the spatial axes, P. It explains the notations
for these three sub-groups: PS O+(1, 3), PTS O+(1, 3), TS O+(1, 3). Only the proper
orthochronous subgroup S O+(1, 3) is used in astronomy. The other sub-groups are
relevant to the particle physics.

One sees that a subset of the Lorentz transformations is characterized by whether
or not its elements reverse the orientation of space and/or time. Transformations
which reverse either the orientation of time or space (but not both), have determinant
−1; the ones that reverse neither or both have determinant +1.

The sub-set S O+(1, 3) makes to a sub-group called the restricted Lorentz group.
None of the other three sets PS O+(1, 3), PTS O+(1, 3), and TS O+(1, 3) is a sub-
group, because none of these contains the identity element - the unit matrix δµν.
However, each of these sub-sets makes a sub-group together with S O+(1, 3). More
specifically,

– PS O+(1, 3) and S O+(1, 3) constitute the sub-group O+(1, 3) of orthochronous (i.e.,
preserving the direction of time) Lorentz transformations,

– PTS O+(1, 3) and S O+(1, 3) constitute the subgroup S O(1, 3) of proper (i.e., hav-
ing det [Λµ

α′ ] = 1) Lorentz transformations,
– TS O+(1, 3) and S O+(1, 3) constitute the subgroup of orthochorous (i.e., preserv-

ing the sign of the volume of space) Lorentz transformations.

2.3.5.2 Parametrization of the Lorentz group
Each orthonormal basis eα in the Minkowski spacetime is identified with a Cartesian
coordinate chart xα, where coordinates xα of an event P are considered as compo-
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nents of a position vector r = xαeα of this event with respect to the origin of the
coordinates. Another Cartesian coordinate chart, xα

′

is associated with an orthonor-
mal basis eα′ . Position vector of the same event P is r′ = xα

′eα′ , and it is related to r
by a constant translation vector a = aαeα, which yields

r = a + r′ , (2.70)

or in the coordinate components

xα = aα + Λα
β′ xβ

′

. (2.71)

This is the most general transformation between the Cartesian coordinates in the
Minkowski spacetime 14), which is called the Poincaré transformation. The group
of the Lorentz transformations correspond to the case when the translation vector
a = 0. Equation (2.71) is simplified to

xα
′

= Λα′
µxµ , (2.72)

where one has used the inverse matrix Λα′
µ.

It can be demonstrated that the restricted Lorentz group S O+(1, 3) can be gener-
ated by a direct product of three independent transformations - a Lorentz boost and
two three-dimensional rotation of spatial axes. More specifically, each element Λ of
S O+(1, 3) (indices of the matrix Λ have been omitted) can be always written down
as a product of three matrices: Λ = R1LR2, with L being the matrix of the Lorentz
boost and R1 and R2 being the orthogonal matrices of spatial rotations [Richtmyer,
1982]. The Lorentz boost generalizes the Galilean transformation of classical me-
chanics, and represents transformation from static to a moving frame which depends
in special relativity on both time and space coordinates of one of the three coor-
dinate planes: (t, x1), (t, x2), or (t, x3). Hence, there are three independent boosts
Lx, Ly and Lz each of which is parameterized with a parameter, let say, θx, θy, θz re-
spectively. The pure spatial rotations R1 and R2 are parameterized with three Euler
angles. Therefore, the restricted Lorentz group S O+(1, 3) is characterized by six pa-
rameters. A proverbial example is a boost transformation Lx describing motion of
frame S ′ with respect to S in positive direction of x1 axis with velocity V , and leav-
ing two of the spatial coordinates, for example, x2 and x3, untouched. The matrix of
such a boost is parameterized by one parameter only θx (which is denoted below as
θ), and the matrix of the boost is

Lx(θ) ≡


Λ0′

0 Λ0′
1 Λ0′

2 Λ0′
3

Λ1′
0 Λ1′

1 Λ1′
2 Λ1′

3

Λ2′
0 Λ2′

1 Λ2′
2 Λ2′

3

Λ3′
0 Λ3′

1 Λ3′
2 Λ3′

3

 =


cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

 , (2.73)

Although this parametrization through the boost parameter θ is not obligatory, its
strong side is that the so-chosen parameter is additive like axial rotations in the same

14) Curvilinear coordinates can be also used in the Minkowski spacetime but relationship between them is
not given by the linear transformation.
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plane in the Euclidean geometry. Indeed, making two consecutive boosts, Lx(θ1) and
Lx(θ2), and using formulae for the hyperbolic functions,

sinh(θ1 + θ2) = sinh θ1 cosh θ2 + sinh θ2 cosh θ1 , (2.74)

cosh(θ1 + θ2) = cosh θ1 cosh θ2 + sinh θ2 sinh θ1 , (2.75)

one gets for two successive boost transformations in the same (t, x) plane,

Lx(θ2)Lx(θ1) = Lx(θ2 + θ1) . (2.76)

In terms of the coordinates xα = (ct, x, y, z) and xα
′

= (ct′, x′, y′, z′), the boost trans-
formation (2.73) explicitly reads as

ct′ = ct cosh θ − x sinh θ , x′ = −ct sinh θ + x cosh θ , y′ = y , z′ = z . (2.77)

Similar equations can be written down for the Lorentz boosts in (t, y) and (t, z) planes.
The boost parameter θ is also called rapidity and is directly related to the velocity

of one basis with respect to another. Suppose that one observer in the inertial frame
S ′ keeps a particle at rest, dx′/dt′ = 0, and a second observer in the inertial frame S
sees it moving with velocity dx/dt = V in positive direction of x axis of the inertial
frame xα = (ct, x, y, z). Differentiating equations (2.77) and using the definitions of
the particle’s velocity in the two frames, one can easily conclude that

tanh θ =
V
c
, (2.78)

which yields

sinh θ =
V/c√
1 − V2

c2

, cosh θ =
1√

1 − V2

c2

. (2.79)

Parametrization (2.79) of the boost with physical velocity V make equations (2.77)
look exactly as a Lorentz transformation (2.29) from the electrodynamics

ct′ = γ(ct − βx) , x′ = γ(x − βct) , y′ = y , z′ = z , (2.80)

where

β ≡ V/c , γ ≡
1√

1 − β2
. (2.81)

The Lorentz transformation changes directions of the coordinate axes (ct′, x′) with
respect to axes (ct, x). The new axes (ct′, x′) make the angle β = V/c with the old
axes (t, x) as shown in Figure 2.5 The introduction of parameter V elucidates that the
boost transformation (2.80) that leaves the Minkowski metric tensor form-invariant
is equivalent to the Lorentz transformation (2.29) of the coordinates in the Maxwell
equations. This explains why the name of the Lorentz group was given to the group
O(1, 3).

Equation (2.80) indicates that none physical signal can travel at a speed faster than
the fundamental speed c. According to Einstein and Minkowski it appears in the



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 119

119

x - axis

c
t
-
a
x
is

A

 = V/c

 = V/c

Figure 2.5 Minkowski diagram of the Lorentz transformation (2.80) from coordinates (ct, x)
representing an inertial reference frame S , to coordinates (ct′, x′) representing an inertial
reference frame S ′ moving with respect to S with speed V in positive direction of x-axis. The
larger velocity V the closer are the axes (ct′, x′) to the null cone. Axis ct is marked with some
arbitrary-chosen unit of time. Corresponding marks of the same unit of time plotted on ct′ axis
are obtained by drawing lines parallel to x′ axis. The unit of time in moving frame is longer than
that in the static frame showing that time in the moving frame runs slower than in the static
frame (count, for example, the number of time units for the event A in both frames). The
diagram uses the geometrized system of units in which c = 1.
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Lorentz transformations independently of the Maxwell equations. Einstein’s under-
standing of motion was in the spirit of Leibniz: by rejecting the concept of abso-
lute motion, Einstein granted himself an opportunity to set the relativity principle
as a fundamental property of the spacetime, not a consequence of matter-æther in-
teractions preventing us from observing æther as was hypothesized by Lorentz and
Poincaré. Within Einstein’s approach, equations for all physical fields should trans-
form in accordance with the Lorentz group not because of an exclusive property of
a particular field but because of a pseudo-Euclidean nature of the spacetime. Ac-
cordingly, the invariant speed c emerging in the Lorentz transformation (2.80) is a
fundamental constant for all types of physical interactions setting the ultimate speed
of their propagation.

The matrix (2.73) of the boost transformation in the (t, x) plane can be generalized
for arbitrary spatial direction of the relative motion of two frames. Assuming that
there is no rotation of the spatial axes, the boost transformation xα

′

= Λα′
βxβ is given

by the following matrix

Λ0′
0 = γ , (2.82a)

Λi′
0 = −γβi , (2.82b)

Λ0′
i = −γβi , (2.82c)

Λi′
j = δi j + (γ − 1)

βiβ j

β2 , (2.82d)

where βi = V i/c is the velocity of the boost in the direction ni = V i/V . This transfor-
mation describes motion of the primed basis, eα′ , with velocity V i as seen from the
unprimed basis eα. From the point of view of the observer at rest in the primed basis,
the unprimed basis moves with opposite velocity −V i. It means that the matrix of the
inverse boost transformation Λα

µ′ is obtained from equations (2.82) after replacing
V i → −V i. It is easy to check that the matrix (2.82) is reduced to the familiar form
(2.73) in case of motion along x-axis where V i = (V, 0, 0).

Let us also notice that the boost matrix (2.82) is symmetric but the general Lorentz
transformation matrix need not be symmetric. It is also worth mentioning that the set
of matrices of the pure Lorentz boosts (2.82) does not represent a sub-group of the
Lorentz group. This is because two consecutive Lorentz transformations performed
in two different directions are not equivalent to a single Lorentz boost as oppose to
two Lorentz boosts in the same direction. Two Lorentz boosts in different directions
are equivalent to the product of a pure Lorentz boost and a spatial rotation. This phe-
nomenon was discovered by L.H. Thomas in connection to his study of the atomic
energy levels. The spatial rotation of the inertial frame caused by the successive
Lorentz transformations in different directions is called the Thomas precession.

2.3.6
The Poincaré Group

Spatial translations and the Lorentz group form a broader group named after
Poincaré. The Poincaré group is the largest one, under which the equations of spe-
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cial relativity are form-invariant [Kim and Noz, 1986]. This is also a group under
which the Maxwell equations stay form-invariant though the latter admits more gen-
eral class of transformations due to the presence of a conformal symmetry of the
equations intimately associated with the absence of photon’s rest mass [Fushchich
and Nikitin, 1987]. The Poincaré group is also important in quantum mechanics as
the values of mass and spin of an individual elementary particle correspond to irre-
ducible representations of the Poincaré group as was first noted by Wigner [1939].

The Poincaré group is parameterized with 10 parameters among which 6 are pa-
rameters of the Lorentz group (boosts and rotations) and 4 parameters are trans-
lations shown in equation (2.71) as components of a constant vector a = aαeα.
The translations act transitively on the bundle of future timelike directions of the
Minkowski spacetime. It means that the vector a is really determined up to a trans-
lation along the timelike worldline. Indeed, let us consider an inertial frame S with
basis eα and coordinates xα and another inertial frame S ′ with basis eα′ and coor-
dinates xα

′

which origin moves with respect to S along a timelike worldline in the
direction defined by a four-velocity vector u = uαeα where uα = (γ, γβi) = Λα

0′ .
Let A be an event which is determined by a vector r in the frame S . This vector can
be represented as an algebraic sum of two vectors in equation (2.70) or (2.71) where
vector a characterizes position of the origin of frame S ′ at the time t′ = 0. However,
equation (2.71) can be written down more explicitly as

xα = aα + cΛα
0′ t′ + Λα

j′ x j′ . (2.83)

Defining a new vector of translation, z = zαeα, having components

zα(t′) = aα + cΛα
0′ t′ = aα + uαt′ , (2.84)

one presents equation (2.83)

xα = zα(t′) + Λα
j′ x j′ , (2.85)

showing coordinates of the same event A as an algebraic sum of a vector of the origin
of the moving frame S ′ taken at the time t′, and a purely spatial vector x′ = Λα

j′ x j′ .
Algebraic operations corresponding to the Poincaré transformation are shown in Fig-
ure 2.6.

Presentation of coordinates of event A in the form of equation (2.85) corresponds
to the construction of the inertial reference frame of an observer being equipped
with an ideal clock and rulers for measuring time and length, and moving along
a straight line along the direction being determined by its four-velocity u = uαeα.
Coordinate time t′ in the reference frame S ′ corresponds to the proper time τ of
observer measured with the help of the ideal clock. Spatial coordinates xß′ of an
event A represent in the frame S ′ the proper distance ` from the observer to the event
measured with the help of the ideal ruler: ` =

√
x′2 + y′2 + z′2. Because the basis eα′

of the moving inertial observer is related to the matrix of the Lorentz transformation
Λα

b′ by equation (2.50), one can recast the Poincaré transformation (2.85) to the
following, equivalent form

x = z + e j′ x j′ , (2.86)
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Figure 2.6 Transitive action of the Poincaré group along straight timelike lines allows us to
represent the inertial coordinates xα of event A as an algebraic sum of two vectors, z = a + ut′,
and x′. Vector z is obtained by a translation along the worldline of motion of the frame S ′ at the
distance ut′, where u is four-velocity of motion of the frame S ′ with respect to S . The
equivalence of presentation a + r′ = a + (ut′ + x′) = (a + ut′) + x′ = z + x′ follows from the
axiom WA2 of associativity of vector addition.
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where

z = a + uτ , (2.87)

is a four-vector pointing out from the origin of the inertial frame S to the origin of
the inertial frame S ′ of the moving observer, u is the constant four-velocity of the
observer.
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2.4
Tensor Algebra

The goal of this section is to provide an elementary primer on contravariant and
covariant tensors that provides a sufficiently rigorous mathematical explanation of
their properties in vector space - the tensor algebra.

2.4.1
Warming up in three dimensions: scalars, vectors, what next?

Let us start out with several illustrative examples of mathematical objects from three-
dimensional Euclidean space. The most simple object is a scalar. When a quantity
is scalar - its numerical value at a given event on the manifold, by definition, does
not depend upon the choice of coordinates. It means that if one has a coordinate
chart xα and a scalar function F(xα), it will transform to another function F′( ) after
changing coordinates xα

′

= xα
′

(xβ) in such a way that its numerical value will remain
the same,

F′(xα
′

) = F(xα) , (2.88)

Examples are the thermodynamical quantities like density, temperature and pressure.
More complicated example is a norm of a vector which does not depend on the choice
of coordinates and/or vector basis.

Vectors are slightly more complicated than scalars. A good example of vectors is
the second law of Newton, ma = F, where m is the inertial mass of particle, a = (ai)
- its acceleration, and F = (F i) - the force exerted on the mass (i = 1, 2, 3). Al-
though in different three-dimensional coordinates the components of force F i will
be expressed with different triples of numbers, these triples are connected to one
another by a coordinate transformation law that makes the force F i a vector. One
can imagine the vector as an arrow attached to the particle along with the coordinate
basis visualized as a rectangular corner. Nothing prohibits us to take another coor-
dinate bases rotated with respect to the first one. Since the two bases have different
orientations, the projections of the vector on their axes will be different. However,
the force F i is a physical object existing by itself, no matter what coordinates are
employed to express the numerical values of its components. This establishes the
law of transformation between the three components of the vector. The same can be
said about the vector of acceleration ai: its projections will be transforming from one
coordinate basis to another in a similar way as the projections of force F i. Despite
these changes, ai is a vector existing independently from the bases employed. Taken
that in Newton’s mechanics the mass m is a scalar, one draws a conclusion that in the
Newtonian mechanics the law mai = F i is vectorial, and that it has the same physical
content in any coordinates.

Another example of vectors is delivered by the Ohm law in a linear isotropic ma-
terial, in which the electric field E = (Ei) and the current density J = (Ji) are
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interconnected in coordinates xi via

Ji = σEi , (2.89)

where σ is the material’s conductivity. Both Ei and Ji are regarded as spatial vectors
insofar as the bases are Cartesian and only rotational transformations are concerned.
In other words, under a three-dimensional spatial rotation of the coordinate basis,

xi′ = Ri′
k xk , (2.90)

where Ri′
j is the orthogonal matrix, both Ji and Ei should transform as vectors.

In the unprimed coordinates, xi, their projections are related to one another through
equation (2.89) while in the primed coordinates, xi′ , they will assume different values
15)

Ei′ = Ri′
kEk , (2.91)

Ji′ = Ri′
k Jk , (2.92)

but still will be related in a similar way

Ji′ = σ′Ei′ , (2.93)

where σ′ = σ because it is a scalar in isotropic material and does not depend on the
coordinate choice.

Do one has more complicated geometric objects? To answer this question, let us
extend the law (2.89) to a material, which is no longer isotropic. In coordinates xi,
the law will read

Ji = σi
kEk , (2.94)

where σi
k is a 3 × 3 matrix characterizing the conductivity of the material in various

directions. If relationship (2.94) pretends to be a physical law, it must have the same
form in any other coordinates xi′

Ji′ = σi′
k′Ek′ . (2.95)

Assuming that the primed and unprimed coordinates are related by the rotation (2.90)
and accounting for the transformation laws (2.91), (2.92) for the electric field and
current, one should come to the conclusion that the components of the matrix of
conductivity σi

k should transform in a prescribed way

σi′
k′ = Ri′

pRq
k′σ

p
q , (2.96)

where the matrix Rq
k′ is the inverse of the matrix Rq′

k . Any geometric object with two
indices that transforms like the conductivity matrix is called tensor of a second rank.
Its transformation law contains two matrices of transformation Ri′

p of the coordinate
basis. Notice that the transformation law for vectors contains one transformation

15) One reminds the Einstein summation rule is applied: repeated indices assumes summation over corre-
sponding values.
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matrix, and that for scalars does not contain the transformation matrix at all. Hence,
vectors are called tensors of the first rank, and scalars are tensors of zero rank.

The latter example prompts us to think that there are tensors of higher rank that
are more complicated geometric objects expressing some other physical properties
in a coordinate-independent way. It is reasonable to think that a tensor of rank n
has n indices, and its transformation law under a smooth coordinate transformation,
xi′ = xi′ (x), must be given by a product of n matrices of transformation

Λi′
j =

∂xi′

∂x j , (2.97)

or their inverse. The key point about application of tensors in physics is that they are
not just matrices but geometric objects residing on manifold and possessing certain
physical properties; while considered in different coordinate charts (or bases) these
objects are expressed by different matrix components connected to one another by a
linear transformation. It may be useful to notice that tensors make only one class of
geometric objects capable of universal describing the physical laws of nature. There
are other objects, called spinors, that complement tensors. They are employed in
particle physics to describe properties of particles with half-integer spin, and shall
not be considered in this book as it goes beyond its scope.

2.4.2
Covectors

2.4.2.1 Axioms of covector space
We shall introduce tensors in the Minkowski spacetime starting from covectors
which are defined as linear functions on a real vector space whose elements

a = aµeµ , b = bµeµ , c = cµeµ , ... (2.98)

are four-dimensional vectors (also called contravariant tensors of the first rank) hav-
ing contravariant components aµ, bµ, cµ, etc. with respect to a basis eµ in this space.
Let us consider a set of linear functions α̃, β̃, γ̃, etc., mapping each vector into a
scalar. Such functions are called covectors, or linear 1-forms, or covariant tensors of
the first rank. They obey the following axioms:

VA1 For any two covectors α̃ and β̃, there always exists a third covector denoted
α̃ + β̃, such that its action on an arbitrary vector a gives a scalar that is a sum of
α̃(a) and β̃(a). Mathematically,

(α̃ + β̃)(a) = α̃(a) + β̃(a) .

This equation makes it clear that α̃ + β̃ = β̃ + α̃.
VA2 Covectors obey the associative law[

(α̃ + β̃) + γ̃
]

(a) =
[
α̃ + (β̃ + γ̃)

]
(a)
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VA3 For any covector α̃, there exists a negative covector denoted −α̃, such that their
values on any argument a are opposite

(−α̃)(a) = − [α̃(a)] .

VA4 There exists a zero covector 0̃, i.e., a function mapping any vector a to zero

0̃(a) = 0 .

VA5 For any covector α̃ and any real numbers a and b

[(a + b)α̃] (a) = (aα̃)(a) + (bα̃)(a) .

VA6 For any real numbers a and b and a covector α̃, there exists a covector denoted
abα̃, such that for any argument a

a(bα̃)(a) = (abα̃)(a) .

This gives us an opportunity to define an operation of multiplying a covector by a
number.

VA7 For any covector α̃ there exists a unit number 1 such that

1α̃(a) = α(a) .

VA8 Covectors satisfies the following distributive law[
a(α̃ + β̃)

]
(a) = (aα̃)(a) + (aβ̃)(a) ,

for any covectors α̃ and β̃, any numbers a, b, and any vector argument a.

The linearity of covectors means that if one takes an argument of any covector α̃ in
the form of a linear combination of vectors, the following equality

α̃(aa + bb) = aα̃(a) + bα̃(b) , (2.99)

must be valid by definition for arbitrary vectors a, b, and arbitrary real numbers a, b.
All in all, covectors (linear forms) obey exactly the same set of axioms WA1–WA8
for vector space. Hence covectors make a vector space of their own, a space that is
called dual to the original vector space.

Vector are visualized geometrically as an arrow connecting two events. Because
covectors are linear functions of vectors their geometric image is to be complimen-
tary to the arrow (straight line). It is achieved by representing each covector as a set
of parallel, continuously numbered hyperplanes as shown in Figure 2.7. Covectors
are geometric objects that allow us to “measure" vectors in the absence of any other
geometric structures on the manifold.
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ã

ã

ã

ã

ã b

Figure 2.7 Covector ã is shown as a set of parallel planes each having a number. “Direction" of
the covector is defined by the orientation and the numbering order of the planes
(...,−2,−1, 0,+1,+2, ...). The value of the covector on a vector b is denoted as ã(b) that is
geometrically equal to the number of planes crossed by the arrow corresponding to the given
vector.
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2.4.2.2 The basis in the covector space
Action of a covector α̃ on an arbitrary vector, a = aµeµ, can be written down as

α̃(a) = α̃(aµeµ) = aµα̃(eµ) , (2.100)

where one has applied equation (2.99). Let us introduce the numbers

αµ ≡ α̃(eµ) , (2.101)

that define how covector α̃ acts on the basis vectors eµ. These numbers do not depend
upon the choice of a particular vector argument in equation (2.100) and their set fully
defines the covector α̃, i.e., fully determines how α̃ acts on an arbitrary vector a.
Equation (2.100) can be re-written in the form

α̃(a) = aµαµ , (2.102)

which is called a transvection of a vector a with a covector α̃.
Components aµ of the vector a = aµeµ are real numbers. Hence, they can be also

obtained by taking a value of some covector ω̃µ on vector a,

ω̃µ(a) = aµ . (2.103)

Making use of this definition, one can write equation (2.102) as follows

α̃(a) = aµαµ = αµω̃
µ(a) , (2.104)

where αµ is given by equation (2.101) and is independent from the choice of the
argument a, which means that for any covector one has

α̃ = αµω̃
µ . (2.105)

One concludes that covectors ω̃µ play the role of a basis in the covector space in the
sense that any covector can be expanded with respect to this basis as shown in the
above equation.

The basis covectors ω̃µ and vectors eν are complementary to each other in the
sense that 16)

ω̃µ(eν) = δ
µ
ν . (2.106)

This algebraic equation has a non-degenerate determinant and can be uniquely
solved for ω̃µ as soon as all basis vectors eν are defined. Opposite statement is
also valid. For this reason, the two bases, ω̃µ and eν, are called dual. Due to this
duality of vectors and covectors one can also define vectors as linear functions on
covectors.

16) Equation (2.106) does not imply that the covector basis is orthogonal and the basis covectors ω̃µ have
a unit norm.
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2.4.2.3 Duality of covectors and vectors
The covector space exists independently of the vector space. The only connection
between the two spaces is established by the law of correspondence between the
dual bases. However, if the metric tensor is given on the manifold, it can be used in
order to establish a relationship (isomorphism) between vectors and covectors. Let
us show how to build the covector space from the vector space with the help of the
metric tensor.

To this end, let us fix some vector a = aµeµ and consider its dot-product with an
arbitrary vector b = bνeν treated as a variable

a · b = (aµeµ) · (bνeν) = aµbν(eµ · eν) = aµbνgµν , (2.107)

where the metric tensor gµν was introduced in accordance with equation (2.55). No-
tice that because the vector basis eµ is chosen arbitrary, the components gµν of the
metric tensor are not making the diagonal matrix of the Minkowski metric ηµν.

Now, let us define a covector ã, which value on an arbitrary vector b is defined in
terms of a dot product

ã(b) ≡ a · b , (2.108)

where vector a is fixed. Obviously, the operation (2.108) is a covector (linear form)
as it acts on a variable vector b and provides a number aµbνgµν as seen from equation
(2.107). This linear form can be expanded over the basis covectors ω̃µ defined via
equation (2.106)

ã = aµω̃µ , (2.109)

where the covariant components aµ of the linear form are not arbitrary but obtained
from the contravariant components aµ of the vector a. More specifically,

aµ = ã(eµ) = a · eµ = aνeν · eµ = aνgµν . (2.110)

Thus, by introducing a dot-product in a vector space, one automatically creates a dual
vector space of covectors. The existence of a metric tensor establishes a one-to-one
correspondence between a vector a = aνeν and a covector ã = aµω̃µ. One sees that
the so-called covariant components of a vector are, in fact, tightly connected with
its contravariant components via the metric tensor. Opposite statement is also valid,
if one knows covariant components aµ of a linear form, the corresponding vector
components aµ can be obtained by making use of the contravariant metric tensor

aµ = gµνaν . (2.111)

This operation of transvection of the metric tensor with components of a covector is
called the operation of rising index. Corresponding operation in equation (2.110) is
called the operation of lowering index.

The isomorphism between the dual spaces allows us to define the dot-product be-
tween two covectors and the norm of a covector in the manner being similar to those
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concepts in the vector space. More specifically, one introduces a covector basis ω̃µ

and defines a dot-product between two basis covectors in terms of the contravariant
components of the metric tensor

ω̃µ · ω̃ν = gµν . (2.112)

The dot-product between two covectors, ã = aµω̃µ and b̃ = bµω̃µ, is obtained as a
transvection of the components of the two covectors with the contravariant metric
tensor,

ã · b̃ = (aµω̃µ) · (bνω̃ν) = aµbν (ω̃µ · ω̃ν) = aµbνgµν . (2.113)

Due to the duality between vectors and covectors, the dot-product between the two
covectors is exactly equal to the dot-product between the dual vectors, a = aµeµ and
b = bµeµ, because

a · b = aµbνgµν = aµbµ = aµbνgµν = ã · b̃ . (2.114)

The covector basis is called orthonormal, if the basis covectors are subject to the
condition

ω̃µ · ω̃ν = ηµν , (2.115)

where ηµν = diag(−1, 1, 1, 1) is the contravariant Minkowski metric tensor. If one
chooses an orthonormal vector basis eα, the corresponding dual basis of covectors
ω̃µ will be orthonormal due to the correspondence between the two bases established
by equations (2.106) and (2.114). An opposite statement is also valid.

2.4.2.4 The transformation law of covectors
Equations (2.106) and (2.49) allow us to derive the law of transformation of the
basis covectors. Because equation (2.106) is valid in arbitrary basis, one obtains in
the primed basis

ω̃µ′ (eν′ ) = δ
µ′

ν′ . (2.116)

Substituting equation (2.49) to this equation and taking into account that

δ
µ′

ν′ = Λµ′
αΛα

ν′ , (2.117)

one obtains that the primed and unprimed bases of the covectors are related by trans-
formation

ω̃µ′ = Λµ′
αω̃

α . (2.118)

Transformation of the components αµ of a covector α̃ = αµω̃
µ is obtained from the

condition that the covector is a covariant geometric object that does not depend on
the choice of basis, hence,

α̃ = αµω̃
µ = αµ′ω̃

µ′ . (2.119)
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Making use of equation (2.118) yields the law of transformation between the covec-
tor components,

αµ′ = Λν
µ′αν . (2.120)

This law of transformation is the same as for the basis vectors eα as shown by com-
parison with equation (2.49).

2.4.3
Bilinear forms

As a next step, let us consider a linear function B of two vectorial arguments such
that its value on these arguments is

B(a,b) = B(aµeµ, bνeν) = aµbνB(eµ, eν) . (2.121)

This function is called bilinear form or covariant tensor of the second rank because
it has two vector arguments. Just as in the above case of linear forms, one introduces
the basis bilinear forms formed as a tensor product of two basis covectors, ω̃µ ⊗ ω̃ν,
where the sign ⊗ denotes the tensor product. The bilinear basis form acts on two
vectors a, b in accordance with definition[
ω̃µ ⊗ ω̃ν] (a,b) ≡ ω̃µ(a) ω̃ν(b) = aµbν , (2.122)

that is a matrix composed of the products of components of the two vectors. One has
to emphasize that not every bilinear form can be represented as a tensor product of
two covectors.

We define covariant components, Bµν, of an arbitrary bilinear form B as follows

Bµν ≡ B(eµ, eν) , (2.123)

which shows how the form acts on the basis vectors producing the numbers Bµν.
Equations (2.122) and (2.123) allow one to rewrite equation (2.121) as

B(a,b) = aµbνBµν = Bµν
[
ω̃µ ⊗ ω̃ν] (a,b) . (2.124)

Since vectors a and b are arbitrary, they can be dropped out of the argument of the
bilinear form yielding

B = Bµνω̃µ ⊗ ω̃ν . (2.125)

It demonstrates that the tensor products, ω̃µ ⊗ ω̃ν, of the covectors indeed constitute
a basis in the space of all possible bilinear forms B.

A dot-product of two vectors is an example of a bilinear form G that is the metric
tensor (see section 2.3.4). Indeed, it acts on two vectors a, b to generate a number. If
these two vectors are the basis vectors, the value of the bilinear form on them yields
the components of the metric tensor,

gµν = G(eµ, eν) ≡ eµ · eν . (2.126)
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This way, a metric tensor G can always be identified with a bilinear form

G = gµνω̃µ ⊗ ω̃ν , (2.127)

the expansion valid in an arbitrary basis.

2.4.4
Tensors

2.4.4.1 Definition of tensors as linear mappings
Continuing this process, one can construct a covariant tensor T of an arbitrary rank n
as a multi-linear function mapping n vectors a1, a2, ..., an to a number. This number
is obtained in an arbitrary chosen basis as a result of the following definition

T(a1, a2, ..., an) = Tν1ν2 ...νn aν1
1 aν2

2 ...a
νn
n , (2.128)

where the values of indices i = 1, 2, ..., n, the values of indices νi = 0, 1, 2, 3, a
νi
i

denote the νi-th component of the i-th vector ai, and Tν1ν2 ...νn are the components of
the covariant tensor. The basis form in the linear space of covariant tensors of rank
n is a tensor product of n basis covectors and is denoted as ω̃ν1 ⊗ ... ⊗ ω̃νn . The basis
form is defined through equation[
ω̃ν1 ⊗ ... ⊗ ω̃νn

]
(a1, a2, ..., an) ≡ ω̃ν1 (a1)ω̃ν2 (a2)...ω̃νn (an) = aν1

1 aν2
2 ...a

νn
n . (2.129)

Similarly, one can build a contravariant tensor H of an arbitrary rank m as a multi-
linear function mapping m covectors α̃1, α̃2, ..., α̃m to a number

H(α̃1, α̃2, ..., α̃m) = Hµ1µ2 ...µm α̃1
µ1
α̃2
µ2
...α̃m

µm
, (2.130)

where the values of indices p = 1, 2, ...,m, the values of indices µp = 0, 1, 2, 3, α̃p
µp

signifies the µp-th component of the p-th covector α̃p, and T µ1µ2 ...µm are components
of the contravariant tensor. The basis tensors in the linear space of contravariant
tensors of rank m is a tensor product of m basis vectors and is denoted as eµ1⊗...⊗eµm .
It is defined as[

eµ1 ⊗ ... ⊗ eµm

]
(α̃1, α̃2, ..., α̃m) ≡ α̃1(eµ1 )...α̃m(eµm ) = α1

µ1
...αm

µm
. (2.131)

This process can be continued further on, into the realm of multi-linear functions,
which act on both vectors and covectors and produce numbers. Such mappings are
called mixed tensors. An m times contravariant and n times covariant mixed tensor
W is called the tensor of type (m, n). The rank of such tensor is m + n. It maps m
forms and n vectors to a number according to the rule

W(α̃1, α̃2, ..., α̃m; a1, a2, ..., an) = Wµ1µ2 ...µm
ν1ν2 ...νn α

1
µ1
α2
µ2
...αm

µm
aν1

1 aν2
2 ...a

νn
n , (2.132)

where Wµ1µ2 ...µm
ν1ν2 ...νn are components of the tensor with respect to the basis chosen. Evi-

dently, the basis tensors eµ1 ⊗ ...⊗ eµm ⊗ ω̃
ν1 ⊗ ...⊗ ω̃νn defined through a relationship[

eµ1 ⊗ ... ⊗ eµm ⊗ ω̃
ν1 ⊗ ... ⊗ ω̃νn

]
(α̃1, α̃2, ..., α̃m; a1, a2, ..., an) ≡ (2.133)

eµ1 (α̃1)...eµm (α̃m)ω̃ν1 (a1)...ω̃νn (an) = α1
µ1
...αm

µm
aν1

1 ...a
νn
n ,
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constitute a basis in the linear space of such tensors in the sense that any tensor W
of type (m, n) can be represented as a linear combination

W = Wµ1µ2 ...µm
ν1ν2 ...νn eµ1 ⊗ ... ⊗ eµm ⊗ ω̃

ν1 ⊗ ... ⊗ ω̃νn . (2.134)

2.4.4.2 Transformations of tensors under a change of the basis
Tensor of any type is considered in mathematical physics as a geometric object which
does not depend on the choice of basis, since the tensor describes measurable proper-
ties either some physical object or field which exists independently of any mathemat-
ical scaffolding. This idea of the invariance of tensors with respect to the choice of
the basis leads to a natural derivation of the law of transformation of tensor compo-
nents. Let us consider a tensorW that is m times contravariant and n times covariant,
that is (m, n) type. This tensor must not change when one transforms the basis in
accordance with equations (2.49) and (2.118), that is irrespectively of the basis the
following equations always hold

W = Wµ1µ2 ...µm
ν1ν2 ...νn eµ1 ⊗ ... ⊗ eµm ⊗ ω̃

ν1 ⊗ ... ⊗ ω̃νn (2.135)

= Wµ′1µ
′
2 ...µ

′
m

ν′1ν
′
2 ...ν

′
n

eµ′1 ⊗ ... ⊗ eµ′m ⊗ ω̃
ν′1 ⊗ ... ⊗ ω̃ν′n .

The only way to satisfy this equation is to have the components of the tensor W
changing in accordance with the rule

Wµ′1µ
′
2 ...µ

′
m

ν′1ν
′
2 ...ν

′
n

= Wα1α2 ...αm
β1β2 ...βn

Λ
µ′1
α1 Λ

µ′2
α2 ...Λ

µ′m
αm Λ

β1
ν′1

Λ
β2
ν′2
...Λ

βn
ν′n
. (2.136)

In what follows, coordinate bases will play an important role in calculations. In
case of arbitrary coordinates xα the basis vector eα is identified with a partial deriva-
tive along the coordinate axis xα, and the basis covector is a differential taken along
the same axis. More precisely,

eα =
∂

∂xα
, ω̃α = dxα . (2.137)

If one introduces a new coordinate chart xα
′

connected to the old coordinates by a co-
ordinate transformation xα

′

= xα
′

(xβ), one has the direct and inverse transformation
matrices defined by equations

Λ
µ′

α =
∂xµ

′

∂xα
, Λ

µ
α′ =

∂xµ

∂xα′
. (2.138)

and the matrices are orthogonal to each other,

Λ
µ′

α Λα
ν′ = δ

µ′

ν′ , (2.139)

which is easily checked by inspection. Then, the transformation law (2.136) assumes
the form

Wµ′1µ
′
2 ...µ

′
m

ν′1ν
′
2 ...ν

′
n

(x′) = Wα1α2 ...αm
β1β2 ...βn

(x)
∂xµ

′
1

∂xα1

∂xµ
′
2

∂xα2
...
∂xµ

′
m

∂xαm

∂xβ1

∂xν
′
1

∂xβ2

∂xν
′
2
...
∂xβn

∂xν′n
, (2.140)
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where the primed components Wµ′1µ
′
2 ...µ

′
m

ν′1ν
′
2 ...ν

′
n

(x′) of the tensor W are calculated at the

point of the spacetime manifoldM having coordinates xα
′

and the unprimed compo-
nents Wµ1µ2 ...µm

ν1ν2 ...νn (x′) are calculated at the point having coordinates xα. It is important
to understand that the transformation of tensor under the change of bases takes place
in one and the same event (one and the same point of the manifold). This point,
however, has different values of coordinates.

There exists several mathematical operations which allows us to make new tensors
from one already existed. Among them, one distinguishes algebraic and differential
operations. Let us focus in the rest of this section on the algebraic operations.

2.4.4.3 Rising and lowering indices of tensors
A new tensor can be obtained by changing type of the tensor. Specifically, covariant
indices of tensors can be transformed to contravariant and vice versa. This procedure
is defined with the help of the metric tensor gµν. Let us assume that one has a tensor
W of type (m, n) with components Wµ1µ2 ...µm

ν1ν2 ...νn . Then, one can lower any index by
contracting it with the metric tensor gµν. It defines a tensor H of another type. The
proof that H is easy since this operation preserves the tensor law of transformation
from one basis to another.

For example, if one lowers a contravariant index µk, the new tensor will be of type
(m − 1, n + 1), which components are defined by the rule

Hµ1µ2 ...µk−1µk+1 ...µm
ν1ν2 ...νkαkνk+1 ...νn ≡ gαkµk W

µ1µ2 ...µk ...µm
ν1ν2 ...νn , (2.141)

where the repeated Greek indices indicate summation from 0 to 3. This procedure
can be repeated one more time in application to another contravariant index, thus,
leading to a tensor of type (m − 2, n + 2), and so on. The simplest example, is
delivered by converting a vector aµ to a covector aµ = gµνaν. In many cases the
components of the new tensor H with the index risen, are denoted by the same let-
ter as the original tensor W. One has used in this example a different notation for
components of the new tensor H as, strictly speaking, it belongs to the linear space
being different from that in which the original tensor W was defined. What really
matters, however, is not the letter used to denote the components but the number of
covariant and contravariant indices present in the component of the tensor. The most
evident example, is the covariant and contravariant metric tensors which components
are denoted by gαβ and gαβ correspondingly. These tensors are clearly different in an
arbitrary-chosen basis though the letter used for their notation is the same. Only in
the orthonormal bases the metric tensor becomes the Minkowski metric tensor which
has the covariant and contravariant components formally coinciding with each other.
This notational subtlety should be taken into account when working with tensors of
different types.

The indices of the tensor Wµ1µ2 ...µm
ν1ν2 ...νn can be risen with the help of the contravariant

metric tensor. For example, if one rises a covariant index νk, the new tensor will be
of type (m + 1, n − 1) defined by the rule

Vµ1µ2 ...µkβkµk+1 ...µm
ν1ν2 ...νk−1νk+1 ...νn ≡ gβkνk Wµ1µ2 ...µm

ν1ν2 ...νk ...νn , (2.142)
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where the repeated Greek indices indicate summation from 0 to 3. The simplest
example, is delivered by converting a covector aµ to a vector aµ = gµνaν.

Of course, in case of the orthonormal bases the metric tensor used for rising
and lowering indices is the Minkowski metric ηµν = diag(−1, 1, 1, 1) or ηµν =

diag(−1, 1, 1, 1) that can help to clarify the difference between the covector com-
ponents aµ and its contra-variant counterpart which is important in the Minkowski
spacetime and absent in the Euclidean spaces. Indeed, one can easily check that in
the Minkowski spacetime, a0 = η0νaν = −a0, and ai = ηiνaν = ai. In other words,
the time components of vectors and covectors have opposite signs in the Minkowski
spacetime.

2.4.4.4 Contraction of tensor indices
TensorW of type (m, n) can be converted to a new tensor T of type (m − 1, n − 1) by
applying operation of summation with respect to one covariant and one contravari-
ant indices. This operation preserves the tensor law of transformation and is called
transvection or contraction with respect to a pair of indices. Transvection works for
any pair of indices of different types. However, it is not correct to apply it for a pair
of indices of the same type. For example, one can define a new tensor by contracting
a covariant index νn with a contravariant index µn of the tensorW. In this case, both
indices participating in the operation of transvection, are denoted by the same letter,
so that one has

T µ1µ2 ...µm−1
ν1ν2 ...νn−1 ≡ Wµ1µ2 ...µm−1µn

ν1ν2 ...νn−1µn , (2.143)

where one has contracted the last covariant index with the last contravariant index
of the tensor W and used the letter µn to denote the contracted indices. Because
transvection is a tensor operation, the particular notation for the contracted indices
does not play any role - such indices are called dummy indices.

If the metric tensor is defined on the manifold, the operation of contraction of
indices can be also applied to a pair of covariant or contravariant indices of the tensor
W. In this case the tensor changes its type from (m, n) to (m, n − 2), or from the type
(m, n) to (m − 2, n) correspondingly. For example, by applying the contravariant
metric tensor one can contract two last sub-indices of the tensorW, thus, obtaining
another tensor S having components defined by

S µ1µ2 ...µm−1µn
ν1ν2 ...νn−2 ≡ gνn−1νn Wµ1µ2 ...µm−1µn

ν1ν2 ...νn−1νn . (2.144)

This operation can be applied as many times as required in a particular problem.

2.4.4.5 Tensor equations
All laws of fundamental physics are formulated in the form of tensor equations. A
tensor equation equates one tensor, let say A, to another, denoted as B, and looks
like

A = B . (2.145)

Any tensor equation must have the following properties:
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1) Both tensors, A and B, must be of the same type.
2) Both tensors, A and B, must be taken at the same event (point) of the spacetime

manifold.

If these two conditions are satisfied, the tensor equation (2.145) holds in any basis
(reference frame) and coordinate chart. As a consequence, a tensor being equal to
zero 17) in one frame must be equal to zero in any other frame. This follows directly
from the transformation law (2.140).

Significant part of tensor equations include the operation of differentiation of ten-
sors. A partial derivative from a tensor along a basis vector eα is denoted with ∂α. In
a coordinate basis, the vector ea = ∂/∂xα, is directed along xα axis. In this case,

∂α ≡
∂

∂xα
. (2.146)

In the Minkowski spacetime and in the inertial coordinates, the partial derivatives
behave as tensors. In other words, the partial derivatives in two vector bases, eα and
eα′ , are related by the linear transformation

∂α′ = Λβ
α′∂β , ∂α = Λβ′

α∂β′ . (2.147)

Hence, a partial derivative, ∂α, makes from a tensorW of type (n,m) another tensor
of type (m, n + 1)

Wµ1µ2 ...µm
ν1ν2 ...νn =⇒ ∂αWµ1µ2 ...µm

ν1ν2 ...νn . (2.148)

Index of a partial derivative in the Minkowski spacetime can be risen with the
Minkowski metric tensor ηµν

∂α ≡ ηαβ∂β . (2.149)

A multiple partial derivative of l-th order is denoted with a symbol

∂α1α2 ...αl ≡ ∂α1∂α2 ...∂αl . (2.150)

Sometimes, a comma is used with a coordinate index following it, in order to denote
a partial derivative so that two notations for the partial derivative are equivalent

∂αWµ1µ2 ...µm
ν1ν2 ...νn ≡ Wµ1µ2 ...µm

ν1ν2 ...νn ,α . (2.151)

Partial derivative from the tensor product of two tensors, A ⊗ B, obeys the Leibnitz
chain rule

∂a (A ⊗ B) = (∂aA) ⊗ B + A ⊗ (∂aB) . (2.152)

These rules of operation with the partial derivatives must be extended to keep the ten-
sor character of physical equations in the case of general relativity when the gravity
plays an essential role.

17) It means that all components of the tensor in the given basis are zero.
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2.5
Kinematics

This section describes kinematic properties of particles moving in the Minkowski
spacetime with arbitrary velocities with the only limitation that they are less than or
equal to the fundamental speed c. Hypothetical particles like tachyon moving a pri-
ory with the speed larger than c, will not be considered. We shall use the inertial ref-
erence frames to discuss mathematical relationships between various physical quan-
tities. Each inertial reference frame will be identified with an orthonormal basis built
from the Cartesian coordinates covering the entire Minkowski spacetime. We shall
denote three-dimensional vectors by italic bold letters, like a =

(
ai
)

=
(
a1, a2, a3

)
,

b =
(
bi
)

=
(
b1, b2, b3

)
. Three-dimensional dot product between two spatial vectors,

for example, a and b, will be denoted as a · b = δi jaib j = a1b1 + a2b2 + a3b3. Cross-
product between two spatial vectors will be denoted as a × b = (a × b)i = εi jkaib j,
where εi jk is the fully anti-symmetric symbol of Levi-Civita, such that ε123 = +1,
and εi jk = 0, if i , j , k.

2.5.1
The proper frame of observer

Distance between two arbitrary events A and B in the Minkowski spacetime is called
interval. If the event A has coordinates xαA = (ctA, xA, yA, zA) = (ctA, xA), and the event
B has coordinates xαB = (ctB, xB, yB, zB) = (ctB, xB), the interval between the two events
is

s2
AB = −c2 (tA − tB)2 + (xA − xB)2 , (2.153)

which can be negative positive or equal to zero depending on the position of the
event B with respect to the null cone with vertex at the event A (see section 2.2.4.4
and Figure 2.3). When two events are separated by infinitesimally small coordinate
increments dxα = (dx0, dx1, dx2, dx3) = (cdt, dx, dy, dz) the interval

ds2 = −c2dt2 + dx2 + dy2 + dz2 , (2.154)

which can be also written down in index notations as

ds2 = ηµνdxµdxν , (2.155)

where ηµν is the Minkowski metric (2.63) in the Cartesian coordinates of the inertial
frame S . If one chooses another inertial frame S ′ covered with the Cartesian coor-
dinates xα

′

= (x′0, x′1, x′2, x′3) = (ct′, x′, y′, z′), the interval between the same events
becomes

ds′2 = ηµνdx′µdx′ν = −c2dt′2 + dx′2 + dy′2 + dz′2 . (2.156)

According to the principle of relativity the numerical value of the interval between
two events does not depend on the choice of coordinates and is preserved when one
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goes from one inertial frame to another, that is

ds′2 = ds2 . (2.157)

Each physical observer is associated with its own inertial reference frame, let say,
S ′. The observer is placed at the origin of the frame that is equipped with an or-
thonormal vector basis consisting of four vectors, eα′ = (e0′ , e1′ , e2′ , e3′ ), which are
the unit vectors along four axes of the Cartesian coordinates xα

′

= (x0′ , x1′ , x2′ , x3′ ).
The coordinate time x0′ = ct′ of the observer’s frame coincides with the proper time
τ of the observer that is measured with the help of an ideal clock. Though. the ideal
clock does not exist in nature, the belief is that, in principle, one can build clocks
with the rate approximating the ideal time with an arbitrary accuracy limited only
by the laws of quantum mechanics. Current practical realization of the ideal clock is
achieved with the atomic clocks (see Chapter 9.3 for further discussion).

Spatial coordinate axes xi′ = (x1′ , x2′ , x3′ ) of the observer are assumed to be
equipped with the ideal rigid rulers that are used to measure distances in space from
observer to any other event being simultaneous (that is having the same value of the
time coordinate in the observer’s frame) with the event of the measurement under-
taken by the observer. Since the observer does not move with respect to its own
frame S ′, the primed spatial coordinates stays unchanged and equal to zero xi′ = 0;
only the time coordinate t′ of the observer changes. The proper time τ = t′ of the
observer is related to the interval, measured in the proper reference frame S ′, in the
following way

c2dτ2 = c2dt′2 = −ds′2 . (2.158)

Due to the principle of relativity and equation (2.157), the proper time τ of the ob-
server does not depend on the choice of the frame. In any inertial frame S covered
with coordinates xα, the proper time of observer is defined by differential equation

c2dτ2 = −ds2 = c2dt2 − dx2 − dy2 − dz2 , (2.159)

where the spatial coordinates must be known as functions of the coordinate time
t, that is xi = xi(t), along observer’s worldline. The proper time τ is defined only
between two events separated by timelike interval for which ds2 < 0. It can not
be defined for the events separated by the null-like, ds2 = 0, or spacelike intervals
ds2 > 0.

Spatial coordinates xi′ of some event measured by observer in the proper reference
frame S ′ are used to measure the proper distance ` from the observer to the event
under consideration. Since the event must be simultaneous with the instant of mea-
surement undertaken by the observer, the interval of the coordinate time dt′ = 0, and
the proper distance is defined by equation

d`2 = δi′ j′dxi′dx j′ = ds′2 . (2.160)

If two events are separated by a finite distance, this equation should be integrated
to get the proper distance `. In any other inertial frame S covered with coordinates
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xα, the proper distance is defined by making use of the principle of relativity and
equation (2.157),

d`2 = ds2 = dx2 + dy2 + dz2 − c2dt2 . (2.161)

In the new frame the proper distance ` must be calculated with taking into account
that the two events are not simultaneous in this frame, so that dt , 0. The proper
distance can be defined only for two events separated by spacelike, ds2 > 0, interval.

2.5.2
Four-velocity and four-acceleration

Let us consider a particle moving in the inertial frame S along a worldline xµ(t)
which is parameterized by the coordinate time t. Three-dimensional, coordinate
velocity of the particle vi = dxi/dt, and its three-dimensional coordinate acceleration
ai = dvi/dt. Proper time τ along the worldline of the particle relates to the coordinate
time by equation (2.159). Because three-velocity of the particle is well-defined, the
proper time of the particle becomes

dτ = dt

√
1 −

v2

c2 , (2.162)

where v = (vi).
Four-velocity uµ = (u0, ui) of the particle is defined as

uµ ≡
dxµ

dτ
=

(
c

dt
dτ
,

dxi

dτ

)
= cγv

(
1, βi

v

)
, (2.163)

where βi
v = vi/c, and γv = dt/dτ = (1 − β2

v)1/2 is the Lorentz factor of the particle
corresponding to the Lorentz boosts from the static frame S to the moving proper
frame of the particle, βv = (βi

v). The proper time is invariant and the Cartesian coor-
dinates xα transform as a four-vector under the Lorentz transformation. Hence, four-
velocity makes a vector in the Minkowski spacetime that is tangent to the worldline
of the particle. Since the worldline of the particle is always passing in the interior of
the null cone (see Figure 2.3), the four-velocity is a timelike vector. Indeed, simple
calculation shows that

uµuµ = ηµνuµuν = −c2 < 0 . (2.164)

Four-acceleration wµ of the particle is defined as

wµ ≡
duµ

dτ
= uβ∂βuµ , (2.165)

where ∂β = ∂/∂xβ. This definition clearly shows that four-acceleration is a vector
in the Minkowski spacetime. Taking into account that four-velocity of the particle
depends only on time, one can rewrite previous equation in the following form

wµ = γv
duµ

dt
, (2.166)
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that does not depend explicitly on the proper time making it more convenient for
subsequent calculations.

Taking the ordinary time derivative in equation (2.166) one obtains the four-
acceleration wµ = (w0,wi) expressed in terms of three-dimensional coordinate ac-
celeration, a = (ai) = (a1, a2, a3), and velocity, v = (vi) = (v1, v2, v3), of the particle

w0 = γ4
v(βv · a) , (2.167)

wi = γ2
v

[
ai +

γ2
v − 1
v2 (v · a)vi

]
. (2.168)

In the rest frame of the particle, its four-velocity uµ = (c, 0, 0, 0), while wµ re-
duces to wµ = (0, A1, A2, A3), where Ai = (A1, A2, A3) is the proper acceleration
Rindler [1960a] experienced by the particle in its rest frame 18). Because the four-
dimensional acceleration is a vector in the Minkowski spacetime, its Lorentzian
norm, wµwµ = ηµνwµwν, is a scalar that does not depend on a particular choice
of the frame of reference. The most simple is to calculate it in the rest frame of the
particle, which yields

wµwµ = A2 . (2.169)

Because A2 > 0, the four-acceleration is a spacelike vector. Making use of equations
(2.167) and (2.168) for calculating wµwµ, one derives a relationship between the
measured value of the proper acceleration of the particle and the coordinate value of
three-acceleration,

A2 = γ4
v

[
a2 + γ2

v(βv · a)2
]
. (2.170)

Final remark is that four-velocity and four-acceleration are orthogonal to each other.
This can be seen immediately by doing calculation of the dot product, uµwµ, in the
rest frame of the particle. Another way around is to use the covariant definition
(2.165) of four-acceleration. It yields,

uµwµ = ηµνuµ
duν

dτ
=

1
2

d(uµuµ)
dτ

= 0 , (2.171)

as a consequence of equation (2.164).

2.5.3
Transformation of velocity

Let us consider two inertial reference frame, S and S ′ covered with Cartesian coor-
dinates xµ = (x0, xi) = (ct, x) and xµ

′

= (x0′ , xi′ ) = (ct′, x′) respectively. Let frame S ′

move uniformly with respect to S with a constant velocity V = (V i). Let a particle
move with a three-dimensional velocity v = (vi) = dxi/dt with respect to frame S ,
and with that v′ = (vi′ ) = dxi′/dt′ with respect to S ′. One is looking for the rela-
tionship connecting velocities v and v′ of the particle in the two frames. The most

18) The rest-frame acceleration A = (Ai) of the particle can be measured by accelerometer. In gravimetric
measurements the accelerometer is called the absolute gravimeter (see Chapter 8).
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straightforward way to derive this relationship is to apply the transformation law of
the four-velocity of the particle

uµ
′

= Λµ′
νuν , (2.172)

where the matrix Λµ′
ν of the Lorentz boost is given in equation (2.82). The Lorentz

transformation between the three-velocities, vi′ = ui′/u0′ and vi = ui/u0, is derived
with the help of equation (2.172) that yields

vi′ =
Λi′

0 + Λi′
jv j

Λ0′
0 + Λ0′

jv j . (2.173)

Substituting the matrices of the Lorentz boost, given by expressions (2.82), in this
equation, one arrives at

v′ =
v − γV + (γ − 1)V−2(V · v)V

γ
(
1 − c−2v · V

) , (2.174)

where γ = (1 − V2/c2)1/2. Projecting this equation on the direction of motion of
frame S ′ with respect to S , one obtains

1 +
v′ · V

c2 =

1 −
V2

c2

1 −
v · V

c2

. (2.175)

This equation tells us that in the limit of ultra-relativistic motion, when V → c, the
velocity v′ of the particle in the frame S ′ is almost opposite to the velocity V. If one
had many particles moving chaotically with arbitrary directed velocities in the frame
S , their motions in the frame S ′ moving with ultra-relativistic speed with respect to
frame S , would be strongly collimated along the direction of vector V.

Formula (2.174) describes the relative velocity of the particle with respect to a
moving frame S ′, and it was pioneered by Poincaré (1906). Inverse transformation
yields the relativistic law of addition of velocities

v =
v′ + γV + (γ − 1)V−2(V · v′)V

γ
(
1 + c−2v′ · V

) . (2.176)

As can be seen the inverse transformation can be obtained from the direct transfor-
mation (2.174) by replacing V → −V, and v → −v′. This can be proved by doing
direct calculations with the Lorentz transformation matrices, or by making use of
the principle of relativity which states that all frames are equivalent and, hence, mo-
tion of particles must be described by the same equations with the corresponding
accounting for the direction of the relative velocity between the two inertial frames.

In case of one-dimensional motion, when velocities v′ and V are parallel and have
the same direction, equation (2.176) is reduced to a more simple form,

v =
v′ + V

1 + c−2v′V
. (2.177)
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This equation tells us that the fundamental speed c is indeed the ultimate speed of
motion of particles existing in nature. Indeed, one can easily confirm that in case of
the asymptotic approaching of the relative velocity v′ of the particle to the speed c,
equation (2.177) tells us that the particle’s speed v with respect to the static frame,
also approaches c asymptotically from below but can never reach nor exceed it. Par-
ticles like photons, move with the speed c in any frame irrespectively of the speed
V of relative motion between the frames. Equation (??) also tells us that the physi-
cal speed of light does not depend on the speed of its source, but only if the source
moves in vacuum. If the source of light moves through a transparent medium, where
the physical speed of light is less than the fundamental speed c, the speed of light
observed by a static observer depends on the motion of the source. This can be eas-
ily seen from equation (2.177) where one has to consider the source of light moving
with the speed V , and the speed of light emitted by the source in its rest frame is
v′ = c′ < c. The speed of light v measured in the static frame depends on the speed
V of the source of light.

The absolute magnitude of the relative velocity v′ is obtained by the squaring
equation (2.176) which results in

v′2 =
(v − V)2 − c−2 (v × V)2(

1 − c−2v · V
)2 , (2.178)

demonstrating that velocities v and V enter this equation symmetrically. Another
useful relationship between the Lorentz factors of the moving particle in different
frames is

1 −
v′2

c2

1 −
v2

c2

=

1 −
V2

c2(
1 −

v · V
c2

)2 , (2.179)

which is a consequence of equation (2.178). It is instructive to compare equation
(2.179) with equation (2.175) to see various transformation symmetries existing be-
tween velocities v, V and v′.

Let us explore the transformation property of the relative velocity. To this end, let
us make a Lorentz transformation from the inertial frame S to a frame S ′′ moving
with respect to S with velocity W. The particle’s velocity v will change to v′′, and
velocity V will transform to V′′ in accordance with the Lorentz transformations

v′′ =
v − ΓW + (Γ − 1)W−2(W · v)W

Γ
(
1 − c−2v ·W

) , (2.180)

V′′ =
V − ΓW + (Γ − 1)W−2(W · V)W

Γ
(
1 − c−2V ·W

) , (2.181)

where the Lorentz factor Γ = (1 − W2/c2)1/2. It is tedious but straightforward to
demonstrate that(

v′′ − V′′
)2
− c−2 (

v′′ × V′′
)2(

1 − c−2v′′ · V′′
)2 =

(v − V)2 − c−2 (v × V)2(
1 − c−2v · V

)2 , (2.182)
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which proves that the magnitude of the relative velocity given by equation (2.178) is
a relativistic invariant which does not depend on the choice of the inertial frame of
reference. In other words, if one has two particles moving with respect to an inertial
reference frame with two different velocities, the magnitude of their relative velocity
does not depend on which particular frame is used for its calculation.

If one considers two particles moving with infinitesimally close values of their
velocities, say V and v = V + dξ, the magnitude of the relative velocity denoted as
dζ2 ≡ v′2 will be expressed through equation (2.178) as follows,

dζ2 = γ2
[
dξ2 + γ2(β · dξ)2

]
, (2.183)

where γ = (1 − β2)−1/2, and β = v/c. This expression coincides with the inter-
val between two infinitesimally close points in the Lobachevsky space of three-
dimensional hyperbolic geometry [Fock, 1964, §17] expressed in terms of coordi-
nates ξ = (ξ1, ξ2, ξ3). Hyperbolic geometry was discovered and extensively explored
irrespectively of special relativity by János Bolyai and Nikolai Lobachevsky, after
whom it is named [Lobachevsky, 1999]. Equation (2.183) establishes a tight connec-
tion between the hyperbolic geometry and the space of relative velocities of particles
in special relativity.

2.5.4
Transformation of acceleration

One is looking for the relationship connecting accelerations a = dv/dt and a′ =

dv′/dt′ of a particle in two reference frames, S and S ′ introduced in the previous
subsection. The most straightforward way to derive this relationship is to differenti-
ate the transformation law (2.174) of the three-velocity of the particle by making use
of the chain rule

a′ =
dv′

dt
dt
dt′

. (2.184)

Time derivative

dt
dt′

=
u0

u0′ =
u0

Λ0′
0u0 + Λ0′

ju j =
1

γ
(
1 − c−2v · V

) , (2.185)

where one has used the matrix Λµ′
ν given in equation (2.82). When taking time

derivative dv′/dt one should differentiate in equation (2.174) velocity v only, because
velocity V between the two frames is constant.

After completing the calculations and reducing similar terms, one obtains

a′ =
a

γ2s2 −
γ − 1
γ3s3

(a · V)V
V2 +

(a · V)v
γ2s3c2 , (2.186)

where one has introduced notation

s ≡ 1 −
v · V

c2 . (2.187)
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Formula for the inverse transformation of the acceleration is obtained from equations
(2.186), (2.187) by the replacement: v→ v′, a→ a′, V → −V.

It is clear from equation (2.186) that if the particle moves with a constant accel-
eration a in one frame, then the acceleration a′ in another reference frame will, in
general, be a function of time. This happens because the velocity v entering equation
(2.186) is not constant in the presence of the acceleration. This conclusion is drasti-
cally different from that in the Newtonian mechanics where acceleration is invariant
with respect to the Galilean transformations.

Formula (2.186) allows us to establish a relationship between the proper accelera-
tion, A, experienced by the particle in its rest frame, and the coordinate acceleration,
a, of the particle in the laboratory frame S . In the rest frame of the particle its in-
stantaneous velocity v′ = 0. Equation (2.176) yields, then, v = V. Substituting this
result to equation (2.186) gives for the instantaneous acceleration, A, of the particle

A = γ2
v

[
a +

γv − 1
v2 (v · a)v

]
, (2.188)

where γv = (1 − v2/c2)−1/2. This equation should not be confused with equation
(2.168) which defines the spatial components w = (wi) of four-acceleration in terms
of acceleration a. The components w do not coincide with the instantaneous ac-
celeration A in any other frame but the rest frame of the particle. Indeed, since
four-acceleration is a four-vector, its spatial components in the frame S are trans-
formed to the rest frame as wi = Λi

α′wα′ = Λi
j′A j′ , or in three dimensional notations

w = A +
γv − 1

v2 (v · A)v , (2.189)

which makes clear that w , A except the case when v = 0.
Squaring equation (2.188) gives again equation (2.169) as expected. If velocity

v of the particle is parallel to its coordinate acceleration a in frame S , it varies in
magnitude only,

A = γ3
v a , (2.190)

where γv is a function of time that can be determined by integration of equation
(2.190) if the proper acceleration A is known. On the other hand, if the velocity of
the particle varies only in direction, that is v is orthogonal to a, then v · a = 0, and

A = γ2
v a , (2.191)

with γv being a constant Lorentz factor. These equations are used in the physics of
particle’s accelerators.

2.5.5
Dilation of time

Equation (2.162) clearly indicates that in special relativity the proper time τ of ob-
server goes slower than the coordinate time t by the factor γ =

√
1 − β2. It means that
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the interval of time between two events separated by a timelike vector and measured
by a static observer will be always longer than that measured by a moving observer.
This statement is illustrated in Figure 2.5 where one event is denoted by letter A and
another event is taken at the origin of two inertial frames, which is the same for both
coordinates, that is the events with coordinates (t′ = 0, x′ = 0) and (t = 0, x = 0), are
identical. The event A is lying on the worldline of the moving observer. Figure 2.5
demonstrates that the time interval to the event A from the origin of the coordinates
is longer for a static observer, who measures time t, than for a moving observer,
who measures time t′. This statement can be also confirmed by a simple calculation.
Interval of time between the origin and the event A in static frame S is tA. The in-
terval of time between the origin and the same event A in moving frame S ′, has the
following coordinates

ct′A = γ(ctA − βxA) , (2.192)

x′A = γ(xA − βctA) , (2.193)

where one has used the Lorentz transformation (2.80) with β = V/c. Spatial coor-
dinate xA of the event A relates to time tA by the straight worldline of the origin of
the frame S ′, that is xA = VtA, which is a consequence of the condition x′A = 0, and
equation (2.193). Substituting xA = VtA to the time transformation (2.192) yields

t′A = tA

√
1 − β2 < tA . (2.194)

One sees that time interval t′A measured by a moving observer is shorter than time
tA measured by the static observer by the factor of

√
1 − β2 < 1, an effect called

time dilation. It is due to this effect that one can study many species of elementary
particles produced in colliders or in cosmic-ray showers. Many of the particles live
extremely short time in their rest frame, but when they are moving with respect to
us with ultra-relativistic velocity, the time of their decay in the laboratory frame of
terrestrial observer grows proportionally to the Lorentz factor γ, in accordance with
equation (2.194). Hence, the lifespan of the particle elongates.

2.5.6
Simultaneity and synchronization of clocks

Simultaneity of two events can be established by a static observer by sending light
signals to the events equipped with mirrors. In real practice, the mirrors can be re-
placed with radio transponders or other equivalent technique. Having reflected from
mirrors, the signals return to the observer. If these signals are emitted at one in-
stant of time, and return to the observer without time lag between them, the observer
says that the events of reflection from the mirrors are simultaneous. It is important,
though, to realize that the same two events would not be simultaneous to another
observer moving with respect to the first one along the line between the two events.
This experiment is similar to Einstein’s train thought (Gedanken) experiment. Thus,
the concept of simultaneity is not absolute, and depends on the reference frame of ob-
server. For the first time, this fact was pointed out by Einstein [1905] though Lorentz
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and Poincaré were aware of it but their interpretation was based on the assumption
of existence of æther.

Despite the relative nature of simultaneity, special relativity does not prohibit to
unambiguously synchronize a set of clocks by making use of light signals, provided
the clocks are moving uniformly and light propagates in vacuum. This procedure
is called Einstein’s synchronization of clocks 19). Let us consider, first, the Einstein
synchronization of clocks for static observers with the first observer located at the
origin of some inertial frame of reference S with clock measuring time t and spatial
coordinates (x, y, z). Let the observer emit a light signal at time tO in the positive
direction of x-axis. The signal reaches another static observer at point A having
coordinates (xA, 0, 0), and is immediately reflected back to the first static observer at
instant of time tA. The reflected light signal is received by the first static observer at
instant of time tB as shown in Figure 2.8.

Light propagates in vacuum with invariant speed c on the hypersurface of null
cone that is defined in the Cartesian coordinates xα = (ct, x, y, z) by equation

ds2 = −c2dt2 + dx2 + dy2 + dz2 = 0 , (2.195)

for infinitesimally close events. In case of the inertial reference frame, this equation
can be easily integrated to obtain the time of propagation of light from one event
to another. The times of emission, reflection, and reception of the light signal are
related by simple equations

tA = tO +
LOA

c
, (2.196)

tB = tA +
LAB

c
, (2.197)

where LOA = xA and LAB = | − xA| = xA are distances between points O and A, and
A and B, correspondingly. Subtracting equation (2.197) from equation (2.196) and
taking into account that for the static observer, the distance LOA = LAB, one obtains

tA =
1
2

(tO + tB) . (2.198)

The static observer located at the origin of frame S defines the instant of time

tC = tO +
1
2

(tB − tO) , (2.199)

which corresponds to the event C on observer’s worldline. Einstein’s synchroniza-
tion procedure postulates that the two events A and C are simultaneous in the static
frame S . Indeed, simple inspection shows that the instant of time tC of the observer
who is always located at the origin of frame S coincides with the instant of time tA

of another static observer in this frame, whose worldline passes through event A at
the time of the reflection of the signal: tC = tA. The clocks of the two observers
are called synchronized in this case, and the events A and C are simultaneous in the
inertial frame S (see Figure 2.9 which complements Figure 2.8).

19) In fact, Einstein’s synchronization can be performed with any signal traveling with the fundamental
speed c. Light is given a privilege only because it is the most convenient in practical realization of the
synchronization procedure.
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Emission

event  O

Reflection event A

Reception

event  B

x

ct ct' ct'' ct'''

Simultaneous 

event  C

C'
C''

C'"

B'

B''

B'"

World lines of moving observers

Figure 2.8 The Minkowski diagram explaining the Einstein’s method of clock synchronization.
The static observer emits light at point O toward an observer located at point A, and receives it
back at point B after it gets reflected from A. Moving observers, which are passing through the
point O at the instant of emission of the light signal with different velocities, will receive the light
signal at points B’, B", B”’, depending on the speed of their motion. The events C, C’, C", C”’
lying on the past null cone passing through the event C, are simultaneous with the event A for
the corresponding moving observers. These events of simultaneity are determined
geometrically by equalities of intervals: |OC’|=|C’B’|, |OC”|=|C”B”|, and so on, in accordance
with equation (2.200).
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Emission

event  O

A

Reception

event  B

x

ct ct'

C'

B'

World line of moving observer

Line of simultaneity in t!x plane

ct'

C

x'

Figure 2.9 There is no absolute simultaneity in special relativity. For a given event A, the
Einstein procedure of synchronization of clocks by exchange of light signals, leads to different
lines of simultaneity in two frames, S and S ′, moving with respect to each other. Event C is
simultaneous with event A for observer being at rest in the origin of frame S . However, for
observer being at rest in the origin of the moving frame S ′, the event C’ is simultaneous with A.
All events are identical to those shown in Figure 2.8.
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Because light propagates in vacuum with the invariant speed c that has the same
numerical value in all reference frames, one can extend the Einstein rule of synchro-
nization of clocks and the special-relativistic concept of simultaneity to arbitrarily
moving frames. For example, let us consider a frame S ′ moving in a positive direc-
tion of x-axis of a static frame S . Time t′ in the frame S ′ is measured by clocks of
observers being at rest with respect to this frame and the spatial coordinates of the
moving frame are denoted (x′, y′, z′). Let one observer is located at the origin of the
frame S ′ and he sends a light signal to a second observer, who is located on x′ axis
at a constant distance x′A, at the instant of time t′O as the observer in the static frame
S , that is t′O = tO. The second observer in frame S ′ receives the light signal at the
event A, and send it immediately back at the time t′A to the first moving observer. He
will receive the reflected light signal at the time t′B′ at the event B′ that corresponds
to the point of intersection of the worldline of the moving observer (that is ct′ axis)
with the future null cone having vertex at the event A, as shown in Figure 2.8. By
definition, the instant of time t′C′ in the frame S ′, which is simultaneous with the
event A, is defined for the observer located at the origin of S ′ frame by the Einstein
rule

t′C′ = t′O +
1
2

(
t′B′ − t′O

)
. (2.200)

It can be checked that the event t′C′ = t′A by doing calculations in the frame S ′. Figure
2.9 visualizes the concept of simultaneity in the moving inertial frame S ′. The lines
of simultaneity are parallel to x’-axis, which corresponds to the line of simultaneity
t′ = 0. The same procedure can be applied to a set of differently moving observers to
synchronize their clocks with the observer A. The events that are simultaneous with
the event A will be lying on a null hypersurface shown in Figure 2.8 as a null line
passing through points C, C′, C′′, C′′′, etc.

Einstein’s procedure of synchronization of clocks can be applied globally to a set
of inertial observers being at rest or moving uniformly with respect to each other.
The word ’inertial’ turns out to be a key to success. Observers associated with non-
inertial frames of reference (rotating, accelerating) or experienced the presence of
gravitational field may not be able either to synchronize of clocks with the Einstein
procedure or to keep the Einstein synchronization intact. In particularly, Einstein’s
synchronization of clocks along a closed loop turns out to be impossible in rotating
frames of reference. Clocks in accelerated frames after having been synchronized
will not be able to maintain the synchronization as the time goes on [Zel′manov and
Agakov, 1989].
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2.5.7
Contraction of length

Consider a rigid rod 20) aligned along the x-axis of inertial frame S , and moving
along it with velocity V . One is going to compare the length of the rod in two
frames: static frame S covered with coordinates (ct, x, y, z), and a frame S ′ covered
with coordinates (ct′, x′, y′, z′), in which the rod is at rest. In the rest frame of the rod
its endpoints have coordinates

(
ct′A, x

′
A, 0, 0

)
and

(
ct′B, x

′
B, 0, 0

)
, where, in fact, t′A = t′B

because the length of the rod is measured in its rest frame on the spatial hypersurface
of simultaneous events. One stipulates that x′B > x′A. The difference between spatial
coordinates of the rod in frame S ′,

` = x′B − x′A , (2.201)

is the physical length of the rod, also called the proper length.
In the static frame the spatial coordinates of the endpoints of the rod are

(ctA, xA, 0, 0) and (ctB, xB, 0, 0) respectively. The difference between spatial coordi-
nates of the rod in frame S ,

L = xB − xA , (2.202)

is called the coordinate length of the rod in the frame S . The spatial coordinates of
the endpoints in two frames are connected by the Lorentz transformation (2.80)

ctA = γ
(
ct′A − βx′A

)
, xA = γ

(
x′A − βct′A

)
, (2.203a)

ctB = γ
(
ct′B − βx′B

)
, xB = γ

(
x′B − βct′B

)
, (2.203b)

where β = V/c, γ = 1/
√

1 − β2. Let us assume that an observer in frame S measures
the coordinate length of the moving rod such that tA = tB. The proper length ` of the
rod relates to its coordinate length L as follows

L = γ
[
` − βc(t′B − t′A)

]
, (2.204)

where the time difference t′B− t′A , 0, because the endpoints of the rod are not lying in
this measurement on the line of simultaneity in the frame S ′. From the measurement
condition, tA = tB, one finds from the Lorentz time transformation equations

t′B − t′A =
β

c
` . (2.205)

Substituting this result in equation (2.204) one obtains,

L = `

√
1 − β2 < ` , (2.206)

20) The word "rigid" means that the body is made of sufficiently inelastic material. There are no absolutely
rigid bodies in special relativity. If such body existed it would allow propagation of sound waves inside
it with speed larger than c that contradicts special relativity principles.
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because the inverse Lorentz factor
√

1 − β2 < 1. Hence, the coordinate length L of
a moving rod is always smaller than the proper length ` of the rod in the direction
of its motion, an effect called the length contraction. The spatial size of the rod in
the directions orthogonal to the direction of its motion does not change. The proper
length ` is longer than that measured in any moving inertial frame. As the speed of
the rod approaches the fundamental speed c, its coordinate length L gets minuscule
in the direction of motion.

The procedure of measuring length described in this section is idealized and should
not be interpreted too straightforward. Practical measurement of the size of moving
bodies is always done by making use of light rays emitted by the body towards ob-
server who is making a photographic snapshot of the body or uses other technical
means. Though the coordinate size of the body is reduced in the direction of its
motion, it does not mean that the body will look squeezed. For example, photo-
graphic picture of a moving sphere does not reveal any Lorentz contraction of its
spherical shape because the effect of the contraction is compensated by another rela-
tivistic effect, known as the aberration of light. Discussion of how the body moving
with a relativistic speed will look like, can be found in [Nowojewski et al., 2004;
Smorodinskiĭ and Ugarov, 1972] or in the problem book by Batygin and Toptygin
[1978].

It will be also erroneous to think that the Lorentz contraction causes appearance of
internal stresses inside the body in its own rest frame. If such additional stresses ap-
peared it would violate the principle of relativity so that an observer comoving with
the body would be able to measure its velocity with respect to another inertial ref-
erence frame from the internal experiments conducted in the rest frame of the body.
This scenario is unphysical and impossible. Nevertheless, the Lorentz contraction
is a solid element of the mathematical structure of special (and general) theory of
relativity. Calculation of relativistic equations of motion of extended bodies requires
careful accounting for the length contraction in performing volume integration to
avoid appearance of spurious, non-existing effects in the orbital motion of the bod-
ies. We discuss this question in Chapter 6.3 in more detail.

2.5.8
Aberration of light

Let us now consider the effect of aberration of light, that is the change in the ap-
parent position of the light source (star) as seen by a moving observer. The effect
is produced by the Lorentz transformation from a static frame to the frame of the
observer and for this reason, it is independent of the distance between observer and
the source of light.

Let a light particle (photon) be emitted by a source of light and propagate in vac-
uum in the inertial reference frame S along a straight line in the direction of a unit,
three-dimensional vector k. Let us consider another inertial reference frame S ′ mov-
ing with respect to frame S with velocity V. In the frame S ′, the photon propagates
along a straight line in the direction of the unit vector k′ which is different from
vector k. Numerical value of the speed of light propagating in vacuum is equal to
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the fundamental speed c that is the same in any frame. It does not depend on the
velocity of the source of light either. Thus, the velocities of light in frames S and
S ′ are given by vectors, v = ck and v′ = ck′, respectively. One can use the law of
transformation of velocities (2.174) in order to connect the directions of propagation
of light ray in both frames. It yields the aberration of light equation,

k′ =
k + (γ − 1)V−2(V · k)V − γc−1V

γ
(
1 − c−1 k · V

) . (2.207)

Let us consider now two observers, one observer is at rest with respect to frame S
and another observer is at rest with respect to frame S ′. The observer at frame S sees
light arriving from direction n = −k, while in the frame S ′ the observer sees light
arriving from the direction defined by the unit vector n′ = −k′. Hence, the equation
of the aberration of light becomes [Kovalevsky and Seidelmann, 2004]

n′ =
n + (γ − 1)V−2(V · n)V + γc−1V

γ
(
1 + c−1n · V

) . (2.208)

This equation depends only on the relative velocity V of the two observers (the two
frames S and S ′), and it does not depend on the velocity of the source of light that
is totally irrelevant in the interpretation of the phenomenon of aberration of light. It
is worth emphasizing that if one’s observation performed in one frame can not be
compared with observations made in an other frame, moving with respect to the first
one, the aberration of light becomes undetectable. It means that the aberration of
light can not determine the presence of an “absolute" frame of reference or æther.
For example, the solar system moves with respect to the center of the Milky Way with
the speed approximately equal to V = 220 km/s. Due to this motion positions of all
stars are displaced by the aberration of light at some constant angle - the effect known
as the secular aberration [Kovalevsky and Seidelmann, 2004]. It can be calculated
from theory but it can not be observed until the speed is considered as constant
because astronomers in the solar system can not compare their measurement with
the directions to stars measured by an external observer being at rest with respect to
the center of the galaxy [Hagihara, 1933]. Only the gradual change in the velocity
of the solar system caused by its acceleration towards the center of the Milky Way
allows to see the presence of the secular aberration that appears as a particular pattern
in the proper motions of stars [Kopeikin and Makarov, 2006].

Vectors n and n′ can be decomposed in two components - parallel and orthogonal
to velocity V. We denote cos θ = (n · V)/V , and sin θ = |n × V|/V in frame S ,
and cos θ′ = (n′ · V)/V , and sin θ′ = |n′ × V|/V in frame S ′. Projecting the aberra-
tion-of-light equation (2.208) onto the corresponding directions yields the following
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trigonometric relationships for the angles θ and θ′

cos θ′ =

cos θ +
V
c

1 +
V
c

cos θ
, (2.209)

sin θ′ =

sin θ

√
1 −

V2

c2

1 +
V
c

cos θ
. (2.210)

In the slow-motion limit, when V � c, these equations can be expanded into Taylor
series with respect to the small parameter V/c. Denoting, ∆θ = θ − θ′, one derives
the angular displacement due to aberration,

sin ∆θ =
V
c

sin θ −
V2

4c2 sin 2θ +
V3

4c3 sin 2θ cos θ + ... , (2.211)

or, after additional expansion of the left side of this equation with respect to ∆θ,

∆θ =
V
c

sin θ −
V2

4c2 sin 2θ +
V3

6c3 sin θ
(
1 + 2 cos2 θ

)
+ ... . (2.212)

The first (linear) term is the classic aberration of light, known yet from the time
of Newton’s theory of light, and the other terms are special-relativistic corrections.
In case, of the annual aberration of light caused by the orbital motion of the Earth
around the barycenter of the solar system with speed V = 30 km/s, the classic term
reaches magnitude of 20 arcseconds, the quadratic term is about 0.5 milliarcsecond
(mas), and the third term 21) is nearly 0.05 microarcsecond (µas), being currently
unacceptable for observations.

One can notice that as the speed V approaches the speed of light c the angle θ′

measured by the moving observer is approaching to zero for almost all light rays
except for a tiny fraction lying very closely to the direction of θ = −π

tan θ′ =

√
1 −

V2

c2 tan
θ

2
+ ... . (2.213)

This effect is similar to lining up the velocities of particles in the frame moving ultra-
relativistically as discussed in equation (2.175). One astronomical consequence of
this is that if all stars in the sky were distributed uniformly over the celestial sphere,
the observer moving with ultra-relativistic speed would see the stars displaced toward
the point on the sky in the direction of its motion. In the limit of V → c, the entire
stellar sky of the observer would shrink to a single bright point embracing all stars in
the sky. It is really impossible to use stars for navigating the spaceship moving with
such an ultra-relativistic speed!

It may look like that measuring the anisotropy in the distribution of stars caused
by a uniform and rectilinear motion of observer could be used, at least in principle,

21) Similar term in [Equation 6.28]Kovalevsky and Seidelmann [2004] has a typo.
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for determination of the “absolute" speed of this motion. However, it requires a prior
information about the star’ distribution obtained independently by an other observer
that does not move with respect to the stars. Hence, again one can see that the
application of the aberration of light for measuring the speed of the ultra-relativistic
“absolute" motion, is impossible.

2.5.9
The Doppler effect

Let an inertial frame S be parameterized with coordinates xµ = (ct, x). Consider a
source of light and an observer moving along worldlines xµS (t) = (cτS (t), xS (t)) and
xµO(t) = (cτO(t), xO(t)) respectively, where τS and τO are proper times of the source
of light and the observer respectively. Let the source of light emit a monochromatic
electromagnetic wave at time t1 that is received by the observer at time t2. The events
of emission and observation are interconnected by the null-cone equation

t2 = t1 +
1
c
|xO(t2) − xS (t1)| . (2.214)

If the functions xS (t) and xO(t) are known, this equation describes the time t1 as an
implicit function of t2 and vice versa. Taking a time derivative from both sides of
equation (2.214) one obtains

dt1
dt2

=
1 − k · βO

1 − k · βS

, (2.215)

where the unit vector

k =
xO(t2) − xS (t1)
|xO(t2) − xS (t1)|

, (2.216)

points out in the direction of propagation of the electromagnetic wave, while βS =

vS (t1)/c and βO = vO(t2)/c are velocities of the source of light and the observer,
normalized to the fundamental speed c. Notice that motion of the observer and the
source of light have not been restricted by a rectilinear uniform motion. Hence,
velocities vO and vS are functions of time t and should be taken at the appropriate
instants of time as indicated above.

The frequency, νS , of the emitted wave is related to its period, ∆τS , expressed in
terms of the proper time of the source of light as νS = 1/∆τS . The observed frequency
of the wave, νO, is related to its period, ∆τO, expressed in terms of the proper time of
observer as νO = 1/∆τO. Assuming that both ∆τS and ∆τO are extremely small, one
can interpret them as the infinitesimal increments, dτS and dτO. Hence, the ratio of
the two frequencies can be expressed as an ordinary derivative of the proper time τS

of the source, taken with respect to the proper time τO of observer,

νO

νS

=
dτS

dτO

. (2.217)
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The proper time τ is related to the coordinate time t in accordance with equation
(2.162) which should be applied separately to the source of light and to the observer,

dτS = dt1
√

1 − β2
S , (2.218)

dτO = dt2
√

1 − β2
O . (2.219)

Substituting these expressions in equation (2.217) and recollecting that the time in-
crement dt2 is connected to dt1 by the null cone equation (2.215), one obtains

νO

νS

=

√
1 − β2

S

1 − β2
O

1 − k · βO

1 − k · βS

. (2.220)

This equation relates the observed and emitted frequencies of the electromagnetic
wave and expresses the Doppler effect in special relativity. It is named after Austrian
physicist Christian Doppler who proposed it in 1842. Equation (2.220) is valid for
arbitrary motion of the source of light and the observer, but neglects all gravitational
effects which will be considered later in Chapter 7. Derivation of the Doppler effect
given above, is based on the so-called time-transformation technique [Brumberg,
1972, 1991; Kopeikin and Ozernoy, 1999]. The frequency-transformation technique
and the technique based on the Lorentz transformation of the four-vector of electro-
magnetic wave can be applied as well, resulting in the same equation [Kopeikin and
Ozernoy, 1999].

The Doppler effect equation (2.220) depends on the coordinate velocities of ob-
server and the source of light with respect to a chosen inertial reference frame S . It
may make an impression that the Doppler effect depends on the choice of the refer-
ence frame but this impression is illusory. Indeed, one can introduce a null vector
kα = (1, k) and four-velocity of the observer uαO = γO

(
1,βO

)
, and that of the source

of light, uαS = γS

(
1,βS

)
where γO =

(
1 − β2

O

)−1/2
and γS =

(
1 − β2

S

)−1/2
are the cor-

responding Lorentz factors. In terms of these vectors the Doppler shift equation
(2.220) can be written in apparently Lorentz-invariant form

νO

νS

=
kαuαO
kαuαS

. (2.221)

This form of the equation is valid in any inertial frame, and it makes no preference
between them in accordance with the Einstein principle of relativity. It means that
the magnitude of the Doppler effect depends only on the relative velocity of observer
and the source of light, the conclusion that is not directly visible in equation (2.220).
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2.6
Accelerated Frames

Inertial reference frames have preference in special relativity because the Minkowski
spacetime is globally homogeneous and isotropic. It allows us to associate each in-
ertial reference frame with a globally orthonormal basis (tetrad) eα which has one
timelike, e0, and three spacelike, ei, unit vectors. The metric tensor, gµν in the inertial
frame is a diagonal Minkowski metric gµν = ηµν. The inertial basis eα corresponds
to the Cartesian coordinates, xα = (x0, xi) = (ct, xi), covering the entire Minkowski
spacetime. Coordinate time t and spatial coordinates xi = x are identified respec-
tively with the proper time and the proper length, measured by any observer, who
is at rest with respect to the inertial frame. The static observers have their clocks
synchronized. The Cartesian coordinates of any two inertial frames are connected
with each other by the Lorentz boost transformation, which describes a uniform rec-
tilinear motion of one frame with respect to another with a constant speed V. It may
also include additional constant rotation in space.

Newtonian mechanics admits non-inertial (that is accelerating and/or rotating)
frames of reference which are more convenient in some cases to solve practical
problems of motion of bodies in celestial mechanics. Is it possible to extrapolate the
classic approach and to introduce non-inertial frames of reference to the theory of
special relativity in a self-consistent way? The answer is affirmative, and this section
demonstrates below how to build such frames in case of accelerated observers 22).
This approach builds a bridge between the special and general theories of relativity.

In orbital mechanics, a perturbed trajectory of a particle gets assembled of points,
each of which is collocated with an unperturbed instantaneous curve in a certain
way. Typically, though not necessarily, the instantaneous curves are chosen to be
osculating, i.e., tangent to the resulting perturbed orbit. It is natural to complete the
unit tangent vector, T, to the curve by two other orthogonal unit vectors– normal N
and binormal B = T×N. The three vectors collectively form an orthonormal basis in
three-dimensional space called the Frenet-Serret frame [Dubrovin et al., 1984, §5]
after the two French mathematicians who independently introduced and explored
this frame: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret in
1851.

A similar idea can be implemented to the construction of the locally-orthonormal
tetrad which origin moves with an acceleration along a timelike worldline in the
Minkowski spacetime. At each instant of time such tetrad coincides with an inertial
reference frame moving in space with the same velocity as the accelerated tetrad.
This concept was brought from differential geometry into the special relativity by
Møller [1952] and Synge [1964], who had derived the analogue of the Frenet-Serret
differential equations describing evolution of the tetrad moving along an arbitrary
timelike curve in the Minkowski spacetime 23). It was discovered that the continu-

22) Rotating frames can be treated similarly. We refer the reader to the books [Møller, 1952, §84], [Landau
and Lifshitz, 1975, §89], and [Zel′manov and Agakov, 1989, Section 10] for more detail.

23) Synge [1964] has also analyzed a more general case of the tetrad transported along an arbitrary space-
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ous transition from one instantaneously comoving inertial frame to another must be
accompanied with the infinitesimal Lorentz boost, to keep the timelike unit vector
e0 of the tetrad tangent to the curve, and rotation of the tetrad’s spatial vectors ei. If
the spatial axes of the moving tetrad are kept parallel to the spatial axes of a global
inertial reference frame, the law of transportation of the tetrad is described by the
Fermi-Walker equation . In what follows, the spatial rotation of the local tetrad will
be excluded from consideration.

Let us denote the tetrad of unit vectors of the accelerated reference frame S ′ as
eα′ , and the Cartesian coordinates corresponding to the tetrad as xα

′

. The accelerated
tetrad is to coincide at each instant of time with a comoving inertial reference frame
so that one can interpret the coordinates xα

′

as the coordinates of the locally inertial
frame. Transformation from a global inertial frame S covered with the Cartesian
coordinates xα to the local inertial frame has to coincide at each instant of time with
the Poincaré transformation (2.86) between two inertial reference frames given by
equation

x = z + e j′ x j′ , (2.222)

or, in coordinate notations,

xα = zα + Λα
j′ x j′ , (2.223)

where vector z points out from the origin of the global inertial frame S to the origin of
the accelerated tetrad eα′ , and Λα

β′ is the matrix of the Lorentz boost corresponding
to the instantaneous value of four-velocity of the observer u = e0′ = uαeα. However,
now the unit vectors of the tetrad eα′ = eα′ (τ) are functions of the proper time τ of
the observer, and vector of translation z = z(τ) describes instantaneous position of
the observer on its worldline which is no longer a linear function of time as in case
of a uniformly-moving inertial observer. The hypersurface of constant value of the
proper time τ, taken on the observer’s worldline, is a hypersurface of simultaneity of
the comoving inertial observer. This hypersurface is instantaneously-orthogonal to
the four-velocity of observer.

It is intuitively clear from equation (2.223) that the hypersurfaces of simultaneity
should intersect in space at some distance from the tetrad’s worldline as visualized
in Figure 2.10. It means that the coordinates associated with the accelerated tetrad
can not cover the entire Minkowski spacetime, but only a part of it. The domain
of coverage is determined by the magnitude of the tetrad’s acceleration. Thus, the
observer who carries out the tetrad along an accelerated worldline, has to admit that
the spacetime around him conforms to a Minkowski spacetime only locally. In fact,
this is a starting point for going from the Minkowski world of special relativity to
the realm of a curved spacetime of general relativity.

Coordinate transformation (2.223) between the global inertial coordinates xα and
the local inertial coordinates of an accelerated observer depends on the matrix of
the Lorentz transformation which is a smooth function of observer’s proper time,

like curve.
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x

ct

O

B

D

v

v

v

v

w

w

w

w

Figure 2.10 A Minkowski diagram for an observer moving along an arbitrary worldline with
variable four-acceleration w. Events A, B, C, D on the worldline are the origins of the local
inertial frame comoving with the observer. Four-velocity of the observer is a time-like unit
vector v being tangent to the worldline. Four-acceleration w is a space-like vector being
orthogonal to four-velocity, u · w = 0. Spacelike hypersurfaces of the comoving inertial frame
are orthogonal to four-velocity, and are shown by dashed lines. Since the four-velocity changes
its direction as the observer moves, the hypersurfaces are not parallel to each other and
intersect at point O at the distance being inversely proportional to the magnitude of observer’s
proper acceleration |A|. Hence, the local inertial coordinates of the observer fail to cover the
entire Minkowski spacetime.
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Λα
β′ (τ). Its temporal evolution is determined by the transportation law that take the

matrix smoothly from one point of observer’s worldline to another in a way that
is to be consistent with the temporal change of the four-velocity of the observer
that is defined by observer’s four-acceleration. Derivation of the transportation law
requires solution of the problem of motion of an observer moving with acceleration.
For simplicity, one shall focus on the case of a uniform, rectilinear motion with a
constant acceleration that will demonstrate that special relativity is robust enough to
handle accelerated frames of reference.

2.6.1
Worldline of a uniformly-accelerated observer

Let the inertial frame S be static, and the accelerated frame S ′ be attached to an
observer who is always at rest at the origin of S ′. Keeping the three-dimensional
acceleration a = dv/dt = (d2x/dt2, d2y/dt2, d2z/dt2) of the observer constant in
the inertial frame S , would linearly increase its speed with time, thus, leading to
an unsurmountable obstacle – the ultimate speed c. Hence, the observer cannot
be uniformly accelerated with respect to a static inertial frame and the only pos-
sibility is to admit that the proper acceleration of the observer, A = dv′/dt =

(d2x′/dt2, d2y′/dt2, d2z′/dt2), is kept constant in frame S ′ [Rindler, 1960a]. The
proper acceleration A and its relation to four-acceleration w were defined in section
2.5.2.

In the case of one-dimensional motion, the proper acceleration A is related to the
static-frame acceleration a by equation (2.190). Assuming that the motion is along
x-axis, the acceleration components are: a = (dv/dt, 0, 0) and A = (A, 0, 0), where
v = (v, 0, 0) is the variable speed of the observer in frame S , and A is constant.
Two other spatial coordinates do not change as the observer moves: y′ = y, z′ = z.
Making use of these notations, equation (2.190) can be written as follows

dv(
1 − v2/c2)3/2 = Adt . (2.224)

It can be integrated, yielding the speed of the observer with respect to frame S as
a function of time. Assuming for simplicity that the initial speed of the observer
v0 = 0 at the time t = 0, one obtains

v =
At√

1 +
A2t2

c2

. (2.225)

Substituting for the speed, v = dx/dt, and integrating equation (2.225) one more
time, one gets

x =
c2

A

√
1 +

A2t2

c2 , (2.226)

where one has chosen the constant of integration equals to zero, so that x = x0 = c2/A
at time t = 0.
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Equation (2.226) represents a hyperbola in Minkowski spacetime,

x2 − c2t2 = x2
0 ,

(
x0 ≡

c2

A

)
(2.227)

which occupies the right wedge of the null cone having the origin at point O, and
intersects x-axis of the static frame S at point x0 = c2/A at time t = 0, as shown in
Figure 2.11. Equation (2.225) reveals that the observer will reach ultra-relativistic
speed when time t → ±∞. In this case one has velocity of the observer, v→ ±c, and
its coordinate x → ±ct, which represent two asymptotes of the hyperbola (2.227).
In the slow-motion approximation, one has At � c, so that velocity of the observer
is approximated by v = At, and its coordinate x = x0 + At2/2, which conforms to
classical mechanics.

One notices that the two asymptotes of the hyperbola, x = x0±ct, do not depend on
the particular value of the proper acceleration A. It means that a family of hyperbolae
parameterized by the acceleration A, is filling up the right wedge enveloped by the
null cone x = ±ct with its vertex at the event t = 0, x = 0. On the other hand, if
one fixes the value of acceleration A, the straight lines (2.232) labeled with different
values of the proper time τ, will make a family of rays emanating from point t =

0, x = 0 and filling up the right wedge of the null cone (see Figure 2.11).
The hyperbola can be parameterized with the proper time τ of the accelerated

observer that relates to the coordinate time t of the static frame by equation

dτ
dt

=

√
1 −

v2

c2 , (2.228)

where the speed, v, of the observer is given by equation (2.225). Integrating equation
(2.228) with the initial condition, τ = 0 at time t = 0, one obtains

cτ = x0 ln

At
c

+

√
1 +

A2t2

c2

 . (2.229)

This equation can be inverted, leading to the following, proper-time parametrization
of the hyperbolic worldline z = (ct, x, y, z) of the uniformly-accelerated observer

ct = x0 sinh
(Aτ

c

)
, (2.230a)

x = x0 cosh
(Aτ

c

)
, (2.230b)

y = 0 , (2.230c)

z = 0 . (2.230d)

This parametrization of the worldline of the accelerated observer substituted in equa-
tion (2.225) for instantaneous velocity of the observer, yields

v = c tanh
(

cτ
x0

)
, (2.231)
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Dividing equation (2.230b) by equation (2.230a), and accounting for equation
(2.231), gives

ct =
v
c

x , (2.232)

that is a straight line in the (ct, x) plane for each fixed value of the proper time τ.
This line corresponds to a hypersurface of simultaneity of an inertial frame instantly
comoving with the observer with the instantaneous velocity v = c tanh(cτ/x0).

2.6.2
A tetrad comoving with a uniformly-accelerated observer

The accelerated observer carries out a tetrad eα′ = (e0′ , e1′ , e2′ , e3′ ), which origin
traces the observer’s worldline. Relationship between the local tetrad and the ba-
sis eα of the entire Minkowski space-time is given at each instant of time by the
instantaneous Lorentz transformation

eα′ = Λβ
α′eβ , (2.233)

As the motion is along x-axis only, the components Λβ
α′ of the matrix of the instan-

taneous Lorentz boost are given by the inverse of equation (2.73) with the parameter
of rapidity θ = tanh−1(v/c) = cτ/x0,

Λ0
0′ Λ0

1′ Λ0
2′ Λ0

3′

Λ1
0′ Λ1

1′ Λ1
2′ Λ1

3′

Λ2
0′ Λ2

1′ Λ2
2′ Λ2

3′

Λ3
0′ Λ3

1′ Λ3
2′ Λ3

3′

 =


cosh

(
Aτ
c

)
sinh

(
Aτ
c

)
0 0

sinh
(

Aτ
c

)
cosh

(
Aτ
c

)
0 0

0 0 1 0
0 0 0 1

 . (2.234)

Making use of this parametrization the tetrad transformation (2.233) can be re-
written in more explicit form

e0′ (τ) = cosh
(Aτ

c

)
e0 + sinh

(Aτ
c

)
e1 , (2.235a)

e1′ (τ) = sinh
(Aτ

c

)
e0 + cosh

(Aτ
c

)
e1 , (2.235b)

e2′ (τ) = e2 , (2.235c)

e3′ (τ) = e3 , (2.235d)

where the unit vectors e′2 and e′3 of the observer’s tetrad stay unaffected, and coincide
with the appropriate vectors e2 and e3 of the basis in the static frame S .

Time evolution of the tetrad moving with constant acceleration is derived by dif-
ferentiation of equations (2.235), and is given by

de0′

dτ
=

A
c

e1′ ,
de1′

dτ
=

A
c

e0′ ,
de2′

dτ
=

de3′

dτ
= 0 . (2.236)

Its covariant relativistic generalization for arbitrary coordinates is given by

deµ′
dτ

=
(
wµ′uν

′

− uµ′wν′
)

eν′ , (2.237)
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where wµ′ is four-acceleration, and uµ
′

is four-velocity of the observer. Equation
(2.237) is called the Fermi-Walker transport [Misner et al., 1973]. It preserves the
length of the transported vectors and leads to an interesting phenomenon called the
Thomas precession [Thomas, 1926]. Mathematics associated with the Fermi-Walker
transport was thoroughly discussed by Ni and Zimmermann [1978a] in a more gen-
eral case of an accelerated tetrad which spatially-rotates at a rate Ω. Such an observer
will find freely-moving test particle of mass m experiences not only the inertial force
−mA but also the Coriolis force −2mΩ × v, with v being the spatial components of
particle’s velocity measured with respect to the comoving tetrad 24).

2.6.3
The Rindler coordinates

Equations (2.230) of the world line of a uniformly-accelerated observer combined
with equations (2.235) defining the local tetrad are used to specify the local inertial
coordinates xα

′

of the observer. Indeed, employing these equations in transformation
(2.223) between the global inertial coordinates xα = (ct, x, y, z) of the Minkowski
spacetime and the local inertial coordinates xα

′

=
(
ct′, x1′ , x2′ , x3′

)
= (cτ, ξ, ζ, η)

yields

ct = (ξ + x0) sinh
(

cτ
x0

)
, (2.238a)

x = (ξ + x0) cosh
(

cτ
x0

)
, (2.238b)

y = ζ , (2.238c)

z = η , (2.238d)

where the local time τ ∈ (−∞,∞) coincides with the proper time of the observer on
its worldline, and the local spatial coordinate ξ ∈ (−x0,∞) with x0 = c2/A. Thus, the
local inertial coordinates of a uniformly-accelerated observer do not cover the entire
Minkowski spacetime but only its part due to the deformation of the coordinate grid
caused by the acceleration of the worldline of the observer.

The local inertial coordinates (cτ, ξ, ζ, η) in equations (2.238) were pioneered by
Born [1909]. They have been also discussed by Møller [1943, 1952] and the most
comprehensively by [Rindler, 1960b] so that they are known the most generally as
the Rindler coordinates [D’Inverno, 1992; Misner et al., 1973] shown graphically in
Figure 2.11.

Let us mention that the half-line ct = x of the null cone, plays the role of the
observer horizon in the spacetime endowed with the metric (2.240) - the concept
introduced by Rindler [1960b]. For example, the event (t = 0, x = 0) in Figure 2.11
will never be seen by the accelerated observer, because the observer’s worldline will
never intersect with the worldline ct = x of a photon (as well as a graviton, or any
other massless particle) emitted at the event (t = 0, x = 0). Hence, it is physically

24) See also discussion of equation (4.155) in Chapter 4.5.1.
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x

ct

 =0

O

Figure 2.11 The local Rindler coordinates of an observer moving with a uniform acceleration A
along x-axis. Worldline of the observer is shown as a heavy-black hyperbola. The grid of the
local coordinates covers only the part of the Minkowski spacetime inside the right wedge of the
null cone. The coordinate grid collapses at the distance ξ = −c2/A from the observer’s
worldline (at point O). This singularity is not the property of the Minkowski spacetime.
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impossible to communicate any information from the point (t = 0, x = 0) to the
accelerated observer.

The Rindler coordinates help to establish the mathematical equivalence between a
homogeneous gravitational field and an inertial force caused by a constant accelera-
tion of the local reference frame Einstein [1907]. This equivalence was promoted by
Einstein to the rank of physical principle of equivalence which became a cornerstone
of general theory of relativity. The principle of equivalence can be understood by cal-
culating the metric tensor in the Rindler coordinates. The starting point is the metric
tensor gµν in the static frame S covered with the Cartesian coordinates, xµ, which is
reduced in these coordinates to the Minkowski metric gµν = ηµν = diag(−1, 1, 1, 1)
in the entire Minkowski spacetime. Transformation (2.238) should be used in order
to calculate the metric tensor gµ′ν′ in the Rindler coordinates, xµ

′

= (cτ, ξ, ζ, η). One
has

gµ′ν′ =
∂xα

∂xµ′
∂xβ

∂xν′
ηαβ = −

∂x0

∂xµ′
∂x0

∂xν′
+
∂xi

∂xµ′
∂xi

∂xν′
, (2.239)

where one assumes summation with respect to the repeated indices. Equation (2.239)
yields

g0′0′ = −

(
1 +

ξ

x0

)2

, g1′1′ = g2′2′ = g3′3′ = 1 , (2.240)

where x0 = c2/A, and all other components gµ′ν′ = 0 for indices µ′ , ν′. Determinant
g of the metric tensor in the Rindler coordinates

g = det
[
gµ′ν′

]
= −

(
1 +

ξ

x0

)2

, (2.241)

gets equal to zero at the distance ξ = −x0 from the origin of the Rindler co-
ordinates, where the coordinate grid of these coordinates collapses. The metric
tensor gµ′ν′ is divergent at large distances and reduces to the Minkowski metric
ηµ′ν′ = diag(−1, 1, 1, 1) only at the origin of the Rindler coordinates. For small
distances, ξ � x0, the time component of the metric tensor behaves like

g0′0′ = −

(
1 +

2ξ
x0

)
, (2.242)

that coincides up to a factor 2 with gravitational potential of a homogenous gravita-
tional field, U = −gξ, and g = c2/x0 = A. It is this equivalence that led Einstein to
the idea to identify an arbitrary gravitational field with the metric tensor. The struc-
ture of the metric tensor of an accelerated observer is similar to that of the geocentric
metric tensor in the theory of the astronomical reference frames, which is discussed
in full details in Chapter 4.

It is instructive to establish a relationship between the Rindler coordinates of two
different observers moving with different accelerations, A and Ā, so that they are
passing x-axis at different distances, x0 = c2/A and x̄0 = c2/Ā. The Rindler coordi-
nates of some event, measured by the first observer, are xα

′

= (cτ, ξ, ζ, η) and those



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 166

166

the same event measured by the second observer will be denoted as x̄α
′

=
(
cτ̄, ξ̄, ζ̄, η̄

)
.

It is clear that all relationships having been established above for the first observer
will preserve their form for the second observer with a corresponding replacement
of the coordinates xα

′

→ x̄α
′

and x0 → x̄0. In particular, coordinate transformation
(2.238) referred to the second accelerated observer will read

ct =
(
ξ̄ + x̄0

)
sinh

(
cτ̄
x̄0

)
, (2.243a)

x =
(
ξ̄ + x̄0

)
cosh

(
cτ̄
x̄0

)
, (2.243b)

y = ζ̄ , (2.243c)

z = η̄ . (2.243d)

Since the left side of equations (2.238) and (2.243) expresses the Minkowski coordi-
nates of one and the same event, the right side of these equations should coincide. It
result in the relationship between the Rindler coordinates of the two observers

τ̄ =
x̄0

x0
τ , ξ̄ = ξ + (x0 − x̄0) , ζ̄ = ζ , η̄ = η . (2.244)

The relationship between the two Rindler coordinate grids is illustrated in Figure
2.12.

Since τ and τ̄ are the proper times of the observers which is physically measurable,
equation (2.244) tells us that the physical time, τ, flows differently for differently-
accelerating observers. It means that the observers are not able to maintain their
clocks synchronized even if they were synchronized initially on some hypersurface,
for example, on x-axis where τ̄ = τ = 0. Indeed, the second observer’s worldline has
the Rindler coordinates ξ̄ = 0, resulting in the value of x̄0 = x0 + ξ. Equation (2.244)
relating the proper times of two observers becomes

τ̄ =

(
1 +

ξ

x0

)
τ , (2.245)

which shows that the clocks with ξ > 0 (acceleration Ā < A) runs faster, and the
clocks with ξ < 0 (acceleration Ā > A) runs slower than the clock moving with
acceleration A. This fact is used sometimes to explain the, so-called, “twin paradox"
in special relativity as an effect caused by the acceleration of the traveling twin [Levi,
1967].

The Rindler coordinates are generalized in general theory of relativity to the Rie-
mann normal coordinates and to the Fermi normal coordinates which are discussed
in sections 3.3.8.3 and 3.8.2. Generalization of the Rindler coordinates to the case,
when the “observer" is a massive, self-gravitating body is given in section 4.5. These
coordinates have important practical applications in relativistic celestial mechanics
of the solar system as stated in various resolutions of the International Astronomical
Union (IAU) which are discussed in Chapter 9.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 167

167

x 

ct 

 = 0

_

 = 0
O

1 2 3 4

1

2

3

!1

!2

!3

 6

 4

 2

0

2

4

6

 3

 2

 1

0

1

2

3

Figure 2.12 The local Rindler coordinates of two observers moving with a uniform acceleration
A and Ā along x-axis. Worldlines of the observers are hyperbolas passing at distances
x0 = c2/A and x̄0 = 2x0 from the origin of the Minkowski coordinates. Each point of spacetime
has different values of the Rindler coordinates of the observers. Clocks of the two observers
can not stay synchronized, and the lines of simultaneity have different values, τ and τ̄ = 2τ in
accordance with equation (2.244).
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2.6.4
The radar coordinates

It is instructive to analyze the Einstein synchronization of clocks and the procedure
of measuring distances conducted by a uniformly-accelerating observer by means of
sending and receiving light (laser, radio) signals. Let the observer emits a light signal
(photon) at the point E with coordinates xαE = (ct1, x1) in the static frame S toward
another observer also moving along x-axis and keeping a constant Rindler coordinate
ξ as measured by the first observer 25). The light riches the second observer at point
B, having coordinates xαB = (ct̄, x̄) in frame S . It is immediately reflected back to the
first observer, and arrives to him at point C with coordinates xαC = (ct3, x3). Figure
2.13 explains the relative positions of the points, and takes into account that light
can propagate from point E either to an observer with positive Rindler coordinate
ξ > 0 (reflection point B+), or to an observer with negative Rindler coordinate ξ < 0
(reflection point B−).

Let us consider, first, propagation of light from point E to point B+ and, then, to
point C+. The proper time τ of the first observer at the instant of emission, t1, and
that of reception of the light signal, t3, are calculated from equation (2.229) which
yields

cτ1 = x0 ln
[
ct1 + x1

x0

]
, cτ3 = x0 ln

[
ct3 + x3

x0

]
, (2.246)

where x0 = c2/A, and A is the proper acceleration of the observer. The observer’s
worldline is a spacetime hyperbola (2.227). Since the events E and C+ are lying on
this hyperbola, one has

x2
1 − c2t2

1 = x2
3 − c2t2

3 = x2
0 . (2.247)

On the other hand, the equations of propagation of light connecting the events E and
C+ with the event of reflection B+ are null-cone equations

x1 − ct1 = x̄ − ct̄ , x3 + ct3 = x̄ + ct̄ . (2.248)

Equations (2.247), (2.248) are employed for making algebraic transformation of
equation (2.246) to a more symmetric form

cτ1 = −x0 ln
[

x̄ − ct̄
x0

]
, cτ3 = x0 ln

[
x̄ + ct̄

x0

]
. (2.249)

The radar coordinate % of point B+ is defined as [Alba and Lusanna, 2007; Min-
guzzi, 2005] 26)

% =
c
2

(τ3 − τ1) . (2.250)

25) Because the light propagates between two observers along x-axis, the coordinates y and z remain con-
stant and can be dropped out of the calculation.

26) The radar coordinates are also called the Märzke-Wheeler coordinates [Pauri and Vallisneri, 2000] or
the emission coordinates [Coll and Pozo, 2006].
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Figure 2.13 The radar coordinate % of observer, moving with a uniform proper acceleration A
along x-axis, is built with the help of light rays. The radar coordinate is counted as positive, +%

(left diagram), in measuring the distance to an observer with the positive value of the Rindler
coordinate, ξ > 0, and negative, −%, otherwise (right diagram). Point D+ (D−) is simultaneous
with the point of reflection B+ (B−) of the light ray according to Einstein’s synchronization
convention. The line passing through the points D+ and B+ on the left diagram (correspondingly
D− and B− on the right diagram)is the line of the Rindler simultaneity as well.
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It can be calculated with the help of equation (2.249) and the equation of the world-
line of the second observer passing through the reflection point B+:

x̄2 − c2 t̄2 = (x0 + ξ)2 . (2.251)

The result is,

% = x0 ln
[
1 +

ξ

x0

]
. (2.252)

This equation relates the positive Rindler coordinate ξ to radar coordinate % of the
second observer. It is straightforward to see that for small distances both coordi-
nates coincide, % = ξ + O(ξ2). Since the Rindler coordinate ξ is the measure of the
proper length ` measured by the comoving inertial observer, the radar coordinate %
provides an operational measurement of the proper length ` at small distances from
the worldline of observer. However, the radar distance % diverges logarithmically
from the proper length ` for large values of the Rindler coordinate.

Equations of transformation from the global coordinates (ct, x) to the radar co-
ordinates (cτ, %) can be obtained directly from equations (2.238) and (2.252). One
obtains,

ct = x0 exp
(
%

x0

)
sinh

(
cτ
x0

)
, (2.253a)

x = x0 exp
(
%

x0

)
cosh

(
cτ
x0

)
, (2.253b)

y = ζ , (2.253c)

z = η , (2.253d)

Similar equations can be derived if one measures the radar coordinate of an observer
with the negative value of the Rindler coordinate (path EB−C− in Figure 2.13). In
this case, one defines the negative value of the radar coordinate by equation

% = −
c
2

(τ3 − τ1) , (2.254)

and replace equations (2.248) with

x1 + ct1 = x̄ + ct̄ , x3 − ct3 = x̄ − ct̄ . (2.255)

Equations of transformation (2.253) will formally remain the same. Hence, one
concludes that equations (2.253) are valid for any value of the coordinate % from −∞
to +∞.

Calculation of the metric tensor in the radar coordinates by equation being similar
to equation (2.239) yields the spacetime interval

ds2 = exp
(

2%
x0

) (
−c2dτ2 + d%2

)
+ dζ2 + dη2 , (2.256)
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and determinant of the metric tensor

g = − exp
(

4%
x0

)
. (2.257)

These expressions are valid everywhere inside the right wedge of the null cone cov-
ered with the Rindler coordinates except of the null lines ct = ±x. Though the radar
coordinate % ranges from −∞ to +∞, as contrasted to the Rindler coordinate ξ having
a limited range of the negative values, it does not cover the entire Minkowski space-
time either. The reason is that only the events in the Rindler wedge, −x < ct < x, can
admit two light beams passing through them to intersect the curve of the accelerated
observer and defining both the process of emission of light and its reception. The
observers with ct > x lying outside of the Rindler horizon, ct = x, will receive light
signal emitted by the accelerated observer but can not send it back to him because it
would require the speed of the signal faster than the speed of light c. This limitation
on the range of applicability of the radar coordinates in the Minkowski spacetime
was noted by Bini et al. [2005] who also extended their range of applicability to the
light signals propagating in arbitrary direction from the accelerated observer.

Einstein’s synchronization convention is that a point D+ taken on the worldline of
the first observer at the proper time

τ = τ1 +
1
2

(τ3 − τ1) =
1
2

(τ1 + τ3) , (2.258)

is simultaneous with the event of the light’s reflection B+ (see the left diagram in
Figure 2.13). Making use of the null-cone equations (2.249) and the definition of the
hyperbolic motion (2.251), one can transform the above expression to

τ = x0 ln
[

x̄ + ct̄
x0 + ξ

]
. (2.259)

According to discussion following equation (2.243), the proper time τ̄ of the sec-
ond observer at point B+ is related to the inertial coordinates (ct̄, x̄) of this point by
equation

cτ̄ = (x0 + ξ) ln
[

x̄ + ct̄
x0 + ξ

]
, (2.260)

where ξ is the Rindler coordinate of the observer at point B+. Comparing equation
(2.260) with expression (2.259) of the time τ at point D+ one immediately derives

τ̄ =

(
1 +

ξ

x0

)
τ = exp

(
%

x0

)
τ , (2.261)

which is, in fact, identical with equation (2.245). The same equation can be derived
for the synchronization of clocks of the second observer with a negative Rindler
coordinate as shown in the right diagram in Figure 2.13. Equation (2.261) reveals
that the Einstein synchronization procedure places the point D+ on the line of the
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Rindler simultaneity (shown as a dashed line on the left diagram in Figure 2.13) of
the second accelerated observer passing through point B+. Similarly, the Einstein
synchronization procedure places the point D− of Einstein’s simultaneity on the line
of the Rindler simultaneity (shown as a dashed line on the right diagram in Figure
2.13) of the second accelerated observer passing through point B−.

Equation (2.261) demonstrates in a different way that the accelerated observers be-
ing separated by some finite distance along x-axis, will gradually have their clocks
desynchronized. In order to maintain the synchronization, the observers must con-
stantly interchange light signals and apply the appropriate clock corrections to com-
pensate the difference in their rates due to the unequal accelerations. One emphasizes
that acceleration itself does not affect the proper time of any observer measured with
an ideal clock. The desynchronization of clocks occur only because the two clocks
have different accelerations causing the relative speed of the clocks vary as time goes
on, thus, making the dilation of time effect (see section 2.5.5) dependent on time.
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2.7
Relativistic Dynamics

So far, discussion of special theory of relativity has been focused on kinematics of
the uniform motions of particles, propagation of light, and some aspects of physics of
accelerated observers. This section deals with more essential part of special relativity
– physical laws of dynamics that govern the ultra-relativistic motion of particles
under the influence of forces exerted upon them. It requires relativistic generalization
of the classic concepts of the linear momentum, force, energy, etc., that should agree
with the group of the Lorentz transformations.

2.7.1
Linear momentum and energy

Special relativity demands that all physical quantities and laws be formulated in
terms of conserved four-dimensional geometric objects - scalars, vectors, tensors.
One of the basic quantities is the linear momentum of the particle. Its four-
dimensional analogue must coincide with the Newtonian definition of the momen-
tum, p = mv, in the slow-motion limit, where m is mass of the particle, and v is its
three-dimensional velocity. For this reason, it is natural to define the four-momentum
of particle, pµ = (p0, p), as the product of the four-velocity of the particle with its
rest mass m, which is a constant referred to the rest frame of the particle,

pµ = muµ = mγv (c, v) , (2.262)

where γv =
(
1 − β2

v

)−1/2
is the Lorentz factor, βv = v/c, and v is the three-

dimensional velocity of the particle which may be a function of time depending
on the worldline of the particle. Four-velocity is a vector being normalized as
uµuµ = −c2. Hence, the magnitude of the four-momentum is constant,

pµpµ = −
E2

c2 + p2 = −m2c2 . (2.263)

Four momentum is usually represented as a four-vector

pµ = (p0, p) =

(
E

c
, p

)
, (2.264)

whose temporal part, p0 = E/c, is identified with the relativistic energy of the parti-
cle,

E = mc2γv =
mc2√
1 − β2

v

, (2.265)

and whose spatial part,

p = mγvv =
mv√
1 − β2

v

, (2.266)
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generalizes the Newtonian linear momentum, and coincides with it in the limit of
v/c→ 0. Sometimes, the concept of relativistic mass

mv = mγv =
m√

1 − β2
v

, (2.267)

is used in calculations. While the rest mass of the particle, m, is constant, the rel-
ativistic mass depends on particle’s velocity and changes each time as the velocity
changes. In terms of this mass, the spatial part of the four-momentum looks similar
to the definition of the linear momentum in the Newtonian theory,

p = mvv , (2.268)

while the relativistic energy of the particle becomes

E = mvc2 . (2.269)

that is one of the most famous Einstein’s formulas expressing direct relationship
between the relativistic mass and energy of the particle. Comparison of equations
(2.268) and (2.269) yields, yet another relationship between the spatial components
of four-momentum and energy,

p =
E

c
β , (2.270)

where β = v/c.
Sometimes, especially in particle physics, a kinetic energy K of a particle is re-

quired in calculations. The kinetic energy is defined as a difference between the total
energy of the particle, E, and its rest-mass energy, E0 = mc2, that is

K = (γv − 1) mc2 . (2.271)

In ultra-relativistic regime, γv � 1, and K ' E. In the slow-motion approximation,
when v � c, the kinetic energy K ' (1/2)mv2, that matches with the expression for
kinetic energy in the Newtonian physics.

Although originally Einstein regarded the relativistic mass mv as one of the basic
concepts of relativity, later he came to a conclusion that only the rest mass m has
a fundamental physical meaning - see an excerpt from Einstein’s unpublished letter
to Barnett, cited by Adler [1987] and an excellent historic review by Okun [1989].
The rest mass is, indeed, a fundamental constant for a single, structureless particle
like electron. However, it should be replaced with the effective rest mass in case
of a composite particle (or a body) made up of many structureless particles. The
reason is that one has to take into account the energy of interaction between the
particles which leads to reduction of the effective mass - the effect known as the mass
defect. Hence, the relativistic mass of the composite body makes sense especially in
astronomy where one can measure only the effective masses of astronomical bodies.
The issue remains subject to theoretical debates which at times become extremely
heated [Khrapko, 2000; Okun, 2000].
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Photons are relativistic particles with the rest mass equal to zero that always move
with the fundamental speed c along straight lines on the null cone of the Minkowski
spacetime. Four-momentum of photon is a null vector along the line of motion of
the photon that satisfies relationship

pµpµ = −
E2

c2 + p2 = 0 . (2.272)

This equation tells us that photon’s energy and the absolute value of its three-
momentum are equal up to the constant factor which is the fundamental speed c,

E = |p|c . (2.273)

Photon’s energy relates to its frequency by the Planck-Einstein equation, E = ~ω,
where ~ = 1.05 × 1027 erg·sec is Planck’s constant h divided by 2π, ω = 2πν is the
angular frequency of a monochromatic electromagnetic wave corresponding to the
given photon, and ν is the electromagnetic frequency of the wave. Four-momentum
of photon can not be defined as a time derivative of its worldline’s coordinate with
respect to the proper time because there is no “proper time" for photons. Taking
equations (2.273) into account, the four-momentum of a photon can be written in
terms of the four-vector

Kµ =
ω

c
kµ , (2.274)

of the electromagnetic wave as

pµ = ~Kµ , (2.275)

where kµ = (1, k) is a null vector which spatial components, k, form a Euclidean unit
vector pointing to the direction of propagation of the photon, k · k = 1. Relation-
ships (2.272)-(2.275) remain valid for any other massless particle moving with the
fundamental speed c, for example, graviton - a hypothetical quantum of gravitational
field.

2.7.2
Relativistic force and equations of motion

In the Newtonian mechanics equations of motion of a particle in an inertial frame of
reference are expressed in terms of the Euclidean three-dimensional vectors and the
absolute time. These equations are invariant with respect to the Galilean transfor-
mations. Special relativity operates on four-dimensional manifold of the Minkowski
spacetime. Hence, the particle’s equation of motion must be expressed in terms of
four-vectors and obey the principle of the Lorentz covariance when transforming
from one inertial frame to another with the help of the Lorentz transformation.

Let us consider motion of a single particle in an inertial reference frame S defined
by a vector basis eα and covered with the Cartesian coordinates xα = (x0, xi) = (ct, x).
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The particle’s worldline is given by the coordinates, x = xαeα, parameterized by the
proper time τ taken on the worldline of the particle: xα = xα(τ). The Lorentz invari-
ant equations of motion of a single particle are formulated in terms of the particle’s
linear momentum, p = pαeα, where pα = muα = mdxα/dτ, and the relativistic four-
force, F = Fαeα, exerted on the particle by an external environment and changing
direction and magnitude of particle’s linear momentum,

dpµ

dτ
= Fµ . (2.276)

Historically, the concept of the four-dimensional relativistic force, Fµ, was intro-
duced in electrodynamics of moving charges by Poincaré [1906] by extending the
concept of the three-dimensional, electromagnetic force f L derived by H. Lorentz in
1892.

If the rest mass m of particle is a constant of motion, the Lorentz-covariant equa-
tion of motion (2.276) can be also formulated as follows

mwµ = Fµ , (2.277)

where wµ = duµ/dτ is four-acceleration of the particle. Equation (2.276) imposes
a strong limitation on the mathematical nature of four-force. Indeed, multiplying
both sides of equation (2.276) by four-momentum pµ, and taking into account that
pµ is orthogonal to dpµ/dτ 27), one concludes that the four-force is orthogonal to the
four-momentum of the particle,

pµFµ = 0 , (2.278)

This equation must be upheld for any relativistic force, Fµ. When four-momentum
pµ is proportional to four-velocity uµ, like in case of a point-like particle, equa-
tion (2.278) is reduced to the condition of orthogonality of the four-force and four-
velocity

uµFµ = 0 . (2.279)

It immediately tells us that the time component F0 of the four-force exerted on the
particle is uniquely expressed in terms of its spatial components, (F i) = F, as follows

F0 = βv · F , (2.280)

where β = v/c, and v = dx/dt is three-dimensional velocity of the particle with
respect to frame S . Hence, only three, out of four components of four-force are
algebraically independent. Another conclusion, which immediately follows from the
condition of orthogonality (2.279) is that the four-force must be velocity-dependent,
otherwise it will not obey the special relativity principle. Indeed, the assumption that

27) Remember that pµpµ = −m2c2 according to equation (2.263).
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the four-force depends on coordinates of the particle only, Fµ = Fµ(xα), can be valid
only in one particular inertial frame. Components of four-force in any other frame
are obtained by the Lorentz transformation which is velocity-dependent. Moreover,
the time component of four-force must vanish in the comoving frame of the particle
as follows from (2.279). However, the force that depends only on coordinates of the
particle can not comply with this requirement.

It is important to emphasize that not all three-dimensional forces of classic me-
chanics are associated with four-dimensional vectors. The most famous exception
is the gravitational force (1.10) of the Newtonian law of the universal gravitation.
The principle of equivalence, that is discussed in section 3.1, tells us that the gravi-
tational force exerted on a freely-moving particle can be eliminated in the particle’s
comoving frame of reference that is in a free fall in the gravitational field. A four-
vector, which components are nil in one frame must be identically equal to zero in
any other reference frame. However, it apparently contradicts to existence of the uni-
versal gravitational attraction between massive bodies - planets to the Sun, Moon to
the Earth, etc. - on the scale of the solar system. It indicates that the force of gravity
should not be attributed to a four-vector but to a more complicated geometric object
which can be eliminated locally at each point of the spacetime manifold but does not
vanish on a global scale 28). In order to admit the generalization to a four-dimensional
vector, a three-dimensional force must be localizable, that is it must not disappear in
the local frame of reference comoving with particle. The electromagnetic and most
other forces of physics hold this property.

In practical calculations, relativistic equations of motion of particles are often re-
ferred to the coordinate time t of the laboratory frame S rather than to the proper time
τ of the particle which is not directly measurable quantity. The equations of motion,
given in terms of the coordinate time, are obtained from (2.276) after replacing the
differential of the proper time with that of the coordinate time, dt = γvdτ, and ex-
plicitly factorizing the four-force with the Lorentz factor,

Fµ =
(
F0, F i

)
≡ γv

(
f 0, f i

)
, (2.281)

where f 0 = βv · f , and γv = (1 − β2
v)−1/2 is the Lorentz factor associated with the

velocity of motion of the particle, v, with respect to the frame S . We shall call the
relativistic three-dimensional vector, f , the Minkowski force 29). Equation (2.276)
can be projected, then, to the time and spatial dimensions, yielding

dK
dt

= v · f , (2.282)

d p
dt

= f , (2.283)

28) The Newtonian force of gravity is generalized to the, so-called, affine connection on a four-dimensional
spacetime manifold of general relativity. The affine connection is neither a vector nor a tensor as
explained in section 3.4.

29) There is no consensus on what exactly is called the Minkowski force. Some textbooks attribute this
name to the four-force, Fµ, others - to its spatial components F only.
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where K = E − mc2 is the kinetic energy of the particle, p = mγvv is its three-
dimensional linear momentum. The projected equations look similar to the equation
of motion of a particle in classic mechanics. However, this similarity should not
be misinterpreted as the physical meaning of quantities entering both sides of the
equation of motion are different from their Newtonian analogues. One should remark
that the kinetic-energy equation (2.282) is not independent from equation of motion
(2.283). Indeed, differentiating the momentum p with respect to time and taking the
Euclidean dot-product with particle’s velocity, one obtains

v ·
d p
dt

=
dK
dt

, (2.284)

which proves that equation (2.282) can be derived from equation (2.284).
Introducing the three-acceleration a = dv/dt, and taking a time derivative in the

left side of equation (2.283), one can recast it to

mγva + mγ3
v
(
βv · a

)
βv = f . (2.285)

Calculating a dot-product of this equation with βv yields

mγ3
v
(
βv · a

)
= βv · f , (2.286)

that allows us to convert equation (2.285) to a simple expression

mγva = f −
(
βv · f

)
βv . (2.287)

Equation (2.287) differs from its Newtonian counterpart by the presence of the
Lorentz factor γv in the left side, and apparent relativistic correction, (βv · f )βv,
to the force f in its right side30). It makes evident that in special relativity one cannot
define the inertial mass of the accelerating particle simply as the ratio of the three-
dimensional force, f , to the three-dimensional acceleration a as this ratio depends
on the direction of the particle’s velocity with respect to the force. Instead, the rest
mass m of the particle must be used as an analogue of the inertial mass.

In the slow-motion limit, when β � 1, equation (2.287) can be approximated as

ma =

(
1 −

3
2
β2

v

)
f + βv × ( f × βv) + O

(
β4

)
. (2.288)

This approximation was important at the very beginning of experimental explo-
ration of special relativity. However, modern high-energy accelerators of elemen-
tary particles reach a Lorentz factor γv ' 7500 and speed-up the particles at about
βv = 0.999999991 [Evans and Bryant, 2008] so that one can not use the post-
Newtonian expansion (2.288) for computing. Instead, the exact equation (2.287)
serves as a fundamental basis of particle’s accelerator engineering. The very fact

30) One should keep in mind that the force f itself, is defined within the framework of relativistic theory and
contains relativistic corrections in its own definition as well. The most obvious example is the Lorentz
force in electrodynamics that besides the electric force contains the magnetic force which vanishes in
the limit of vanishing βv.
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that particle’s accelerators - most importantly, super-colliders in Fermilab and CERN
[Dremin, 2009], work in a fascinating agreement with equation (2.287) validates the
special relativity with unprecedented precision, leaving no doubt in its solid physical
foundation.

Equation (2.287) tells us that in relativity the three-acceleration of the particle a
is, generally, not parallel to the applied three-force f . Specifically, if the force is
orthogonal to particle’s velocity, one has f · βv = 0, and equation (2.287) becomes

ma =
f
γv

. (2.289)

In case of the force being parallel to the velocity, f · βv = fβv, and equation (2.287)
yields

ma =
f
γ3

v
. (2.290)

These equations reveal that it is more effective to accelerate the particles moving
with ultra-relativistic speed along a circle than those moving along a straight line.

2.7.3
The relativistic transformation of the Minkowski force

In Newtonian mechanics, force is remains the same in all inertial reference frames
connected to each other by the Galilean transformation. In special relativity the
force does not remain the same, and changes its magnitude and direction in accor-
dance with the Lorentz transformation. Let us consider an inertial reference frame
S , where a particle has instantaneous velocity v and experiences the Minkowski
three-force f = ( f i). Let another inertial frame S ′ move with respect to S with
constant velocity V. The particle moves in the frame S ′ with the instantaneous ve-
locity v′, and experiences force f ′ = ( f i′ ). Four-vector of the force has components
Fµ′ = γv′ ( f 0′ , f i′ ) in frame S ′, and Fµ = γv( f 0, f i) in frame S , where the Lorentz
factors γv′ = (1− v′2/c2)−1/2, and γv = (1− v2/c2)−1/2. The four-force is transformed
as four-vector

Fν′ = Λν′
µFµ , (2.291)

where the matrix of the Lorentz transformation Λν′
µ is given by equations (2.82).

Taking into account definition (2.281), one finds out that the Lorentz transformation
of spatial components of the Minkowski three-force reads

γv′ f i′ = γv

(
Λi′

0 f 0 + Λi′
j f j

)
, (2.292)

where f 0 = f · βv, and βv = v/c. Lorentz factor γv′ is related to two other Lorentz
factors, γ = (1−V2/c2)−1/2 and γv = (1− v2/c2)−1/2, by equation (2.179) that yields

γv′ = γγv(1 − βv · β) , γv = γγv′ (1 + βv′ · β) , (2.293)
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where β = V/c. Substituting the Lorentz matrix and the first relationship (2.293) in
equation (2.292) bring about

f ′ =

√
1 − β2

1 − βv · β

[
f − γ( f · βv)β + (γ − 1)

( f · β)β
β2

]
. (2.294)

This equation represents the transformation of Minkowski three-force from the iner-
tial frame S to S ′. It is rather straightforward to prove that the inverse transformation
reads

f =

√
1 − β2

1 + βv′ · β

[
f ′ + γ( f ′ · βv′ )β + (γ − 1)

( f ′ · β)β
β2

]
, (2.295)

where βv′ = v′/c. Notice that the inverse transformation of the force can be achieved
by making formal replacements, βv → βv′ and β→ −β, in the direct transformation
(2.294).

Notice that in the case when the inertial frame S ′ is the rest frame of the particle,
v′ = 0, and v = V, that is βv = β. The force-transformation equations (2.294) and
(2.295) become

f ′ = γ f − (γ − 1)
( f · β)β
β2 , (2.296)

f =
1
γ

f ′ +

(
1 −

1
γ

)
( f ′ · β)β

β2 , (2.297)

Relativistic equation of the force transformation (2.296) can be also derived from
the transformation equation (2.188) for acceleration. Indeed, in the rest frame of the
particle, equation of motion (2.287) is simple, and reduces to

mA = f ′ , (2.298)

where A ≡ a′ denotes the proper acceleration of the particle in its rest frame. The
acceleration A is transformed to the laboratory frame in accordance with equation
(2.188), where acceleration a must be replaced with equation (2.287). It yields equa-
tion (2.296) as expected.

Be mindful of that equations (2.296) and (2.297) can not be applied to massless
particles moving with the fundamental speed c like photons, gravitons, etc., because
the speed c is invariant and remains the same in any inertial reference frame making
existence of a rest frame for these particles impossible. Formally speaking, equations
(2.296) and (2.297) are not applicable for the massless particles because both the
Lorentz factors γv and γv′ are divergent for v→ c or v′ → c.

2.7.4
The Lorentz force and transformation of electromagnetic field

The most famous example of the relativistic three-dimensional force is given by the
Lorentz force acting on a point charge,

f L = q
(
E + βv × B

)
, (2.299)
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where q is the electric charge 31) , E = (Ex, Ey, Ez) and B = (Bx, By, Bz) are the elec-
tric and magnetic fields respectively, βv = v/c with v being velocity of the charge.
Taking this expression into account, and introducing a four-velocity uµ = γv(c, v) of
the charge, expression (2.299) for the electromagnetic force after being substituted
in equation (2.281), can be recast to the following Lorentz-invariant form

Fµ =
q
c

Fµ
νuν , (2.300)

where Fµ
ν is the Faraday tensor of electromagnetic field made of the electric, E, and

magnetic, B, vector fields,

Fµ
ν =


F0

0 F0
1 F0

2 F0
3

F1
0 F1

1 F1
2 F1

3

F2
0 F2

1 F2
2 F2

3

F3
0 F3

1 F3
2 F3

3

 =


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (2.301)

Tensor Fµν = Fµ
βη

βν is anti-symmetric, Fµν = −Fνµ, and has the following compo-
nents

Fµν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 . (2.302)

Equations of motion (2.276) of a charged particle with the Lorentz force exerted
upon it, acquire the following form

dpµ

dτ
=

q
c

Fµ
νuν . (2.303)

The anti-symmetry of the Faraday tensor ensues that Fµ
νuµuν = Fµνuµuν ≡ 0 as

expected.
The Faraday tensor is also instrumental in formulation of the apparently Lorentz-

invariant form of the Maxwell equations (2.16) of electromagnetic field. More
specifically, the Maxwell equations written in terms of the Faraday tensor are

∂αFβγ + ∂βFγα + ∂γFαβ = 0 , (2.304)

∂βFαβ =
4π
c

jαe , (2.305)

where

jαe = ( j0e , jie) = (cρe, je) , (2.306)

is a four-vector of the electric current in case of a continuous distribution of charge,
or

jαe = quα , (2.307)

31) The electric charge is invariant under the Lorentz transformations.
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in case of a single, point-like charge q 32). Equation (2.304) is equivalent to the
Maxwell equations (2.16b) and (2.16c) that tells us that the Faraday tensor is made of
the partial derivatives of the electromagnetic four-potential, Aµ = (A0, Ai) = (cϕ, A),

Fµν = ∂µAν − ∂νAµ , (2.308)

where ϕ is an electric scalar potential, and A is a magnetic vector-potential. Equation
(2.305) is a tensorial form of two other field equations (2.16a) and (2.16d).

It is customary to speak about the electric, E, and magnetic, B, fields as vectors
as they appear in this form in the expression (2.299) for the Lorentz force. How-
ever, E and B, are components of the Faraday tensor of the second rank and, hence,
are not vectors. Therefore, though the Lorentz force is transformed as a vector un-
der the Lorentz transformations, the electric and magnetic fields are transformed as
components of the second-rank tensor,

Fµ′ν′ = Λµ′
αΛν′

βFαβ , (2.309)

from an inertial frame S to S ′ moving with respect to S with a constant velocity
V. Making use of definition of the Faraday tensor (2.302) and the matrix (2.82) of
the Lorentz transformation, the transformation of the electromagnetic field can be
written

E′ = γ (E + β × B) − (γ − 1)
(E · β)β
β2 , (2.310)

B′ = γ (B − β × E) − (γ − 1)
(B · β)β
β2 , (2.311)

It shows that E and B are not independent. A purely electric or magnetic field in
one inertial frame will appear as a mixture of electric and magnetic field in another
frame.

2.7.5
The aberration of the Minkowski force

It is instructive to express the force-transformation equation (2.294) in a different
form by introducing the velocity of motion of the particle in the inertial frame S ′

explicitly in this equation. It is achieved with the equation of the velocity transfor-
mation (2.176) that yields

f · βv =
f · βv′ + γ f · β + β−2(γ − 1)(βv′ · β)( f · β)

γ(1 + βv′ · β)
. (2.312)

Substituting this expression in equation (2.294), making use of the relationships
(2.293) and reducing similar terms give us another expression for the force acting

32) In case of a system of charged particles, the four-current is a linear superposition of the currents of
individual particles.
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on the particle in the frame S ′ [Ohanian, 2001, Section 6.2]

f ′ = γ(1 + βv′ · β) f − γ( f · βv′ )β −
γ − 1
β2 ( f · β)β . (2.313)

One reduces this equation to yet another form by making use of the double cross
product of two vectors. Specifically, equation (2.313) can be brought to the following
form

f ′ = f +
γ2

γ + 1
β × ( f × β) + γβv′ × ( f × β) , (2.314)

which can be termed as the aberration-of-force equation. This equation clearly
shows that the force in the new frame S ′ becomes velocity-dependent even if it was
not such in the primary frame S . It is also clear that the velocity-dependent (aber-
rational) terms change both the magnitude and direction of the force. Furthermore,
the force f ′ depends not only on the relativity velocity V of the frames but also on
the velocity v′ of the particle in the new reference frame. This circumstance is rarely
emphasized.

In the slow-motion approximation, when parameters β � 1 and βv′ � 1, the dif-
ference between forces f ′ and f in two different inertial frames, is proportional to
β2 = V2/c2 and ββv′ = Vv′/c2 after expansion of equation (2.314) in the Taylor
series with respect to the small parameters. It makes the effect of relativistic aberra-
tion of force in the slow-motion approximation be always quadratic with respect to
velocity and eliminates the so-called Laplace effect in the orbital motion of binary
stars and planets in the solar system [Damour, 1987]. Laplace correctly assumed the
gravity does not propagate instantaneously but with a finite speed [Laplace, 1805].
This assumption led him to the conclusion that the Newtonian force of gravity act-
ing on the celestial bodies should be not purely radial but have a correction of the
order V/cg, where V is the relative speed between the bodies and cg is the speed of
gravity. Speaking modern language, the Laplace modification of the gravity force
was an attempt to take into account the fact that the propagating gravity force con-
nects positions of the moving bodies with retardation along the null-like directions
made of the characteristics of the hyperbolic gravity field equation that should re-
place the elliptic-type Poisson equation for the gravitational potential. Extrapolating
the Laplace’ s idea, one says that the force of attraction must be a null vector, which
Lorentz transformation is to look similar to equation (2.212) for light aberration con-
taining a linear, with respect to V/c, term.

The Laplace approach to a finite speed of gravity inevitably leads to the gravita-
tional torque exerted on the planet and leading to dissipation of orbital energy of the
planet making its orbit unstable. The effect of the dissipation goes to zero linearly
as cg → ∞ and, thence, can be used to limit the speed of gravity from observation
of the planetary motions. As no effect was observed, Laplace concluded that the
speed of gravitational interaction is at least 7 × 106 faster than the speed of light.
Laplace’s argument was critically reconsidered by Lorentz who noticed that the rel-
ativistic force is orthogonal to a timelike vector of four-velocity and, hence, must be
always a spacelike vector. It led Lorentz to the conclusion that the aberration of force
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acting between two moving particles do exist but it must be of the quadratic order
of V2/c2, not of the linear order V/c, as was argued by Laplace. This can be clearly
seen from equation (2.296) after its expansion in the Taylor series with respect to
V/c. Similar conclusion about the magnitude of the aberration of gravity force for
a system of slowly-moving massive bodies is valid in general theory of relativity as
discussed by Carlip [2000]. Lorentz’s point of view on the aberration of force is
currently accepted by all scientists.

Van Flandern [1998, 1999] had brought a peer attention to the experimental issue
of measuring the aberration-of-gravity effect by emphasizing that the stability of
the planetary orbits can be interpreted in many possible ways and among them, the
infinite value of the speed of gravity is still a possible alternative. Van Flandern’
arguments were subject to criticism on the basis that the linear aberrational effect of
the order V/c does not exist due to a number of theoretical reasons [Carlip, 2000;
Marsh and Nissim-Sabat, 1999]. However, all these reasons are applicable mostly
to the particles moving slowly while the aberration-of-force formula (2.314) does
not discard, in fact, the possibility to have the aberration-of-force effect of the order
of V/c for particles that move with ultra-relativistic speed v′ approaching the speed
of light c. Indeed, in case of an ultra-relativistic particle, its velocity v′ = k′c,
where the unit vector k′ is directed along an (almost) straight path of the particle.
One can still assume the relative velocity V between the two frames, S and S ′,
small. However, for the ultra-relativistic particle the last term in equation (2.314)
is “amplified" making the difference between forces, f ′ and f , of the first order in
β = V/c,

f ′ = f +
1
c

k′ × ( f × V) + O(c−2) . (2.315)

This theoretical conclusion remains valid in general theory of relativity as will be
discussed in section 7.9. It can be used to measure the numerical value of the fun-
damental speed c entering the equations of general relativity - the speed of gravity.
One have to notice that at the time being there is some disagreement among theo-
rists about the concept of the speed of gravity. For example, Will [1993] identifies it
with the speed of gravitational waves by excluding gravitomagnetic time-dependent
gravitational phenomena having a non-wave character. Definition accepted in this
book is less restrictive - the speed of gravity is the fundamental speed of Einstein’s
general theory of relativity that governs all time-dependent gravitational phenomena
including the propagation of gravitational waves [Kopeikin, 2004; Kopeikin and Fo-
malont, 2006]. This is similar to Maxwell’s electrodynamics where the “speed of
light" c governs all time-dependent electromagnetic laws, not only the propagation
of electromagnetic waves. In fact, Maxwell measured the fundamental speed c in
the experiments with quasi-stationary magnetic fields. He discovered that c is equal
to the speed of light that had been already known at that time independently from
astronomical measurements. On the ground of the coincidence of the two speeds,
Maxwell came to the conclusion that light is an electromagnetic wave – a great the-
oretical achievement.
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2.7.6
The center-of-momentum frame

Let us consider equations of motion for a composite system made up of N particles.
The particles can interact with each other via internal forces making the system self-
bounded in space. One can call such a system as a composite body. It is also possible
to have a system consisting of non-interacting particles like in physics of nuclear re-
actions in particle’ accelerators. In such system particles move independently before
and after the reaction and interact only during a short time interval when the reaction
takes place.

Let the system consists of N particles where each particle has a four-momentum

pµa =

(
Ea

c
, pa

)
, (a = 1, 2, ...,N) . (2.316)

One can formally define the total four-momentum of the system by equation

Pµ =

(
E

c
,P

)
, (2.317)

where the left side is an algebraic sum of the four-momenta of individual particles,

Pµ =

N∑
a=1

pµa = pµ1 + pµ2 + ... + pµN , (2.318)

measured with respect to an inertial reference frame S . This definition assumes that
the relativistic energy and three-momentum of the ensemble are additive quantities
[Rindler, 1960b]

E =

N∑
a=1

Ea = E1 + E2 + ... + EN , (2.319)

P =

N∑
a=1

pa = p1 + p2 + ... + pN . (2.320)

One draws the attention of the reader that summation in equations (2.318)-(2.320)
is performed on a hyperplane of simultaneity of a particular reference frame S . If
one takes another inertial frame of reference S ′, moving with respect to frame S ,
its hyperplane of simultaneity does not coincide with that of frame S . In case of
uniformly moving particles the result of the summation will not depend on the par-
ticular choice of the hyperplane, making the total four-momentum Pµ of the system
of particles to be a four-vector defined unambiguously. However, if the particles in
the system move with acceleration, their four-momenta pµ, are functions of time.
In this case, the total four-momentum Pµ of the ensemble of particles depends on
the choice of the hyperplane of simultaneity, and different observers may not agree
on the overall value of Pµ which will get dependent on the four-acceleration of the
particles and their mutual displacements. This situation is typical in the relativistic
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dynamics of gravitating bodies, where the definition of the four-momentum requires
more detailed investigation taking into account the mutual gravitational attraction of
the bodies. We discuss it in more detail in section 6.1.3.

It is convenient to introduce a concept of the relativistic center-of-momentum
frame (CM frame) of the system of particles. The center-of-momentum frame is
defined as a frame in which the spatial components of the total momentum are zero,

P = PCM = 0 . (2.321)

It is always possible to chose such a frame, though it may be not inertial. To this
end, let us consider motion of each individual particle in the system that is affected
by a four-force, Fµ

a (a = 1, 2, ...,N). The force can be algebraically separated in two
parts: internal Fµ

int a, and external, Fµ
ext a,

Fµ
a = Fµ

int a + Fµ
ext a , (2.322)

so that equation of motion of the a-th particle is

dpµa
dτa

= Fµ
int a + Fµ

ext a , (2.323)

where τa is the proper time on the worldline of the particle. Because one considers
motion of the system of particles, it is reasonable to use the coordinate time t instead
of the proper time of each particle which differ from each other as the particles move
with different velocities. In terms of the coordinate time, equation (2.323) becomes

dpµa
dt

= f µint a + f µext a , (2.324)

where the normalized force f µ = γ−1
a Fµ in accordance with definition (2.281). Equa-

tion of motion of the four-momentum of the system are obtained after taking a time
derivative from expression (2.318) and applying equation (2.324),

dPµ

dt
= f µint + f µext , (2.325)

where the net forces

f µint =

N∑
a=1

f µint a , f µext =

N∑
a=1

f µext a . (2.326)

In special relativity the third Newton law is valid in case of contact forces [Rindler,
1960b]. If the forces act at distance (electromagnetic, gravitational) there is an issue
of simultaneity of time and the third Newton law must be proven in each particular
case. Nevertheless, the most fundamental physical principles dictate that an isolated
system can not accelerate itself 33) and this effectively eliminates the net internal

33) Rocket motion is an exception but one does not consider it here. See [Ohanian, 2001, Section 5.6].
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force, f µint = 0. If, in addition to that, the total external force f µext exerted on the
system of particles is zero, the total four-momentum of the system is conserved,

dPµ

dt
= 0 , (2.327)

and the total energy E and the four-momentum P are constants of motion,

E = ECM , P = PCM . (2.328)

By choosing the constant of motion PCM = 0, one will have reach the goal of con-
struction of the center-of-momentum frame.

Equations (2.327), (2.328) are used in particle’s physics to calculate the reactions
of disintegration or collision of the particles [Tsamparlis, 2010]. Specifically, if there
is no interaction between the particles before and after a reaction, then, the initial
value of the total four-momentum, Pµbefore =

∑M
b=1 pµb , must be equal to its final value,

P
µ
after =

∑N
a=1 pµa ,

M∑
b=1

pµb =

N∑
a=1

pµa , (2.329)

where N and M are the total number of particles before and after the reaction, and
in general case, M , N. If the identity and number of particles before and after the
reaction is preserved, the reaction is called elastic; otherwise it is called inelastic.
In case of the elastic reaction both energy and three-momentum are conserved. In
case of inelastic reaction, only the three-momentum is conserved, and the energy
dissipates.

In the absence of the external forces, the law of conservation of the linear momen-
tum (2.327) tells us that the center-of-momentum frame moves with respect to the
inertial frame S with a constant three-velocity

vCM =
P

M
, (2.330)

where

M =
E

c2 , (2.331)

is the total rest mass of the particles that is constant, E = ECM, in the case of an
isolated system. One defines the four-velocity of the center-of-momentum frame as

uµCM ≡ γCM (c, vCM) , (2.332)

where γCM =
(
1 − v2

CM/c
2
)−1/2

. Then, the total four-momentum can be written down
as follows

Pµ =M (c, vCM) , (2.333)
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or, equivalently,

Pµ = mCMuµCM , (2.334)

where the effective rest mass of the system of particles

mCM ≡
M

γCM

, (2.335)

relates to the effective rest energy in the standard manner,

ECM = mCMc2 . (2.336)

In case of a closed system of N particles, velocities va = dxa/dt (a = 1, 2, ...,N)
of the individual particles are not so much different from the velocity vCM of the
center-of-momentum frame. It allows us to expand the effective energy in the power
series with respect to the ratio of v′a/c, where v′a is the relative velocity of a-th par-
ticle with respect to the center-of-momentum frame. Indeed, in the slow-motion
approximation the relative velocity, given by equation (2.174), can be approximated
as v′a = va − vCM, and the Taylor expansion of equation (2.336) with respect to v′a/c
yields

ECM =

N∑
a=1

[
Ea +

(
γa

γCM

− 1
)
Ea

]
(2.337)

=

N∑
a=1

Ea +
1
2

N∑
a=1

mav′a
2

+ O
(
v′4a /c

2
)
.

This indicates that the effective rest energy of the composite body is not simply the
sum of the rest energies of the individual particles but includes an additional term
that is the overall kinetic energy of the particles in the center-of-momentum frame.
The same reasoning, when applied to the effective rest mass, tells us that

mCM =

N∑
a=1

ma +
1

2c2

N∑
a=1

mav′a
2

+ O
(
v′4a /c

4
)
, (2.338)

which means that the effective mass of a composite body is larger than the sum
of the rest masses of individual particles because of their motion inside the body.
One should emphasize that in this (kinematic) consideration the potential energy
effects caused by the internal interactions between the particles due to electromag-
netic, gravitational, or any other forces, have been omitted. Taking into account the
potential energy of those internal interactions will make the effective rest mass of the
system of particles smaller than the sum of rest masses of particles. This effect is
known in physics as the defect of mass . We discuss it in application to the relativistic
dynamics of self-gravitating bodies in section 6.1.3.

In case, when the system of particles is not self-closed and interacts with an exter-
nal environment, the overall four-force may be not equal to zero. Then, the spatial
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components of equation (2.325) describes the accelerated motion of the center-of-
momentum frame of the system of particles with respect to the inertial frame,

dP
dt

= f ext . (2.339)

One can still introduce the center-of-momentum frame by making a coordinate trans-
formation to a frame moving with some acceleration which introduces the inertial
force to the right side of equation (2.339) canceling the external force of interac-
tion of the system with the environment. Discussion of this complicated question is
deferred to section 6.1.

2.7.7
The center-of-mass frame

The center-of-momentum frame is not the only frame associated with a system of
particles. Another useful frame is identified with the center of mass of the system
and is called the center-of-mass frame. In special relativity the center of mass is
defined by a three-dimensional vector

xCM =
1
M

N∑
a=1

mv axa , (2.340)

where mv a is the relativistic mass, and xa = xa(t) is the spatial position of a-th
particle taken on a hyperplane of simultaneity of an inertial frame S . The center-of-
mass frame is defined by the condition

xCM = 0 . (2.341)

If one can neglect possible time variations of the total massM and accelerations
of the particles, differentiation of equation (2.340) with respect to time will yield

dxCM

dt
=
P

M
, (2.342)

which tells us that the center of mass moves uniformly with respect to the frame in
which the total momentum, P, of the system of particles is constant. Moreover, by
comparing equations (2.342) and (2.330), one sees that the velocity dxCM/dt of the
center of mass is equal to velocity, vCM, of the center-of-momentum frame. Hence,
the center of mass is at rest in the center-of-momentum frame. This proves that the
center-of-mass frame can be identified with the center-of-momentum frame after a
constant displacement between the origins of the two frames is set to zero. If the
accelerations and the time variation of the total mass M can not be neglected, the
construction of the center-of-mass frame becomes more involved. It is discussed in
section 6.1.3 of this book.

Equation (2.340) admits relativistic four-dimensional generalization in the
Minkowski spacetime after introducing definition of the angular momentum of the
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system of particles,

Lµν =

N∑
a=1

(
xµa pνa − xνa pµa

)
, (2.343)

where pµa = mauµa is a four-momentum of a-th particle with ma being the rest mass
of the particle, and uµa = dxµa/dτa is its four-velocity. Due to the action-reaction
property of the internal forces, the net internal torque on the system must be equal to
zero 34)

N∑
a=1

(
xµa f νint a − xνa f µint a

)
= 0 . (2.344)

Assuming that the external forces are absent and the particles move without acceler-
ation, one can obtain the law of conservation of the angular momentum

dLµν

dt
= 0 , (2.345)

where the differentiation is with respect to the coordinate time t of the inertial frame
S under consideration. Relativistic center of mass appears in the components L0i of
the anti-symmetric tensor Lµν. Indeed, after making use of definitions of the total
mass,M, and the total momentum, P = (Pi), of the system of particles, one obtains

L0i =

N∑
a=1

(
x0

a pi
a − xi

a p0
a

)
= ct

N∑
a=1

pi
a − c

N∑
a=1

mv axi
a (2.346)

= c
(
Pit −Mxi

CM

)
,

which is equivalent to the first integral of the equation of motion of the center of
mass (2.342),

xCM = vCMt + x0 , (2.347)

where velocity of the center of mass, vCM = P/M, the constant displacement x0 =

L/(Mc), and vector L = (L0i).
Accounting for equation (2.346), one can give a special-relativistic definition of

the center-of mass frame as follows,

LµνPν = 0 (2.348)

where Pν is the total four-momentum of the system. Indeed, in the center-of-
momentum frame, where P = 0, definition (2.348) is reduced to the previous for-
mula (2.346) with L0i = 0, yielding xi

CM = 0. Equation (2.348) is known as the
Dixon-Tulczyjew supplementary condition [Dixon, 1979; Tulczyjew, 1959].

34) Strictly speaking, the vanishing property of the net internal torque must be proven.
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2.8
Energy-Momentum Tensor

2.8.1
Non-interacting particles

In the Newtonian mechanics any continuous distribution of matter - a gas, a liq-
uid, a solid - possess a mass density, and energy density, flux density, and stresses.
Relativistic mechanics unite these quantities to a single object, called the energy-
momentum tensor Tαβ. To see how it emerges in the mechanics of continuum let
us first consider a simple case of a medium consisting of non-interacting particles
(dust) moving with respect to an inertial reference frame xα = (x0, xi). Each par-
ticle has its own four-velocity uα = (u0, ui) = cγ(1, βi), where the Lorentz factor
γ = (1 − β2)−1/2, and βi = vi/c is a dimensionless velocity of the particle being
normalized to the invariant speed c. Each particle is at rest with respect to its own
comoving frame, ξα = (ξ0, ξi) = (cτ, ξi), where τ is the proper time on the worldline
of the particle, and the particle’s four-velocity uα = (c, 0). Let us consider the proper
mass density ε of the medium which is defined in the comoving frame as the ratio
of energy ∆E0 of the particles contained in three-dimensional element of the proper
volume, ∆V0 = dξ1dξ2dξ3, to this volume,

ε =
∆E0

∆V0
. (2.349)

We define now the energy density

ς =
∆E
∆V

, (2.350)

measured by an observer being at rest in the inertial frame xα. Our goal is to find out
the transformation property of the energy density.

Three-dimensional volume is not invariant with respect to the Lorentz transforma-
tion, ∆V , ∆V0. Real invariant in the Minkowski spacetime is a four-dimensional
volume 35)

∆Ω = dx0dx1dx2dx3 = dξ0dξ1dξ2dξ3 . (2.351)

One can easily establish the law of transformation of the three-volume after noticing
that dx0 = (dx0/dτ)dτ = u0dξ0/c along the worldline of the particle, where u0 = cγ.
Making use of this relationship in equation (2.351), one obtains that three-volume,
∆V = dx1dx2dx3, calculated in the inertial coordinates, xα, relates to three-volume,
∆V0, in the local frame, by equation

∆V0 = γ∆V . (2.352)

35) Transformation law of the four-volume from one inertial frame to another, must include the Jacobian
of the Lorentz transformation, J = det

[
∂ξα/∂xβ

]
. Direct calculation of the Jacobian by making use of

the matrix (2.82) of the Lorentz transformation reveals that J = 1. For this reason, the Jacobian is not
shown in equation (2.351). In a more general case of curvilinear coordinates, the Jacobian, J =

√
−g,

where g = det[gαβ] < 0 is the determinant of the metric tensor gαβ.
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On the other hand, the energy is transformed according to equation (2.265), that is

∆E0 = γ−1∆E . (2.353)

Equations (2.352) and (2.353), together constitute the law of transformation of the
energy density

ς = γ2ε . (2.354)

that tells us that the energy density of matter is neither a scalar nor a vector but a
component of a tensor of a second rank. It is identified with a time-time component,
T 00, of a tensor of energy-momentum (see Figure ??).

The energy density ε relates to the mass density ρ according to Einstein’s mass-
energy formula ε = ρc2. However, the mass density in the Newtonian mechanics
obeys the equation of continuity (1.32) which must be extrapolated to relativistic
mechanics. This prompt us to identify the energy flux with the components T 0i of
the energy-momentum tensor. The energy-momentum tensor must be symmetric,

Tαβ = T βα , (2.355)

in order to comply with the law of conservation of the intrinsic angular momen-
tum of the medium under consideration. This is related to the absence of intrinsic,
uncompensated torques that, if existed, might bring the medium to self-rotation in
violation of the third law of Newton [Landau and Lifshitz, 1975; Misner et al., 1973].
Due to the symmetry of the energy-momentum tensor, the energy flux, T 0i, must be
equated to the momentum density, T i0, of the medium. Again, since the momentum
density obeys in the Newtonian physics the macroscopic equations of motion (1.55),
the components T i j of the energy-momentum tensor should be identified with the
linear superposition of the momentum flux and internal stresses in the medium. The
energy-momentum tensor satisfies in the inertial coordinates, xα = (x0, x) = (ct, x),
the law of conservation

∂βTαβ = 0 , (2.356)

or more explicitly,

1
c
∂T 00

∂t
+
∂T 0 j

∂x j = 0 , (2.357)

1
c
∂T i0

∂t
+
∂T i j

∂x j = 0 . (2.358)

Covariant expression for the energy-momentum tensor of a continuous medium
consisting of non-interacting (dust) particles is given by

Tαβ = ρuαuβ , (2.359)

where ρ is the mass density (a scalar), and uα is the medium’s four-velocity. It is
postulated that the density ρ and the three-velocity vi = ui/u0 satisfy the Newtonian
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Figure 2.14 Physical meaning of the components of the stress-energy tensor Tαβ. Be aware
that due to the symmetry of the tensor, Tαβ = T βα, the momentum density, T i0, is equal to the
energy flux T 0i. Off-diagonal space-space components represent a linear combination of
anisotropic momentum flux and stress. Diagonal space-space components describe isotopic
pressure and momentum flux.
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equation of continuity (1.32) exactly. The energy-momentum tensor of dust has no
stresses or pressure. Its trace is negative

Tα
α = ηαβTαβ = −ρc2 < 0 , (2.360)

because the rest mass density is always positive.
One can easily check that tensor (2.359) satisfies the law of conservation (2.356).

Indeed, applying this law to equation (2.359), one obtains

∂β
(
ρuαuβ

)
= uα∂β(ρuβ) + ρuβ∂βuα . (2.361)

Here the second term in the right side is proportional to a four-acceleration of the
particle wα = uβ∂βuα as introduced in equation (2.165). Since the particles do not
interact the four-acceleration wβ = 0. The first term in the right side of equation
(2.361) can be simplified after expressing four-velocity ui in terms of three velocity,
ui = u0vi, and using the Newtonian equation of continuity ((1.32)). It yields

uα∂β(ρuβ) = uαuβ∂βu0 = uαw0 = 0 , (2.362)

because all components of the four-acceleration, wα, are zero for non-interacting
particles.

Particular interest represents a tensor of energy-momentum of an isolated particle
with mass m moving along trajectory xp(t) with velocity vp = dxp/dt. In special
relativity, this tensor is given by expression [Landau and Lifshitz, 1975; Misner et al.,
1973]

Tαβ = mγ−1uαuβδ(3)
[
x − xp(t)

]
, (2.363)

where γ =
(
1 − v2

p/c
2
)−1/2

, uα = γ(c, vp) is the particle’s four-velocity with vp =

vp(t) = dxp/dt, and δ(3)(x) is three-dimensional Dirac’s delta function that is defined
by the condition that integration of a smooth function f (t, x) over the entire space
yields∫

R3
δ(3)

[
x − xp(t)

]
f (t, x)d3x = f

[
t, xp(t)

]
. (2.364)

If one uses four-dimensional Dirac’s delta-function

δ(4)
[
x − xp(τ)

]
= δ

[
t − tp(τ)

]
δ(3)

[
x − xp(τ)

]
, (2.365)

where tp(τ) is the coordinate time and τ is the proper time on the worldline of the
particle, tensor (2.363) can be written in the form

Tαβ = m
∫

uα(τ)uβ(τ)δ(4)
[
x − xp(τ)

]
dτ , (2.366)

where the integral is taken along the particle’s worldline. In case of a system of N
particles with masses mi (i = 1, 2, ...,N), the energy-momentum tensor of the system
is

Tαβ =

N∑
i=1

mi

∫
uα(τi)uβ(τi)δ(4)

[
x − xp(τi)

]
dτi , (2.367)



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 195

195

that is a linear superposition of integrals taken along the worldlines of the particles
with τi being the proper time of i-th particle. Tensor (2.367) will be used in section
7.2 in order to find out a gravitational field of a moving massive body (star, planet,
etc.) by solving Einstein’s field equations.

2.8.2
Perfect fluid

One can move on and consider more complicated example of the energy-momentum
tensor of a continuous medium that cannot sustain a tangential or shearing force.
Such medium is known as a perfect (or isentropic, or ideal) fluid which entropy does
not change as the fluid moves. This is because the absence of shear stresses does
not allow elements of the fluid to exchange heat. Perfect fluid can be completely
characterized by its rest frame energy density, ε, and isotropic pressure, p. Energy-
momentum tensor of a perfect fluid is given in any inertial coordinates by

c2Tαβ = (ε + p)uαuβ + c2 pηαβ , (2.368)

where ηαβ is the reciprocal Minkowski metric tensor, and p is an isotropic pressure
related to ε by an equation of state p = p(ε), which is postulated separately. Perfect
fluids are often used in general relativity to model idealized distributions of matter,
such as in the interior of a star or in cosmology. This model of matter is also a good
approximation for solving various problems of relativistic celestial mechanics in the
solar system [Brumberg, 1972, 1991; Will, 1993]. If fluid is at rest, the energy-
momentum tensor (2.368) is reduced to a diagonal form

Tαβ = diag[ε, p, p, p] , (2.369)

which elucidates that the perfect fluid has no tangential stresses.
Tensor (2.368) is often presented not in terms of the rest energy density, ε, but in

terms of the rest mass energy, ρc2, and the energy of compression, Π, per unit mass.
The compression energy, Π, is caused by pressure p, and vanishes in a pressureless
fluid. The overall rest energy density is a linear superposition of the rest mass energy
of fluid’s particles and the compression energy per unit mass,

ε = ρ(c2 + Π) . (2.370)

After substitution this equation to definition (2.368) the energy-momentum tensor
acquires a new form [Fock, 1964]

Tαβ = ρ

(
1 +

Π

c2

)
uαuβ +

p
c2

(
uαuβ + c2ηαβ

)
. (2.371)

Pressure is related to the mass density by equation of state

p = p(ρ) , (2.372)
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which is a smooth, fully invertible function. In order to find out an equation relating
the compression energy Π to ρ and p, let us apply the law of conservation (2.356) to
tensor (2.371), and use the equation of continuity

∂β(ρuβ) = uβ∂βρ + ρ∂βuβ = 0 . (2.373)

One obtains

ρuαuβ∂bΠ + ρ(c2 + Π)wα +
(
uαuβ + c2ηαβ

)
∂βp + p

(
wα + uα∂βuβ

)
= 0 , (2.374)

where wα = uβ∂βuα is fluid’s four-acceleration, which does not vanish since the
non-zero pressure p means that fluid’s particle are self-interacting. One can simplify
equation (2.374) by projecting it on the direction of (that is contracting it with) four-
velocity uα. Taking into account that uα is orthogonal to both wα and uαuβ + c2ηαβ,
the projection yields

ρuβ∂bΠ + p∂βuβ = 0 . (2.375)

Four-velocity divergence, ∂βuβ, in this equation can be replaced by making use of
equation of continuity (2.373) that is

∂βuβ = −
1
ρ

uβ∂βρ . (2.376)

Finally, noticing that the derivative uβ∂b is just a derivative d/dτ with respect to
a proper time tau taken along the worldline of fluid’s particle, equation (2.375) is
reduced to a relation between differentials

dΠ −
p
ρ2 dρ = 0 , (2.377)

which is nothing else but the second law of thermodynamics applied to a compress-
ible perfect fluid 36). Integration of this equation yields

Π = −
p
ρ

+

∫ p

0

dp
ρ
, (2.378)

where the integration constant was fixed by the condition Π = 0 for p = 0.

2.8.3
Non-perfect fluid and solids

Real matter composing planets and stars is not made of a perfect fluid. There
are strong dissipation processes, heat exchange, tangential stresses, and other non-
equilibrium processes going on in the interior of celestial bodies. Tensor of energy-
momentum of such non-ideal matter has more complicated form and is characterized

36) In the rest frame of fluid the unit mass of fluid element is a constant of motion, and the increment of
density, dρ, is related to the increment of volume, dV , by a simple relationship dρ = −ρ2dV . It brings
equation (2.377) to a canonical thermodynamic form dΠ + pdV = 0 for isentropic medium.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 2 — 2016/2/13 — 14:05 — page 197

197

by several other parameters. Without going into details of derivation, which can be
found in [Fock, 1964; Landau and Lifshit’s, 1959; Weinberg, 1972] the most general
form of the energy-momentum tensor is given by

Tαβ = ρ

(
1 +

Π

c2

)
uαuβ + σαβ , (2.379)

where ρ is the rest mass density, and Π is the compression energy per unit mass, and
σαβ is the symmetric stress tensor that is orthogonal to the four-velocity

σαβuβ = 0 . (2.380)

Specific form of σαβ depends on the particular type of the medium, and can be fairly
complicated. We shall use tensor (2.379) for derivation post-Newtonian equations
of motion of celestial bodies in section 6. It is remarkable that one can pursue the
derivation without specification of σαβ that makes the post-Newtonian equations of
motion valid for any system of astronomical bodies.

2.8.4
Electromagnetic field

Electromagnetic field is a vector field (tensor field of rank one) described classi-
cally by a vector potential Aα. In quantum electrodynamics the field description is
replaced with spin-1 particles, called photons. Electromagnetic energy-momentum
tensor is build out of the Faraday tensor of electromagnetic field, Fαβ, that was in-
troduced in section 2.7.4. One has

4πTαβ = FαµFβ
µ −

1
4
ηαβFµνFµν . (2.381)

Employing equation (2.301) allows us to write down the components of Tαβ explic-
itly in terms of electric, E = (Ei), and magnetic, B = (Bi), fields:

T 00 =
1

8π

(
E2 + B2

)
, (2.382a)

T 0i = T i0 =
1

4π
(E × B)i , (2.382b)

T i j =
1

4π

[
−

(
EiE j + BiB j

)
+

1
2

(
E2 + B2

)
δi j

]
, (2.382c)

The component T 00 is the energy density ε = (E2 + B2)/8π of electromagnetic field,
and T i0 is the Pointing flux. The spatial components T i j of the energy-momentum
tensor of electromagnetic field give (with opposite sign) the Maxwell stress tensor
[Jackson, 1998]. If one chooses the inertial coordinates in which the electric and
magnetic fields are parallel and directed, let say, along x axis, the Maxwell tensor is
reduced to a diagonal form with a tension (negative pressure) of the electromagnetic
field, (E2 + B2)/8π, along the field lines and a (positive) pressure, (E2 + B2)/8π,
perpendicular to the field lines

Tαβ = diag[ε,−ε, ε, ε] . (2.383)
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If yet another inertial frame is chosen, where the electric and magnetic fields are
equal and perpendicular to each other, and axis x is orthogonal to their plane, the
energy-momentum tensor is not diagonal. It has components

T 00 = T 01 = T 10 = T 11 = ε , (2.384)

with all other components being nil. Tensor of energy-momentum of electromag-
netic field is traceless

Tα
α = 0 , (2.385)

that is a characteristic feature of any massless field moving with the speed of light.
The energy-momentum tensor of electromagnetic field is conserved, if and only if,

there are no electric charges in the space occupied by the electromagnetic field. In
case, when there are electric charges the divergence of the tensor becomes equal to
the Lorentz force exerted on the charges. Indeed. taking the divergence from tensor
(2.381) yields

∂βTαβ =
1

4π

[
∂βFαµFβ

µ + Fαµ∂βFβ
µ −

1
2
ηαβ∂βFµνFµν

]
. (2.386)

After lowering the free index with the Minkowski metric tensor, and making use of
anti-symmetry of the Faraday tensor, the above equation can be recast to the follow-
ing form

∂βTαβ = −
1

4π

[
Fαµ∂βFµβ −

1
2

Fµν
(
∂βFµν + ∂µFνβ + ∂νFβµ

)]
. (2.387)

However, the term enclosed to the round parentheses, vanishes identically due to the
Maxwell equation (2.304). The remaining term can be expressed in terms of the
electric four-current jαe by using the Maxwell equation (2.305). We conclude that

∂βTαβ = −
1
c

Fα
β jβe , (2.388)

coincides with the Lorentz force (2.300).
Though the energy-momentum tensor of electromagnetic field does not conserve

in the presence of electric charge, it does not mean that there is a violation of the law
of conservation. The charges are particles having masses so that the tensor of energy-
momentum of the field+charge system must be described by a linear superposition
consisting of the tensors of energy-momentum of the field and the particles. It leads
to the equations of motion of charges (2.19).

2.8.5
Scalar field

A scalar field is a tensor field of rank zero. In classical physics, there are many
examples of scalar fields such as the Newtonian gravitational potential or the electric
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potential in electrostatics. A temperature, humidity or pressure are also scalar fields.
In quantum field theory, a scalar field is associated with spin-0 particles. The most
famous examples includes the Higgs boson as well as the charged pion mediating the
strong nuclear interaction. In the Standard Model of elementary particles, a scalar
Higgs field is used to give the leptons and massive vector bosons their mass, via
a combination of the Yukawa interaction and the spontaneous symmetry breaking.
This mechanism is known as the Higgs mechanism [Higgs, 1964]. The Higgs boson
is the subject of searches at particle accelerators like Tevatron in Fermilab and the
Large Hadron Collider (LHC) near Geneva, Switzerland. Scalar fields are supposed
to cause the exponentially-accelerated expansion of the universe known as inflation
[Guth, 1981], helping to solve the horizon problem and giving a phenomenological
reason for the non-vanishing cosmological constant of cosmology.

Scalar fields can represent the gravitational interaction mixed up with a tensor field
of rank two which is the metric tensor in Einstein’s general relativity. Such scalar-
tensor theories are alternatives to general theory of relativity where the only field that
mediates gravity is the metric tensor. Examples of the scalar-tensor theories are the
Jordan-Fiertz theory [Fierz, 1956; Jordan, 1949, 1959] and the Brans-Dicke theory
[Brans and Dicke, 1961] as well as various multi-dimensional generalizations of
the Kaluza-Klein theory [Overduin and Wesson, 1997; Wesson, 2000]. Had a long-
range scalar mediator of gravity been present in nature, it might lead to a violation
of the principle of equivalence between gravitational force and the force of inertia.
It would change the Einstein-Infeld-Hoffmann (EIH) equations of motion [Einstein
et al., 1938] of massive bodies in the solar system 37). Detection of these hypothetical
violations is one of the primary goals of relativistic celestial mechanics in the solar
system and in binary systems with compact astrophysical objects like neutron stars
and/or black holes. Taking into account the importance of scalar fields for modern
gravitational physics and for facilitating discussion in section (4.2.1 of this book, a
brief description of the energy-momentum tensor of a scalar field is given below.

Exact form of the energy-momentum of scalar field depends on a particular theory.
The most simple case is a classical scalar field φ with potential V(φ) > 0 in the
Minkowski spacetime (no gravity). The energy-momentum tensor of such a field is
given by the expression [Mukhanov, 2005, page 21]

Tαβ = ∂αφ∂βφ −
1
2
ηαβ∂

µφ∂µφ + ηαβV(φ) . (2.389)

Taking divergence of the energy-momentum tensor, leads to the scalar field equations

∂βTαβ = φ +
∂V
∂φ

= 0 , (2.390)

where the second-order differential operator of partial derivatives

≡ ηµν∂µ∂ν = −
1
c2

∂2

∂t2 + 4 , (2.391)

37) EIH force of gravity depends on two parameters, β and γ, characterizing the coupling of the scalar field
with matter and gravity as shown in equation (6.82).
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is known as the D’Alambert operator describing propagation of the field in spacetime
with the fundamental speed c 38).

It is remarkable that if ∂µφ∂µφ < 0, then the energy-momentum tensor for a scalar
field can be reformulated in the form (2.368) of a perfect fluid by defining

ε = −
1
2
∂µφ∂µφ + V(φ) , (2.392a)

p = −
1
2
∂µφ∂µφ − V(φ) , (2.392b)

uα =
∂αφ√
−∂µφ∂µφ

. (2.392c)

In particular, assuming that the field is spatially homogeneous (∂iφ = 0), one has 39)

ε =
1
2
φ̇2 + V(φ) , p =

1
2
φ̇2 − V(φ) , (2.393)

where the time derivative φ̇ = dφ/dt. Equation (2.393) implies the weak energy
dominance condition, ε + p ≥ 0.

The energy-momentum tensor of a scalar field in the presence of gravity was in-
troduced by Brans and Dicke [1961] and has the following form

Tαβ =
θ(φ)
φ

(
∂αφ∂β −

1
2
ηαβ∂

µφ∂µφ

)
+ ∂αβφ − ηαβ φ , (2.394)

where ∂αβ ≡ ∂α∂β, and the constant θ(φ) is a dimensionless coupling function which
is to be determined from experiment. The boundary conditions are chosen such that
as θ(φ) → ∞ the scalar field φ → const. thus making Tαβ effectively nil. Brans-
Dicke tensor of energy-momentum for a scalar field can be further generalized to
include a potential V(φ) and the coupling of the scalar field with gravity. We discuss
it in section 4.2.1.

Santiago and Silbergleit [2000] argued that terms with the second derivatives on
the right side of equation (2.394) should not be included to the energy-momentum
tensor of the scalar field. These terms originate in the Brans-Dicke theory from vari-
ation of the gravitational part of the action, φR, after an integration by parts. Hence
they form a part of the dynamical description of gravity, and not of the scalar field
alone. They occur because the dynamics of gravity and that of the purely scalar
excitations are entangled in the physical (Jordan-Fierz) frame, as a result of the
non-minimal coupling between gravity and the scalar field. Santiago and Silber-
gleit [2000] introduced a new affine connection in terms of which the dynamical
terms of the gravitational field can be explicitly separated from those associated with
the scalar field. When doing this, the energy-momentum tensor of the scalar field is
simplified and is given by equation (compare with equation (4.7))

Tαβ =
θ(φ) + 3/2

φ

(
∂αφ∂β −

1
2
ηαβ∂

µφ∂µφ

)
, (2.395)

38) One reminds that the operator 4 is the Laplace differential operator introduced in equation (1.39).
39) One reminds that the Minkowski metric has signature ηαβ = diag(−1, 1, 1, 1).
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This energy-momentum tensor is well-defined as long as the energy density is posi-
tive. The above-mentioned argument about the energy-momentum tensor of a scalar
field in the presence of gravity is closely associated with the discussion of the mean-
ing of the Jordan-Fierz and Einstein frames in formulation of the field equations for
gravitational field. Tensor (2.394) is given in the Jordan-Fierz frame while tensor
(2.395) belongs to the Einstein frame.
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3
General Relativity
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3.1
The Principle of Equivalence

General theory of relativity stemmed from Einstein’s attempt to incorporate the New-
tonian theory of gravity to the framework of special theory of relativity. The guiding
idea that led Einstein, was his remarkable observation of the identity between the
force of gravity exerted on a particle in a homogeneous gravitational field and the
force of inertia existing in each uniformly accelerated reference frame. This identity
is now known as the principle of equivalence that can be also formulated in terms of
the equivalence between the inertial and gravitational masses of a particle.

3.1.1
The inertial and gravitational masses

One reminds that in a classical mechanics a point-like particle of mass m obeys
Newton’s second law of motion

ma = F , (3.1)

where a = d2x/dt2 is particle’s acceleration, and F is the external force exerted on
the particle. In the case of free fall in a gravity field, the force is defined by Newton’s
law of universal gravity

F ≡ mg , (3.2)

where g is the gravitational force per unit mass that is a gradient of the Newtonian
gravitational potential U taken at the position of the particle 1)

g = ∇U . (3.3)

The coefficient m in equation (3.1) describes the inertial properties of the particle,
that is how the particle responds to the force applied. On the other hand, the coeffi-
cient m in equation (3.2) determines the overall magnitude of the gravitational force
exerted on the particle by the external bodies.

The two laws, (3.1) and (3.2), are fundamentally different in the Newtonian me-
chanics. Therefore, rigorously speaking, one should have formulated them more
carefully as

mia = F , (3.4)

and

F ≡ mg g , (3.5)

where mi and mg denote now the inertial and gravitational masses respectively.
Hence, instead of one mass m one has two masses for one and the same particle.

1) See sections 1.2.1 and 1.2.5.
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Combining two equations results in the acceleration acquired by a particle in gravity
field

a =
mg

mi
g . (3.6)

One is now faced with the question if the ratio mg/mi is exactly equal to unity,
or, equivalently, whether the inertial mass, mi, and the gravitational mass, mg, have
the same numerical value. Had one concerned about only one particle this question
would have a positive answer. Indeed, by conveniently renormalizing the gravity
constant G (and, accordingly, the value of |g|) one would be always able to set the
ratio mg/mi equal to unity for this particle. The answer would remain positive if the
world consisted of many particles but all the particles in the universe were identical
to one another - for all of them the ratio mi/mg would be the same. However, the
world does not consist of identical particles. Hence, if one considers, in the same
gravity field g, two particles made of different substances 2), one can not keep the
ratio mg/mi = 1 for both particles by renormalizing the universal gravity constant
G. The other aspect of this question is associated with special relativity. According
to this theory, mass is proportional to energy. Therefore, one should expect that
two particles made of the same material but having different values of their internal
energy (say, different degrees of magnetization or different temperatures) are to have
different ratio of mg/mi. The equality of the inertial and gravitational mass can also
depend, in principle, on location of the particle in space and time.

Current opinion, supported by numerous experiments [Gundlach et al., 2009], is
that the inertial and gravitational masses of all particles in the universe are equal.
The reader, however, should understand that this point of view is an extrapolation to
infinite accuracy of observations having a finite precision - future experiments may
reveal the violation of the equality mg/mi = 1 [Braginsky, 1994; Damour, 2009a].

3.1.2
The weak equivalence principle

The assertion that the ratio mg/mi is the same for all point-like particles is called by
Dicke [1965] the weak equivalence principle (WEP), also known as universality of
free fall. Free fall implies that the particle is subject to the homogeneous gravity
force and the tidal force is negligibly small. Formulation of WEP also neglects the
particle’s gravitational potential and excludes self-gravity effects. Another important
aspect of WEP is that the experimental setup (including observer) must not influence
the test particle’s motion 3). Taking into account all the above considerations, WEP
is formulated as follows:

In a homogeneous gravitational field, the acceleration of a freely-falling, struc-
tureless, test particle is independent of the particle’s properties - its mass, com-

2) That is, the particles have different chemical compositions.
3) Observer has its own gravitational field which can affect the state of free motion (or rest) of test particle.

This phenomenon must be carefully taken into account in the most precise experiments with test masses
[Thorne and Winstein, 1999]
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position, or thermodynamical state.

As a result, the worldline of a freely-falling test particle in a given gravitational field
depends only on the particle’s initial position and velocity. Thus, all test particles
in this gravitational field will undergo the same acceleration, independent of their
properties.

Provided all particles fall in the same manner in an external gravity field, a freely-
falling observer should find the other freely-falling particles, in observer’s immediate
proximity, moving at uniform velocities relative to him. Thus, from the viewpoint of
a freely-falling observer, the mechanics of particles in free fall is indistinguishable
from their mechanics in the absence of gravity. To see this, consider a test particle
moving along worldline r = r(t) with nonrelativistic velocity in a constant homoge-
nous gravitational field g = g0. Assuming the WEP is valid, the Newtonian equation
of motion (3.6) of the particle reads

r̈ = g0 , (3.7)

where overdot denotes a time derivative. Switching to freely-falling coordinates, w,
connected with r via

r(t) = w(t) +
1
2

g0t2 , (3.8)

transform equation (3.7) into

ẅ = 0 , (3.9)

which means that in the absence of inhomogeneity of the gravitational field caused
by tidal forces, no gravity field can be detected in the freely-falling frame of refer-
ence. Notice that if the WEP were not hold, the ratio mg/mi , 1, and equation (3.9)
would not be satisfied for all freely-falling particles. This is the theoretical basis for
all experiments that are trying to find out the violation of WEP [Will, 1993].

This development enables us to cast the WEP into another form:

In a homogenous gravitational field, the laws of mechanics in a freely-falling
reference frame are the same as in the inertial reference frame in the absence of
gravity.

For thirty six years, the experiment by Braginsky and Panov [1972] with collab-
orators had remained the most accurate test of the WEP. According to their mea-
surement, the relative difference between the inertial and gravitational masses did
not exceed 10−12. This result was superseded only recently by Schlamminger et al.
[2008] who managed to decrease this difference down to 3 × 10−13.

3.1.3
The Einstein equivalence principle

WEP is formulated basically for mechanical motions of test particles having rest
mass. Einstein proposed that it would be natural to extend this principle from me-
chanics to electrodynamics and to any other type of non-gravitational fundamental
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interactions. He justified the proposal by making use of a new type of experiment in
physics called him Gedankenexperiment 4) that suggested that in a close vicinity of
a freely-falling observer all non-gravitational laws of physics are indistinguishable
from the same laws formulated in the inertial reference frames. In modern terms, the
Einstein equivalence principle (EEP) reads:

In a given gravitational field, the outcome of any local, non-gravitational ex-
periment is independent of the freely-falling experimental apparatus’ velocity,
of where and when in the gravitational field the experiment is performed and of
experimental technique applied.

The word local in the formulation of the EEP means that, with a necessary degree of
precision, the external gravity field can be assumed static and homogeneous. From
observing the worldline of a single particle dropped in an elevator, one cannot infer
whether the elevator is accelerating or is subject to gravity. However, measuring the
relative motion of two particles placed initially at a sufficiently large spatial sepa-
ration, one can discriminate between gravity and inertia by checking whether the
trajectories of the particles are either parallel or are converging towards (diverging
from) each other. Likewise, the EEP assumes that none of the observed particles is
heavy enough to alter the background gravity field with its own gravitational poten-
tial.

In the EEP, the independence from velocity, position, and time can be referred
to as local Poincaré invariance. Beside being an extension of Einstein’s relativity
principle employed in special relativity, the local Poincaré invariance also demands
constancy of the fundamental physical parameters showing up in the laws of physics.
Such parameters include, for example, the invariant speed c, the fine-structure con-
stant, electron-to-proton mass ratio, etc. However, they do not include the universal
gravitational constant G, because the EEP applies to non-gravitational experiments
only. For a comprehensive discussion of tests of the EEP, see the article by Haugen
and Lämmerzahl [2001] and references therein.

3.1.4
The strong equivalence principle

Even more general than the EEP is the strong equivalence principle (SEP), which
extends the idea of equivalence of the inertial and gravitational masses of test par-
ticles further on to self-gravitating objects like planets, stars, etc., that is to those
which intrinsic gravitational field is strong enough to influence the background grav-
itational field of external masses [Dicke, 1965]. This principle requires, among other
things, that the gravitational constant G be the same all the time and everywhere in
the universe. The SEP is formulated as follows:

The results of any local experiment, gravitational or not, in a freely-falling frame
of reference are independent of where and when in the universe it is conducted.

4) Gedankenexperiment is a German word meaning a "thought experiment".
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The word local now pertains to the effects of external gravity field of other bodies
alone, implying that, with a sufficient precision, this field remains static and ho-
mogeneous in the spacetime domain where the experiment is conducted. On the
other hand, the effects of internal gravitational field of the "experimental apparatus"
(which can be a particle, a planet, or even a star) are not ignored and must be incor-
porated to the definitions of the "apparatus" inertial and gravitational masses. There
is a certain mathematical difficulty in separation of the internal and external grav-
itational fields for a self-gravitating body. The fact of the matter is that in general
theory of relativity gravitational field does not obey the linear superposition princi-
ple. For this reason, it is rather unlikely, as shown for the first time by Fichtengolz
[1950], to formulate the concept of the background gravitational field of the external
masses that is fully independent of the internal gravitational field of the body under
consideration. As of today, theoretical research in this direction has a real progress
but still is a way too far from a final resolution of the problem.

The SEP can be also formulated as equivalence between the inertial and gravi-
tational masses of the self-gravitating body participating in the local gravitational
experiment. The equivalence assumes that the gravitational field contributes to the
both masses of the body on the same footing. Again, the problem is that the intrin-
sic gravitational field of the body under consideration interacts non-linearly with
the background gravitational field of the external masses. The concept of mass
becomes quite complicated and to some extent ambiguous. Moreover, the above
formulation of the SEP refers to locally-inertial frames. In special relativity, one
postulates the existence of inertial frames due to homogeneity and isotropy of the
Minkowski spacetime. In the presence of a self-gravitating body, however, one can-
not demand that the spacetime remains homogenous and isotropic as gravitational
field of the body affects the metric properties of the spacetime according to general
theory of relativity. One can perhaps imagine that the body is originally imbedded to
the Minkowski spacetime, whereafter its gravity field is “switched on" adiabatically
by slowly increasing the body’s gravitational potential from zero to its "nominal"
value without changing the background Minkowski spacetime. This thought experi-
ment, though, looks quite uncertain. Particularly, it remains unclear to what degree
the body in question can be kept isolated from other massive bodies in the universe
which may affect the body under consideration in a number of various ways. For
this reason, one would say that in the presence of gravity one has no a straight-
forward physical procedure for constructing a local inertial frame associated with
a self-gravitating body though, in principle, such a procedure can be constructed,
at least in the post-Newtonian approximation of general relativity (and scalar-tensor
theory of gravity) as demonstrated in Chapter 4 below.

Taken these comments into consideration, a better form of the SEP would be:

All the laws of nature formulated in an external homogeneous and static gravi-
tational field are the same as in a uniformly accelerated reference frame. These
laws are independent of where and when in the gravitational field the experi-
ment is performed, and are independent of the falling experimental apparatus’
velocity.
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The SEP is not a necessary building block of Einstein’s general relativity, in that
the Einstein gravity field equations can be derived without referring to this principle
5). The question is rather opposite, whether or not, the SEP follows from Einstein’s
field equations. Theoretically, fulfilment of the SEP for extended and self-gravitating
bodies within general relativity has been confirmed, at least, up to the second post-
Newtonian approximation 6) by Breuer and Rudolph [1982] and Kopeikin [1985].
Experimentally, its validity was confirmed, with a good precision, through timing
of binary pulsars [Taylor, 1994] and, to lesser extent, by laser ranging to the Moon
[Müller et al., 2008b]. So far, it remains unknown if the SEP is fulfilled in general
relativity exactly that is in all post-Newtonian approximations.

In section 6.3, one will touch upon the SEP also in the context of one of the
alternative theories of gravity, the so-called scalar-tensor theory where the SEP gets
violated.

3.1.5
The Mach principle

Despite the deceptively simple formulation of the equivalence principle, the road
to this principle was not easy. When embarking on the quest for a relativistic the-
ory of gravitation, Einstein was largely inspired by the philosophical views of Ernst
Mach. Many a time Einstein mentioned Mach’s theory of inertia as one of the in-
spirations for general relativity. Mach was cited also by later authors - Weinberg,
Rindler, Bondi, and others, - who came to different, sometimes opposite conclusions
on whether the general relativity theory goes along with the ideas of Mach.

The issue will forever remain subject to various exegeses, because Mach left to
us not a theory of inertia in a rigorous mathematical sense, but a set of qualitative
considerations, with no detailed calculations involved. Here comes a representative
excerpt from Mach [1883]:

“[The] investigator must feel the need of ... knowledge of the immediate con-
nections, say, of the masses of the universe. There will hover before him as an
ideal insight into the principles of the whole matter, from which accelerated and
inertial motions will result in the same way."

Pais [2005] complains about Mach’s style:

“Reading his discourse is not unlike reading the Holy Scriptures. The text is lu-
cid but one senses, perhaps correctly, perhaps wrongly, a deeper meaning behind
the words".

Therefore, what really matters is how Einstein and other scholars of gravity inter-
preted Mach’s philosophy.

5) For that, the EEP would be sufficient.
6) Post-Newtonian approximations represent an expansion of the solution of the Einstein equations in

powers of a small parameter ε = v/c, where v is a characteristic velocity of matter, and c is the invariant
speed (see section 4.2 for more detail).
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One theme by Mach is straightforward: he reiterated Descartes’ idea that only
relative motion is observable, but refused to follow Descartes in interpreting rest and
motion as two different states of a body. In this, Mach took the side of Leibniz,
rejecting the possibility of absolute space.

The second theme is the special way in which Mach rejected the absolute space.
According to Newton, the existence of the inertial force in accelerated reference
frame confirms that acceleration takes place against the background of absolute
space or æther. According to Mach, the background of absolute space is fictitious
and should be substituted with the direct interaction of a body under consideration
with all matter in the universe or of the “fixed stars", as Bishop Berkeley put it in his
“De Motu" essay of 1721, where he also dwelled upon the problem of inertia. This
way, Mach asserted that inertia is a phenomenon that relates the motion of a body to
the average motion of all other bodies. In Mach’s own words,

“When ... we say that a body preserves unchanged its direction and velocity
in space, our assertion is nothing more or less than an abbreviated reference to
the entire universe" [Mach, 1883].

In modern terms, the property of a reference frame to be inertial depends upon
whether or not it is in uniform motion relative to the distribution of distant quasars
realized as a fundamental reference system (see section 9.4). Although the above
quotation from Mach carries certain parallels with Berkeley, there also exists a dif-
ference in their views on inertia. Addressing the famous Newton’s experiment with a
rotating pail of water, Berkeley introduced the fixed stars only as reference bodies, to
emphasize that motion must be relative. When explaining the reason for the rotating
water surface to become concave, Berkeley accounted for the Newtonian concept of
the centrifugal force by considering the interaction of water with the pail’s wall but
not with the stars [Newburgh, 2007; Suchting, 1967]. Mach, however, believed that
the source of curvature of the water’s surface lies in the influence from the fixed stars.
Thus, the key point of Mach’s approach was that it is the fixed stars, which distantly
interact with a body, and they are the ultimate source of its inertia. This conjecture of
the dynamic origin of inertia is what Einstein [1918] later termed Mach’s principle.

Developing the relativity theory, Einstein borrowed from Mach’s ideas only a nec-
essary minimum - that inertia originates as a kind of interaction between bodies. In
this interpretation, Mach’s principle perfectly fits into Einstein’s edifice. In partic-
ular, Einstein believed that the relativistic precession of the orbit of a test particle
caused by rotation of a central body, currently known as the Lense-Thirring effect
[Ciufolini and Wheeler, 1995], was a manifestation of the so-interpreted Mach’s
principle. Einstein’s point of view was later questioned by Rindler [1994], who came
to the conclusion that Mach’s principle is antagonistic to the effect of the Lense-
Thirring precession. On the other hand, a careful investigation by Bondi and Samuel
[1997] demonstrated that Mach’s principle is multivalued, and Rindler [1994] had
attributed to Mach a strong particular assertion, the one that overall rigid rotations
and translations of a system are unobservable. Bondi and Samuel [1997] confirmed
that a milder version of the principle - that local inertial frames are affected by the
cosmic motion and distribution of matter - is in a perfect agreement with Einstein’s
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understanding of the Lense-Thirring effect.
Prior to Rindler [1994], Einstein’s viewpoint on Mach’s principle was challenged

also by Weinberg [1972] who interpreted the negative results of an experiment that
had been proposed by Cocconi and Salpeter [1958, 1960] and carried out by Hughes
et al. [1960] and Drever [1961] as a failure of Mach’s principle to conform to the
equivalence principle. Since the inertial mass of a body may, according to Mach’s
principle, be affected by the global distribution of matter, Cocconi and Salpeter
[1958, 1960] enquired if slight asymmetries in the distribution of matter at large
would cause slight deviations from, at least, some of the known laws of mechanics
and gravitation which are commonly assumed to be exact. They proposed an experi-
ment based on the Zeeman splitting of energy levels in a nucleus of excited atom, that
would check whether concentration of matter near the center of the Milky Way could
generate asymmetries in inertia. These measurements were performed by a number
of experimentalists starting from Hughes et al. [1960] and Drever [1961], that re-
sulted in a negative answer [Chupp et al., 1989; Lamoreaux et al., 1986; Prestage
et al., 1985] to find any effect causing the critics of Mach’s principle by Weinberg.

To acquit Mach’s principle, let us recall Cocconi and Salpeter’s line of reasoning.
As a point of departure, they rightly mentioned that Mach’s principle alone does
not specify the nature of the effect that matter at large has on the inertia of a body.
Considering the contribution of an external gravitational mass M to the inertia of a
test particle placed from M at a vector distance r away, they proposed that this con-
tribution is proportional to both M and to a negative power of |r|. As a next step,
they hypothesized that the contribution also depends on the angle θ between the di-
rections of r and the acceleration of the test particle. Cocconi and Salpeter [1958]
remarked that, if the contribution to inertia is θ-independent, then inertia would re-
main isotropic for any distribution of matter though the numerical value of the iner-
tial mass of a test particle still could depend upon its position. This makes it clear
that the Zeeman-splitting-based experiments were, in fact, tests not of Mach’s princi-
ple per se, but of Mach’s principle amended with the hypothesis of θ-dependence of
the inertial mass. This hypothesis is neither a part of Einstein’s relativity foundation
nor a part of the original Mach’s principle, but is an independent assertion. Thus,
refutation of this supplementary hypothesis does not disprove Mach’s principle.

Nevertheless, the first hypothesis by Cocconi and Salpeter [1958, 1960] - that the
contribution to the inertia of a test particle is a function of the distance |r| of the
particle from the external mass M - is still remain untouched. If this hypothesis
is repudiated by experiment, then perhaps the entire Mach’s principle will have to
be questioned. The topic evidently needs further experimental research. One pos-
sible theoretical framework to handle this problem was offered by Sciama [1953,
1964a,b], who developed a theory based on the assumption that the inertial mass m
of a particle is related to the gravitating mass M of the visible (causally-connected)
patch of the universe through mc2 = G

∫
dM/r where the integral to be taken over

the whole visible universe.
Another approach inspired by Mach’s principle was suggested by Brans and Dicke

[1961] and Dicke [1962b] who provided an early version of a scalar-tensor theory, a
treatment in which the gravitational interaction is mediated by a scalar field as well
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as the metric tensor of general relativity. For a condensed explanation of the Brans-
Dicke theory see, for example, Weinberg [1972, Chapter 7] and section 4.2 of the
present book. For a more detailed review of other aspects of Mach’s principle and
its versions, the reader is referred to the paper by Bondi and Samuel [1997] and to
the collection of articles in the book by Barbour and Pfister [1995].
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3.2
The Principle of Covariance

Any physical theory must be covariant in the sense that its content must be inde-
pendent of a coordinate choice 7). The covariance demands the form of physical
laws be unchanged under arbitrary differentiable coordinate transformations. In its
own turn it implies that the mathematical objects entering the physical laws ought
to transform, under coordinate transformations, as tensors or spinors of the same
rank 8), and so should do the differential operators acting on the tensors that is their
derivatives. The latter necessitates modification of the derivative operator, to make
sure that irrespectively of the choice of the coordinates it always maps a tensor to
another tensor. This section discusses the mathematical procedures associated with
the covariance principle.

3.2.1
Lorentz covariance in special relativity

The spacetime in special relativity is a four-dimensional manifoldM endowed with
the Minkowski metric. In inertial coordinates, xα, the Minkowski metric is a diag-
onal matrix ηαβ = diag(−1, 1, 1, 1). Equations of special relativity obey the Lorentz
group of symmetry which leaves the special relativistic laws form-invariant un-
der Lorentz transformation between the inertial coordinates. This form-invariance
constitutes the Lorentz covariance principle in special relativity. In particular, the
Minkowski metric does not change its form, when transformed from one inertial
coordinates xα to another xα

′

= Λα′
βxβ, where Λα′

β is the matrix of the Lorentz
transformation having been explained in section 2.3.5. In any inertial coordinates
the Minkowski metric

ηαβ = Λµ′
αΛν′

β ηµ′ν′ , (3.10)

where the repeated indices denote summation from 0 to 3.
Because the Lorentz transformation is linear, the operator of a partial derivative

transforms as a covector, that is

∂

∂xα
= Λµ′

α
∂

∂xµ′
. (3.11)

The same rule remains valid for higher-order partial derivatives. It automatically
makes all physical laws of special relativity such as Maxwell equations, second New-
ton’s law, etc., Lorentz invariant (see sections 2.1.5 and 2.7).

Lorentz covariance is the most fundamental principle of modern physics. Never-
theless, the word-combination "Lorentz violation" is mentioned quite often nowa-
days [Kostelecky, 2008; Kostelecký and Mewes, 2007]. What exactly does it mean?

7) The term covariant should not be confused with the related concept of a covariant vector from section
2.4.

8) In what follows, discussion of spinors is omitted.
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The phrase “Lorentz violation" refers actually to incomplete theories which are de-
scribed by the Lagrangians containing some terms which can be interpreted under
certain circumstances as violating the Lorentz invariance. The Lorentz covariance
is tightly connected with the fundamental nature of the invariant speed c 9) which
ensures that the spacetime in special relativity has neither preferred directions, nor
absolute reference frame, nor any other additional structure besides the Minkowski
metric. However, one should keep in mind that the Lorentz symmetry of special rel-
ativity is only a low-energy limit of the laws of physics, which may be not kept and
involve new phenomena at some high-energy level like the fundamental Planck scale
10) where the effects of yet unknown quantum fields and gravity become extremely
strong. At that scale one may expect deviations from the known fundamental laws
(electrodynamics, chromodynamics, etc.) that may be observed through the tiny vi-
olation of the CPT symmetry [Greenberg, O. W., 2002] tightly connected with the
Lorentz invariance of the Minkowski spacetime. Specifically those presumable de-
viations are called as a spontaneous violation of the Lorentz covariance. It is clear,
however, that such “violation" is nothing else but a matter of ignorance of the true
mathematical structure of the Lagrangian of the theory which should preserve the
Lorentz invariance at a new, more fundamental level.

Lorentz symmetry violation of a fundamental law is to be governed by an energy-
dependent parameter of the Lagrangian which tends to zero at the low-energy limit
where the violation vanishes. The parameter is linked to a privileged direction, V, in
spacetime that indicates to the existence of a preferred frame in vacuum. If, at high
energy scale, one attempts to ignore the additional vector field, V, the fundamental
law under consideration will not preserve its form under the Lorentz transformation.
On this occasion, Wald [1984] comments that the seemingly non-tensorial nature of
the law stems from a failure to explicitly incorporate the extra geometrical object,
V, into the equation. When the preferred direction V is incorporated into the fun-
damental law explicitly, the law recovers its symmetry with respect to the Lorentz
transformation at the cost of parametrization of the fundamental law by the "vacuum-
rest-frame" field V. Detection of the presence of such preferred frame effects, caused
by the existence of the hypothetical æther-like field V, at ultra-high energies can be
tested in cosmic ray experiments [Pierre Auger Collaboration, 2007] where the en-
ergy threshold of the most energetic cosmic rays (' 1020 eV) is much higher than
that of the Large Hadron Collider (' 1.4 × 1013 eV).

3.2.2
Lorentz covariance in arbitrary coordinates

According to the special relativity principle, the two inertial frames are equivalent,
in that any fundamental law of physics formulated in the two frames has an identical

9) One reminds that the invariant speed c is numerically equal to the speed of any massless fundamental
field. Electromagnetic and gravitational interactions propagate with the invariant speed c.

10) The Planck scale corresponds to energy 1.22× 1028 electron-volt (eV) that is equivalent to mass 2.18×
10−8 kg.
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form. However, the inertial frames are limited to spacetime coordinate systems re-
lated to each other by uniform relative motions only 11). Einstein recognized that the
special principle of relativity should be also applied to accelerated relative motions,
and he used the newly developed tool of tensor calculus to extend the global Lorentz
covariance (applying only to inertial frames) to the more general local Lorentz co-
variance which applies to all frames. This eventually led Einstein to producing gen-
eral theory of relativity.

The essential idea is that coordinates do not exist a priori in nature, but are only
a supplementary tool used in describing nature. Hence, they should not play any
role in the formulation of fundamental physical laws. The first step, in switching
from the Lorentz covariance in global inertial coordinates to arbitrary ones, is to
accept that transformation from the inertial coordinates, xα

′

, to arbitrary coordinates,
xβ = xβ(xα

′

), brings the Minkowski metric, ηµ′ν′ = diag(−1, 1, 1, 1), to about a more
general form 12)

gαβ(x) =
∂xµ

′

∂xα
∂xν

′

∂xβ
ηµ′ν′ , (3.12)

where, as usual, the repeated indices assume the summation, and the metric gαβ =

gαβ(x) is a differentiable tensor field of rank 2, with each component being a function
of the new coordinates xα. Of course, transformation (3.12) does not change the
signature of the metric. Any object entering a fundamental law must transform from
one coordinate chart to another in accordance with its tensorial nature like a scalar,
vector, or covariant/contravariant tensor of a higher rank (see section 2.4).

However, since the fundamental laws of physics are given in the form of the dif-
ferential equations, a problem arises with the transformation laws of the derivatives
of the tensor fields. Indeed, let us consider an arbitrary vector field V defined on
spacetime manifoldM that is locally parameterized with coordinates xα. Any other
chart xβ

′

= xβ
′

(xα) parameterizing the same patch of the spacetime is equally usable,
insofar as the coordinate transformation is non-singular and differentiable. While the
components Vα of V transform as a contravariant tensor of the first rank

Vα′ (x′) =
∂xα

′

∂xβ
Vβ(x) , (3.13)

their partial derivatives, generally, do not behave as components of a tensor,

∂Vα′

∂xγ′
=

∂xα
′

∂xβ
∂Vβ

∂xγ′
+

∂2xα
′

∂xγ′∂xβ
Vβ (3.14)

=
∂xα

′

∂xβ
∂xλ

∂xγ′
∂Vβ

∂xλ
+

∂2xα
′

∂xλ∂xβ
∂xλ

∂xγ′
Vβ .

The tensor law is “spoiled" by the presence of a term with a second derivative in
equation (3.14). Only when both coordinate charts xα and xα

′

are rectilinear, the
“bad" term vanishes and the transformation becomes tensorial.

11) As one has mentioned in section 2.3.5, transformation between any two inertial frames can also involve
in the most general case a constant spatial rotation and translation [Richtmyer, 1982].

12) The coordinate transformation, x = x(x′), is differentiable, and admits an inverse transformation, x′ =

x′(x), at least, locally.
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This non-tensorial nature of partial derivatives can be surmounted by changing
the partial derivative operator to the new, covariant derivative operator that trans-
forms as a tensor. In inertial frames with rectilinear coordinates, the so-modified
covariant derivative coincides with the regular partial derivative. Because the entire
Minkowski spacetime can be always covered by a single chart, representing an iner-
tial frame, this modification of the derivative is intended simply to make up for the
“twisting" of curvilinear coordinates that fit better for description of physics in non-
inertial (accelerating, rotating, etc.) frames as explained in section 2.6. However, the
mathematical value of the covariant derivative goes beyond that as will become clear
later in discussing the general relativity theory.

3.2.2.1 Covariant derivative and the Christoffel symbols in special relativity
Formula (3.14) is equivalent to the following expression for the vector differential

dVα′ =
∂xα

′

∂xβ
dVβ +

∂2xα
′

∂xλ∂xβ
Vβdxλ . (3.15)

This differential transforms in a non-tensorial (non-vectorial) manner, except when
both coordinate grids are rectilinear as the term with a second derivative vanishes
in such case. It is possible to replace the ordinary differential with another linear
operator of differentiation which transforms as a tensor. For this purpose, let us
introduce a new object, Γαµν, which is symmetric with respect to the sub-indices,
Γαµν = Γανµ, and transforms according to a non-tensorial rule 13)

Γαµν =
∂xα

∂xβ′
∂xλ

′

∂xµ
∂xρ

′

∂xν
Γ
β′

λ′ρ′ +
∂xα

∂xβ′
∂2xβ

′

∂xµ∂xν
. (3.16)

It is now easy to prove that a linear combination

DVα′ ≡ dVα′ + Γα
′

µ′ν′V
µ′dxν

′

, (3.17)

behaves as a vector. Indeed, taking into account equations (3.13), (3.15), and (3.16),
one obtains

dVα′ + Γα
′

µ′ν′V
µ′dxν

′

=
∂xα

′

∂xβ
(
dVβ + Γ

β
µνVµdxν

)
, (3.18)

that is

DVα′ =
∂xα

′

∂xβ
DVβ . (3.19)

The differential operator D introduced in equation (3.17) is called the absolute dif-
ferential, and the object Γαµν is known as the Christoffel symbol.

The covariant derivative of a vector field is defined by the following14) equation

∇βVα =
∂Vα

∂xβ
+ ΓαµβV

µ . (3.20)

13) The rule is intentionally chosen to be non-tensorial because it has to compensate for the non-tensorial
part of the transformation of the regular partial derivative as expressed by equation 3.14.

14) One reminds that a regular partial derivative is denoted with ∂aVβ = ∂Vβ/∂xα. Covariant derivative is
denoted with ∇αVβ.
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It is straightforward to prove that the covariant derivative of a vector field is trans-
formed as a tensor of the second rank

∇α′Vβ′ =
∂xβ

′

∂xν
∂xµ

∂xα′
(
∇µVν

)
. (3.21)

By definition, the covariant derivative of a scalar field φ coincides with its regular
partial derivative

∇αφ = ∂αφ = φ,α =
∂φ

∂xα
. (3.22)

The covariant derivative must also satisfy the chain rule for the product of two ten-
sors. In particular, taking a covariant derivative from the scalar VαWα, and making
use of the chain rule, one can check by inspection that the covariant derivative of a
covector must be defined as

∇αWβ =
∂Wβ

∂xα
− Γ

µ
αβWµ , (3.23)

where the term with the Christoffel symbols enters with the sign minus as opposed to
the definition (3.20) of a covariant derivative from a vector. The covariant derivative
from the covector is transformed as a covariant tensor of type (0, 2),

∇α′Wβ′ =
∂xµ

∂xα′
∂xν

∂xβ′
(
∇µWν

)
. (3.24)

The machinery of covariant differentiation easily extends from equations (3.20)
and (3.23) to tensor fields of all ranks. For example, for tensors of the second rank
of various types, the covariant derivatives have the following form

∇αS µν = ∂αS µν + Γ
µ
αβS

βν + ΓναβS
µβ , (3.25)

∇αT µ
ν = ∂αT µ

ν + Γ
µ
αβT

β
ν − Γ

β
ανT

µ
β , (3.26)

∇αUµν = ∂αUµν − Γ
β
αµUβν − Γ

β
ανUµβ . (3.27)

The reader can easily verify that these equations yield tensors of the third rank.

3.2.2.2 Relationship between the Christoffel symbols and the metric tensor
Once the components of the Christoffel symbols have their values set in one chart,
their values in any other coordinate chart are given by (3.16). Let us start from the
inertial coordinates xα

′

in which the components of the Christoffel symbol assume
zero values, Γ

β′

λ′ρ′ = 0, and transform it to the curvilinear 15) coordinates xα. Then,
equation (3.16) tells us that in the new coordinates

Γαµν =
∂xα

∂xβ′
∂2xβ

′

∂xµ∂xν
, (3.28)

and it is not equal to zero. It is remarkable that the Christoffel symbols Γαµν can be
expressed through the components of the metric and their derivatives. To this end,

15) The new coordinates, xα, are curvilinear, if they are not linear functions of the old coordinates xα
′

.
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let us rewrite equation (3.28) as

∂2xβ
′

∂xµ∂xν
=
∂xβ

′

∂xα
Γαµν , (3.29)

and compare it to the result of differentiation of equation (3.12)

∂gαβ
∂xλ

= ηµ′ν′
∂2xµ

′

∂xα∂xλ
∂xν

′

∂xβ
+ ηµ′ν′

∂xµ
′

∂xα
∂2xν

′

∂xβ∂xλ
. (3.30)

Substituting equation (3.29) to the right side of equation (3.30) allows us to re-write
it in the following form

∂gαβ
∂xλ

= gγαΓ
γ
βλ + gγβΓ

γ
αλ , (3.31)

where one has used equation (3.12) for the metric tensor in curvilinear coordinates.
Making use of two similar equalities - with indices α and λ transposed, and with
β and λ transposed, one can resolve equation (3.31) with respect to the Christoffel
symbols. It yields

gλαΓλβγ =
1
2

(
∂gαβ
∂xγ

+
∂gγα
∂xβ

−
∂gγβ
∂xα

)
(3.32)

According to definition the contravariant metric tensor gαβ is the inverse with respect
to its covariant components

gανgνβ = δ
β
α . (3.33)

Applying this equality in equation (3.31), one finally obtains

Γαβγ =
1
2

gαλ
(
∂gλβ
∂xγ

+
∂gλγ
∂xβ

−
∂gβγ
∂xλ

)
, (3.34)

a milestone result relating the Christoffel symbols to the metric and its first deriva-
tives. Importantly, equation (3.34) makes the Christoffel symbols vanish when gαβ
is the (constant) Minkowski metric. This agrees with the starting point of the calcu-
lation - setting the Christoffel symbols zero in the inertial coordinates.

At this point, it is worthwhile to mention that the Christoffel symbols represent
a particular example of a new geometric object, the affine connection, that will be
introduced in section 3.4 on a more systematic basis. The affine connection is inde-
pendent of the metric tensor in the most general case of an affine manifolds which
are specific to some alternative theories of gravity. Spacetime manifold of general
relativity is more restrictive and does not allow existence of the affine connection
being independent of the metric tensor. This limitation on the affine connection is
also employed in the parameterized post-Newtonian (PPN) formalism [Will, 1993]
which is commonly used for experimental testing of general relativity.
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3.2.2.3 Covariant derivative of the metric tensor
Taking covariant derivatives from the metric tensor gαβ with the help of equation
(3.27) and using (3.31) one easily proves that the covariant derivative from the metric
tensor is identically zero

∇γgαβ ≡ 0 . (3.35)

Differentiation of equation (3.33) with accounting for the chain rule and equation
(3.35) also yields

∇γgαβ ≡ 0 . (3.36)

An important consequence of these two equations is that the metric tensor is constant
with respect to covariant differentiation.

3.2.3
From Lorentz to general covariance

The introduction of the covariant derivative to special theory of relativity allows us to
formulate it in more general way. The global Lorentz covariance is preserved but it is
now applicable in non-inertial frames covered with arbitrary coordinates. Any fun-
damental law of special relativity becomes covariant in the sense that it transforms
in accordance with the laws of tensor calculus in arbitrary coordinates introduced in
the Minkowski spacetime.

This formulation significantly extends the domain of applicability of special theory
of relativity. For example, it allows us to study physical processes in accelerated
and rotating frames of reference, which are not inertial. Nevertheless, the extended
Lorentz covariance is still limited to the case of the global Minkowski spacetime.
The mathemtical objects that appear in the arbitrary coordinates - the metric tensor,
gαβ, and the Christoffel symbols, Γαβγ - does not bear a new geometric significance
because they are obtained directly from the Minkowski metric by the coordinate
transformation. It is always possible to make the Christoffel symbols, Γαβγ, vanish,
and the metric tensor gαβ to become a Minkowski metric ηαβ = diag(−1, 1, 1, 1), in
the entire Minkowski spacetime by transforming the curvilinear coordinates back to
those employed by the inertial observers.

It is conceivable however to make a next step ahead. Minkowski spacetime is not
the most general type of manifolds as it can be covered by a single coordinate chart
corresponding to a global inertial reference frame. Most of the manifolds studied
in mathematics, do not admit such a luxury - two or more coordinate charts are,
in general, required to cover them. It makes impossible to nullify the Christoffel
symbols at each point of such manifolds by making a global coordinate transform
- it can be done only in a limited domain of the manifold M covered by the local
coordinates. The Christoffel symbol, introduced in section 3.2.2.1 as a tool to make
partial derivatives covariant in arbitrary coordinates, becomes a non-trivial geometric
object on the manifold M, called affine connection. The affine connection is not
entirely associated with the choice of coordinates. It determines the affine structure
of the manifoldM that is the law of parallel transport of tensors from one point of
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the manifoldM to another. The law of transformation (3.16) of the affine connection
from one coordinate chart to another remains the same on arbitrary manifold but its
applicability becomes local and can not be extended to entire manifold.

Einstein realized that the formalism of differential geometry on manifolds en-
dowed with the affine connection, is a key to formulation of the most general type
of covariance in nature including gravity. According to Einstein, the principle of
general covariance consists of two parts:

A. Fundamental laws of physics must not depend on the choice of coordinates.
B. Fundamental laws of physics must not depend on a prior geometry of spacetime.

Part A of the principle tells us that a fundamental law must be formulated in the lan-
guage of tensor calculus that relies upon general formalism of the covariant deriva-
tive. Part B of the principle tells us that the fundamental law is local and its tensorial
form is not affected by the choice of the structure of the spacetime manifold M
which is defined by the distribution of matter and other physical fields.

The principle of general covariance still remains the center of a discussion that
ignited almost immediately after the birth of Einstein’s theory of general relativity.
The question, that goes back to Kretschmann [1917], is whether general covariance
is merely a mathematical requirement which is physically vacuous, or is a manifesta-
tion of a non-trivial physical circumstance distinguishing Einstein’s theory of gravity
from others. In a brief form, the counter-argument furnished by Kretschmann [1917]
against the fundamental role of general covariance can be put like this:

Any theory of space and time can be given a generally covariant formulation
as long as we introduce a sufficient number of auxiliary fields transforming in a
manner necessary to serve one’s demands; so the principle of general covariance
contains no specific information that could be used to build a new theory.

Kretschmann’s objection would make sense if, and only if, one did not go beyond
the framework of special relativity. Indeed, the part A of the principle of general
covariance is a pure mathematical statement which can be applied to formulate any
physical law, even if it has no fundamental value, in a covariant form [Kadomtsev
et al., 1972; Tyapkin, 1972]. On the other hand, the part B of the general covariance
principle is a cornerstone in the building of the Einstein theory of gravity - the general
relativity. In special relativity the covariance was achieved through a formal re-
arrangement of the already known equations under condition that prior geometry is
fixed and remains Minkowski. General theory of relativity has no prior geometry, it
must be determined from the gravitational field equations formulated by Einstein in
1915 16).

16) In approximately the same time, D. Hilbert derived Einstein’s equations from a variational principle.
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3.2.4
Two approaches to gravitation in general relativity

Einstein’s theory of general relativity identifies gravitation and geometry of space-
time manifold M, which is not globally Minkowski. This leads to geometrization
of the fundamental laws of nature, which become naturally coupled with the gravi-
tational field through the affine connection (the Christoffel symbols) that defines the
covariant derivative on the manifold M. The manifold M has a curvature 17) that
is not constant, and may be topologically nontrivial 18). Thus, there is no chance to
cover the spacetime manifoldM with one non-singular chart. However, one expects
the manifold M to be locally, in some vicinity of each point P, equivalent to the
Minkowski spacetime in the sense that there is a local inertial frame at P in which
the metric tensor reduces to the Minkowski metric, gαβ(P) = ηαβ = diag(−1, 1, 1, 1),
and the Christoffel symbols vanishes, Γαβγ(P) = 0. Physical fields and matter
are described by various geometric objects - scalar, vector, tensor, etc. The local
Minkowski spacetime is tangent to the manifoldM at the point P, and algebraic oper-
ations on the geometric objects are performed in the tangent spacetime. Comparison
of similar geometric objects being pinned down to two different tangent spacetimes
is performed with the law of parallel transportation of the object from one tangent
space to another. This involves the concept of the covariant derivative and the affine
connection. General relativity postulates that the covariant derivative of the metric
tensor is zero, which is a mathematical expression of the physical principle of equiv-
alence that has been discussed in section 3.1. This postulate defines unambiguously
the Christoffel symbols through equation (3.34). The metric tensor itself is deter-
mined by solving the Einstein gravity field equations discussed below in section 3.9.
This brief discussion of the Einstein’s theory of gravity is fully consistent with the
general principle of covariance and does not rely upon any assumption about prior
geometry.

Many researchers were not completely satisfied with the geometrization of physics
as proposed by Einstein. Indeed, the geometrization makes it difficult to put general
relativity on the same footing as quantum mechanics and/or other particle physics
theories which require some prior background geometry. A number of researchers
suggested an alternative approach to gravity in which the gravitational field is consid-
ered as a classic analogue of the quantum field theory of tensor particles having spin
2 and admitting a non-linear self-interaction. This tensor field is defined on the flat
Minkowski background of the special relativity like a vector electromagnetic field in
Maxwell’s theory or a spinor fields in particle’s theory were defined. Original ap-
proaches to find out the equations of the spin-2 field were limited by a linear approx-
imation with respect to the amplitude of the field [Kraichnan, 1955; Ogiyevetsky and
Barinov, 1965; Weinberg, 1965]. It is not surprising that they disagreed with general

17) Curvature is a new geometric object on the manifold. It corresponds to the tidal force in the Newtonian
theory of gravity (see section 3.7 for further details).

18) For more accurate definition of manifold, formulated in the language of topologies see, for example,
the book by de Felice and Clarke [1990].
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relativity. It was Deser [1970] who had taken into account the non-linear nature of
the tensor field and discovered that the final equations for this field exactly coincides
with the Einstein equations. Grishchuk et al. [1984] and Popova and Petrov [1988]
went further, demonstrating that any background spacetime can be employed as a
starting arena for the tensor-field theory of gravity, and that a non-linear dynamical
theory developed thereupon turns out to be mathematically equivalent to Einstein’s
general relativity. These works strongly support the idea that the background ge-
ometry, though rather useful for some mathematical applications [Grishchuk, 2009],
is physically unobservable, and can not be an integral part of the theory of general
relativity 19). Thus, the field-theoretical study of general relativity confirmed the
physical importance of the principle of general covariance in a new, fascinating way.

This book relies upon geometrical approach to general theory of relativity. It re-
quires a rather detailed discussion of differential geometry on manifolds and geo-
metric structures associated with it. These concepts will be introduced in a few sub-
sequent chapters. One starts from the definition of differential manifold and tangent
space.

19) Scalar-tensor theories of gravity have no prior geometry either [Will, 1993]. Scalar-tensor theory was
worked out by Brans and Dicke [1961]; Fierz [1956]; Jordan [1949, 1959] and further extended to take
into account the scalar field multiplet by Damour and Esposito-Farese [1992] (see section 4.2.1).
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3.3
A Differentiable Manifold

One has already discussed the concept of manifoldM in relation to the Minkowski
spacetime in section 2.2.1. It is well-known that it can be entirely covered by a
single coordinate chart forming an inertial reference frame in the whole spacetime.
The spacetime of general relativity and any other viable theory of gravity is more
complicated and is not reduced to the Minkowski spacetime globally. It means that
the mathematical description of topological structure of the manifoldM should be
further developed to take into account its local properties in different locations.

3.3.1
Topology of manifold

In differential geometry and topology, a manifold is a continuous set of points that
on a small enough scale resembles the Euclidean space Rn of a dimension n. The
dimension of the manifold is, then, n and it is a local invariant. For example, space-
time in general relativity is a four-dimensional manifoldM, n = 4. Manifold looks
locally like a Euclidean space in a purely topological sense which means that each
manifold can be locally reduced to the Euclidean space by doing homeomorphic
transformation of a sufficiently small region of the manifold that is, roughly speak-
ing, its continuous stretching and bending. Definition of manifold does not include
any particular and consistent choice of such concepts as distance, angles, parallelism
of vectors, etc. In particular, topologically similar manifolds can have an infinite
number of ways to specify distances and angles. In order to discuss these and other
properties of a manifold, one needs to endow it with additional structures and to
consider differentiable and Riemannian manifolds discussed below.

An intrinsic definition for differentiable manifolds in terms of local coordinate
charts was introduced by Weyl in 1913 [Weyl, 1964]. On the other hand, Whitney
[1936] and Nash [1956] have developed an extrinsic definition of manifold from the
point of view of its embedding to a Euclidean space of higher dimensions. They
showed that the intrinsic and extrinsic definitions are equivalent 20). This basic re-
sult shows that manifolds may be treated intrinsically or extrinsically, as one wishes.
One, however, prefers the intrinsic definition because it neither relies upon particu-
lar details of the procedure of embedding of the manifold to the Euclidean space of
higher dimensions nor on assumptions about the number of these dimensions. Ex-
trinsic point of view is valuable in some mathematical and physical applications like
in string theory or quantum gravity but there are no yet experimental evidences that
the four-dimensional spacetime of general relativity is really embedded to a space of
higher dimensions.

20) The pioneering role of other scientists in developing the concept of a differential manifold is discussed
by Shields [1988].
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3.3.2
Local charts and atlas

The structure of a differentiable manifold is encoded by a collection of local coor-
dinate charts that form an atlas of the manifold. The composition of one chart with
the inverse of another chart is a differentiable function called a transition map that
is equivalent to a coordinate transformation from an open subset of Euclidean space
to the manifold and then back to another open subset of Euclidean space. In case of
the spacetime manifoldM the transition map is given by four (transition) functions
xα = xα(yβ) (α, β = 0, 1, 2, 3) where xα and yα are local coordinates of a point P on
the manifoldM corresponding to two charts.

One assumes the coordinates are smooth functions so a determinant of the matrix
of transformation Λα

β = ∂xα/∂yb is not singular at the domain of intersection of
the two local charts. We also assume the determinant of the transition map is posi-
tively defined in all intersections of the charts of the manifold’s atlas that excludes
non-orientable manifolds like the Möbius strip or the Klein bottle. We shall further
assume that the transition functions are analytic that is they can be expanded in the
infinite Taylor series around any point of the spacetime manifoldM.

3.3.3
Functions

Function f on a differentiable manifold M maps each point of an open set of the
manifold to one-dimensional Euclidean space R1. In local coordinates the function
is represented as f (xα) where xα are the coordinates of a point on the manifoldM. If
all partial derivatives of the function with respect to the local coordinates exist up to
the order k, the function is called Ck-differentiable or simply Ck-function. We shall
basically work with functions which are differentiable an infinite number of times,
that is C∞-functions. We shall also admit that these functions are analytic, that is
they can be expanded in an infinite Taylor series in the vicinity of each point.

3.3.4
Tangent vectors

Vector space has been introduced axiomatically in section 2.3 in relation to the
Minkowski spacetime. Spacetime of general relativity has more complicated struc-
ture making the concept of vector meaningful only locally at each point of the man-
ifoldM. This localization of vector can be performed with the help of the operator
of directional derivative introducing a tangent vector to the manifoldM.

To formalize this concept, let us consider a curve Cτ on a manifoldM that maps
points of an open interval of one-dimensional Euclidean space R1 to the manifoldM.
In local coordinates, xα, the curve Cτ is given in the form of four functions, xα(τ),
with τ being a continuous parameter along the curve. At this stage the metrical
nature of the parameter τ is irrelevant and, in fact, can not be identified as the metric
tensor has not yet been introduced. Fact of the matter is that the definition of a
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parameterized curve on manifold does not depend on whether it is endowed with the
metric or not.

Tangent (contravariant) vector V at a point P of a manifold M is defined as an
operator of differentiation d/dτ along the curve Cτ passing through the point P. It
maps any function f at the point P of the manifoldM to a number d f /dτ from one-
dimensional Euclidean space R1. In the local coordinates the mapping of function f
to R1 becomes a function g(τ) = f [xα(τ)]. Its differentiation along the curve yields

dg
dτ

=
∂ f
∂xα

dxα

dτ
, (3.37)

As this equation must be valid for any function f , one can omit it from the equation
which becomes

d
dτ

=
∂

∂xα
dxα

dτ
. (3.38)

Four numbers dxα/dτ define components Vα of the vector V being tangent to
the curve Cτ, that is Vα = dxα/dτ. The components depend on the particular
parametrization of the curve because if another parameter λ , τ is chosen along
it, the components of the vector will change their magnitude

Wα =
dxα

dλ
=

dxα

dτ
dτ
dλ

= Vα dτ
dλ

, (3.39)

where one has assumed that the parameter τ = τ(λ) is a smooth function, and
dτ/dλ , 1 on the curve. We shall accept that two curves, Cτ and Cλ, are different
even if they are passing through the same points on the manifold but with different
values of their parameters. This is because they define two formally different map-
pings of the points of the manifold M to R1. Thus, one postulates that each curve
on the manifold defines only one tangent vector at each point. In a coordinate-free
language the tangent vector V to a curve Cτ is identified with the operator d/dτ

V ≡
d
dτ

, (3.40)

that acts on scalar differentiable function f and converts them to numbers,

V[ f ] ≡
d f
dτ

. (3.41)

Notice that the square brackets in the notation V[ f ] mean that function f is consid-
ered as an argument of the operator of differentiation V. In particular, the value of a
scalar function f on a basis vector eα is a directional derivative of function f along
this basis vector, eα[ f ]. In a coordinate basis eα = ∂/∂xα, and hence

eα[ f ] = ∂α f =
∂ f
∂xα

. (3.42)

This allows us to recast equation (3.41) to more transparent form

V[ f ] = Vα∂α f . (3.43)
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Tangent vectors are not linear functions on scalars in the sense that for the product
of two smooth functions, f and g, tangent vector V must obey the Leibnitz rule:

V[g f ] = gV[ f ] + f V[g] . (3.44)

It turns out that while each curve defines a tangent vector uniquely, each vector
at a given point of manifold is tangent to an infinite number of curves. Indeed, two
different curves, Cτ and Cλ, passing through a point P of the manifold produce one
and the same vector at this point, if the parameters, τ and λ are related in such a way
that at the point P the derivative (dτ/dλ)P = 1. This condition does not impose any
other restriction on functional dependence of τ from λ. This short discussion brings
to a conclusion that each tangent vector at a point P of a manifold defines an entire
class of equivalence of curves passing through this point.

3.3.5
Tangent space

A set of tangent vectors defines a vector space at each point P of manifoldM. This
vector space at each point of the manifold is called a tangent space. In order to prove
this statement, let us take two different curves, Cτ and Lλ, passing through the point
P. At this point the two curves have two tangent vectors

V =
d
dτ

=
dxα

dτ
∂

∂xα
, (3.45a)

U =
d

dλ
=

dxα

dλ
∂

∂xα
, (3.45b)

where one has used local coordinates xα. Now, one picks up two arbitrary constant
numbers, a and b, and form a linear combination

aV + bU =

(
a

dxα

dτ
+ b

dxα

dλ

)
∂

∂xα
. (3.46)

It can be interpreted as a new vector

W =
d

dσ
=

dxα

dσ
∂

∂xα
, (3.47)

that is tangent to a third curve Sσ passing through the point P, and it has coordinates

dxα

dσ
= a

dxα

dτ
+ b

dxα

dλ
. (3.48)

This proves that operators of differentiation along all possible curves passing through
point P of the manifold, form a vector space at this point 21). Dimension of the

21) We emphasize that this vector space operates with linear combinations of vectors with constant numer-
ical coefficients: a, b, etc. in order to comply with the Leibnitz rule 3.44.
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vector space coincides with that of the manifold. Making use of the formalism of
this section, it is straightforward to prove that all axioms of vector space introduced
in section 2.3.1 remain valid in a tangent space.

It is important to understand that each point of the manifoldM has its own tangent
space. Different tangent spaces do not overlap, and are algebraically independent.
Vectors residing in one tangent space have no relation to vectors from another tan-
gent space, and they can not be compared to each other. Comparison between tan-
gent spaces can be established if one introduces an additional geometric structure on
manifold called affine connection. We shall discuss it in next section 3.4.

Spacetime manifold of general relativity and its tangent space are four-
dimensional. Each tangent space in this case has four basis vectors eα (α = 0, 1, 2, 3)
which are functions of the point on the manifold to which the tangent space is at-
tached. Any vector V that belongs to the tangent space can be decomposed in basis
components

V = Vαeα . (3.49)

Especially convenient for many applications is the case of a coordinate basis which
basis vectors ∂/∂xα are tangent to the coordinate lines of the local coordinate grid.
Coordinate basis has been used, for example, for decomposition of vector V in co-
ordinate components in equation (3.45a). In particular, coordinate components of
the coordinate basis vector ∂/∂xα coincide with the Kronecker symbol δβa, where the
index α = (0, 1, 2, 3) numerates the basis vectors, and the index β = (0, 1, 2, 3) nu-
merates the components of the vector in this basis. More explicitly, the components
of the coordinate basis vectors in the chosen coordinates are

∂

∂x0 = (1, 0, 0, 0) ,
∂

∂x1 = (0, 1, 0, 0) ,
∂

∂x2 = (0, 0, 1, 0) ,
∂

∂x3 = (0, 0, 0, 1) ,

(3.50)

Had another basis, eα̂ = Λβ
α̂eβ, been chosen in the tangent space, the vector V

remained the same but its components would change

V = V α̂eα̂ . (3.51)

Comparing equations (3.49) and (3.51) yields the law of transformation of the vector
components

Vα = Λα
β̂V

β̂ . (3.52)

Equation (3.52) is known as the vector transformation law. The matrix of transfor-
mation depends on the point of the manifold, and changes smoothly from one tangent
space to another.

Vector field V on a manifold is a rule that assigns a specific numerical value to
a tangent vector at each tangent space over manifold. Different vector fields define
different tangent vectors. In local basis vector field V is defined by its components
Vα which are smooth functions on the manifold.
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3.3.6
Covectors and cotangent space

One has discussed covectors in section 2.4.2. They naturally appear in tensor al-
gebra as linear functions mapping vectors from a vector space to numbers in the
Euclidean space R1. Now, one has to generalize this concept to the case of a differ-
ential manifold. It can be done similarly to what one did with definition of a vector in
section 3.3.4. Vector at point P of a manifold was defined as a class of equivalence
of smooth curves passing through this point. It led to the identification of vectors
with the operators of differentiation along the curves.

Let us consider an arbitrary set of smooth functions f , g, h,..., in a neighborhood of
a point P on a manifold. We shall call two functions, f and g, equivalent if they have
the same first-order behavior near P. In local coordinates xα the equivalence of the
two functions means that their values and the values of their first partial derivatives
coincide at the point P: f (x0) = g(x0) and (∂ f /∂xα)x=x0 = (∂g/∂xα)x=x0 , where x0 are
the local coordinates of the point P. Differential 1-form or covariant tangent vector
or, simply, covector Ṽ at the point P of the manifold is a class of equivalence of all
smooth functions at P. Covectors are identified with the differentials of the smooth
functions.

The most important example of a covector is a gradient, denoted as d̃. It is defined
in the local coordinates of a neighborhood of a point P by the rule

d̃ f ≡
∂ f
∂xα

dxα , (3.53)

where four numbers ∂ f /∂xα define the coordinate components of the gradient which
are contracted with the increments of the coordinates, dxα, being tangent to the hy-
persurface of a constant value of function f passing through the point P. Though
function f explicitly enters equation (3.53), the components of the gradient do not
depend on its particular choice because the gradient is defined as a class of equiva-
lence of all functions defined in the neighborhood of the point P. Hence, function f
can be removed from the definition of gradient in the same way as a particular curve
was removed from the definition of a tangent vector.

Covectors are linear functions on vectors. Gradient of function f is a linear func-
tion on vectors defined at a point P of a manifold as

d̃ f (V) ≡ V[ f ] , (3.54)

where V = d/dλ is an arbitrary vector from the tangent space at point P, and the
notation V[ f ] ≡ d f /dλ. All possible covectors at the point P of the manifold form
a vector space which is called cotangent (or dual) to the tangent space of vectors.
Because covectors are linear functions on vectors and vice versa, the dimension of
the cotangent space coincides with that of the tangent space 22).

One can introduce a covector basis consisting of four linearly-independent covec-
tors ω̃α. They are defined in such a way that their values on four basis vectors eβ

22) In general relativity this dimension is n = 4, which one assumes everywhere in this book.
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yield a Kronecker symbol

ω̃α(eβ) = δαβ . (3.55)

In particular, in local coordinates xα the basis covectors are d̃xα. Their components
are defined by equation

d̃xα
(
∂

∂xβ

)
= δαβ , (3.56)

where the index α = (0, 1, 2, 3) numerates the basis covectors, and the index β =

(0, 1, 2, 3) numerates the components of the covector in this basis. Solving equations
(3.56) gives us,

d̃x0 = (1, 0, 0, 0) , d̃x1 = (0, 1, 0, 0) , d̃x2 = (0, 0, 1, 0) , d̃x3 = (0, 0, 0, 1) ,

(3.57)

that should not be confused with the components of the basis vectors in equation
(3.50).

Any covector W̃ that belongs to the cotangent space can be decomposed in basis
components

W̃ = Wαω̃
α . (3.58)

If another basis ω̃α̂ = Λα̂
βω̃

β were introduced in the cotangent space, the covector
W̃ remained the same but its components changed

W̃ = Wα̂ω̃
α̂ . (3.59)

Comparing equations (3.58) and (3.59) yields the law of transformation of the cov-
ector components

Wα = Λβ̂
αWβ̂ . (3.60)

One can see that the law of transformation of covectors is inverse as compared with
the law of transformation of vectors (3.52) because the matrices of transformations
entering these laws are mutually inverse, Λβ̂

αΛα
γ̂ = δ

β̂
γ̂.

Finally, one defines a covector field W̃ on a manifold as a rule that assigns a spe-
cific numerical value to a covector at each cotangent space over manifold. Different
covector fields define different covectors. In local basis the covector field W̃ is de-
fined by its components Wα which are smooth functions on the manifold.

3.3.7
Tensors

One has already discussed the definition and algebra of tensors belonging to the
Minkowski spacetime in section 2.4. Each tangent and cotangent space of a mani-
fold of general relativity has the same algebraic properties as the Minkowski space-
time of special relativity. Tensors residing in different tangent spaces form a tensor
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field over the manifold. Tensor fields are informally called tensors so that the word
’field’ is often omitted. Examples are the metric tensor or the Riemann curvature
tensor which will be discussed in section 3.7. If a basis is chosen, each compo-
nent of a tensor (field) must be differentiable function as discussed in section 3.3.3.
However, as one has learned in section 3.2.2, a partial derivative of a tensor does
not make a tensor. Hence, the concept of differentiation of tensors on a manifold
requires introduction of an additional geometric object on the manifold called affine
connection, that allows one to define a new derivative having transformation prop-
erties of a tensor and to compare tensors located in different tangent spaces. The
affine connection appeared rather formally in the Minkowski spacetime in curvilin-
ear coordinates in the disguise of the Christoffel symbol Γαβγ, but it was not really
required in the Minkowski spacetime because all of its tangent spaces are equivalent
by definition. This is not the case of spacetime manifolds of general relativity. We
shall introduce the reader to the concept of the affine connection in section 3.4 after
discussing properties of the metric tensor.

3.3.8
The metric tensor

Metric tensor on manifold is a symmetric tensor field G that is introduced to en-
dow the manifold with specific metrical properties of length, angles, etc. that are
discussed in what follows. The manifold with the metric tensor is called the Rie-
mannian or pseudo-Riemannian depending on whether the metric tensor is locally
reduced to the Euclidean or Minkowski metric ηαβ = diag(−1, 1, 1, 1). Spacetime
manifold in general theory of relativity and any viable alternative theory of gravity
is pseudo-Riemannian with the metric tensor components denoted as gαβ in a local
coordinate chart,

gµν = G
(
eµ, eν

)
. (3.61)

The metric tensor G is a bilinear form which is decomposed with respect to the basis
vectors as follows (see section 2.4.3)

G = gµνω̃µ ⊗ ω̃ν . (3.62)

3.3.8.1 Operation of rising and lowering indices
The tangent space and the cotangent space at a point P of a manifold M are both
real vector spaces of the same dimension and therefore there must exist a mutual
relationship, called duality or isomorphism, between their elements. This isomor-
phism is a rule of transformation of vectors to covectors and vice versa, and it can
be established on a manifold in several different ways. In any case, its mathematical
definition involves additional geometric structure on the manifold. In general rela-
tivity the role of the isomorphic structure between tangent and cotangent spaces is
given to a pseudo-Riemannian metric G of spacetime manifold which is defined as a
covariant tensor field of type (0, 2) at each point of the manifold.
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By definition, the metric tensor G converts a tangent vector V to a covector

Ṽ ≡ G(V) , (3.63)

by means of calculation of a value of the metric tensor on the vector V. Let us pick
up an arbitrary local dual basis consisting of vectors ea and covectors ω̃α. In this
basis, vector V = Vαeα and the corresponding covector Ṽ = Vαω̃

α, both residing at
the same point of the manifold. Equation (3.63) is then equivalent to the following

Va = gαβVβ , (3.64)

where gαβ are components of the metric tensor in the given basis. Notice that one
has used the same letter V for designation of the covector components with the in-
dex lowered. This is consistent with the definition of the isomorphism - one really
works with a single geometric object transforming its components from one space to
another by means of the metric tensor.

Definition of isomorphism between the tangent space and the cotangent space re-
quires that the inverse operation must be valid that must give us the same vector. It
requires introduction of a contravariant metric tensor of type (2, 0) (cometric) with
components gαβ that are inverse to gαβ. The cometric and metric components are
related to each other by equation

gαβgβγ = δ
γ
α . (3.65)

The cometric reverts components Va of the covector as defined in equation (3.64),
back to its original form

Va = gαβVβ . (3.66)

Mathematical operation defined in equations (3.64) and (3.66) are respectively called
lowering and rising index (with the metric tensor). This operation can be applied to
any tensor field at each point of the spacetime manifold and it works in the same way
as discussed in section 2.4.4.3.

3.3.8.2 Magnitude of a vector and an angle between vectors
The correspondence between the tangent and cotangent spaces established with the
help of the metric tensor makes it possible to use it for calculation of a magnitude of
a vector and an angle between two vectors at any point of the manifold. Magnitude
of a vector V is defined as

||V|| =
√
|G(V,V)| , (3.67)

or in component notations

||V|| =
√
|gαβVαVβ| =

√
|VαVα| , (3.68)

which should be compared with equation (2.43). The angle, let say Φ, between two
vectors V and U is formally defined as

cos Φ =
G(V,U)
||V|| ||U||

, (3.69)
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or in component notations

cos Φ =
gαβVαUβ

√
|VαVα|

√
|UβUβ|

. (3.70)

Since the metric on the spacetime manifold is pseudo-Riemannian, a care should be
taken in calculation of the angle between two vectors to avoid singularity that may
arise if one of the vectors is null-like, that is have magnitude equal to zero. One has to
emphasize that in practice one can measure the angle only between spacelike vectors.
The concept of the angular measurements in relativistic astrometry is discussed in
section 7.

3.3.8.3 The Riemann normal coordinates
The metric tensor on a manifold is an analytic tensor field which can be expanded in a
Taylor series around any point P of the manifold. Let us focus on a four-dimensional
spacetime manifold of general relativity and introduce a local chart in the neighbor-
hood of a point P with coordinates xα centered at the point P, so that xα(P) = 0.
The components of the metric tensor in the vicinity of the point P are analytic func-
tions that can be represented in the form of a Taylor series as a polynomial of the
coordinates

gαβ(x) = gαβ + gαβ,µxµ +
1
2!

gαβ,µνxµxν + O
(
x3

)
, (3.71)

where the coefficients of the expansion are taken at point P, and the comma stand-
ing in front of indices denotes partial derivatives with respect to a corresponding
coordinate,

gαβ,µ =

[
∂gαβ(x)
∂xµ

]
xα=0

, gαβ,µν =

[
∂2gαβ(x)
∂xµ∂xν

]
xα=0

, (3.72)

and so on.
We shall prove that by performing a coordinate transformation to a new local

coordinates wα̂, one can always make the new components of the metric equal to
the Minkowski metric, ĝα̂β̂ = ηα̂β̂, and all its first partial derivatives equal to zero,
ĝα̂β̂,µ̂ = 0. The second derivatives of the metric, ĝα̂β̂,µ̂ν̂ , 0, in the most general case.
In other words, in the new coordinates the Taylor expansion of the metric coefficients
reads

ĝα̂β̂(w) = ηα̂β̂ +
1
2!

ĝα̂β̂,µ̂ν̂w
µ̂wν̂ + O

(
w3

)
. (3.73)

The coordinates wα̂ are called the Riemann normal coordinates. They can be thought
of as a local realization of the orthogonal coordinates of the Minkowski spacetime.

Because the new coordinates, wα̂, must be the analytic functions of the old coor-
dinates, xα, one can look for the coordinate transformation in the form of the Taylor
expansion around the point P,

wα̂ = Aα̂
µxµ +

1
2!

Bα̂µνxµxν +
1
3!

Cα̂
µνρxµxνxρ + O

(
x3

)
, (3.74)
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where the expansion coefficients Aα̂
µ, Bα̂µν, Cα̂

µνρ, and so on, are constant matrices.
Transformation (3.74) suggests that the origins of both local coordinates coincide.

Transformation law of the metric tensor is

gαβ(x) = ĝµ̂ν̂(w)
∂wµ̂

∂xα
∂wν̂

∂xβ
, (3.75)

where ĝµ̂ν̂(w) are the new components of the metric expressed in the new coordinates
wα̂ in accordance with equation (3.73). We calculate the partial derivatives of the
coordinates with the help of equation (3.74), substitute equation (3.71) to the left
side of the transformation law and equate coefficients of the polynomials in both
sides of equation (3.75). It gives us the following system of algebraic equations

gαβ = ηµ̂ν̂Aµ̂
αAν̂

β , (3.76a)

gαβ,γ = ηµ̂ν̂
(
Aµ̂

αBν̂βγ + Aµ̂
βBν̂αγ

)
, (3.76b)

gαβ,γδ = ĝµ̂ν̂,ρ̂σ̂Aµ̂
αAν̂

βAρ̂
γAσ̂

δ + (3.76c)

ηµ̂ν̂
(
Aµ̂

αCν̂
βγδ + Aµ̂

βCν̂
αγδ + Bµ̂αγBν̂βσ + Bµ̂ασBν̂βγ

)
,

for finding the coefficients of the coordinate transformation (3.74) from the known
values of the metric tensor and its derivatives.

Equation (3.76a) is over-determined and can be always solved because the number
of the independent components of gαβ is 10 (as the metric tensor is symmetric and the
spacetime is four-dimensional) and the number of unknown elements of the matrix
Aµ̂

α is 4 × 4 = 16. Hence, there is 6 degrees of freedom which corresponds to
three Lorentz boosts and three spatial rotations - the transformations that leave the
Minkowski metric invariant.

Left side of equation (3.76b) has 4×10 = 40 independent partial derivatives of the
metric tensor, gαβ,γ, and exactly the same number of the unknown coefficients Bν̂βγ
in its right side. Hence, it has a unique solution allowing us to annihilate all first
derivatives of the metric tensor. This makes all the Christoffel symbols equal to zero
in the normal coordinates as they are expressed in terms of the first derivatives of the
metric tensor as shown in equation (3.34). The Christoffel symbols are associated
with a homogeneous gravitational force. The fact that all of them can vanish at
the origin of the normal coordinates is a consequence of the physical principle of
equivalence.

The number of the second-order partial derivatives of the metric tensor, gαβ,γδ, in
the left side of equation (3.76c) is 10 × 10 = 100 while the number of the unknown
coefficients Cν̂

βγδ in its ride side is only equal to 4 × 20 = 80. Since 80 < 100,
equation (3.76c) is under-determined and can not be solved in the most general case.
As demonstrated later in section 3.7, the remaining 20 partial derivatives, gαβ,γδ, of
the metric tensor that are left over and do not match the transformation coefficients
Cν̂

βγδ, constitute a tensor of curvature of spacetime that is equal to zero only in
the Minkowski spacetime. One can conclude that each (curved) metrical manifold
is locally flat in the sense that the metric tensor can be reduced to the Minkowski
metric up to the terms being quadratic with respect to the local coordinates. This



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 3 — 2016/2/13 — 14:05 — page 234

234

property of the normal coordinates makes them physically equivalent to a reference
frame falling freely in inhomogeneous gravitational field (see section 3.8.2).

It should be clearly stated that the procedure of construction of the normal coor-
dinates can be applied to a differential manifold with the affine connection defined
more generally than the Christoffel symbols. Indeed, the compatibility of the metric
tensor with the affine connection has not been used in order to make all 40 com-
ponents of the affine connection equal to zero at the origin of the normal coordi-
nates. For this purpose the law of transformation (3.105) of the affine connection is
sufficient [Schutz, 1995]. Normal coordinates represent a useful theoretical tool in
proving various theorem of differential geometry on curved manifolds. The reason
is that if some geometric property of tensor is satisfied in the normal coordinates,
it will be valid in arbitrary coordinates due to the covariant nature of tensors and
tensor transformations. Relativistic celestial mechanics uses more general approach
to build the normal coordinates around massive bodies (planets, stars) composing
N-body system. We discuss it in chapter 4.
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3.4
Affine Connection on Manifold

In an elementary (Euclidean or Minkowski) vector space vectors can be moved about
freely as long as one takes care not to change the magnitude or the direction of a
vector. When one turns to the study of vectors on manifolds, however, it becomes
apparent that one can no longer take this freedom of moving vectors from one point
of the manifold to another as self-evident. Vectors are confined to their tangent space
and the basic operations with vectors are only defined for vectors residing at the same
point of the manifold.

To move a vector from one point to another, one needs to specify how this is
to be done. It is achieved with the introduction of an affine connection that is a
prescription for comparing vectors based at the tangent spaces attached to different
points of a manifold. The connection consists of a set of linear transformations which
tell us how to propagate vectors based at a particular point to infinitesimally nearby
points. Unlike in elementary vector space where there is only one way of moving
a vector from one point to another, there are many ways of moving vectors around
differentiable manifold, so one needs to specify which connection one is using before
one can move vectors from point to point.

This act of moving a vector from point to point is called parallel transport in anal-
ogy with the operation of elementary vector analysis which it generalizes. The par-
allel transport is a basic element in definition of the rule of differentiation of vectors
(and tensors) on manifold. The derivative based on the parallel transport is called a
covariant derivative as it preserves tensorial properties of the object under differenti-
ation.

This section is intended to give the reader a handle on the geometric ideas un-
derlying covariance and covariant derivative. A century ago, the geometric ideas
communicated to Einstein by Marcel Grossmann, enabled Einstein to shape up the
geometric approach to gravity. Nowadays, grasping mathematical extensions of Ein-
stein’s theory is impossible without understanding the concept of manifold, tangent
space, the metric tensor and other geometric constructions, among which one of the
most important is the affine connection.

Originally, the symbols Γαβγ were introduced by Elwin Bruno Christoffel in the
1870s, to compensate the non-tensorial nature of the derivative from a vector field
components expressed in curvilinear coordinates. Christoffel surely realized that the
such corrected differential of a vector field transforms as a vector when the coordi-
nates are changed arbitrary. However, a complete understanding of the mathematical
universality of the compensating symbols Γαβγ was achieved only by the end of the
XIXth century. This was due to Tullio Levi-Civita who discovered that the descrip-
tion of parallel transport of a vector along a curved surface demands introduction of
connection coefficients matching (connecting) components of the vector in different
tangent spaces. It did not escape Levi-Civita’s attention that the connection coef-
ficients coincided with the Christoffel symbols Γαβγ. At first glance, the reason for
this coincidence was not readily apparent, because Levi-Civita’s connection origi-
nated from the surface’s bending, while the Christoffel symbols emerged due to the
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distortion of the coordinate grid on a plane surface. It however did not take Levi-
Civita long to provide a general framework within which it became clear why the
two approaches, originating in seemingly different contexts, should overlap.

Above, section 3.2.2.1 advocated the Christoffel’s viewpoint on the affine connec-
tion and covariant differentiation. This viewpoint is rather limited and does not em-
brace all specific features of a manifold endowed with an affine connection. Below
the modern, axiomatic description of the affine connection will be presented which
is originally due to Élie Cartan and Jean-Louis Koszul [1950]. In this approach the
affine connection is considered from a rather general but abstract point of view. Later
on, the affine connection will be linked to the metric tensor which will re-establish
its major role in geometrized theories of gravity including general relativity. The ax-
iomatic approach to affine connection was further extended by Charles Ehresmann
[1951] (a student of É. Cartan) in relation to fiber bundles 23).

We would like to mention that in earlier developments of differential geometry
on manifold, the affine connection was often introduced with the help of the projec-
tion operator from an external Euclidean space of higher dimensions to which the
manifold under consideration was embedded. This approach has been abandoned in
favor of the intrinsic definition because one cannot speak of moving ’outside’ the
geometric object. Moreover, the intrinsic point of view is more flexible as it admits
many different types of connections (Cartan, Koszul, Ehresmann, etc.) on various
differential manifolds.

3.4.1
Axiomatic definition of the affine connection

We consider a manifoldM with the metric tensor gαβ defined at each point of it. As
discussed in section 2.3.4, the metric is a symmetric tensor field of rank 2, which
defines the interval ds between two infinitesimally close events.

The affine connection is an additional geometric structure on the manifold M,
defining the law of parallel transport of tensors from one point of the manifold to
another, and the rule of the covariant differentiation. In the most general case, affine
connection is not related to the metric tensor. However, in general theory of relativity
(and in many other geometrized theories of gravitation) the connection is uniquely
linked to the metric tensor and is expressed in terms of its components gαβ. Such
connection is called metrical and is also known under the name of the Levi-Civita
connection. If a basis is chosen the components of the Levi-Civita connection are
denoted Γαβγ. In a coordinate basis the components of the Levi-Civita connection are
called the Christoffel symbols.

In general, an affine connection is a linear operator of differentiation, ∇, having
two arguments

∇ ≡ ∇(argument #2)(argument #1) , (3.77)

23) A fiber bundle is intuitively a space which locally "looks" like a product of two other spaces, but
globally may have a different topological structure [Schutz, 1995].
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where the slot for argument #1 is for a tensor field, which is differentiated, and the
subscript slot for argument #2 is for a vector (and only for a vector), along which the
derivative is taken. For example, if one differentiate a tensor T without specifying
the vector in the argument #2, the result of the differentiation is written as ∇T. If
one decides to take the derivative of the same tensor along a vector X, the result
of this operation is written as ∇XT. We emphasize that the argument #2 can be
used only for a vector. It does not work for covector or any other tensor. The affine
connection defines mapping of a Cr-differentiable tensor field T of type (k, l) to a
Cr−1-differentiable tensor field ∇T of type (k, l + 1) 24). The operator ∇ satisfies at
each point P of the manifoldM the following five axioms:

A1. Algebraic linearity, in regard to the argument #1

∇(αT + βS) = α∇T + β∇S , (3.78)

where T and S are tensor fields of the same type, while α and β are constant
numbers. The linearity is violated if α and β are scalar functions due to the Leibnitz
rule (axiom A3). It makes the affine connection not a tensor.

A2. Linearity, in regard to the argument #2

∇ f X+gYT = f∇XT + g∇YT , (3.79)

where X and Y are vectors, while f and g are C1-differentiable functions. This
axiom tells us that ∇XT at point P depends on the value of X only at P. One does
not need to know behavior of the vector field X in the neighborhood of P.

A3. The Leibniz rule for tensors

∇(T ⊗ S) = (∇T) ⊗ S + T ⊗ ∇S , (3.80)

and for scalars

∇( fT) = f∇T + T∇ f . (3.81)

A4. Commutativity with the operation of transvection of a tensor (defined in section
2.4.4.4)

A5. Coincidence with the operator of gradient, when acting on an arbitrary scalar
field f , that is

∇ f = d̃ f . (3.82)

where the operator of gradient, d̃ f has been defined in equations (3.53), (3.54).

24) Tensor of type (k, l) has k contravariant and l covariant indices. Cr-differentiable field means that it has
all derivatives up to the order r.
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3.4.2
Components of the connection

We consider a neighborhood of a point P on spacetime manifoldM. Let us introduce
a vector basis eα and the dual covector basis ω̃α which satisfy to equation

eα(ω̃β) = ω̃β(eα) = δ
β
α . (3.83)

Since one is not working in the Minkowski spacetime, the vector basis can not be
fixed on the entire manifoldM - it depends on point and changes as one goes from
one point of the manifold to another. Components Gαβγ of the affine connection ∇
quantify the change of the basis vectors as one moves on the manifold from point to
point. More specifically, in the neighborhood of the point P with the basis chosen,
the components of the affine connection are defined by

∇eα = G
β
αγeβ ⊗ ω̃γ , (3.84)

where Gβαγ has in the most general case, 43 = 64 components, each of which may
have different values at different points of the manifold. By virtue of axiom A3, and
the condition of the duality of vector and covector bases, one obtains from equation
(3.84)

∇ω̃α = −Gαβγω̃
β ⊗ ω̃γ , (3.85)

where Gαβγ are the same connection coefficients as in equation (3.84).
Equations (3.84), (3.85) do not specify the direction along which the derivative is

taken. Let us specify the change of the vector field eα along a basis vector eβ. We
shall use an abbreviation

∇eβ ≡ ∇β , (3.86)

for the covariant derivative along vector eβ. Making use of the definition (3.77) of
the affine connection in equation (3.84), one obtains

∇βeα = G
γ
αβeγ , (3.87)

where one has used the property (3.83) of the duality of vector and covector bases
and axiom A2 of the linearity of the operator ∇ with respect to its vector argument.
One draws attention of the reader to the order of indices α and β in equation (3.87)
- it is fixed by the definition and is not arbitrary since in the most general case, the
connection coefficients Gγαβ are not symmetric with respect to α and β. Proceeding
similarly, one obtains from equation (3.85) the derivative of the covector ω̃β along
the basis vector ea

∇βω̃
α = −Gαγβω̃

γ (3.88)

Axioms of section 3.4.1 and equations (3.87), (3.88) allow one to calculate the com-
ponents of the covariant derivative of an arbitrary tensor field S.
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3.4.3
Covariant derivative of tensors

A tensor field S of type (k, l) is decomposed in the basis vectors and covectors as
follows (see section 2.4.4.1)

S = S α1α2 ...αk
β1β2 ...βl

eα1 ⊗ eα2 ⊗ ... ⊗ eαk ⊗ ω̃
β1 ⊗ ω̃β2 ⊗ ... ⊗ ω̃βl , (3.89)

where S α1α2 ...αk
β1β2 ...βl

are differentiable scalar fields of the same order. Covariant derivative
of the tensor S along a basis vector eµ is a new tensor of type (k, l + 1) denoted as
∇µS, and it has components ∇µS α1α2 ...αk

β1β2 ...βl
such that 25)

∇µS ≡ ∇µS α1α2 ...αk
β1β2 ...βl

eα1 ⊗ eα2 ⊗ ... ⊗ eαk ⊗ ω̃
β1 ⊗ ω̃β2 ⊗ ... ⊗ ω̃βl ⊗ ω̃µ . (3.90)

Exact expression for the components is obtained after direct application of the op-
erator ∇ to both sides of equation (3.89) and making use of the axioms 1-5, and
equations (3.87), (3.88). One gets

∇µS α1α2 ...αk
β1β2 ...βl

= ∂µS α1α2 ...αk
β1β2 ...βl

(3.91)

+ G
α1
νµS να2 ...αk

β1β2 ...βl
+ ... +Gαk

νµS α1α2 ...ν
β1β2 ...βl

− G
ν
β1µ

S α1α2 ...αk
νβ2 ...βl

− ... −Gνβlµ
S α1α2 ...αk
β1β2 ...ν

,

where

∂µS α1α2 ...αk
β1β2 ...βl

≡ eµ
[
S α1α2 ...αk
β1β2 ...βl

]
, (3.92)

is the value of the tensor component S α1α2 ...αk
β1β2 ...βl

on a basis vector eµ that is a partial
derivative of S α1α2 ...αk

β1β2 ...βl
along the direction of this vector. In case of a coordinate basis

eα = ∂/∂xα and ω̃α = dxα, the partial derivative ∂µ = ∂/∂xµ.
Equation (3.91) makes it more clear how the covariant derivative works for a tensor

of type (k, l). It consists of the partial derivative of the components of the tensor, and
k + l terms describing the coupling of the tensor’ components with the coefficients
of the affine connection. From these terms, k contravariant indices couples with the
affine connection with the sign plus, and l covariant indices couples with the affine
connection with the sign minus. The covariant derivative tensor is of type k, l + 1.
It is worth emphasizing that the order of indices in the connection coefficients is
fixed because one operates with the most general form of the affine connection and
have not yet imposed any limitations on its symmetry. Only the metric connection
in coordinate bases is symmetric as explained below in section 3.5.4.

3.4.4
Parallel transport of tensors

3.4.4.1 Equation of the parallel transport
Let C(τ) be a differentiable curve on a manifold M with τ being a parameter. By
definition, a tensor T of an arbitrary rank is subject to a parallel transport along the

25) Another common notation for the covariant derivative of a tensor is with a semicolon, S α1α2 ...αk
β1β2 ...βl ;µ

, which
is not used in the book.
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curve if its covariant derivative along a tangent vector V = V(τ) to the curve, is zero
26)

∇VT = 0 . (3.93)

If a basis eα is chosen along the curve, the tangent vector V = Vαea, and the equation
of the parallel transport of the tensor components becomes

Vα
∇αT = 0 , (3.94)

where the covariant derivative∇αT has been defined in equation (3.91). The result of
the parallel transport of a tensor from one point of the manifoldM to another will in
general depend on the choice of the curve connecting these two points 27). If it does
not, the manifold is called flat, and its curvature is zero (see Figure 3.7 for further
details).

Let us now consider a tensor fieldW on a manifoldM and two points P and Q on
the curve C(τ) with a tangent vector V. Tensor fieldW has a valueW(P) at point P,
and a valueW(Q) at point Q. We take the valueW(P) as an initial condition for the
equation of the parallel transport of the tensorW along the given curve, and solve it.
It generates a new tensor field W∗ on the curve that obeys the ordinary differential
equation ∇VW

∗ = 0. It means that if the point Q is sufficiently close to P, the new
tensor W∗(Q) = W∗(P) = W(P). In general, the new field W∗(Q) , W(Q), and
the covariant derivative ∇VW , 0. In some cases, however, the parallel-transported
tensorW∗(Q) will coincide with the value of the tensorW(Q) at Q. Such tensor field
is called covariantly constant along the curve, and for such a tensor W(P) = W(Q).
Notice that if a tensor field is covariantly constant along one curve, it may not remain
constant along another curve. This is because covariant derivatives do not commute
as explained below in section 3.7.1. Figure 3.1 visualizes the idea of the parallel
transport of a vector W along a differentiable curve with a tangent vector V.

An important example of a covariantly constant tensor field is delivered by a metric
tensor which defines the metric properties (length, angles, etc.) in each tangent space
of a manifold. We discuss this property of the metric tensor below in section 3.5.4.
Covariantly constant vector fields are generated by a curves commonly known as
geodesics.

3.4.4.2 Geodesics
An important case of a covariantly constant field is obtained when equation (3.94) is
applied to the curve’s tangent vector V itself

∇VV = 0 , (3.95)

If the transportation curve is parameterized with a parameter τ, the coordinate com-
ponents of the tangent vector Vα(τ) = dxα/dτ at each point of the curve. The equa-

26) Equation ∇VT = λT with λ being a smooth function on the transportation curve, is not accepted in
general relativity as it does not preserves lengths of vectors, and is not consistent with the definition of
the Levi-Civita connection introduced later in section 3.5.4.

27) This "noncommutation" of the parallel transport is explained in section 3.7.1.
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Figure 3.1 A vector W is parallel transported along a smooth curve from a point P to a point Q.
It generates a new tensor field W∗ along the curve. The field W∗ obeys equation ∇VW

∗ = 0
and coincides with W at the point P. However, in the most general case the field W∗ is different
from the field W in other points of the transportation curve. In the situation, when W∗ = W
along the curve, the field W is called covariantly constant along the given curve.
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tion (3.95) of the parallel transport of vector V along itself is called the equation of
geodesic 28), and its explicit coordinate form reads

dVα

dτ
+GαβγVβVγ = 0 , (3.96)

or

d2xα

dτ2 +Gαβγ
dxβ

dτ
dxγ

dτ
= 0 . (3.97)

Equation (3.97) shows that the parallel transport of Va depends only on the sym-
metric part Gα(βγ) ≡ (Gαβγ + Gαγβ)/2 of the connection and on the values of Va on the
curve xa(τ), so one does not need to know (or to define) the entire vector field Va

around the curve. Solution of this equation is called a geodesic worldline or simply
a geodesic.

The geodesic is a generalization of the concept of a straight line in the Minkowski
spacetime, in the sense that tangent lines to geodesic remain parallel as one moves
from one to another point along the curve xα(τ). It should be noticed, however, that
in the (pseudo) Riemannian geometry geodesics may not be the same as the "shortest
curves" between two points, though the two concepts are closely related. The point is
that geodesics can only locally represent the shortest distance between points. There-
fore, geodesics can not be, in general, defined as the curves of a minimal length on
topologically non-trivial manifolds. Furthermore, equation of the curve of a minimal
length is derived from a variational principle,

δ

∫
gαβdxαdxβ = 0 , (3.98)

with the variations of the coordinates being fixed at the end points. It leads to equa-
tion [Misner et al., 1973]

d2xα

dτ2 + Γαβγ
dxβ

dτ
dxγ

dτ
= 0 , (3.99)

depending only on the Christoffel symbols Γαβγ
29). The Christoffel symbols are a

metric-related part of the affine connection Gαβγ, which can have other ingredients,
as explained in equation (3.121). In general relativity equations of geodesics and the
curves of the minimal length, coincide. In Einstein’s gravitational physics, geodesics
describe the motion of point-like particles under the influence of gravity alone; all
other non-gravitational forces are absent if the particle moves along a geodesic.

There is a certain freedom in choosing parameter τ along the geodesic. Equation
(3.96) demands that not only vector V remained parallel to itself but its norm did not

change: |V| =
(
gαβVαVβ

)1/2
=const., which ensures the identity (isomorphism) of

28) Equation (3.95) is also called as equation of auto-parallel transport [Kleinert and Pelster, 1999; Manoff,
2000].

29) Kleinert and Pelster [1999] explain how to generalized this variational principle in order to take into
account the part of the affine connection depending on torsion.
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tangent spaces attached to different points of the manifold. If the latter requirement
is relaxed the equation of geodesic becomes

d2xα

dτ2 +Gαβγ
dxβ

dτ
dxγ

dτ
= λ

dxα

dτ
, (3.100)

where λ = λ(τ) is a smooth but arbitrary function along the geodesic. Equation
(3.100) defines a class of equivalence of geodesics with a rather large freedom in
choosing parametrization τ along the geodesic. For example, if one chooses another
parametrization, σ = σ(τ), equation (3.100) becomes

dVα

dσ
+Gαβγ

dxβ

dσ
dxγ

dσ
=

(
dσ
dτ

)−2 (
λ

dσ
dτ
−

d2σ

dτ2

)
dxα

dσ
, (3.101)

making evident that function λ determines parametrization of the geodesic.
One has adopted in section 3.3.4 to distinguish between two curves having the

same geometric image on a manifold (passing through the same points) but param-
eterized differently. It compels us to constrain the form of the equation of geodesic
by fixing parameter λ in equation (3.100). The most convenient choice is λ = 0
which gets us back to equation (3.97). A parametrization that yields equation (3.97)
is called an affine parametrization. The affine parameter τ is defined up to a linear
transformation τ→ aτ+ b, where a and b are arbitrary constant numbers with a , 0.
The affine parametrization of geodesics is frequently adopted in Einstein’s general
relativity.

3.4.5
Transformation law for connection components

Let us chose for simplicity a coordinate basis eα = ∂/∂xa. The components of the
affine connection in a basis ∂/∂xa and the dual basis of covectors ω̃α = dxα, are
given at the point P of manifold M by equation (3.84). Let us change the basis in
the neighborhood of point P to a new basis

eα′ = Λβ
α′eβ , ω̃α′ = Λα′

βω̃
β , (3.102)

where Λβ
α′ is the matrix of transformation, and Λα′

β is its inverse

Λα′
βΛ

β
γ′ = δα

′

γ′ , Λα
β′Λ

β′
γ = δαγ . (3.103)

Both the matrix of transformation and its inverse are differentiable in the neighbor-
hood of the point P.

Components of the affine connection in the new basis are defined by equation
being similar to equation (3.84), that is

∇eα′ = G
β′

α′γ′eβ′ ⊗ ω̃
γ′ . (3.104)

Substituting the transformation equations (3.102) to equation (3.104, and making use
of the Leibnitz rule for the covariant derivative, one obtains the law of transformation
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of the affine connection

G
α′

β′γ′ = Λα′
ρΛ

µ
β′Λ

ν
γ′G

ρ
µν + Λα′

ρ

∂Λρ
β′

∂xγ′
. (3.105)

Presence of the second term in the right side of this equation reveals that the affine
connection does not transform as a tensor in the most general case. In case of the
coordinate basis, equation (3.105) is fully compatible with equation (3.16) of the
(inverse) transformation of the Christoffel symbols.

One remarkable consequence of the transformation law (3.105) is that if one has
two different affine connections on the same manifold, Gαβγ and Pαβγ, the difference
between the connections

D
α
βγ ≡ G

α
βγ −P

α
βγ , (3.106)

is tensor of a third rank and of type (1, 2).

3.5
The Levi-Civita Connection

After defining the affine connection and deriving the properties of covariant deriva-
tive, one will eventually be faced with the following question: how arbitrarily can
one set the values of Gαβγ on the manifoldM besides the requirement that they must
be, at least, smooth functions of the local coordinates? The fact of the matter is that
on any differentiable manifold there are infinitely many affine connections. Equation
(3.84) defining the coefficients of connection, imposes none restriction on the sym-
metry ofGαβγ nor on a particular structure of them. Hence, in a four-dimensional case
the number of the connection coefficients is 4 × 4 × 4 = 64. However, general rela-
tivity theory is quite specific about the nature of gravity and associates gravitational
potential with a pseudo-Riemannian metric tensor gαβ that is defined on the space-
time manifold M from the Einstein’s field equations. If the manifold is endowed
with a pseudo-Riemannian metric, then, there exists a natural choice of the affine
connection, called the Levi-Civita connection Γαβγ that warrants the identity of alge-
braic properties of tangent spaces at different points of the manifold. The Levi-Civita
connection is selected by imposing the torsion-free property on the connection coef-
ficients and linking it to the metric tensor by demanding that the covariant derivative
of the metric tensor (called nonmetricity) vanishes. Levi-Civita connection is also
known as the metrical connection. In a coordinate basis the Levi-Civita connec-
tion coincides with the Christoffel symbols. In orthonormal (tetrad) vector basis the
components of the Levi-Civita connection are called the Ricci rotation coefficients.
Further discussion of the metric connection requires introduction of new geometric
objects associated with vectors fields and the covariant derivative.
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3.5.1
Commutator of two vector fields

Let a neighborhood of a point P be covered by local coordinates with a basis ∂/∂xα.
Consider in this neighborhood two vector fields, V = Vα∂/∂xα and U = Uα∂/∂xα

with components Vα, Uα being differentiable functions. Commutator of two vector
fields is defined as an operator of partial differentiation

[V,U] ≡ VU − UV . (3.107)

Components of the commutator can be readily calculated if one applies equation
(3.107) to a scalar function f . One has

[V,U] ( f ) = Vβ ∂

∂xβ

(
Uα ∂ f

∂xα

)
− Uβ ∂

∂xβ

(
Vα ∂ f

∂xα

)
(3.108)

=

(
Vβ ∂Uα

∂xβ
− Uβ ∂Vα

∂xβ

)
f .

because second partial derivatives of a scalar function are always commutative.
Thus, the commutator is a linear vector operator with coefficients Wα = [V,U] (d̃xα)
given in the coordinate basis by formula

Wα = Vβ ∂Uα

∂xβ
− Uβ ∂Vα

∂xβ
. (3.109)

In the case of an arbitrary basis eα, the commutator of the basis vectors is defined by

[
eα, eβ

]
= Cγ

αβeγ , (3.110)

where the Cγ
αβ = −Cγ

βα are anti-symmetric commutation coefficients. The number of
algebraically-independent coefficients of Cγ

αβ is 4 × 6 = 24.
In arbitrary (non-coordinate) basis ω̃α the components of the commutator of the

fields, V and U, are

[V,U] (ω̃α) = Vβeβ(Uα) − Uβeβ(Vα) + Cα
βγVβUγ . (3.111)

In any coordinate basis Cα
βγ = 0 because coordinate grid consists by definition from

vector fields that are mutually constant on each other. Conversely, if one chooses the
vector field V constant on the lines of the field U, and visa versa, the commutator of
these two fields will be zero: [V,U] = 0. A set of any N vector fields with mutually
vanishing commutators are constant with respect to each other, and hence can be
used to build a local coordinate grid on the N-dimensional manifold. We emphasize
that the property of the vector fields to form a coordinate grid is related to a neigh-
borhood of a point on the manifold but not to the point itself as the commutator of
the fields depends both on their values at the point and on the values of their partial
derivatives.
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Geometric interpretation of commutator of two vector fields is given in the Figure
3.2 which shows the coordinate lines corresponding to Cartesian and polar coordi-
nates in the plane, and two paths corresponding to the motion along the vector fields.
If commutator of two vector fields vanishes, the fields are called holonomic. In op-
posite case, the two fields are called non-holonomic. Further discussion of geometric
interpretation of commutator of two vector fields is given below in section 3.6.3 as
well as in the Figure 3.5.

3.5.2
Torsion tensor

Next step towards the metric connection demands a comparison of a differentiation
operator ∇VU − ∇UV for two vectors fields, V and U, against their commutator
[V,U]. According to definition of the covariant derivative and the commutator, both
the difference ∇VU − ∇UV and the commutator are linear vector fields. Therefore,
their linear combination must be a tensor called tensor of torsion or simply torsion .
Torsion T is a linear function defined on two vector fields, V and U,

T(V,U) ≡ ∇VU − ∇UV − [V,U] , (3.112)

which takes its values on covectors [Schutz, 1995]. Hence, torsion is an anti-
symmetric tensor of type (1, 2): T(V,U) = −T(U,V). Components of the torsion
are defined as the value of the tensor T on the basis vectors and covectors

T = Tα
βγeα ⊗ ω̃β ⊗ ω̃γ , (3.113)

Making use of definitions (3.84), (3.110) and (3.112), one gets

Tα
βγ = Gαγβ −G

α
βγ −Cα

βγ . (3.114)

where Gαγβ is the affine connection and Cα
βγ are the commutation coefficients of the

basis.
Let us take a smooth scalar function f and account that the value of a basis vector

field, let say, eα on this function is a partial derivative along this vector, eα[ f ] = ∂α f
in accordance with equation (3.42). On the other hand, a partial derivative from a
scalar function coincides with its covariant derivative

∂α f = ∇α f . (3.115)

Taking into account this fact, definition (3.112) of torsion can be written down as a
commutator of two covariant derivatives acting on the scalar function,[
∇β,∇γ

]
f ≡

(
∇β∇γ − ∇γ∇β

)
f =

(
Tα
βγ + Cα

βγ

)
∇α f . (3.116)

This equation explicitly demonstrates that torsion is a linear differential operator. It
tells us that the commutator of two covariant derivatives is a linear operator when
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Figure 3.2 Vector fields ex = ∂/∂x and ey = ∂/∂y corresponding to Cartesian coordinates x and
y, commute,

[
ex, ey

]
= 0, that is two paths ABC and AB’C makes a complete closure, and the

two vector fields are holonomic. On the other hand, vector fields er = ∂/∂r and eϕ = (1/r)(∂/∂ϕ)
corresponding to polar coordinates r and ϕ, do not commute,

[
er , eϕ

]
= −(1/r)eϕ, that is moving

along path ABC and along AB’C’ does not make a closure and the fields form a non-holonomic
basis. The non-holonomy is evaluated by the commutator,

[
er , eϕ

]
, that is a vector directed from

point C to point C’ along the field eϕ.
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it acts on scalar functions 30). Equation (3.116) also allows us to give a geometric
interpretation of torsion. Specifically, torsion of a manifold is characterized by the
absence of parallelograms, i.e. if a vector is parallel transported along a closed loop
it will coincide with the original vector but if it is parallel transported along four legs
of a parallelogram the torsion of the manifold will result in a displacement of the
resulting vector from its original position as explained in the Figure 3.3.

The affine connection is called torsion-free if the tensor of torsion vanishes on the
entire manifold: Tα

βγ ≡ 0. The torsion-free connection has a non-vanishing antisym-
metric part in any non-coordinate (non-holonomic) basis

G
α
[βγ] = −

1
2

Cα
βγ , (3.117)

Because all commutation coefficients Cα
βγ vanish in any coordinate basis, the torsion-

free connection is fully-symmetric in the coordinate basis: Gαβγ = Gαγβ. This symme-
try reduces the number of independent connection coefficients at each point of the
manifoldM from 43 = 64 to 64 − 24 = 40.

Initially, torsion looked unimportant to Einstein who set it to zero, because it
did not appear necessary to provide a gravitation theory with a consistent set of
equations for the metric gravitational field. Einstein returned to the gravity theory
with torsion later, and methodically explored its role in a unified field theory which
he consistently worked on in pursuing the program of geometrization of physics
[Sauer, 2010]. This Einstein-Cartan theory[Trautman, 2006] and its modern version
of teleparallelism explore the ideas associated with the role the torsion may play
in gravity [Hehl and Kerlick, 1978; Hehl and Obukhov, 2007; Hehl and Weinberg,
2007; Kleinert, 2008]. One is not going to thoroughly discuss the effects of torsion
in this book, and assume in most cases that the connection is torsion-free 31).

3.5.3
Nonmetricity tensor

A tensor of nonmetricity Q, is defined as a covariant derivative of the metric tensor
[Kleinert, 2008]

Q ≡ −∇G . (3.118)

Nonmetricity is not zero in the most general metric-affine geometries [Hehl and Ker-
lick, 1978; Heinicke et al., 2005], though it is equal to zero in general relativity and
in the metric-based theories of gravity [Will, 1993, 2006]. The nonmetricity is a
tensor of the type (1,2) which has the following components

Q = Qα
βγeα ⊗ ω̃β ⊗ ω̃γ , (3.119)

30) We shall demonstrate in section 3.7.1 that the commutator of two covariant derivatives remains a linear
operator if the scalar function is replaced with a vector. It leads to the concept of curvature of a
manifold.

31) Differentiable manifolds with non-vanishing torsion play an essential role in the theory of dislocations
and disclinations in crystals as well as in the gauge theories of gravity that go beyond general relativity
[Hehl and Obukhov, 2007; Kleinert, 1989].
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Figure 3.3 Two vector fields U and V are given. Tangent vector U is parallel-transported along
vector V from point A to point B. It results in vector U∗ = U‖ at point B which compares with
tangent vector of the vector field U at this point: U = U∗ − ∇VU. Tangent vector V is
parallel-transported along vector U from point A to point C. It results in vector V∗ = V‖ at point
C which compares with tangent vector of the vector field V at this point: V = V∗ − ∇UV. The
tips of two vectors, V∗ and U∗, do not make a closure on the manifolds with torsion. The tips of
two vectors, U = U∗ − ∇VU and V = V∗ − ∇UV, do not make a closure if U and V do not
commute. The gap resulting in the closure failure of parallelogram, is a vector consisting of an
algebraic sum of the commutator [V,U] of the two vectors and the torsion T(V,U). Torsion is a
geometric object being intrinsic to the differential structure of manifold, and it does not depend
on vector fields. At the same time, the commutator of two vector fields depends exclusively on
the nature of the fields, and vanishes if the fields commute.
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where Qα
βγ = gαµQµβγ is symmetric with respect to indices β and γ, Qα

βγ = Qα
γβ, and

Qµβγ = −∇µgβγ . (3.120)

The nonmetricity tensor of a special type, Qαβγ = Aαgβγ, with Aα being a vector
of electromagnetic field, was considered by Weyl in the attempt to unify gravity
with electromagnetism. This attempt was criticized by Einstein on the ground that
if the idea of Weyl’s nonmetricity were correct the principle of equivalence would
be violated. In such a case, the behavior of clocks would depend on their history,
thus, making the atomic spectra unstable which contradicted the existing empirical
evidence [O’Raifeartaigh and Straumann, 2000].

It is also possible to introduce the nonmetricity in the form of a linear combination
of gradients of a scalar function f as, for example, it appears in the most typical
example of, so-called, Palatini f (R) gravity without torsion, where f is a function
of the Ricci scalar R [Sotiriou and Liberati, 2007]. This kind of nonmetricity can
be eliminated by converting it to an algebraic function of the Ricci tensor that is ex-
pressed in terms of the Levi-Civita connection only [Sotiriou, 2009]. In any case, the
nonmetricity either complicates the gravity theory or introduces other geometric ob-
jects besides the metric tensor. It also leads to existence of a preferred-frame effects
[Heinicke et al., 2005; Kleinert, 2008]. Einstein excluded the nonmetricity from the
general-relativistic theory of gravity. Thus, general relativity and other metric-based
theories of gravity [Will, 1993] operate solely with the Levi-Civita connection, Γαµν,
which is linked to the metric tensor, gαβ, as explained in the next section.

3.5.4
Linking the connection with the metric structure

The affine connection exists on manifold M independently of any other geometric
structures. It establishes the equivalence between a bundle of tangent spaces to the
manifold. The equivalence means that a mutual relationship defined in a tangent
space between any two of its elements must be preserved in the process of parallel
transport of tensors from one tangent space to another. One particularly important
relationship of this kind is a dot-product of two vectors, let say V and U, that is
defined with the help of a metric tensor G. Components gβγ of the metric tensor
on the manifoldM are scalar functions defined by equation (2.126) as a numerical
value of tensor G calculated on two basis vectors, eβ and eγ.

Any affine connection Gαβγ = gαµG
µ
βγ is linearly decomposed in four,

geometrically-different pieces [Heinicke et al., 2005; Kleinert, 1989, 2008]

Gαβγ = Γαβγ + Kαβγ +Dαβγ + Rαβγ , (3.121)

where

Kαβγ =
1
2

(
Tγαβ + Tβαγ − Tαβγ

)
, (3.122)

are components of the contortion tensor depending on torsion Tαβγ = gαµT µ
βγ =
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−gαµT µ
γβ,

Dαβγ =
1
2

(
Qγαβ + Qβαγ − Qαβγ

)
, (3.123)

are components of the deviation tensor depending on nonmetricity Qαβγ = Qαγβ,

Rαβγ =
1
2

(
Cγαβ + Cβαγ −Cαβγ

)
, (3.124)

are the Ricci rotation coefficients depending on the commutation coefficients Cαβγ =

gαµC
µ
βγ = −gαµC

µ
γβ, and Γαβγ = gαµΓ

µ
βγ is the Levi-Civita connection that is not a

tensor.
Compatibility of the affine connection Gαβγ with the dot-product of two vectors

under the parallel transport demands the metric tensor to be covariantly constant
along any curve on the manifold, that is the nonmetricity tensor must vanish at any
point of the manifold. Thus, one imposes the metricity condition

Q ≡ 0 . (3.125)

We shall also demand that the connection is torsion-free assuming that Tαβγ = 0
everywhere on the manifold. This requirement is not obligatory and the condition
(3.125) does not depend on the value of torsion. However, torsion is not accepted in
general relativity and in other metric-based theories of gravity, which is the reason
for its elimination from further consideration.

Taking into account definition (3.119) of nonmetricity and equation (3.91) of the
covariant derivative of tensors, the condition (3.125) can be re-formulated in terms
of the components of the metric tensor, gαβ, and the affine connectionGαβγ as follows

∇αgβγ = ∂agβγ − gµγG
µ
βα − gµβG

µ
γα = 0 , (3.126)

where ∂agβγ ≡ eα
[
gβγ

]
denotes a partial derivative of the metric tensor components

along the direction of a vector basis eα, and Gµβα = gµνGνβα. Equation (3.126) fixes
the Levi-Civita connection coefficients and links it to the metric tensor and its partial
derivatives.

Now, one substitutes the right side of expression (3.121) for the affine connection
Gαβγ into equation (3.126), make permutations of indices and form two other similar
equations. Their linear combination allows us to express the Levi-Civita connection
in the following form

Γαβγ =
1
2

(
∂γgαβ + ∂βgαγ − ∂αgβγ

)
+ Rαβγ , (3.127)

where

Γαβγ ≡ gαµΓ
µ
βγ . (3.128)

In the coordinate bases expression for the Levi-Civita connection is simplified be-
cause all commutation coefficients vanish (Cαβγ = 0), and the derivatives along
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the basis vectors are reduced to regular partial derivatives along coordinate axes,
∂a = ∂/∂xα. The resulting form of the Levi-Civita connection referred to a coordi-
nate basis is called the Christoffel symbols

Γαβγ =
1
2

gαλ
(
∂gλβ
∂xγ

+
∂gλγ
∂xβ

−
∂gβγ
∂xλ

)
, (3.129)

which were introduced previously in a different way in equation (3.34). Present
derivation however did not rely upon prior existence of any coordinate system and/or
Minkowski metric.

Coordinate bases are not orthonormal in a general situation, in the sense that the
coefficients gαβ of the metric tensor are functions of its position on manifoldM and
are not reduced to the Minkowski metric ηαβ globally. On the other hand, one can
always introduce an orthonormal tetrad basis on manifoldM such that at each point
of the manifold the coefficients of the metric tensor are reduced to the Minkowski
metric ηαβ, and their first partial derivatives are zero, ∂agβγ = 0. An example of a
tetrad basis is delivered by the normal coordinates explained in section 3.3.8.3. In
such basis the Christoffel symbols vanish, and the Levi-Civita connection is fully
defined by the Ricci rotation coefficients

Γαβγ = Rαβγ =
1
2

(
Cγαβ + Cβαγ −Cαβγ

)
. (3.130)

The tetrad bases are especially important in mathematical theory of black holes
[Chandrasekhar, 1983] but are not a popular tool in relativistic celestial mechan-
ics and astrometry that mostly rely upon non-orthogonal coordinate bases since they
are more convenient for practical calculations and in data reduction algorithms.
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3.6
Lie Derivative

3.6.1
A vector flow

Let us consider a manifold M and a smooth vector field V on it. Let xα be local
coordinates at a neighborhood of a point P. In this coordinate chart the vector V(x)
is given by its components: V(x) = Vα(x)∂/∂xα. The flow, F s

V , of the vector field is
defined as solution of a system of ordinary differential equations

dyα

ds
= Vα(y) , (3.131)

where y = y(s), and s is a parameter along the direction of the vector field. The
most famous example of a vector flow is the motion of fluid in hydrodynamics. Each
fluid element has its own velocity and all together they form the velocity flow of
the fluid. An ensemble of test particles moving along geodesics defined by equation
(3.96), give another example of a vector flow in relativistic mechanics of Einstein’s
theory of gravity. Each vector flow defines a congruence of the integral curves of the
corresponding vector field.

The curves yα(s) are called the integral lines of the vector flow F s
V which, thus,

defines a one-parameter mapping (diffeomorphism) of a local subset of a manifold
M to itself: xα 7→ yα = F s

V xα (see Figure 3.4). In local coordinates each integral
line of the vector flow is an analytic function and it can be expanded into Taylor
series around the value s = 0, which yields yα(s) = yα(0) + s dyα(0)/ds + O(s2).
Taking into account that for s = 0 the values of integral lines constitute a set of
points coinciding with the original local coordinates, yα(0) = xα, and that according
to equation (3.131) the derivative dyα(0)/ds = Vα(y(0)) = Vα(x), one can write
down the diffeomorphism F s

V in the following form

yα = xα + s Vα(x) , (3.132)

where one has discarded all terms of the higher order in s. This equation can be
interpreted as a parametric transformation between the local coordinates xα and yα.
Then, the Jacobian matrix of transformation is

Λα
β(s) =

∂yα

∂xb = δαβ + s
∂Vα

∂xβ
, (3.133)

and the matrix of the inverse transformation

Λ̃β
α(s) =

∂xβ

∂yα
= δ

β
α − s

∂Vβ

∂xα
. (3.134)

In the linear approximation with respect to the parameter s, the direct and inverse
Jacobian matrices are related as follows

Λ̃β
α(s) = Λβ

α(−s) , (3.135)

that is sufficient for most of the applications.
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Figure 3.4 Local diffeomorphism of a manifoldM to itself by means of a vector flow defined by
the congruence of integral curves yα(s) of a vector field V(s). Only a few lines of the vector flow
are shown. Parametric distance along the curves 1→ 1∗, 2→ 2∗, etc., is the same in
correspondence with the definition of the vector flow.
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3.6.2
The directional derivative of a function

Let us consider a differentiable function f = f (x) on the manifoldM. We define a
derivative £V of the function f in the direction of the vector field V by the following
rule 32)

£V f (xα) ≡ lim
s→0

d f
(
F s

V xα
)

ds

 , (3.136)

where F s
V xα is the flow of the vector field V. Performing mathematical operations

in equation (3.136), one concludes that in the local coordinates xα the directional
derivative is

£V f = Vα ∂ f
∂xα

. (3.137)

It coincides with the definition of the value of the vector field V on function f

V[ f ] ≡ Vα ∂ f
∂xα

, (3.138)

which (due to the duality of vectors and covectors) is also a value of the gradient
d̃ f of function f on the vector field V, that is V[ f ] = d̃ f (V) according to definition
(3.54). Hence, one has

£V f = d̃ f (V) , (3.139)

that establishes equivalence between the directional derivative of a function and its
gradient.

3.6.3
Geometric interpretation of the commutator of two vector fields

Suppose that one is given two vector fields, V and U on a manifoldM which corre-
sponds to two vector flows, F s

V and F t
U , where s and t are parameters of the corre-

sponding flows. Let us evaluate the degree of non-commutativity of the two flows.
To this end, one considers two images of the point P obtained by mapping its co-
ordinates xα = xαP to points xαB = F s

V F t
U xα and xαD = F t

U F s
V xα along the two flows,

and compute the difference between them by comparing the values of some analytic
function f (x) at these two points (see Figure 3.5)

∆(xαB, x
α
D) = f

(
xαD

)
− f

(
xαB

)
. (3.140)

One can expand function f (x) in the Taylor series around the point P, where t = s =

0. The first terms of the expansion of f (xαB) and f (xαD) will cancel each other in the
difference ∆(xαB, x

α
D). The same cancelation will take place for all other terms being
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Figure 3.5 Two integral lines of the vector fields, V and U, mapping a point P with coordinates
xα = xαP to two other points, xαB = F s

V Ft
U xα and xαD = Ft

U F s
V xα, are shown. The two vector fields

are commutative (that is [U,V] = 0), if and only if, the difference ∆(xαB, x
α
D) between the points

is equal to zero.
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proportional to the powers of either t or s. Therefore, the first non-vanishing term in
the Taylor expansion of ∆(xαB, x

α
D) will be proportional to the product of st.

We shall calculate this principal term that is defined as a mixed, second-order
partial derivative [Arnold, 1995, page 210]

∆(xαB, x
α
D) = lim

t→0
s→0

∂2 f
(
F t

U F s
V xα

)
∂s∂t

−
∂2 f

(
F s

V F t
U xα

)
∂t∂s

 . (3.141)

By definition (3.136) of the directional derivative, one has

lim
s→0

∂ f
(
F s

V F t
U xα

)
∂s

 = £V f
(
F t

U xα
)
. (3.142)

If one denotes the function £V f by ψ, then for the same reasons, one obtains

lim
t→0

∂ψ
(
F t

U xα
)

∂t

 = £Uψ (xα) . (3.143)

Hence,

lim
t→0
s→0

∂2 f
(
F s

V F t
U xα

)
∂t∂s

 = £U£V f (xα) . (3.144)

Proceeding in a similar way, one arrives to the result

∆(xαB, x
α
D) =

[
£V£U − £U£V

]
f (xα) . (3.145)

If one now uses the local coordinates xα to compute ∆(xαB, x
α
D), one obtains

∆(xαB, x
α
D) =

(
Vβ ∂Uα

∂xβ
− Uβ ∂Vα

∂xβ

)
∂ f
∂xα

, (3.146)

which means that the operator £V£U − £U£V is a linear differential operator cor-
responding to some vector field W. By comparing equation (3.146) with equation
(3.109), one immediately arrives to the conclusion that the field W = [V,U] is a
commutator of the two vector fields, V and U, and

£V£U − £U£V = £[V,U] = [V,U] . (3.147)

Finally, one has

∆(xαB, x
α
D) = [V,U] f (xα) . (3.148)

This equation allows us to formulate an important theorem:

32) Derivative £V is also called the directional derivative.
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the two flows F s
V and F t

U commute, if and only if, the commutator of the corre-
sponding vectors fields [V,U] is equal to zero.

Indeed, if the two points, xαB = F s
V F t

U xa and xαD = F s
U F t

V xa, coincide, the commutator
[V,U] = 0, making the difference ∆(xαB, x

α
D) = 0, due to equation (3.148). On the

other hand, if [V,U] = 0, one has ∆(xαB, x
α
D) = 0 for any analytic function f (x) in a

neighborhood of the point P. It implies, f
(
xαB

)
= f

(
xαD

)
. Since, the function f

(
xαB

)
is analytic, its Taylor expansion around point D is convergent and leads to equation

∂ f (xD)
∂xα

(
xαB − xαD

)
+

1
2!
∂2 f (xD)
∂xα∂xβ

(
xαB − xαD

) (
xβB − xβD

)2
+ ... = 0 , (3.149)

where the ellipses denote terms of higher order in the infinite Taylor series. Because
the series is convergent, and the coefficients of the series are not all equal to zero,
one concludes that the points xαB and xαD must coincide.

An important example of commuting vectors field is delivered by the grid of any
coordinate chart. Indeed, according to definition, each coordinate line keeps the
value of other coordinates constant in the domain of its applicability. If one moves
from point P along one coordinate line at a parametric distance s, and then along
another coordinate line at a parametric distance t, one arrives to the same point on
manifoldM as if one moved, first, along the second line at the parametric distance
t, and then along the first line at the parametric distance s. This explains why coor-
dinates are so convenient in practical applications to celestial mechanics, astrometry
and geodesy: each point of spacetime manifoldM is characterized by a unique set
of four parameters. Precise navigation is also inconceivable without coordinates.

3.6.4
Definition of the Lie derivative

Let us consider a tensor field S and a vector field V that generates a one-parametric
vector flow F s

V . The Lie derivative of the tensor field is a generalization of the
concept of the directional derivative of a scalar function as explained in equation
(3.136). Lie derivative maps tensor S to a tensor £VS of the same type, and is
defined by the following equation 33)

£VS(xα) ≡ lim
s→0

[
d
ds

F s
VS

(
F s

V xα
)]
. (3.150)

In order to obtain components of a Lie derivative, one introduces a local coordinate
basis ∂/∂xα, where the tensor S of type (k, l) has components S α1α2 ...αk

β1β2 ...βl
(xα), the vector

field V has components Vα(xα), and the matrix of transformation corresponding to
the diffeomorphism is given by equations (3.133), (3.134). Projection of equation

33) The requirement that the object S is a tensor can be relaxed. In fact, definition (3.150) is applied
for arbitrary geometric object with a known law of coordinate transformation of its components. We
emphasize that though the object may be not a tensor, its Lie derivative will be a tensor. This remarkable
fact can be checked by direct calculation [Mitskevich, 1969; Popova and Petrov, 1988].
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(3.150) on the basis tensor composed of the tensor product of the basis vectors and
covectors (see section 2.4.4.1), yields

£VS α1α2 ...αk
β1β2 ...βl

(xα) = lim
s→0

{
d
ds

[
F s

VS
]α1α2 ...αk

β1β2 ...βl

(
F s

V xα
)}

, (3.151)

where the components of tensor F s
VS are obtained by transformation of tensor S from

the point with coordinates F s
V xα to the original point 34) with coordinates xα. More

specifically,[
F s

VS
]α1α2 ...αk

β1β2 ...βl

(
F s

V xα
)
≡ Λα1

µ1 (s)Λα2
µ2 (s)...Λαk

µk (s) (3.152)

× Λν1
β1 (−s)Λν2

β2 (−s)...Λνl
βl (−s)

× S µ1µ2 ...µk
ν1ν2 ...νl (xα + s Vα(x)) + O(s2) .

Substituting equation (3.152) to definition (3.151) and performing corresponding
operations, one obtains for Lie derivative of a tensor 35)

£VS α1α2 ...αk
β1β2 ...βl

= Vµ∂µS α1α2 ...αk
β1β2 ...βl

(3.153)

+ ∂β1 VµS α1α2 ...αk
µβ2 ...βl

+ ... + ∂βl V
µS α1α2 ...αk

β1β2 ...µ

− ∂µVα1 S µα2 ...αk
β1β2 ...βl

− ... − ∂µVαk S α1α2 ...µ
β1β2 ...βl

.

In particular, this equation reveals that the Lie derivative of a vector field U =

Uα∂/∂xα is a commutator of the two vector fields

£VU = [V,U] = −£UV . (3.154)

This equation points out that the operator of the Lie derivative is not a linear operator
with respect to the vector field V which defines direction of the derivative. This
statement can be easily verified if one re-scales V to f V, where f is a scalar function,
and takes the Lie derivative along f V,

£ fVU = [ f V,U] = f £VU − V£U f . (3.155)

One can see that the right side of this equation includes one more term depending
on the Lie derivative £U f of the scalar function f . Only in case when f =const., the
Lie derivative is a linear operator with respect to the direction of differentiation.

It should be clearly understood that the Lie derivative is conceptually different
from the covariant derivative. Indeed, the operation of covariant differentiation along
a vector demands a value of the vector at the point of differentiation 36) while taking
the Lie derivative requires knowledge of the entire vector field (the vector flow) in
the neighborhood of this point. This fact is reflected in equation (3.153) that demon-
strates that the Lie derivative of a tensor along a vector field V requires taking partial

34) This operation is also called pull-back.
35) Lie derivative from a non-tensorial geometric object may include higher-order partial derivatives from

vector filed Vα that defines the vector flow [Mitskevich, 1969].
36) Covariant derivative is a linear operator with respect to its "subscript" argument as explained in section

3.4.1.
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derivatives of the vector field and does not involve any operation with the connection
which is not a part of the definition of Lie derivative. Hence, Lie derivative can be
defined on a manifold even if it has not been endowed with an affine connection.

Nevertheless, if manifoldM has a torsion-free (Levi-Civita) connection it can be
introduced to the definition of Lie derivative (3.153). Indeed, by making use of
definition of the covariant derivative of tensor (3.91) and taking into account that
the torsion-free connection in a coordinate basis is reduced to a (locally) symmetric
Christoffel symbols, Γαβγ = Γαγβ, one can prove that the Lie derivative of a tensor of a
(p, q) type, is given by equation

£VS α1α2 ...αp

β1β2 ...βq
= Vµ

∇µS α1α2 ...αp

β1β2 ...βq
(3.156)

+ ∇β1 VµS α1α2 ...αp

µβ2 ...βq
+ ... + ∇βq VµS α1α2 ...αp

βl ...βq−1µ

− ∇µVα1 S µα2 ...αp

β1β2 ...βq
− ... − ∇µVαp S α1 ...αp−1µ

β1β2 ...βq
,

which is obtained from equation (3.153) by formal replacing all partial derivatives
with their covariant counterparts. Validity of equation (3.156) can be checked by
inspection. We emphasize however that equation (3.156) is valid, if and only if, the
connection is metrical. In case of a generic affine connection the Lie derivative must
contain additional terms proportional to torsion and nonmetricity.

3.6.5
Lie transport of tensors

One has already seen in section 3.4.4 that tensor can be parallel-transported from one
point of a manifoldM to another along a smooth curve by making use of an affine
connection Γαβγ that defines a covariant derivative. There is however another way
for transportation tensors on the manifold based on a linear diffeomorphism (vector
flow) between tangent spaces.

We define Lie transport of a tensor T along a congruence of integral curves of a
vector field V by a condition that its Lie derivative is zero

£VT = 0 . (3.157)

Let each integral curve from the congruence be parameterized by parameter τ. We
consider motion along the congruence from the parametric value τ0 to τ0 + τ that
defines a vector flow Fτ

V as described in section 3.6.1. Let manifoldM has a tensor
field S. It has values S(τ0) and S(τ0 + τ) at each point of the congruence with the
values of parameter τ0 and τ0 + τ respectively. Lie transport of the tensor field
generates a new tensor field Ŝ along the congruence that is a solution of equation
£V Ŝ = 0. The value of the new tensor field at the points of the congruence with
the parameter’s value τ0 + τ, is Ŝ(τ0 + τ) = Ŝ(τ0) = S(τ0) by the definition of the
Lie transport and the initial condition. In general case, Ŝ(τ0 + τ) , S(τ0 + τ). In
some cases, however, the Lie-transported tensor field Ŝ will coincide with the value
of the tensor field S at each point of the congruence. Such tensor field is called Lie
covariant with respect to a vector field V. It preserves its value along each integral
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line of V: S(τ) = S(τ0 + τ). Figure 3.6 visualizes the idea of the Lie transport and
Lie invariance in case of a vector field S that is Lie-transported along a congruence
defined by the integral curves of a vector field V(τ).

If a tensor field S has a physical importance and, in addition, is Lie invariant with
respect to a vector field V, the field V is also physically meaningful. For example,
a vector field V = Vαeα that makes a metric tensor G Lie invariant on spacetime
manifold

£VG = 0 , (3.158)

or in components

∇αVβ + ∇βVa = 0 , (3.159)

is known as a Killing vector indicating the existence of a symmetry of the spacetime
(that means the metric tensor does not change along the Killing vector) with respect
to a certain class of transformations. The transformations generated by Killing vec-
tors are associated with conservation laws in dynamics of test particles [Misner et al.,
1973; Wald, 1984]. Timelike Killing vector yields conservation of energy; spacelike
ones give conservation of momentum in the direction of the Killing vector, etc.
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Figure 3.6 A vector S is Lie transported along a congruence of a vector field V parameterized
with τ. The Lie transport generates a new vector field Ŝ along the integral curves of the vector
field V. Since £VŜ = [V, Ŝ] = 0, each integral line of the vector field Ŝ passes through the same
value of the parameter τ of the congruence. In the most general case, the integral lines of the
vector field S and the Lie-transported vector field Ŝ coincide only for one value of the parameter
τ (in figure τ = 3) that is the initial condition for the solution of the equation of the Lie transport.
If vector fields S and Ŝ coincide for all values of the parameter along the congruence, the vector
field S is called Lie invariant.
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3.7
The Riemann Tensor and Curvature of Manifold

In previous section one has introduced the concept of manifold M equipped with
an affine connection Gαβγ that defines the covariant derivative and the rule of paral-
lel transport of vectors and tensors from one point of the manifold to another. The
connection is a geometric structure that global behavior is characterizes by two in-
variants - torsion and curvature. The torsion is determined by the anti-symmetric
part of the affine connection but one has postulated that it vanishes identically. We
shall also assume the nonmetricity of the connection vanishes. Hence, the affine
connection is reduced to the Levi-Civita connection. Its geometric property - the
curvature of manifold - is measuring the extent to which a parallel transport of a
vector around closed loops fails to preserve its identity. It is the curvature which
makes the parallel transport on a manifold path-dependent and two covariant deriva-
tives noncommuting. Curvature of a manifold is quantified by the Riemann tensor
which plays a central role both in the differential geometry and in any viable theory
of gravity.

3.7.1
Noncommutation of covariant derivatives

Let us consider two vector fields, V and U, on a differentiable manifoldM endowed
with an affine connection associated with a covariant derivative ∇. Existence of a
metric tensor on the manifold is not required as it is unimportant for mathematics of
this section. We define a commutator operator of the covariant derivatives[
∇V ,∇U

]
= ∇V∇U − ∇U∇V , (3.160)

and introduce an operator of a covariant derivative ∇[V,U] along the commutator
of the two vector fields. The operator (3.160) looks like a second-order covariant
derivative which does not form a tensor. This observation is only partially correct -
the operator (3.160) is not a tensor but form a first order covariant derivative. It is
remarkable that a small modification allows one to build an actual tensor out of the
commutator after subtracting the covariant derivative along the field [V,U]

R(V,U) ≡
[
∇V ,∇U

]
− ∇[V,U] . (3.161)

This geometric object is called the curvature operator. Let us prove that it belongs
to the tangent space of the manifold M that is its calculation does not involve dif-
ferentiation of the vector fields V and U and/or a geometric object upon which it
acts.

First of all, one notices that the curvature operator is antisymmetric

R(V,U) = −R(U,V) . (3.162)

so that the two vector arguments are interchangeable.
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At second step, one proves that the curvature operator is linear with respect to its
two arguments in the sense that for any differentiable function f

R( f V,U) = fR(V,U) . (3.163)

Indeed, one has

[∇ fV ,∇U] = ∇ fV∇U − ∇U∇ fV (3.164)

= f∇V∇U − ∇U
(

f∇V
)

= f [∇V ,∇U] − U[ f ]∇V ,

where one has applied axioms of the affine connection from section 3.4 and the fact
that the directional derivative U[ f ] is a scalar function. On the other hand,

∇[ fV,U] = ∇ fVU−U( fV) = f∇[V,U] − U[ f ]∇V , (3.165)

where one has again used the axioms of the covariant derivatives. After adding up
equations (3.164) and (3.165) one arrives to equation (3.163), q.e.d.

The last step, is to prove that the curvature operator is linear when it acts on a
product of any differentiable function f and a vector field W

R(V,U)( fW) = fR(V,U)W . (3.166)

After performing the covariant differentiation, one has

[∇V∇U]( fW) = f [∇V∇U]W + W∇[V,U] f , (3.167)

∇[V,U]( fW) = f∇[V,U]W + W∇[V,U] f . (3.168)

Subtracting equation (3.168) from (3.167) yields equation (3.166), q.e.d.
A tensor corresponding to the curvature operator is called the Riemann curvature

tensor . Its components in an arbitrary basis are defined by equation

R(eγ, eδ)eβ = Rα
βγδeα , (3.169)

where one has used the same sign convention as in the textbook by Misner et al.
[1973]. In case of a Levi-Civita connection and in a coordinate basis the components
of the Riemann tensor are

Rα
βγδ =

∂Γαβδ

∂xγ
−
∂Γαβγ

∂xδ
+ ΓαµγΓ

µ
βδ − ΓαµδΓ

µ
βγ , (3.170)

where Γαβγ = Γαγβ are the Christoffel symbols.
The above consideration reveals that if the Riemann tensor of a manifold is not

equal to zero, the second-order covariant derivatives on a curved manifold do not
commute, ∇V∇U , ∇U∇V , as contrasted to the standard second-order partial
derivatives which always commute, ∂α∂β = ∂β∂α. We emphasize however that the
precise definition of the curvature operator entails a covariant derivative along the
commutator of two vector fields as shown in equation (3.161). It means that two
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covariant derivatives from an arbitrary tensor taken along two non-commuting (non-
holonomic) vector fields V and U do not commute, even if the Riemann tensorR = 0.
This happens because the commutator of the vector fields [V,U] , 0 37).

3.7.2
The dependence of the parallel transport on the path

If the Riemann tensor of a manifold is different from zero, the result of a parallel
transport of a vector will depend on the path of transportation. Indeed, let a vector
W be parallel transported from a point P along the vector fields V and U, that is

∇VW = 0 , ∇UW = 0 . (3.171)

It will arrive to a point D with a value WPCD. Let now vector W be parallel trans-
ported from the same point P but, first, along U and,then, along V at the same para-
metric distances. Its destination point B will not coincide with the point D if the
commutator [V,U] , 0, as shown in Figure 3.7. In order to compare the two results
of the parallel transport, the vector W must be additionally parallel-transported,

∇[V,U]W = 0 , (3.172)

along the direction of the non-vanishing commutator of the vector fields from the
point B to the point D. After the parallel transport along this path vector W takes a
value WPCBD at the point D. The difference, δW = WPCD −WPCBD, between the two
results of the parallel transport of vector W is given by

δW =
[
∇V ,∇U

]
W − ∇[V,U]W = R(V,U)W . (3.173)

Equation (3.173) tells us that if a vector is parallel transported from one point of
a manifold to another along two different paths it must have two different values
at the point of destination if the Riemann tensor of the manifold is different from
zero. Accordingly, parallel transportation of a vector (or a form, or a tensor) along a
closed curve may render a vector (form, tensor) different from the original one. This
property of the affine connection is known as a holonomy of an affine connection.

3.7.3
The holonomy of a connection

Let us consider a manifold and an infinitesimal contour around a point P bounded
by a curve Γ(λ) with a tangent vector V = d/dλ where λ is a parameter along the
curve taking values from λ = 0 to λ = λ0. Let a vector W be parallel transported
along the curve so that at each point of the contour a covariant derivative ∇VW = 0.
Equation of the parallel transport can be solved and its solution represents a vector

37) Misunderstanding of this peculiarity of the non-holonomic vector bases has led some researchers [Wu
and Ruan, 2003] to curious mathematical mistakes and misinterpretation of the foundations of Ein-
stein’s theory of general relativity.
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Figure 3.7 A vector W is parallel transported along infinitesimally-small paths PABD and PCD
from a point P to a point D. The parallel transport generates a vector field W along the integral
curves of the vector field V and U. The difference δW = WPCD −WPCBD between the two
results of the parallel transport, is proportional to the value of the Riemann tensor taken at the
point P. One has δW = 0, if and only if, the manifold is flat.
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field W(λ) on the curve. This vector field is nonholonomic in the sense that after one
moves vector W around the contour and returns it to a starting point, the difference
δW = W(λ0) −W(0) , 0 (see Figure 3.8).

To quantify the holonomy, let us integrate a parallel-transported vector W along
the contour. It is convenient to introduce a local coordinate chart xα around the point
P on the manifold, and integrate the covariant components Wα of the vector that are
obtained with the metric tensor isomorphism, Wα = gαβWβ. Suppose, one starts the
integration at point xα0 = xα(λ = 0) on the contour and return to the same point at
another value of λ = λ0. It gives us a change of the covector δWα = Wα(λ0) −Wα(0)
accumulated over a walk about the contour,

δWα =

∮
dWα =

∮
dWα

dλ
dλ =

∮
Γ
β
αγWβ

dxγ

dλ
dλ , (3.174)

where one has used the equation of the parallel transport of the covector components
Wα. To carry out the integration, one will make use of the fact that the contour Γ(λ)
is infinitesimally small. It will allow us to expand both functions in the integrand,
Γ
β
αγ(x) and Wβ(x), about the initial point xα0 to the leading order in xα − xα0 , where

xα = xα(λ),

Γ
β
αγ(x) = Γ

β
αγ(x0) + (xδ − xδ0)Γβαγ,δ(x0) + O (x − x0)2 , (3.175)

Wβ(x) = Wβ(x0) + (xδ − xδ0)Γµβδ(x0)Wµ(x0) + O (x − x0)2 , (3.176)

where comma denotes a partial derivative with respect to a corresponding coordinate,
Γ
β
αγ,δ = ∂Γ

β
αγ/∂xδ, and one has again used the equation of the parallel transport to

express the increment dWβ in terms of the Christoffel symbols.
Insertion of these in equation (3.174) results in

δWα = Γ
β
αγ(x0)Wβ(x0)

∮
dxγ (3.177)

+
[
Γ
β
αγ,δ(x0) + Γ

µ
αγ(x0)Γβµδ(x0)

]
Wβ(x0)

∮ (
xδ − xδ0

)
dxγ ,

where all quadratic and higher-order terms in the integrand have been neglected as
they provide a negligible contribution. The terms being proportional to

∮
dxγ, vanish

after integration over the closed contour. The integration in equation (3.177) will
then be reduced to

δWα =
[
Γ
β
αγ,δ(x0) + Γ

µ
αγ(x0)Γβµδ(x0)

]
Wβ(x0)S δγ , (3.178)

where

S δγ =

∮
xδdxγ = −

∮
xγdxδ , (3.179)

is the area encircled by the contour Γ(λ). Because the area is an antisymmetric object,
S δγ = −S γδ, one can recast equation (3.178) to

δWα =
1
2

Rβ
αδγWβS δγ , (3.180)
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Figure 3.8 A vector W is parallel transported (counterclockwise) around an infinitesimal
contour Γ(λ). Nonholonomy of the affine connection is a failure of the parallel transport to
preserve identity. The nonholonomy is measured by the variation of the vector δW that is
proportional to a curvature tensor Rαβγδ of a manifold and the area of the contour S γδ.
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where Rβ
αδγ is the Riemann tensor given by equation (3.170). The holonomy equa-

tion (3.180) for the covector is equivalent to

δWα = −
1
2

Rα
βδγWβS δγ , (3.181)

where one has used the symmetry of the Riemann tensor explained in the next section
3.7.6.

This result is trivially extended to a finite-sized contour by the standard trick bor-
rowed from the proof of the Stokes theorem presented in any textbook on calculus:
cover the surface inside the contour with an infinite set of infinitesimally small rect-
angles, and notice that the integral over the entire contour is equal to the sum of such
integrals over the boundaries of all the rectangles. In this sum, all terms will can-
cel, except those corresponding to the outer boundary. This will enable us to rewrite
formula (3.181) for the finite-size contour

δWα = −
1
2

"
Rα

βδγWβdS δγ , (3.182)

where the integral is over the surface encircled by the finite-size contour with the
surface element of the integration dS δγ = −dS γδ. One sees that after a parallel
transportation around the finite-size contour a vector retains its original value, if and
only if, the Riemann tensor Rα

βγδ = 0, that is the manifold is flat. It corresponds to
the case of a holonomic connection. An alternative proof of equation (3.182) can be
found, for example, in Schutz [1995].

3.7.4
The Riemann tensor as a measure of flatness

Among the most valuable features of the Riemann tensor is that it helps us to quantify
the notion of flatness of a manifold. Manifold is called flat if it can be covered en-
tirely with a Cartesian coordinates. We shall now build a mathematical criterium of
flatness: a manifold is flat if and only if the Riemann tensor R vanishes everywhere.

Proving this criterium in one direction is easy. If the manifold is flat, and covered
globally with Cartesian coordinates, then (in these coordinates) the affine connection
is zero everywhere. Accordingly, R = 0 on the entire manifold. A flat manifold can,
of course, be covered with atlas consisting of non-Cartesian charts with curvilinear
local coordinates. In such coordinates the Christoffel symbols are not zero. Nev-
ertheless, as the existence of the global Cartesian coordinates was admitted, there
exists a coordinate transformation from the global (Cartesian) to local (curvilinear)
coordinates. Hence, the Riemann tensor calculated in the curvilinear coordinates
will vanish, as can be easily seen from the tensor transformation law: if a tensor is
nil in one coordinate system, it will remain nil in any other.

Now one has to prove the inverse statement: vanishing of the Riemann tensor
entails flatness. In other words, R = 0 is a sufficient condition for existence of the
Cartesian coordinates covering the entire manifold. The proof will employ equation
(3.16) describing transformation of the Christoffel symbols from coordinates xα

′

to
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the others xα. Let us reformulate equation (3.16) in the following form

∂2xβ
′

∂xµ∂xν
=
∂xβ

′

∂xα
Γαµν −

∂xλ
′

∂xµ
∂xρ

′

∂xν
Γ
β′

λ′ρ′ , (3.183)

and assume that coordinates xα
′

are chosen in such a way that the Christoffel symbols
Γ
β′

λ′ρ′ = 0 in a neighborhood of a point P of the manifold. This can be always done, at
least at one point of the neighborhood, as follows from the procedure of construction
of the normal coordinates described in section 3.3.8.3. However, now one demands
more than that - one assumes that not only Γ

β′

λ′ρ′ = 0 at point P but at least all first

derivatives of the Christoffel symbols also vanish: Γ
β′

λ′ρ′ ,µ′ = 0 at this point. This is a
rather restrictive demand as it imposes a ceratin limitation on equation (3.183).

Indeed, under these assumptions, the transformation equation (3.183) is reduced
to a system of homogeneous linear equations in partial derivatives

∂Λβ′
µ

∂xν
= ΓαµνΛ

β′
α , (3.184)

for a matrix of the coordinate transformation, Λβ′
µ ≡ ∂xβ

′

/∂xν, that obeys 6×4=24
restrictions

∂Λβ′
µ

∂xν
=
∂Λβ′

ν

∂xµ
, (µ , ν) . (3.185)

The number of independent components of the matrix Λβ′
µ is 16, while the number

of the independent equations is 64-24=40. It means that the system of equations
(3.184) is over-determined.

The Frobenius theorem gives necessary and sufficient conditions for finding a
maximal set of independent solutions of an over-determined system of partial dif-
ferential equations (3.184). Specifically, the second partial derivatives of the matrix
Λβ′

µ must commute

∂2Λβ′
µ

∂xν∂xγ
=
∂2Λβ′

µ

∂xγ∂xν
. (3.186)

Taking the corresponding partial derivatives from both sides of equation (3.184) and
substituting them to equation (3.186) one obtains

Λβ′
α

(
Γαµν,γ − Γαµγ,ν + Γ

ρ
µνΓ

α
ργ − Γ

ρ
µγΓ

α
ρν

)
= 0 , (3.187)

or accounting for definition (3.170) of the Riemann tensor,

Λβ′
αRα

µγν = 0 . (3.188)

This equation tells us that the condition Γ
β′

λ′ρ′ = 0 can be satisfied in a neighborhood
of a point P, if and only if, the Riemann tensor Rα

µγν = 0. Because all local coordi-
nate charts overlap on the manifold, and the transition functions between the charts
are analytic, one comes to the conclusion that if the Riemann tensor is nil at least at
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one chart, it must be nil on the entire manifold, and the global coordinates can be
constructed in which the Christoffel symbols vanish. In these coordinates the metric
tensor is apparently constant as follows from the definition (3.34), and can be chosen
coinciding with the Minkowski metric of flat spacetime.

It is worth noticing that the symmetry relations (3.185) can be also considered as
consequences of the symmetry of the Christoffel symbols, Γαµν = Γανµ that are stand-
ing in the right side of equation (3.184). It is possible to relax this restriction and
to work with a non-holonomic basis admitting a non-symmetric affine connection
that can also include the torsion tensor. The connection made up of the torsion, is
known as the Weitzenböck connection [Weitzenböck, 1923]. The above-given proof
of flatness of the manifold will be still valid for the non-holonomic bases and for
the Weitzenböck connection. It demonstrates rather remarkably that the concept of
flat manifold is more general than the standard Minkowski spacetime in the sense
that it can admit co-existence of the Minkowski metric ηαβ along with the additional
geometric structure - the affine connection made up of torsion. This property of
the flat manifold is a mathematical basis for a teleparallel theory of gravity [Blome
et al., 2010; Ferraro, R. and Fiorini, F. , 2008; Itin and Marolf, 2001]. Unlike gen-
eral relativity, gravity in teleparallelism is not due to the curvature of spacetime
(which is equal to zero) but due to the torsion. Proponents of the teleparallel point
of view maintains the idea that curvature and torsion are simply alternative ways of
describing the gravitational field. Any gravitational phenomenon that can be inter-
preted in terms of curvature, therefore, can also be interpreted in terms of torsion
so that there exist equivalence between general relativity and teleparallel gravity
[Aldrovandi and Pereira, 2007]. On the other hand, more general gravity theories,
like Einstein-Cartan [Trautman, 2006] and the metric-affine groups [Heinicke et al.,
2005; Sotiriou and Liberati, 2007], consider curvature and torsion as representing in-
dependent degrees of freedom. In these theories, differently from teleparallel gravity,
torsion might become relevant only when spins are important. This could be the case
either at the microscopic level or near a rapidly rotating neutron stars or black holes.
According to these models, therefore, since torsion represents additional degrees of
freedom in relation to curvature, new physical phenomena should be expected from
its presence. Mao et al. [2007] claimed that the effects of torsion may be expected
in the solar system and possible measured by means of the Gravity Probe B (GP-B)
experiment. This statement was confronted by Hehl and Obukhov [2007] on the

basis that the GP-B gyroscope as a whole, has no uncompensated elementary spin
which is crucial in coupling of torsion with gravitational field.

3.7.5
The Jacobi equation and the geodesics deviation

Consider a smooth, one-parameter congruence (vector flow) of geodesics, Cσ, num-
bered with aid of parameter σ. Each geodesic is a curve parameterized with an
affine parameter τ. For each fixed σ, the appropriate geodesic has its tangent vector,
V ≡ Vσ(τ), that satisfies equation (3.95): ∇VV = 0. Let us construct (see Figure
3.9) a so-called Jacobi vector field, J ≡ Jτ(σ), consisting of a congruence of curves
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each of which passing through the points of the geodesics having the same value of
the parameter τ. Each curve from the Jacobi field is numbered with the parameter
τ and is parameterized with the parameter σ being reckoned along it. By the con-
struction, the Jacobi field is Lie transported along the congruence of the geodesics
and obeys equation (3.157): £V J = 0. This, in its own turn, guarantees that the two
vector fields commute, [V, J] = 0.

The Jacobi vector field evolves as it is Lie transported along the geodesic congru-
ence. Its evolution is associated with the change of the parameter τ. Let us consider
how much the Jacobi field changes as the parameter increases from the initial value
τ = 0 to some other sufficiently small value τ. Because one assumes all geometric
objects to be analytic functions on the manifold, one can expand the Jacobi field
J ≡ Jτ(σ) in a Taylor series around the initial value. We shall assume that the mani-
fold is torsion-free and it is endowed with a Levi-Civita connection. Then, the Taylor
expansion of the Jacobi field reads

J = J0 + τ
(
∇V J

)
τ=0

+
τ2

2

(
∇V∇V J

)
τ=0

+ O
(
τ3

)
. (3.189)

The first derivative of the Jacobi vector field J taken along the tangent vector V
measures the relative speed of deviation of geodesics from one another. It depends
on the initial conditions and may be different from zero. However, it characterizes a
pure kinematic behavior of the geodesic congruence and does not reflect a dynamics
of the relative separation of the geodesics as one moves along their congruence.
The dynamics is revealed by the second derivative of J along the tangent vector
V that yields the relative acceleration of the geodesics. Hence, one focuses on the
calculation of the second derivative of J in equation (3.189).

As one has assumed that the manifold is torsion-free, the covariant derivatives of
the Jacobi field J and the tangent vector field V must commute (see section 3.5.2):
∇V J = ∇J V. Hence, the second derivative of J can be written as

∇V∇V J = ∇V∇J V =
[
∇V∇J

]
V , (3.190)

where one has omitted a term ∇J∇VV as it equals to zero due to the geodesic
equation ∇VV = 0 being valid at any point of the geodesic congruence.

The last term in equation (3.190) is the curvature operator R(V, J)V defined in
equation (3.161), where the derivative along the commutator of two vector fields
must be omitted due to the fact that the Jacobi field J commutes with the tangent
vector V to the geodesics. Eventually, equation (3.190) can be recast to the final
form

∇V∇V J + R(J,V)V = 0 , (3.191)

or in components

VµVν
∇µ∇νJα + Rα

βγδVβVδJγ = 0 . (3.192)

This equation is called the Jacobi equation in differential geometry [Fecko, 2006]. It
is also known as an equation of the deviation of geodesics in general theory of rela-
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tivity [de Felice and Clarke, 1990; Misner et al., 1973; Wald, 1984]. The key obser-
vation ensuing from this formula is that the relative acceleration of nearby geodesics
vanishes, if and only if, so does the Riemann tensor. The Jacobi equation is used for
measuring the change in deviation of geodesics of two test particles in gravitational-
wave detectors [LIGO, 2010] and in precise gradiometry as described in section 8.7
of the present book.

We emphasize that the Jacobi equation (3.191) has been derived under assumption
that the manifold is torsion-free. Torsion will bring about additional terms to the
equation of deviation of geodesics [Kleinert, 2008].

3.7.6
Properties of the Riemann tensor

3.7.6.1 Algebraic symmetries
Let us assume in this subsection that the dimension of the manifold M is n. Ein-
stein’s spacetime, n = 4, will be a particular case. We shall also assume that the
manifold is pseudo-Riemannian with the components of the metric tensor gαβ in a
local chart. The metric tensor allows us to lower an index in the definition (3.170)
of the Riemann tensor, Rαβγδ = gαµRµ

βγδ. The goal of this subsection is to study
the symmetries of the Riemann tensor Rαβγδ which determine the number of its alge-
braically independent components.

Let us consider the Riemann tensor at a point P on the manifoldM. The symme-
tries of the Riemann tensor do not depend on the choice of coordinates. Hence, one
can chose the normal coordinates with the origin at the point P. In these coordinates,
the Christoffel symbols vanish at the point P and the Riemann tensor is reduced to
a linear combination of the second derivatives from the metric tensor [Misner et al.,
1973]

Rαβγδ =
1
2

(
gαδ,βγ − gβδ,αγ − gαγ,βδ + gβγ,αδ

)
, (3.193)

where comma with two indices after it denotes two partial derivatives with respect to
the indices. Algebraic symmetries of the Riemann tensor follow immediately from
equation (3.193). They are:

1. Antisymmetry with respect to two indices

Rαβγδ = −Rβαγδ = −Rαβδγ = Rβαδγ , (3.194)

2. Symmetry with respect to a pair of indices

Rαβγδ = Rγδαβ , (3.195)

3. Cyclicity with respect to a permutation of any three indices, for example,

Rαβγδ + Rαγδβ + Rαδβγ ≡ 0 . (3.196)
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Figure 3.9 A vector field V = Vσ(τ) is formed by geodesics numbered with a parameter σ. The
Jacobi vector field J ≡ Jτ(σ) is formed by the curves passing through the same values of the
parameter τ on the geodesics. Two infinitesimally-close geodesics have their tangent vectors
parallel to each other at an initial value of the parameter τ = 0. As parameter τ increases the
two geodesics deviate from each other and their tangent vectors gradually cease to be parallel.
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Total number of components of the Riemann tensor on the manifold of dimension
n is equal to n4. However, the afore mentioned symmetries reduce the number of
independent components of the Riemann tensor. The antisymmetry property tells us
that there exist only k = n(n − 1)/2 independent pairs (α, β) and the same number
k = n(n − 1)/2 of pairs (γ, δ). This gives, altogether, k2 choices of the two pairs con-
stituting the total subscript. However, the symmetry property reduces the number of
choices of the pairs by k(k − 1)/2, leaving us with only k(k + 1)/2 choices. Their
number will be restricted further by the cyclicity property. The number of extra con-
straints imposed by this property is equal to the number of choices of four different
indices 38) out of n, which is: n!/(n − 3)!4! = n(n − 1)(n − 2)(n − 3)/24. Naturally,
the number of these constraints vanishes for n < 4.

All in all, the number NR(n) of independent components of the curvature tensor
Rαβγδ turns out to be equal

NR(n) =
1
8

n(n − 1)(n2 − n + 2) −
1
24

n(n − 1)(n − 2)(n − 3) =
n2(n2 − 1)

12
. (3.197)

One can easily see that the Riemann tensor is identically zero in case of a one-
dimensional manifold. On two-dimensional manifolds, the number of nonvanishing
component of the curvature tensor is one, R1212. Three-dimensional manifolds have
six independent components of the Riemann tensor. A non-trivial case appears in
four-dimensional manifold, n = 4, where the number of independent nonvanishing
components of the Riemann tensor is 20. This is exactly the number of terms which
prevented to nullify the second derivatives of the metric tensor in construction of the
normal coordinates in section 3.3.8.3. It explains why the normal coordinates can not
cover the entire four-dimensional manifold in the most general case – the curvature
of the manifold leads to appearance of coordinate singularities and collapse of the
grid of the normal coordinates 39).

3.7.6.2 The Weyl tensor and the Ricci decomposition
An important role in differential geometry is played by the Weyl conformal tensor
Cαβγδ, named after Hermann Weyl who showed that this tensor measures the devi-
ation of a pseudo-Riemannian manifold from conformal flatness. In other words, if
Cαβγδ = 0, the manifold is conformally equivalent to a flat manifold, and its met-
ric tensor gαβ can be expressed as a product of a scale factor (function) Ω2 and the
Minkowski metric: gαβ = Ω2ηαβ.

On pseudo-Riemannian manifold of dimension n the Weyl tensor is obtained as
an algebraic part of the Riemann tensor having the same symmetries as the Rie-
mann tensor but, in addition, being trace-free with respect to transvection of any two

38) In fact, the symmetry property B makes the components Rαβγδ of the Riemann tensor fully antisymmet-
ric with respect to a permutation of all four indices.

39) This remarks is applicable to any coordinates in curved manifolds.
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indices

Cαβγδ = Rαβγδ (3.198)

+
1

n − 2

(
gαδRγβ − gαγRδβ − gβδRγα + gβγRδα

)
+

R
(n − 1)(n − 2)

(
gαγgδβ − gαδgγβ

)
,

where

Rαβ = Rγ
αγβ = gαγRαβγδ , (3.199)

is the Ricci curvature tensor, and

R = Rα
α = gαβRαβ , (3.200)

is the curvature scalar. An explicit expression for the Ricci tensor, obtained from
transvection of indices in equation (3.170) in accordance to equation (3.199), reads

Rβδ =
∂Γαβδ

∂xα
−
∂Γαβα

∂xδ
+ ΓαµαΓ

µ
βδ − ΓαµδΓ

µ
βα . (3.201)

The Ricci tensor is symmetric as evident from equation (3.195) and can be indepen-
dently confirmed by inspection of equation (3.201). Equation (3.198) is also known
as the Ricci decomposition.

Equation (3.198) points out that the Weyl tensor in general relativity provides cur-
vature to the spacetime when the Ricci tensor is zero, that is in vacuum. This equa-
tion also confirms the trace-free nature of the Weyl tensor,

Cα
βαδ = 0 . (3.202)

where one has taken into account that on a manifold with dimension n, the transvec-
tion of the metric tensor gαβgαβ = δαα = n. Equation (3.202) gives n(n + 1)/2 addi-
tional constraints on the components of the Weyl tensor Cαβγδ as compared with the
Riemann tensor Rαβγδ. Therefore, the number NC(n) of algebraically-independent
components of the Weyl tensor is [Weinberg, 1972]

NC(n) =
1
12

n2(n2−1)−
1
2

n(n+1) =
1
12

n(n+1)(n+2)(n−3) , (n ≥ 3) . (3.203)

This shows that on 3-dimensional manifolds the Weyl tensor vanishes identically
so that the Riemann tensor can be expressed in terms of the Ricci tensor and
Ricci scalar. In four-dimensional spacetime of general relativity the number of
algebraically-independent components of the Weyl tensor is 10. Possible algebraic
symmetries of the non-vanishing components of the Weyl tensor at each point in a
pseudo-Riemannian manifold were classified by A. Z. Petrov [1954, 1969] 40)

40) Concise introduction to Petrov’s classification can be found in a review article by Frolov [1979].
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The linear combination

Gαβ ≡ Rαβ −
1
2

gαβR , (3.204)

is called the Einstein tensor . Its definition does not depend on the dimension of a
manifold. The trace of the Einstein tensor

Gα
α =

2 − n
2

R , (3.205)

where n is dimension of the pseudo-Riemannian manifold. In general relativity n =

4, and Gα
α = −R is the negative of the Ricci scalar. The Einstein tensor occupies the

central place in general relativity. It appears in Einstein’s equation for gravitational
field.

3.7.6.3 The Bianchi identities
The Riemann tensor obeys important differential identities, in addition to the alge-
braic identities discussed above. In order to derive them, let us again assume the
connection to be torsion-free and employ the normal coordinates with the origin at
a point P of a manifold. First, one will calculate a covariant derivative from the
Riemann tensor at the point P. One has in the normal coordinates

∇αRβγµν = Rβγµν,α , (3.206)

where the comma before the index denotes a partial derivative, f,α ≡ ∂ f /∂xα, and
all terms with the Christoffel symbols vanish as all of them are equal to zero at the
point P. This property is again used for calculating the partial derivative from various
terms entering the definition of the Riemann tensor in equation (3.206). It brings
about

∇αRβγµν =
1
2

(
gβν,γµα − gγν,βµα − gβµ,γνα + gγµ,βνα

)
. (3.207)

Taking a cyclic permutations of indices α, β, γ one obtains the Bianchi identities

∇αRβγµν + ∇γRαβµν + ∇βRγαµν ≡ 0 . (3.208)

These equations have been derived in the normal coordinates but they are covariant,
that is valid in any other coordinates due to the tensorial nature of the covariant
derivative and the Riemann tensor. Contracting the Bianchi identity (3.208) over
indices α and γ, and then over β and µ, and using the axiom that a covariant derivative
commutes with the operation of contraction of indices, one arrives at

∇αGαβ ≡ 0 , (3.209)

where Gαβ = gαµgβνGµν is the contravariant Einstein tensor defined in (3.204).
Geometric interpretation of the Bianchi identity (3.208) has been found by É. Car-

tan who used a language of differential forms and mobile frames. This language was
popularized by J.A. Wheeler in terms of the famous statement "the boundary of a
boundary is zero" [Misner et al., 1973, pp. 364-382]. It corresponds in general rela-
tivity to the law of conservation of the moment of rotation of a stress-energy tensor
of gravitational field associated by Cartan with the Einstein tensor.
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3.8
Mathematical and Physical Foundations of General Relativity

The physical principles of general relativity have been thoroughly discussed for
decades since the time of its discovery by Einstein [Norton, 1993]. Einstein [1918]
pointed out three principles on which the theory rested: (a) principle of covariance,
(b) principle of equivalence, and (c) Mach’s principle 41). Subsequent scientific elab-
oration on the theory has refined and enriched the earlier developments. Neverthe-
less, there is no a universal agreement between various researchers about either the
optimal way of deducing general relativity from a few axioms, or what minimal set
of axioms should be specifically taken in order to develop the Einstein’s theory of
gravity in a self-consistent way 42). For this reason, the chapter focuses not on de-
veloping a minimal set of axioms of general relativity, but rather on discussing the
basic principles lying in the foundation of modern gravitational physics.

3.8.1
General covariance on curved manifolds

Section 3.2 discussed the principle of general covariance in application to flat
(Minkowski) spacetime of special relativity. One has found that by making use of
the formalism of covariant derivatives one can extend the form-invariance of the fun-
damental laws of physics to arbitrary (for example, accelerated or curvilinear) coor-
dinates in contrast to the special covariance principle that is valid only in a subclass
of inertial coordinates that move with respect to each other with constant velocities
and do not rotate.

The principle of general covariance can be further extended to differential mani-
folds with curvature. This possibility played an important heuristic role for Einstein
in an earlier work on the theory of general relativity. Einstein also recognized that
the principle of general covariance alone may be insufficient to build the foundation
for gravity theory. Indeed, a pure mathematical extension of the principle of covari-
ance to curved manifolds allows us to write down most of the laws of physics in
a covariant form by making use of the language of differential geometry. Loosely
speaking, this can be achieved by replacing partial derivatives, ∂/∂xα, acting upon
geometric objects in the equations of special relativity with covariant derivatives ∇α
43), and by replacing the Minkowski metric ηαβ with the metric gαβ associated with
the curved manifold. This is reasonable as any curved manifolds admits introduction
of the normal coordinates in a local neighborhood of any point P at which the affine
connection vanishes and the metric tensor is reduced to the Minkowski form ηαβ (see
section 3.3.8.3).

This observation was made by Erich Kretschmann in 1917. He,however, argued

41) Later on, Einstein excluded this principle as being too uncertain and controversial.
42) Compare, for example, how the gravity principles are approached by Ehlers et al. [1972]; Misner et al.

[1973]; Synge [1964]; Weinberg [1972] and more recently by de Felice and Clarke [1990]; Kleinert
[2008]

43) This replacement, in relativistic jargon, is termed as "comma goes to semi-colon" rule.
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that besides bringing mathematical shine to the theory, the principle of covariance
would reveal no new physics compared to the special relativity principle plus co-
variance of physical fields. Kretschmann [1917] addressed the skepticism of the
covariance principle to the entire theory including general relativity. He insisted
that the demand to put a theory to generally covariant form does not limit or restrict
the range of acceptable theories of gravity but is simply a challenge to the theo-
rist’s mathematical ingenuity. In other words, in order to produce a new theory one
needs to supply some other principle(s) besides the principle of general covariance.
Initially dissident, this opinion, unfortunately, became popular. As a result of this,
the principle of general covariance is often omitted in the modern books on gravity,
though back in 1915-1916 it was a source of inspiration for Einstein.

There is nothing wrong in Kretschmann’s way of reasoning from a pure mathe-
matical point of view, that explains why it was concurred by majority of physicists
[Norton, 1993]. However, extension of Kretschmann’s objection to gravitational
physics is too far-going endeavor pretending to make the principle of general covari-
ance physically vacuous. Neither Einstein nor other notable physicists could agree
with such an extrapolation of Kretschmann’s philosophy [Norton, 1993]. Although
it is true that the principle of general covariance gives us no unique prescription to
build a relativistic theory from its pre-relativistic analogue, it nevertheless, allows
us to understand much deeper the physical foundations underlying the theory, and
to narrow down the search for the additional principles helping to single out an ap-
propriate variant of the theory. For example, Einstein’s judgement was that of two
theoretical systems, both of which agree with experience, the one is to be preferred
which, from the point of view of the differential calculus, is the simpler and more
transparent [Einstein, 1918]. This reminds Occam’s razor principle stating that when
competing hypotheses are equal in other respects, the hypothesis that introduces the
fewest assumptions and postulates the fewest entities while still sufficiently answer-
ing the question, is to be selected 44).

Anderson [1967] provided more elaborative arguments in support of Einstein’s
point of view by arguing that the covariant generalization of the pre-relativistic the-
ory must not involve additional geometric structures besides the dynamic objects like
the metric tensor and the affine connection. Any time as such an extraneous, or "ab-
solute" or "kinematic" in Anderson’s terminology, geometric object appears in the
covariant formulation of the theory, the theory is physically ill-posed and has to be
abandoned. According to Anderson and Gautreau [1969] the absolutes are defective
in a sense that they affect the behavior of the dynamic geometric objects but are not
affected by these objects in turn. For example, the Newtonian theory of gravity can
be formulated in covariant form but it must include a timelike congruence of a vector
field Tα in addition to the metric tensor, gαβ, and the affine connection, ∇α which is
compatible with metric, ∇αgµν = 0. The goal of the absolute vector field Tα is to
keep the spacetime sliced in absolute space and time irrespectively of the covariant

44) In a sense Einstein reformulated the first rule of reasoning in philosophy proposed by Isaac Newton:
"One is to admit no more causes of natural things than such as are both true and sufficient to explain
their appearances" [Newton, 1760].
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formulation. Mathematically, this stratification tells us that the metric must be kept
purely spacelike in the sense that gαβT β = 0 which assumes that the vector field is
compatible with the affine connection ∇βTα = 0 [Misner et al., 1973, $12.2]. How-
ever, the presence of the absolute (kinematic) object - vector field Tα - is unnatural
for dynamical theory of spacetime, not to say that such a vector field has never been
observed.

Kretschmann [1917] also attacked the principle of general covariance from a dif-
ferent angle by appealing to symmetry-based theoretical consideration [Kox and
Eisenstaedt, 2005]. In special relativity, the spacetime is isotropic and homogeneous,
so that whatever coordinates are used, the metric tensor transformation admits 10-
parametric symmetry group of Lorentz-Poincaré. In general relativity, the group of
transformation (diffeomorphisms) of the metric tensor has no any symmetry in the
most general case 45). This argument can be translated to the language of Killing
vectors which are solutions of the differential equation (3.158). The most general
spacetime of Einstein’s gravity theory has no Killing vectors at all as contrasted to
special relativity where their number is 10. In the transition from a Lorentz covari-
ant formulation of special relativity to a generally covariant formulation of Einstein’s
theory of gravity, the covariance group is expanded. However, the symmetry group
of the metric is actually reduced from the Lorentz group to the identity group, for
the general case.

Kretschmann considered this property of general relativity as a shortcoming but
this criticism is unacceptable as it demands the existence of a prior geometry with
a symmetric spacetime. However, any prior geometry constitutes an absolute geo-
metric element of the theory in terms of Anderson [1967] while, when one makes
an equation generally covariant, the general covariance principle demands that the
metric tensor, gαβ, and quantities derivable from it, appear only as dynamic geomet-
ric objects. The metric tensor obeys the Einstein field equations and is not supposed
to drop out at the end of one’s calculations or to restrict the equations; rather, it is
exploited to represent gravitational field [Weinberg, 1972].

One sees that general covariance, which emerged already in the special relativity
context, was not only a fancy mathematical construction but also an important prece-
dent. As Disraeli said in one of his speeches, “A precedent embalms a principle".

3.8.2
General relativity principle links gravity to geometry

In order to incorporate gravity to the geometric structure of spacetime manifold, the
principle of general covariance must be amended by accounting for the principle of
equivalence explained in section 3.1. General covariance embraces the description
of accelerated frames while the principle of equivalence equates the inertial force
existing in accelerated frame to the homogeneous gravitational force. Such a com-

45) Symmetric spacetimes like the Schwarzschild black hole or the Friedmann-Robertson-Walker uni-
verse, do exist in general relativity. They are normally the exact solutions of Einstein’s field equations
[Stephani et al., 2003].
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bined principle Einstein called the principle of general relativity and used it to unify
the Newtonian theory of gravity with special relativity, thus, developing relativistic
theory of gravity - general relativity.

The general relativity principle tells us that gravitational force exerted on a test
particle by external bodies must be identified with the components of the affine con-
nection projected on the worldline of the test particle. This is where geometry and
gravity embraces each other for the first time. The reason for this identification is that
the affine connection vanishes at the origin of the normal coordinates, and so does
the gravitational force measured by an observer being in a state of free fall. Because
in the absence of forces a test particle moves along a straight line in special relativ-
ity, and an equivalent of a straight line on a curved manifold is geodesic (see section
3.4.4.2), one can draw a conclusion that the test particle must move along a geodesic
of spacetime that is a curved differential manifold. The equation of geodesic depends
on the affine connection that generalizes the concept of the Newtonian gravitational
force. Hence, observing all possible trajectories of test particles moving in a given
gravitational field one can measure all components of the affine connection.

Equation of geodesic (3.97) depends only on the symmetric part of the affine con-
nection. Explicit expression (3.121) yields

G
α
(βγ) = Γα(βγ) +

1
2

(
Tγαβ + Tβαγ

)
+Dα(βγ) , (3.210)

that shows that equations of geodesics must, in principle, depend not only on the
symmetric part of the Levi-Civita connection Γα(βγ) but on torsion, Tα

βγ, and the non-
metricity Qα

βγ as well. General relativity abandons torsion and nonmetricity from the
affine connection which is postulated to be the Levi-Civita connection Γα(βγ)

46). Non-
vanishing nonmetricity violates the isomorphism between tangent spaces which is
inconsistent with stability of atomic spectra and International Atomic Time . There
is no any observational evidences so far indicating that nonmetricity may differ from
zero. As for the torsion, it seems that it couples only to the intrinsic spin of elemen-
tary particles but not to the rotational angular momentum of astronomical bodies 47).
General relativity assumes that the affine connection on the spacetime manifold is
given by the Levi-Civita connection Γαβγ which is linked to the metric tensor gαβ.

The Newtonian gravity force, F, acting on a test particle is proportional to a gra-
dient of gravitational potential, F = −m∇U, where m is the gravitational mass of
the particle. What is the analogue of the gravitational potential U in general relativ-
ity? The principle of equivalence was again a clue to Einstein in order to propose a
natural answer to this question. If the components of gravitational force are to be en-
tirely associated with the Christoffel symbols Γαµν, the gravitational potential is to be
identified with the metric tensor, gαβ, because the Christoffel symbols are uniquely
expressed in the form of a linear combination of its gradient as shown in equation

46) This postulate is also accepted in the PPN formalism [Will, 1993], and is not tested in that theoretical
framework.

47) Mao et al. [2007] argues that this assumption has a logical loophole which can and should be tested
experimentally, and consider nonstandard torsion theories in which torsion can be generated by macro-
scopic rotating objects.
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(3.129). The metric tensor gαβ has 16 components in four-dimensional spacetime
that can be algebraically split in symmetric, g(αβ), and anti-symmetric, g[αβ], parts,

gαβ = g(αβ) + g[αβ] . (3.211)

Moffat [1979, 1995] proposed a nonsymmetric gravitational theory (NGT) in which
the non-symmetric part of the metric tensor represents a new hypothetical force that
may explain the observation of the flat rotation curves of galaxies. NGT is a compli-
cated and rich theory but not easy to work with and may have problems with stability
[Janssen and Prokopec, 2007]. It also requires the presence of torsion and nonmetric-
ity in the affine connection that are currently incompatible with observations. Only
the symmetric part of the metric tensor has a physical meaning in general relativity
and in the most alternative theories of gravity, which postulates that g[αβ] ≡ 0 in
order to make the metric tensor compatible with the symmetric Minkowski metric,
ηαβ, of special relativity. Symmetry of the metric tensor reduces the number of its
algebraically-independent components from 16 to 10. These ten components of gαβ
are considered as gravitational potentials in general theory of relativity.

Newtonian gravitational physics predicts existence of tidal force characterizing in-
homogeneity of gravitational field in a neighborhood of a particle. This concept was
introduced in section 1.2.6 where one has shown that the tidal force is proportional
to the second (and higher-order) partial derivatives of the Newtonian gravitational
potential U. Since the metric tensor gαβ generalizes the concept of the gravitational
potential U from Newtonian physics to general relativity, one has to find out a corre-
sponding geometric object which includes second partial derivatives from the metric
tensor. There is only one such object on pseudo-Riemannian manifold - the Riemann
tensor, Rαβγδ, that characterizes the curvature of spacetime. The curvature is an in-
trinsic geometric property that can not be eliminated at a single point if the manifold
is not globally flat. Mathematical expression for the Riemann tensor in terms of the
second derivatives of the metric tensor is given by equation (3.193).

Summarizing, one can state that combined with the main assumption that the
spacetime is a smooth pseudo-Riemannian manifold with metric gαβ, the general
relativity principle effectively establishes the following relationship between gravity
and geometry:

1) Each point of the curved spacetime manifold admits a tangent space that is locally
identified with the Minkowski spacetime of special relativity;

2) Local inertial frames48) of the tangent Minkowski spacetime have their origins
moving along worldlines of freely-falling, massive test particles;

3) Massive test particles move along timelike geodesics, and massless particles (light)
move along null geodesics of the curved spacetime manifold;

4) Locally homogeneous gravitational force exerted on a free-falling particle is iden-
tified with the projection of the Christoffel symbols on the worldline of the particle.
It can be locally eliminated by transition to a freely-falling inertial frame;

48) We say frames, not a frame. At the same point of the spacetime, two closely-located freely-falling
particles define different local-inertial frames, if they are uniformly moving relative to one another.
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5) Tidal gravitational force in the neighborhood of a freely-falling particle is identi-
fied with the projection of the Riemann (curvature) tensor on the worldline of the
particle. The tidal force causes the relative deviation of geodesics and can not be
locally eliminated by transition to the freely-falling inertial frame;

6) The metric tensor, gαβ, represents ten gravitational potentials which are a priory
unknown dynamic variables that has to be derived from the gravity field equations.

These consequences of the principle of general relativity were contemplated by Ein-
stein on his path from special to general relativity [Lanczos, 1972]. They constitute
the mathematical foundation of Einstein’s relativistic theory of gravity. Physical
foundations of general relativity are based on the phenomenological description of
matter, its particular way of coupling to gravity, and the specific formulation of the
gravity field (Einstein) equations for the metric tensor.

Mathematically, the general relativity principle states that the metric tensor gαβ =

gαβ(wµ) of the spacetime manifold is reduced to the Minkowski metric ηαβ at the ori-
gin of the freely-falling reference frame, parameterized with the normal coordinates,
wµ, (see section 3.3.8.3):

gαβ = ηαβ + O(|w|2) . (3.212)

Herein, the linear terms are absent due to the principle of equivalence, and the resid-
ual quadratic terms are proportional to the Riemann tensor which characterizes the
inhomogeneity of the gravitational field (tidal effects). It is worthwhile noticing that
the quadratic terms (∼ O(|w|2) in the expansion of the metric tensor in the normal
coordinates can take different form. In other words, the normal coordinates are not
unique and admit a large freedom when one extrapolates them outside of their ori-
gin to the larger domain where the effects of curvature of spacetime become notice-
able. For example, one possibility is to build, so-called, Riemann normal coordinates
which are made of the bundle of identically-parameterized geodesics radiated out of
the coordinate origin located at point P of the spacetime manifold. Calculations
reveal that the Taylor expansion of the metric around the origin is [Ehlers, 1973;
Misner et al., 1973]:

gαβ = ηαβ −
1
3

Rαµβνwµwν + O(|w|3) , (3.213)

where the curvature tensor Rαµβν must be calculated at the point P. In fact, the nor-
mal coordinates can be introduced not only in a single event but along any timelike
worldline [Schouten, 1954; Zel′manov and Agakov, 1989]. In the particular case of
free fall of the origin of local coordinates, wα = (w0,wi) = (cu,wi), along timelike
geodesic, the metric tensor assumes the following form, accurate to second order in
the spatial coordinates [Ni and Zimmermann, 1978b]:

g00 = −1 − R0p0qwpwq + O(|w|3) , (3.214a)

g0i = −
4
3

R0p jqwpwq + O(|w|3) , (3.214b)

gi j = δi j −
1
3

Rip jqwpwq + O(|w|3) . (3.214c)
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Here Rαβγδ are the components of the Riemann tensor along the geodesic world-
line that depends only on the local coordinate time u. Such local coordinates are
called Fermi normal coordinates. The metric (3.214) corresponds to the case of non-
rotating spatial axes. There are other ways to build the normal coordinates which are
discussed in more detail in section 4.5.

These mathematical circumstances build a roof beam between the special relativity
and the theory of gravity making the principle of general relativity a powerful tool
for formulating the laws of physics in the presence of gravitational field. This is
achieved in most cases by straightforward replacing in the special-relativistic laws
the Minkowski metric, ηαβ, with the full metric, gαβ, and the partial derivatives,
∂/∂xα, from the (non-gravitational) field variables with the covariant derivatives,
∇α, defined in terms of the Christoffel symbols, Γαβγ, according to equation (3.129)
49). Notwithstanding simplicity, this way of formulation of physics in the presence
of gravity bears uncertainties that arise every time when one has to re-formulate a
second-order partial differential equation from Minkowski to curved spacetime. The
problem is hidden in non-commutativity of the second-order covariant derivatives
caused by the curvature tensor, as explained in section 3.7.1. The general covariance
principle does not guide us in choosing the order of the derivatives. Therefore, there
is no a unified method of writing the right form of special-relativistic equations on
the curved manifold - this ordering-derivatives ambiguity is as bad as the notorious
ordering ambiguity of operators in quantum mechanics! The bottom-line is that
in each physical setting, description of coupling with curvature is a separate, often
involved, problem - see Misner et al. [1973, Section 16.3] for examples. In some
cases additional arguments like the law of conservation, or the correspondence to the
Newtonian gravity equations are helpful.

3.8.3
The equations of motion of test particles

A test particle is a point-like particle whose mass, charge, and spin are assumed to
be so small that their effects on external gravitational field are negligible. Let us
consider, first, motion of massive neutral particles without spin. This is because
spin couples with the Riemann tensor and, though, it does not affect the background
gravitational field, its existence produces an external force perturbing motion of the
spin particle in a significant way.

Freely-falling test particle moves uniformly as viewed by an observer in a local
inertial reference frame associated with the Minkowski spacetime that is tangent to
the curved spacetime manifold. The uniformity of the motion means that there is no
net force perturbing motion of the test particle in whatever direction. According to
the general relativity principle the gravitational force exerted on the particle can be
locally eliminated. It means that in the normal coordinates the equation of motion of

49) This phenomenological prescription of replacing the partial to covariant derivatives is called sometimes
as "comma-goes-to-semicolon" rule [Misner et al., 1973]. It is also known as the principle of minimal
coupling of gravity and matter.
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the test particle is

d2wα

dλ2 = 0 , (3.215)

where λ is the affine parameter along the particle’s worldline. Solution of this equa-
tion gives the first integral, vα = dxα/dλ = const., and trajectory of the particle in
the normal coordinates of the freely-falling frame

wα = wα
0 + vαλ , (3.216)

where wα
0 is particle’s coordinate at λ = 0. Equation (3.216) is locally a straight line.

The affine parameter can be chosen to coincide with the proper time τ of an ideal
clock carried out by the particle (see section 2.5.1). Indeed, the interval dτ of the
proper time between two events separated by the normal coordinate distance, dwα,
on the worldline of the particle is

−c2dτ2 = ηαβdwadwβ = ηαβvavβdλ2 , (3.217)

where ηαβvavβ = const. Equations can be drastically simplified if one chooses pa-
rameter λ = τ. Indeed, in such case velocity vα gets equal to four-velocity of the
particle, uα = dwa/dτ, that is normalized to ηαβuauβ = −c2 according to definition
(2.163). After accepting the proper-time parametrization of the worldline of the test
particle, equation (3.215) can be recast to the following form

uβ∂βuα = 0 , (3.218)

where ∂β = ∂/∂xβ is a partial derivative with respect to the normal coordinate xβ.
According to the general relativity principle, equation in local coordinates can be

converted to equation in arbitrary coordinates xα, on the curved manifold by replac-
ing the partial derivative ∂β with the covariant derivative ∇β. It gives us the covariant
equation of motion of test particle

uβ∇βuα = 0 , (3.219)

where the four-velocity uα = dxα/dτ that is exactly the equation of geodesic (3.97)
with the affine connection taken in the form of the Christoffel symbols

d2xα

dτ2 + Γαβγ
dxβ

dτ
dxγ

dτ
= 0 . (3.220)

This is ordinary differential equation of the second order has the first integral

gαβuαuβ = −c2 , (3.221)

which is obtained immediately from the condition that the parameter τ is the proper
time along the worldline of the particle.
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In practical cases of integration 50) of equation (3.220), it is more convenient to
use coordinate time, t = x0/c, instead of the proper time τ of the particle. Taking
into account the time component of equation (3.220)

d2t
dτ2 = −

1
c

Γ0
βγ

dxβ

dτ
dxγ

dτ
, (3.222)

and relationships

dxi

dτ
=

dxi

dt
dt
dτ

,
d2xi

dτ2 =
d2xi

dt2

(
dt
dτ

)2

+
dxi

dt
d2t
dτ2 , (3.223)

yield the spatial component of equation (3.220)

d2xi

dt2 + Γi
βγ

dxβ

dt
dxγ

dt
=

1
c

Γ0
βγ

dxβ

dt
dxγ

dt
dxi

dt
. (3.224)

This form of the equation makes it clear that the coordinate time t is not an affine
parameter of the trajectory 51). Relationship between the coordinate time, t, and the
proper time, τ, of the particle is calculated by integrating the first integral (3.221)

τ =
1
c

∫ t

t0

√
−gαβ

dxα

dσ
dxβ

dσ
dσ , (3.225)

where t0 is the initial epoch of integration, and σ is the integration parameter substi-
tuted for the coordinate time on the interval of integration, σ ∈ [t0, t].

The fact that the proper time τ can be excluded from the equation of geodesic be-
comes crucial when one applies the above formalism to photons or any other mass-
less particle. As known from the Maxwell electrodynamics and other field theories,
massless particles move with the speed of light. For such particles, the first integral
of equations (3.220) becomes

gαβuαuβ = 0 , (3.226)

which tells us that the proper time of massless particles (photons) is undefined on
the null-cone hypersurface, and cannot be used. Employing the coordinate time t
in the equations of massless particles yields the same equation of motion (3.224) as
for massive test particles. We explore the motion of photons in gravitational field in
much more detail in section 7.

What can one says about the equation of motion for spinning particles? Scrutiny
analysis of this problem performed by previous researches, notably Mathisson
[1937], Papapetrou [1951a] and Dixon [1979], showed that spin of a test particle
couples with the curvature of spacetime manifold in a non-trivial manner. Due to
this coupling the spinning particle does not move along a geodesic worldline [Barker

50) For example, for calculation of numerical ephemerides of satellites or planets of the solar system.
51) The affine parameter makes the right side of the equation of geodesic equal to zero as explained in

section (3.4.4.2.
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and O’Connell, 1974]. More explicitly, the Mathisson-Papapetrou-Dixon equation
for a particle with spin have the following form

uµ∇µpα = −
1
2

Rα
βγδuβS γδ , (3.227a)

uµ∇µS αβ = 2p[αuβ] , (3.227b)

S αβpβ = 0 , (3.227c)

where pα is four-momentum of the particle, and S αβ = −S βα is the anti-symmetric
spin tensor. The spin tensor is associated with the particle’s intrinsic spin, S α, as
follows

S α =
√
−gεαβγδS βγuδ , (3.228)

where g = det[gαβ] < 0, is the determinant of the matrix made of the components
of the metric tensor, εαβγδ is a forth-rank, completely anti-symmetric Levi-Civita
symbol defined by

εαβγδ = εαβγδ =


+1, if αβγδ is an even permutation of 0123,
−1, if αβγδ is an odd permutation of 0123,
0, if αβγδ are not all different.

(3.229)

Four-momentum pα of the particle is not proportional to its four-velocity uα in
the most general situation [Dixon, 1979; Ehlers and Rudolph, 1977]. In such case,
the right side of equation (3.227b) does not vanish, and the spin of the particle is
not parallel transported along its worldline. However, in case when one can use
the approximation, pα = muα, the equation (3.227b) is reduced to the equation of
parallel transport for spin

dS α

dτ
= Γ

β
αγS βuγ . (3.230)

This equation predicts that spin of a freely-falling test particle (gyroscope) will pre-
cess with respect to a global coordinates ("distant stars") as it moves along its orbit
[Schiff, 1960; Weinberg, 1972]. The relativity gyroscope experiment, called Gravity
Probe B (GP-B), has been funded by NASA and launched in 2004 to test this predic-
tion. Specific findings and details of the experiment as well as prospects for further
improvement of experimental results have been reported in paper by Everitt et al.
[2009a].

Equation (3.227c) is the so-called Dixon-Tulczyjew spin supplementary condition
[Dixon, 1979; Tulczyjew, 1959] that are imposed on spin of the particle to make
the system of equations (3.227) fully determined. Dixon and Tulczyjew argued that
in case when the four-momentum of the particle is not parallel to its four-velocity,
their condition (3.227c) is more appropriate than Pirani condition, S αβuβ = 0, or
Corinaldesi-Papapetrou condition S 0α = 0 which holds in the global coordinates
xα. There is no consensus in literature on this subject despite of multitude of papers
devoted to comparison of these conditions and their role in equations of motion.
Section 6 will generalize equations of motion (3.227) of a spinning particle to the
case of a moving rotating body which is a member of N-body astronomical system
like the solar system.
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3.8.4
The correspondence principle: the interaction of matter and geometry.

3.8.4.1 The Newtonian gravitational potential and the metric tensor
Any new theory should reduce to the well-established theory to which it corresponds,
when the new theory is applied to the circumstances for which the less general theory
is known to hold. The principle was applied by Einstein to build general relativity
theory and must be applied in any alternative theory of gravity to make it consistent
with the Newtonian theory in the limit of slow motion and weak gravitational field
Will [1993]. This section demonstrates how the geodesic motion of test particles can
be implemented to match the metric tensor in general relativity to the Minkowski
metric and to the gravitational potential U of the Newtonian theory of gravity.

Geodesic equation (3.220) of freely-falling massive particle can be explicitly writ-
ten down as follows:

dxα

dτ2 = −c2Γα00

(
dt
dτ

)2

− 2cΓα0i
dt
dτ

dxi

dτ
− Γαi j

dxi

dτ
dx j

dτ
, (3.231)

where the time derivatives are taken with respect to the proper time τ of the parti-
cle. We shall assume that the particle is slowly moving which means that the three-
velocity of the particle, vi = dxi/dt, is much smaller in the chosen coordinates,
xα = (x0, xi) = (ct, x), than the invariant speed c, that is dxi/dt � c. The slow-
motion approximation entails a strong inequality between the time derivatives taken
with respect to the proper time τ along the particle’s trajectory

dxi

dτ
� c

dt
dτ

. (3.232)

The gravity field potential in general relativity is associated with the metric tensor
gαβ that must always approximate the Minkowski metric ηαβ in the local normal co-
ordinates in accordance with equation (3.213). This approximation can be extended
on the entire spacetime manifold under assumption that gravitational field is weak.
Formally, it means that the metric tensor can be decomposed in two parts

gαβ = ηαβ + hαβ , (3.233)

where hαβ = hαβ(t, x) is a small perturbation of the Minkowski metric in the chosen
coordinates xα, such that any component

hαβ � 1 . (3.234)

The weak-field approximation opens the doors for the perturbational approach in cal-
culation of the Christoffel symbols defined in terms of the metric tensor in equation
(3.129). In the leading order over hαβ, the Christoffel symbols read

Γαβγ =
1
2
ηαλ

(
∂hλβ
∂xγ

+
∂hλγ
∂xβ

−
∂hβγ
∂xλ

)
+ O

(
|hαβ|2

)
, (3.235)
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We shall further assume that the gravity field is almost stationary that is the time
derivatives from the metric tensor perturbations normalized to the invariant speed c,
are much smaller than partial derivatives with respect to any spatial coordinate

1
c
∂hαβ
∂t
�

∂hαβ
∂xi . (3.236)

Notice that the slow-motion approximation for the test particle and the approxima-
tion of the almost stationary gravitational field characterize different objects - the
particle and the field, and should be imposed separately.

The field being stationary permits us to neglect the time-derivatives from hαβ,
while the slow-motion of the particle allows us to neglect its velocity in equation
(3.231) which is reduced under these assumptions to

d2xα

dτ2 =
c2

2
ηαλ

∂h00

∂xλ

(
dt
dτ

)2

− cηαλ
∂h0λ

∂t

(
dt
dτ

)2

−
c
2
ηαλ

∂h0λ

∂xi

dt
dτ

dxi

dτ
, (3.237)

or in components

d2t
dτ2 =

1
2

(
∂h00

∂t
dt
dτ

+
∂h00

∂xi

dxi

dτ

)
dt
dτ

, (3.238)

d2xi

dτ2 =
c2

2
∂h00

∂xi

(
dt
dτ

)2

. (3.239)

Equation (3.238) can be easily integrated taking into account that

∂h00

∂t
dt
dτ

+
∂h00

∂xi

dxi

dτ
=

dh00

dτ
, (3.240)

along the particle’s trajectory. It leads to(
dt
dτ

)2

= C exp h00 , (3.241)

where C is a constant of integration. This constant must be taken equal to a factor
(1 − v2/c2)−1, because in case of vanishing gravity (h00 → 0) the velocity, v, of the
freely-moving particle must be constant, and the increment of coordinate time t must
be related to the proper time τ by a special-relativistic equation (2.162). Taking into
account the slow-motion and weak-gravity approximation and expanding both the
exponent and (1 − v2/c2)−1 in Taylor series, yield the proper time τ as a function of
the coordinate time t,

τ = t −
1
2

∫ t

t0

(
v2

c2 + h00

)
ds + O

(
|h2
αβ|

)
, (3.242)

where t0 is the initial epoch of integration at which τ(t0) = t0, and integration is per-
formed along the trajectory of the particle. This equation allows us to approximate
equation (3.239) for particle’s three velocity as follows

d2xi

dt2 =
c2

2
∂h00

∂xi . (3.243)
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The correspondence principle demands this equation must match exactly the cor-
responding Newtonian equations of motion (3.1) and (3.3). This immediately tells
us that in the Newtonian approximation, h00 is to be proportional to the Newtonian
potential U. Identification of the Newtonian potential U with h00 needs some care,
because the potential is defined up to an additive constant. In case of the gravitational
field being produced by an isolated astronomical system, one can choose both U and
h00 vanishing at infinity, in which case the difference between the two disappears,
and one arrives to

h00 =
2U
c2 . (3.244)

Moreover, since U satisfies the Poisson equation (1.40), the metric tensor component
h00 must satisfy the field equation

4h00 = −
8πG
c2 ρ , (3.245)

where G is the universal gravitational constant, ρ is the mass density of matter, and
4 is the Laplace differential operator (Laplacian). Substituting equation (3.244) to
(3.242) brings about an important relationship

τ = t −
1
c2

∫ t

t0

(
1
2

v2 + U
)

ds , (3.246)

between the coordinate time t and the proper time τ that is used in relativistic
ephemeris astronomy for integration of equations of motion of major planets of the
solar system (see section 9.3 for more details).

3.8.4.2 The Newtonian gravity and the Einstein field equations
The correspondence principle does not allow us to derive all components of the met-
ric tensors as functions of the distribution of mass and mass current densities. Nev-
ertheless, it provides us with a powerful hint to the structure of the field equations
beyond the Newtonian approximation as demonstrated by Ehlers [1973]; Lovelock
[1972]. They key idea is that the metric tensor, gαβ, replaces the Newtonian potential,
U, as the field variable, and it must satisfy the second-order differential equations in
partial derivatives which are reduced in the Newtonian approximation to the Poisson
equation (3.245) for the Newtonian potential. The number of the equations must not
exceed the number of algebraically independent components of the metric tensor.
Moreover, the equations must be tensorial in accordance with the principle of the
general covariance.

In subsection 3.7, one has seen that the Riemann tensor, Rα
βγδ is the only tensor,

which is assembled of the metric and its derivatives, and which is a linear func-
tion of the second derivatives. Hence the only way of obtaining second-rank ten-
sors. The Riemann tensor has twenty algebraically-independent components, which
exceeds ten algebraically-independent components of the metric tensor. However,
contracting the Riemann tensor with respect to two indices, and recalling the sym-
metry properties of the Riemann tensor, one obtains the Ricci tensor Rαβ = Rµ

αµβ
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that has exactly ten algebraically-independent components. One can try to use it in
the left side of the relativistic gravity field equations as a differential operator replac-
ing the Laplace operator, 4, of the Newtonian theory. The field equations must have
a source of the gravitational field in the right side. In the Newtonian gravity the only
source of gravity field is the mass density ρ. In relativity, the mass density enters
the time-time component of the energy-momentum tensor, Tαβ. As explained in sec-
tion 2.8, this tensor has exactly ten algebraically-independent components. Hence,
it looks reasonable to use it as a source of the gravitational field. However, in the
Newtonian approximation not only T 00 but also the trace of the energy-momentum
tensor, T = Tα

α, approximates the mass density ρ. Hence, one arrives to the follow-
ing structure of the gravity field equations on a curved spacetime manifold in general
relativity

Rαβ = κ
(
Tαβ + ζgaβT

)
, (3.247)

where κ and ζ are constants which should be determined 52).
Let us determine ζ first. For this, the contracted Bianchi identity (3.209) are used.

They tell us that, if the field equations are valid, the following identity for the covari-
ant derivatives of the energy-momentum tensor must hold

∇βTαβ −
1
2

(1 + 2ζ)∇aT ≡ 0 . (3.248)

The energy-momentum tensor is conserved in special relativity. This law of conser-
vation must be extended to curved manifold by making use of the general relativity
principle as discussed above in section 3.8.2, leading to

∇βTαβ = 0 , (3.249)

which gives four equations of motion of matter in the presence of gravitational field,
that is the perturbed metric tensor gαβ = ηαβ+hαβ. Equation (3.249) reduces equation
(3.248) to

(1 + 2ζ)∇aT = 0 . (3.250)

Since in general, ∇aT , 0, one gets ζ = −1/2, and if this value is put back into
(3.247), and the Einstein tensor, Gαβ = Rαβ − (1/2)gαβR, with the Ricci scalar, R =

gαβRαβ, are used, there results

Gαβ = κTαβ , (3.251)

where the constant κ still has to be determined. Notice that Einstein’s early attempts
to write down the field equations by identifying Rαβ with Tαβ (that is taking ζ = 0)
did not go far because of a conflict with equation (3.250). Indeed, as can be seen
from this equation, the case of ζ = 0 imposes the strong limitation ∇aT = 0 that
is valid only for the matter with the trace of the energy-momentum tensor being
identically equal to zero. In particularly, this is valid for electromagnetic field 53)

52) There are only two constants to find out. One might think that there could be a third constant, ς, in
equation (3.247) in the form of Rαβ + ςgαβR = κ

(
Tαβ + ζgaβT

)
. However, contraction of this equation

with respect to free indices reveals that ς is an algebraic combination of κ and ζ, and is not independent.
53) See equation (2.385).
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and for other massless particles but not for slowly-moving matter.
To determine the value of κ, one exploits the slow-motion and weak-field ap-

proximation to reduce the covariant field equations (3.251) to the Newtonian limit.
For simplicity, one will use the tensor of energy-momentum of a perfect fluid
(2.371). In the slow-motion approximation, three-velocity of matter v � c, pres-
sure p � ρc2, and the energy-momentum tensor components satisfy the inequality,
T 00 � T 0i � T i j. Accordingly, the same inequality is hold for the components of
the Einstein tensor, G00 � G0i � Gi j due to the field equations (3.251). Hence, the
main terms in the field equations are reduced to

R00 +
1
2

R = κT 00 ' κc2ρ , (3.252)

Ri j −
1
2
δi jR = κT i j ' 0 , (3.253)

R0i = κT 0i ' 0 . (3.254)

where one has approximated the metric tensor gαβ with gαβ = ηab = diag(−1, 1, 1, 1),
and T 00 with ρc2, which dominates the energy-momentum tensor in the slow-motion
approximation 54).

Since for weak gravity one has gαβ = ηαβ + hαβ with hαβ � 1, the scalar curvature,
R = gαβRαβ, can be approximated with

R = −R00 + Rii =
3
2

R − R00 , (3.255)

where equations (3.253) and (3.254) have been used. It gives us

R = 2R00 , (3.256)

insertion whereof in equation (3.252) results in

R00 =
κ

2
ρc2 . (3.257)

An expression for R00 ensues from the formula (3.199) for the Ricci tensor, which
is in the weak-field approximation reads

R00 = Rµ
0µ0 = Ri

0i0 = Ri0i0 , (3.258)

where the symmetry properties of the Riemann tensor has been employed. Assuming
now that the gravity field is also stationary, one can neglect all time-derivatives in
calculating Ri0i0 which can be done in the approximation under consideration with
the help of equation (3.193). This results in

R00 = −
1
2
4h00 , (3.259)

54) Other components of the energy-momentum tensor are much smaller that T 00 in the slow-motion ap-
proximation. Specifically: |T 0i |/T 00 ∼ v/c � 1 and |T i j |/T 00 ∼ v2/c2 � 1.
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so equation (3.257) becomes

4h00 = −κρc2 . (3.260)

According to the principle of correspondence, equations (3.260) and (3.245) must be
equal exactly. It tells us that the constant

κ =
8πG
c4 , (3.261)

and the field equations assume the final form

Gαβ =
8πG
c4 Tαβ . (3.262)

These equations have been derived by Einstein and are called the Einstein field equa-
tions. They provide a means for constructing the geometry and the gravitational field
in the form of the metric tensor gαβ when the energy-momentum tensor Tαβ (the
source of the gravitational field) and suitable boundary conditions are given. The
Einstein equations are non-linear, therefore, the procedure of finding their solutions
is very hard. There are few exact solutions (like Schwarzschild, Kerr, Friedmann)
which are physically relevant in astrophysics and cosmology. In relativistic celes-
tial mechanics of N-body system one should resort to approximations to solve the
Einstein equations (see Chapter 4). From the field equations one can also derive
equations of motion of test particles and extended bodies which must reduce to the
Newtonian equations of motion in the case of weak fields and low velocities. We
discuss the derivation of the equations of motion from the field equations in Chapter
6.

3.8.5
The principle of the gauge invariance

One should stress a special aspect of the physical character of the metric in general
relativity: the metric is not given a priori but is influenced or determined by the
matter distribution via invariant field equations (3.262). General theory of relativity
put together on the same mathematical basis the Minkowski metric, ηαβ, and the
potentials of gravitational field, hαβ, to form a single geometric object - the metric
tensor,

gαβ = ηαβ + hαβ , (3.263)

which becomes the sole gravity-field variable of the Einstein equations. There are
no other geometric objects made exclusively of the Minkowski metric, ηαβ, and its
linear combination with additional vector or tensor fields besides hαβ. Gravitation,
according to Einstein, is a pure geometric phenomenon, a mode of expression of the
metrical field gαβ, nothing else 55). This interpretation, however, should be handled

55) Alternative gravity theories relax this requirement and introduce other long-range tensor fields of vari-
ous ranks that can couple to gravity.
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with care as it introduces a specific freedom to the mathematical description of the
gravitational field. As a consequence of the principle of general covariance, the
components gαβ of metric tensor are allowed to be expressed in arbitrary coordinates
related to each other by a smooth coordinate transformation (diffeomorphism): xα =

xα(xβ
′

). Tensor transformation of the metric tensor from one coordinate chart to
another is given by

gαβ(x) = gµ′ν′ (x′)
∂xµ

′

∂xα
∂xν

′

∂xβ
, (3.264)

where gαβ(x) and gµ′ν′ (x′) are components of the metric tensor in coordinates xα and
xα
′

respectively. However, the metric tensor transformation can not be associated
with the physical change of gravitational field if it is governed by a self-consistent
system of mathematical equations. In other words, if general relativity is a correct
theory of gravitational field and gαβ(x) is a solution of the Einstein equations (3.262)
with appropriate boundary and initial conditions, the metric gµ′ν′ (x′) must be also a
solution of the same equations in coordinates xα

′

with the boundary and initial con-
ditions being diffeomorphic to those imposed in coordinates xα. Briefly, while the
particular descriptions of gravitational field in various coordinates may look differ-
ent mathematically, the gravitational interaction between the bodies must remain the
same. This is the principle of the gauge invariance of gravitational field.

The gauge invariance of the metric tensor brings about four degrees of the coor-
dinate freedom to ten algebraically-independent components of the metric tensor.
It may look like a contradiction since the number of the Einstein equations is ten
and they may look over-determined. Fortunately, this is not the case because of the
Bianchi identities

∇βGαβ ≡ 0 , (3.265)

which are satisfied for any solution of the Einstein equations and initial and boundary
conditions. The Bianchi identities reduce the number of functionally-independent
Einstein equations to six that exactly coincides with the number of functionally-
independent components of the metric tensor making the gravity field equations fully
determined and gauge-invariant. The gauge-invariant nature of the Einstein theory
of gravity to uniquely determine the metric tensor gαβ is similar to the gauge free-
dom of the Maxwell equations for electromagnetic field that was discussed in section
2.1.5. The difference is that in electrodynamics there is only one degree of freedom
in choosing the solution of the Maxwell equations for electromagnetic vector poten-
tial, Aα. Moreover, the gauge transformation (2.24) in electrodynamics, changes the
potential Aα without involving a coordinate transformation. One can have different
mathematical descriptions of electromagnetic field in one and the same coordinate
chart. In general relativity the gauge transformation of the metric and the coordinate
transformation are intimately related to each other. Any coordinate transformation
brings about the gauge transformation of the metric tensor. Opposite statement is,
however, not true. There are physically different solutions of the Einstein equations
that are not related through diffeomorphism. The gauge freedom complicates com-
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parison of the solutions of Einstein’s equations. Two metric tensors may be physi-
cally different, that is to describe dissimilar gravitational fields, or be equivalent in
the sense that there is a coordinate diffeomorphism (3.264) formally transforming
one mathematical form of the metric to another.

In order to facilitate solution of the Einstein equations four coordinate, also called
gauge, conditions should be imposed on the components of the metric tensor. Co-
ordinate conditions must not be generally covariant because they are supposed to
pick out a certain set of coordinates, and not others. The choice of the conditions
depend on a particular situation under consideration. One convenient choice, called
the harmonic gauge, 56) is frequently used in relativistic celestial mechanics. It is
represented by equation

Γα ≡ gβγΓαβγ = 0 , (3.266)

that singles out a rather large class of harmonic coordinates. In order to understand
why the coordinates are called harmonic, let us consider a covariant D’Alambertian
for a scalar field φ that is defined by

gφ = gµν∇µ∇νφ . (3.267)

Any function which satisfy a homogeneous D’Alamert’s equation

gφ = 0 , (3.268)

is called harmonic. Opening the covariant derivatives with the help of equation
(3.91), yields

gφ = gµν∂µνφ − Γµ∂µφ . (3.269)

If one chose the harmonic condition (3.266), and substitute for φ a coordinate xα,
which is a scalar, one finds

gxα = 0 . (3.270)

This explains why the coordinates are called harmonic if the condition Γα = 0 is
imposed on the metric tensor. The Cartesian inertial coordinates used in special
relativity also satisfy d’Alembert’s equation, so the harmonic coordinates in curved
spacetime are the closest approximation available in general relativity to a global
inertial frame of reference in special relativity. This point of view led Fock [1964]
to believe that harmonic coordinates have certain physical advantages in building a
foundation of general relativity. Infeld and Plebanski [1960] and other physicists
[Gorelik, 1993] strongly criticized a privileged role of the harmonic coordinates.
Indeed, the harmonic coordinates are convenient to a certain extent for doing math-
ematical calculations in slow-motion and weak-field approximation of an astronom-
ical N-body system but they have bad analytic properties at infinity in the presence

56) This gauge is also known as de Donder gauge condition [Fock, 1964].
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of gravitational radiation emitted by the system [Blanchet, 1987]. Moreover, Fock
[1964] suggested that harmonic coordinates have a privileged inertial property in that
they are defined up to the Lorentz transformation in asymptotically flat spacetime.
Fock argued that this is an objective argument in favor of the Copernican system of
the world with the origin taken at the Sun because the harmonic coordinates can not
move along an accelerated worldline. We pointed out [Kopejkin, 1988a] that this
property of the harmonic coordinates is not absolute and depends on the boundary
conditions imposed on the solution of the Einstein equations. There are different
boundary conditions that are more relaxed and admit construction of the local har-
monic charts. The local harmonic coordinates have no privileged position with re-
spect to "distant stars" and can move along any timelike worldline, for example, that
of Earth’s geocenter. Hence, Fock’s "heliocentricism" of the harmonic coordinates
can not be accepted.

The main question raised by any gauge theory hinges upon how one should un-
derstand the relationship between mathematics and physics. This concerns the ques-
tion of which quantities represent the “physically real" properties. The answer to
this question is well known in classic electrodynamics 57) where the physically real
quantities are the electric, E, and magnetic, B fields. It is these fields which make up
the Lorentz force (2.21) exerted on electric charges. The force and the field do not
depend on the choice of the gauge condition, and remain invariant under the gauge
transformations (2.24).

In general relativity the non-trivial quantities that can be predicted by the the-
ory and physically measured by an observer are, by definition, the gauge invariant
quantities. They are called observables [Bergmann, 1961]. The observables are
scalars taken at some point of spacetime manifold, therefore, their values remain the
same irrespectively of the choice of a gauge condition and coordinates. If space-
time geometry possesses some symmetry (like in cosmology) the observables can be
associated with the Killing vectors 58) corresponding to this symmetry. In more gen-
eral cases, one can use the canonical variables of ADM formalism [Arnowitt et al.,
1962, 2008], Zelmanov’s invariants 59) [Zel′manov, 1944; Zel′manov and Agakov,
1989] or Bergmann’s “intrinsic coordinates" [Bergmann, 1961]. In relativistic ce-
lestial mechanics the observables are ordinarily associated with the proper time, an
angle between two light rays, an electromagnetic wave frequency, etc. The prob-
lem, however, is that they are not the best choice to represent dynamic variables
for solving Einstein’s equations. More simple computational procedure is to solve
the Einstein equations for the metric tensor in a particular gauge (coordinates) and

57) The gauge-invariance of electrodynamics is more subtle in quantum mechanics as the Schrödinger
equation predicts that the wave function of charged particles interferes directly with the electromag-
netic potential Aα [Aharonov and Bohm, 1959, 1961]. This, Aharonov-Bohm effect, was confirmed
experimentally [Peshkin and Tonomura, 1989]. General relativity is a theory of classical gravitational
field, so one does not need to discuss the gauge invariance in “quantum gravity" domain [Kleinert,
2008].

58) The concept of the Killing vectors was introduced in section 3.6.5.
59) Zel′manov and Agakov [1989] introduce three different types of invariants: chronometric, kinemetric

and orthometric. Formalism of the kinemetric invariants is similar to the ADM formalism.
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to use the solution in order to predict theoretical values of the observables which
are compared then, with their experimental values. Usually, this procedure is con-
sidered to be sufficient in practical calculations in relativity such as construction of
numerical ephemerides of major planets of the solar system [Moyer, 2003] or in data
processing of binary pulsars [Lorimer and Kramer, 2004] or in experimental test-
ing of general relativity [Will, 1993]. We emphasize, however, that the consistency
of the theoretical predictions of the observables with their experimental values can
not serve as a confirmation criterion of the gauge-invariance of the gravity theory.
We advocate more advanced approach based on the idea that the gauge-invariance
must be tested independently by doing all workable gauge transformations of the
mathematical objects and elements of the data processing algorithm, and by check-
ing its computational stability versus such transformations [Kopeikin et al., 2007;
Kopeikin, 2009; Xie and Kopeikin, 2010]. This procedure is to infiltrate the spuri-
ous contributions to the observables that may be generated by the computer code due
to uncontrollable propagation of the gauge condition imposed on the initial data, to
the future.

3.8.6
Principles of measurement of gravitational field

3.8.6.1 Clocks and Rulers
General relativity defines geometry of the spacetime manifold with the metric ten-
sor, gαβ, that is identified with the gravitational field potentials. Hence, measure-
ment of the gravitational field and the measurement of spacetime geometry of the
manifold are the equivalent concepts in general relativity. The study of spacetime
geometry requires introduction of standard clocks and rules in order to measure time
and length between points (events) of the spacetime manifold. In accordance with
the correspondence principle, the standards in general relativity must be compatible
with those introduced earlier in special relativity.

The invariant measure of time and space distance in special relativity is the inter-
val, ds, introduced in section 2.2.4.4. Similarly to special relativity, the metric tensor
in general relativity determines the interval, ds, between two neighboring spacetime
points

ds2 = gαβ(x)dxαdxβ , (3.271)

where xα are the coordinates of the first point, and xα + dxα are the coordinates of
the second point. Contrary to special relativity, the metric tensor in general relativity
can not be transformed to the Minkowski metric, ηαβ, globally, that is everywhere
on the manifold, but only locally in a close vicinity to each point as shown in equa-
tion (3.213). The Minkowski metric describes the flat, pseudo-Euclidean geometry
of tangent space at each point of the manifold but it does not characterize any prop-
erty of gravitational field that is essentially a non-localizable geometric entity. The
non-local geometric properties of the manifold are enciphered to its affine connec-
tion, Γαβγ, and the curvature tensor, Rα

βγδ, that are expressed through the first and
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second partial derivatives of the metric tensor 60). Hence, the experimental gravita-
tional physics is to investigate the geometric properties of spacetime manifold in the
domains being large enough to measure the partial derivatives of the metric tensor.
This can be carried out operationally by observing motion of test particles, electro-
magnetic waves, and massive bodies. Relativistic celestial mechanics, astrometry,
and geodesy provide scrutiny analyzes of these observations as will be explained in
subsequent chapters of this book.

The local presence of the Minkowski metric separates the interval in three different
types (see section 2.2.4.4):

ds2 < 0 - timelike interval;
ds2 = 0 - null interval;
ds2 > 0 - spacelike interval.

Initially, Einstein used all three types of the interval in discussion of space and time
measurements in terms of ideal rods (rulers) and clocks. The ideal rods were used for
measuring the infinitesimal length, d` =

√
gαβ(x)dxαdxβ, identified with the space-

like interval. The ideal clocks were used for measuring the infinitesimal intervals of
proper time, dτ = c−1

√
−gαβ(x)dxαdxβ, identified with the timelike interval along

the clock’s worldline. Light signals move in vacuum on the null hypersurface with
invariant speed c, and they were used by Einstein for definition of the local syn-
chronization (Einstein’s synchronization) of clocks moving sufficiently close to each
other along timelike worldlines. Rods and clocks are additional structures introduced
to the theory of gravity “by hands" and their compatibility with the foundation of the
theory must be carefully explored. In fact, the structure of physical rods and clocks
is ultimately defined by the laws of atomic physics, which is not a constituent part
of classical general relativity. Moreover, fundamental constants of atomic physics
61) are independent from the fundamental constants of general relativity - the univer-
sal gravitational constant, G, and the invariant speed, c. Therefore, the behavior of
the "standard" rods and clocks may depend on time, place, and their worldlines if the
laws of atomic physics are violated in some approximation or the constants of atomic
physics evolve as the universe expands. For this reason, it would be preferable to
eliminate from the process of measurement of gravitational field all measuring tools
which working substance is not described by general relativity. Whether it is possi-
ble depends on the completeness of general relativity, that is its ability to describe
measurements without attracting other complementary theories 62).

60) In alternative theories of gravity additional geometric structures like torsion and nonmetricity should
be discussed as well [Hehl and Obukhov, 2007].

61) Primarily, it is the reduced Planck constant, ~ = 1.05457168 × 10−34 J·s. However, one should include
the elementary charge, e = 1.60217653 × 10−19 C, and mass of electron, me = 9.1093826 × 10−31 kg,
and proton, mp = 1.67262158 × 10−27 kg, as the physical rods and clocks are made of the elementary
particles bound by atomic forces.

62) Each physical theory must have a predictive power and deals with measurements which goals is to test
the predictions and to decide whether the theory is right (realistic) or wrong. In some cases, description
of the measuring device requires to resort to another theory so that interpretation of the measurement
includes the elements of both theories. Theory which mathematical formalism allows both to make
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Marzke and Wheeler [1964] and Kundt and Hoffmann [1962] showed how to build
a clock based on the propagation and reflection of light between two worldlines.
Operation of such photon clock can be described exclusively in the framework of
general relativity alone, thus, making measurement of time independent of the pos-
tulates of atomic physics. Manufacturing of photon clock is challenging task that has
not yet been performed. At the same time, the quality of atomic clocks is constantly
improving, and their practical performance as time-keepers is outstanding [Bauch,
2003; Gibble, 2007]. Therefore, the best way for experimental gravitational physics
to proceed is to accept three postulates:

1) an ideal physical clock that operates on the quantum mechanical principles (atomic
clock), shows the proper time, τ, that defines an affine parameter of the clock’s
worldline. The unit of time is the atomic SI second defined as 9, 192, 631, 770
cycles of the radiation corresponding to the ground state hyperfine transition of
Cesium 133 [Göbel et al., 2006];

2) the ratio of the readings of two ideal physical clocks moving together along the
same timelike worldline, is constant, and does not depend on the choice of the
worldline;

3) physical speed of light propagating in vacuum is constant c0 = 299792458 m/s. It
is equal to the invariant speed c of the Minkowski spacetime of special relativity:
c0 = c.

First two postulates define the operational concept of the ideal clocks in general rel-
ativity. The third postulate replaces the rigid-rod measurement of length between
two points with its operational measurement of the round-trip time of light traveled
between the two points, because the length in general relativity can be invariantly
defined in terms of the product of the invariant speed c and the proper time mea-
sured by the ideal clocks. Notice that the third postulate is an operational definition
of the invariant speed c which appears in special and general relativity as a mathe-
matical constant in the definition of interval ds of the pseudo-Euclidean space that
makes the dimension of time coordinate the same as the dimension of space. The
speed of light, c0, is a physical realization of this mathematical constant 63). With
these postulates, which are a subject of continuous experimental monitoring by the
national time laboratories and other hi-tech experimental groups, one can work out
theoretical relationships between the metric tensor, coordinates, and the operational
definition of observables.

3.8.6.2 Time Measurements
One of the most important observable in gravitational physics is the proper time. Let
us introduce coordinates xα = (x0, xi) = (ct, x), and consider an observer with clocks
who moves along an arbitrary timelike worldline, xα = xα(t), parameterized with the

predictions and to interpret results of the physical measurements of those predictions, is called complete
[Carrier, 1994].

63) It is worthwhile to remind once again that it is the invariant speed c which appears in all relativistic
equations, not the physical speed of light c0 [Ellis and Uzan, 2005; Kopeikin and Fomalont, 2006].
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coordinate time t. The proper time of the observer’s clock relates to the metric tensor
gαβ = gαβ(t, x), by equation

−c2dτ2 = gαβdxαdxβ , (3.272)

wherefrom,

dτ =

√
−g00 − 2g0iβi − gi jβiβ jdt , (3.273)

with βi = vi/c, vi = dxi/dt - the coordinate velocity of the observer and gαβ =

gαβ(t, x(t)) where both the coordinate velocity and the metric tensor are taken at the
points of the observer’s worldline. Equation (3.273) can be integrated along the
worldline of observer to find out how the finite proper time interval depends on the
gravitational field and the motion of observer:

τ =

∫ t

t0

√
−g00 − 2g0iβi − gi jβiβ jdt (3.274)

where t0 is the initial epoch (constant of integration).
Equations (3.273) and (3.274) can be simplified in case of a weak field and slow

motion approximation. In this case, the metric tensor is expanded with respect to the
Minkowski metric in accordance with equation (3.233) with hαβ � 1, and velocity
v � c. It gives the following approximation of equation (3.273)

dτ =

√
1 − β2

− hµνβµβνdt , (3.275)

where βµ = c−1dxα/dt = (1, βi) is the coordinate four-velocity of observer referred
to the coordinate time t. Integrated interval of the proper time

τ = 1 −
1
2

∫ t

t0

(
β2 + hµνβµβν

)
dt . (3.276)

Taking into account equation (3.244) for h00, one can re-write equation (3.276) in
the first approximation

τ = t −
1
c2

∫ t

t0

(
1
2

v2 + U
)

dt . (3.277)

This coincides with equation (3.246) derived previously. Higher-order terms can be
easily included to the result (3.277) after taking more terms in expansion of the right
side of equation (3.273).

Notice that in general relativity the equations describing the proper time of a mov-
ing clock are expressed solely in terms of the instantaneous value of its velocity and
the potentials of the gravitational field. It does not depend on acceleration and/or
derivatives of the gravitational field as a consequence of the first clock postulate.
Concerning this postulate one should notice that any real atomic clock has finite size
and is made of materials having finite stiffness. For this reason, it is clear that the
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clock is to respond to a sufficiently large acceleration and/or tidal gravitational force
that can affect its rate, and even destroy the clock. The first clock postulate is not
about the composite mechanical system called clock, but a statement about behavior
of elementary atomic processes like the frequency of quantum transition between
two energy levels in atom. The fact that atomic processes are not affected by accel-
eration has been verified experimentally by Pound and Rebka [1960] who measured
the thermal dependence of the fractional frequency shift for samples of 57Fe. They
confirmed an excellent agreement with the proper time delay equation up to extraor-
dinarily high precision excluding any dependence on acceleration being as much as
1017 m/s2.

3.8.6.3 Space Measurements
Proper time and light signals are used in order to introduce another observable quan-
tity - radar distance %. This is the most precise method of measuring astronomical
distances in the solar system. It relays upon measurement of observer’s proper time
and the postulate on the constancy of the speed of light. There are two other meth-
ods to measure distances in astronomy - photometry and parallax [Weinberg, 1972].
They are used in cosmology and galactic astronomy and are not crucial for the on-
going discussion (see sections 7.1 and 7.6 for further details).

Let observer and particle move along worldlines xi
o = xi

o(t) and xi
p = xi

p(t) in a
given coordinate chart xα = (ct, xi). Let observer send a light signal to the particle at
the proper time instant τ1. It reaches the particle when observer’s clock shows proper
time τ2. After reaching the particle, light signal is immediately sent back, e.g. by
means of a mirror retro-reflector or a radio transponder, and arrives to the observer
at proper time τ3 as depicted in Figure 3.10. The round-trip time taken by light to
travel, is τ3 − τ1. The radar distance, %, between observer and the particle is defined
as a product of the invariant speed c and a half of the round-trip time:

% =
1
2

c (τ3 − τ1) . (3.278)

This definition is invariant and does not depend on the choice of coordinates because
the invariant speed c is a fundamental constant, and the proper time of observer is a
scalar integral (3.274) having a numerical value which is not affected by coordinate
transformations. In practice, the invariant speed c is substituted with the speed of
light c0 in vacuum 64) The instant of the proper time of particle’s clock

τ2 = τ1 +
1
2

c (τ3 − τ1) =
1
2

(τ1 + τ3) , (3.279)

is accepted to be simultaneous with the time of reflection τ∗2 measured by observer’s
clock: τ∗2 = τ2. This operational convention is called the Einstein synchronization
of clock. It has the same definition as in special relativity since one has no any other
means but electromagnetic signals to perform synchronization of clocks in curved
spacetime.

64) In the case when light propagates in a medium, its impact on the light propagation should be taken into
account and subtracted from the round-trip time of light [Lorimer and Kramer, 2004; Yakovlev, 2002].
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Figure 3.10 Observer sends a light pulse to a particle at instant t1 of coordinate time. It
reaches the particle at observer’s coordinate time t∗2. After reaching the particle, light is
immediately sent back and arrives to the observer at time t3. Einstein’s synchronization
convention postulates the reflection time, t2, is simultaneous with time t∗2 = (t1 + t3)/2 on
observer’s worldline, that is, t2 = t∗2, by definition. In practice, the proper time τ = τ(t) of
observer is used instead of the coordinate time. The radar distance between observer and
particle is defined as % = c(τ3 − τ1)/2, where τ1 and τ3 are the times of light’s emission by and
arrival to observer measured in observer’s proper time.
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The radar distance, %, is a function of the coordinate distance, r = |xp(t2)− xo(t2)|,
between observer and particle taken at the coordinate time of reflection of the signal
t2 = t2(τ2). Relationship between % and r is found by solving the equation of light-
ray geodesics, which first integral is simply ds = 0, or

c2g00 + 2cg0i ẋi + gi j ẋi ẋ j = 0 , (3.280)

where ẋi ≡ dxi/dt is the coordinate velocity of light (photon) that is not equal to
the invariant speed c in curved spacetime. Equation (3.280) must be solved with
respect to dxi/dt, and, then, integrated from the event of emission of light, xαo (t1) =

(ct1, xi
o(t1)), to the event of its reflection, xαp(t2) = (ct2, xi

p(t2)), and back to the arrival
event, xαo (t3) = (ct3, xi

o(t3)), along the light-ray trajectory. In case of weak-field
approximation the metric tensor gαβ = ηαβ + hαβ, where hαβ are the gravitational
potentials found from Einstein’s equations. In this approximation, equation (3.280)
becomes

ẋ2 = c2 − h00 − 2ch0i ẋi − hi j ẋi ẋ j , (3.281)

that clearly shows that gravitational field affects the coordinate speed of light making
it different from c. Since the perturbation of the coordinate speed of light from its
nominal value, c, is small in the weak-field approximation, equation (3.281) can be
solved by iterations with the coordinate speed of light decomposed as

ẋi = c
(
ki + Ξ̇

)
, (3.282)

where ki is the constant unit vector along the unperturbed trajectory of light prop-
agation, k · k = δi jkik j = 1, and Ξ̇i = dΞi/dt is the perturbation of the coordinate
velocity of light.

In case of the round trip of light signal, the integration will yield two equations
relating the coordinate time differences:

c(t2 − t1) = r1 + ∆T12 , (3.283a)

c(t3 − t2) = r3 + ∆T23 , (3.283b)

where the coordinate distances are r1 = |xo(t1) − xp(t2)|, r3 = |xo(t3) − xp(t2)|, and
functions

∆T12 =
c
2

∫ t2

t1
hµν [t, x1(t)] kµ1kν1dt , (3.284a)

∆T23 =
c
2

∫ t3

t2
hµν [t, x2(t)] kµ2kν2dt , (3.284b)

are calculated along the unperturbed light-ray paths,

x1 = ck1(t − t1) + xo(t1) , (3.285a)

x2 = ck2(t − t2) + xp(t2) , (3.285b)

that are defined by null vectors kα1 = (1, ki
1) and kα2 = (1, ki

2) on the background
Minkowski spacetime (see Figure 3.10). Function ∆T is a complicated integral from
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the gravitational potentials hαβ calculated along the light-ray trajectory. It was intro-
duced to general relativity by Shapiro [1964]. The Shapiro time delay was measured
in various time-delay experiments in the solar system to the fractional precision 10−4

and better [Bertotti et al., 2003; Fomalont et al., 2009a; Lambert and Le Poncin-
Lafitte, 2009; Shapiro et al., 2004]. Precise mathematical details of calculation of
the relativistic time delay and its applications in astrometry are given in section 7.

The radar distance % between observer and particle is calculated by adding up
equations (3.283) and converting the coordinate time difference, t3 − t1, to the dif-
ference τ3 − τ1 between the proper times with the help of equation (3.274) or, if the
first approximation is sufficient, with the help of equation (3.277). Calculation of the
radar distance by means of equation (3.278) yields

% = r + ∆C + ∆T , (3.286)

where

r =
1
2

(r1 + r3) , (3.287)

is the coordinate distance,

∆C = −
c
4

∫ t3

t1

{
β2 + hµν [t, xo(t)] βµβν

}
dt , (3.288)

is the relativistic time delay of observer’s clock, calculated along the observer’s
worldline xo(t), and

∆T =
c
4

{∫ t2

t1
hµν [t, x1(t)] kµ1kν1dt +

∫ t3

t2
hµν [t, x2(t)] kµ2kν2dt

}
, (3.289)

is the Shapiro time delay due to the propagation of light through the gravitational
field.

3.8.6.4 Are coordinates measurable?
In Newtonian mechanics and also in special relativity inertial coordinates are con-
sidered as measurable quantities. General relativity and any other valid theory of
gravity dismantled coordinates as observable quantities. Indeed, any self-consistent
theory of gravity obeys the general principle of covariance which states that the
description of physics is independent of one’s choice of coordinates. Coordinates
are merely bookkeeping parameters taking a series of values of mathematical func-
tions that are used in order to numerate events and their sequences taking place in
the curved spacetime manifold. As such, coordinates are intangible things bear-
ing a subjective imprint of an objective physical reality. Two different coordinate
charts are completely equivalent from an objective standpoint. Any preference in
choosing particular coordinates is exclusively associated with a pure mathematical
convenience for solving equations. Hence, coordinates are unobservable variables
that can never be measured in any kind of spacetime experiment nor in astronom-
ical practice. Observations and experiments can only provide us with a series of
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objective relationships between astronomical bodies (particles) and fields described
as geometric objects residing in spacetime manifold.

Let us discuss this effacing property of coordinates in case of the measurement of
the radar distance %. Equation (3.286) establishes a functional relationship between
the measured quantity % and the objective geometric objects - observer’s worldline,
particle’s worldline, light-ray trajectory, and the metric tensor gαβ = ηαβ + hαβ.
One has chosen some particular coordinates xα = (x0, xi) = (ct, xi) to present
mathematical description of these geometric objects and to establish relationship
between them and the measured quantity %. Let us now choose new coordinates,
x′α = (x′0, x′i) = (ct′, x′i), where t′ is a new coordinate time, and x′i are new spa-
tial coordinates related to the old coordinates xα by the transformation equation
x′α = x′α(x), where x in the argument of functions denotes four-dimensional co-
ordinates: f (x) ≡ f (xα) = f (t, x). Subsequent calculations can be done exactly
but, since the above-given calculation of % has been done only in the first approx-
imation with respect to the potentials of gravitational field hαβ and up to the terms
being quadratic with respect to velocity of observer, it is reasonable to consider the
coordinate transformation in the same approximation discarding higher-order terms

x′α = xα + ξa(x) , (3.290)

where ξα are the gauge functions of the same order as hαβ and β2. Metric tensor
in the new coordinates, g′αβ(x′) = ηαβ + h′αβ(x′), relates to the metric tensor, gαβ =

ηαβ + hαβ(x), in the old coordinates by transformation (3.264). In the linearized
approximation this transformation reads

hαβ(x) = h′αβ(x′) + ξα,β(x) + ξβ,α(x) , (3.291)

where indices are raised and lowered with the help of the Minkowski metric ξα =

ηαβξ
β, and comma denotes a partial derivative with respect to the old coordinates,

ξα,β ≡ ∂βξα, etc.
The coordinate transformations (3.290) lead to the corresponding point-like trans-

formation of time and spatial coordinates of observer and the particle

t′1 = t1 + ξ0
1 , x′io (t′1) = xi

o(t1) + ξi
1 , (3.292a)

t′2 = t2 + ξ0
2 , x′ip(t′2) = xi

p(t2) + ξi
2 , (3.292b)

t′3 = t3 + ξ0
3 , x′io (t′3) = xi

o(t3) + ξi
3 , (3.292c)

where ξα1 = ξα [t1, xo(t1)], ξα2 = ξα
[
t2, xp(t2)

]
, ξα3 = ξα [t3, xo(t3)], are the gauge

functions taken at the point of emission of light, its reflection, and arrival to observer,
respectively.
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Other terms entering relationship (3.286), are transformed as follows:

r1 = r′1 + ki
1

(
ξi

1 − ξ
i
2

)
, (3.293a)

r3 = r′3 + ki
2

(
ξi

2 − ξ
i
3

)
, (3.293b)

βi = β′i − βα∂αξ
i , (3.293c)

β2 = β′2 − 2βµβνξν,µ − 2βµ∂µξ0 , (3.293d)

hµνβµβν = h′µνβ
′µβ′ν + 2βµβνξν,µ , (3.293e)

hµνkµkν = h′µνk
′µk′ν + 2kµkνξν,µ , (3.293f)

where the quantities with sub-indices 1,2,3 are taken at the events of emission of
light, the point of its reflection, and the point of its arrival respectively; r′1 = |r′1|,
r′3 = |r′3|, r′1 = x′p(t′2) − x′o(t′1), r′3 = x′o(t′3) − x′p(t′2) are coordinate distances between
the corresponding events expressed in the new coordinates; k′i1 = r′i1 /r

′
1 and k′i2 =

r′i3 /r
′
3 are the unit vectors defining propagation of light in the new coordinates; the

gauge functions ξα in equations (3.293c)-(3.293e) are taken along the worldline of
observer; the gauge functions ξα in equations (3.293f) are taken along the light-ray
path.

Substituting these equations to the right side of relationship (3.286), and calculat-
ing integrals∫ t3

t1
βµ∂µξ

0dt =

∫ t3

t1

dξ0

dt
dt = ξ0

3 − ξ
0
1 , (3.294a)∫ t2

t1
kµ1kν1ξν,µdt =

∫ t2

t1

d
dt

(
kµ1ξµ

)
dt = ξ0

1 − ξ
0
2 + ki

1

(
ξi

2 − ξ
i
1

)
, (3.294b)∫ t3

t2
kµ2kν2ξν,µdt =

∫ t3

t2

d
dt

(
kµ2ξµ

)
dt = ξ0

2 − ξ
0
3 + ki

2

(
ξi

3 − ξ
i
2

)
, (3.294c)

one finds out that in the approximation under consideration, the radar distance, %,
calculated in the new (primed) coordinates, is given by the relationship

% = r′ + ∆′C + ∆′T , (3.295)

where

r′ =
1
2

(
r′1 + r′3

)
, (3.296a)

∆′C = −
c
4

∫ t′3

t′1

{
β′2 + h′µν

[
t′, x′o(t′)

]
β′µβ′ν

}
dt′ , (3.296b)

∆′T =
c
4

∫ t′2

t′1

h′µν
[
t′, x′1(t′)

]
k′µ1k′ν1dt′ (3.296c)

+
c
4

∫ t′3

t′2

h′µν
[
t′, x′2(t′)

]
k′µ2k′ν2dt′ . (3.296d)

Relationship (3.295) in the new coordinates has exactly the same functional form as
its counterpart (3.286) expressed in the old coordinates. It proves that the measured
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quantity % does not provide by itself any information about the coordinates used for
its theoretical calculation. Only the relationship between the separate terms entering
equation (3.295) remains the same in any coordinate chart. An observer can only
derive coordinates of events that occur in the spacetime manifold. This is the main
function of coordinates and any coordinates accomplish this task. Whether or not
these coordinates conform to any particular criteria is immaterial from a principal
standpoint. In practice, however, it is found that, when one actually tries to analyze
astronomical measurements made by an arbitrary observer, the mathematics become
progressively difficult to handle in arbitrary coordinates. What kind of difficulties
one mets and how to handle them, is a subject of a dedicated theoretical study having
been undertaken by Synge [1964] and called him chronogeometry. Synge’s relativis-
tic theory of astronomical measurements is based on the world function, Ω, that is
a measure of distance between two arbitrary points on a curved spacetime manifold
connected by a geodesic. For two events separated by null geodesic the world func-
tion Ω is similar to the concept of the radar distance %. Description of measurements
in terms of the world function is invariant but involves many technicalities which
are alien to the procedures and protocols of the data reduction algorithms used by
astronomers. Although modern astronomical observations can measure various rela-
tivistic effects with an unparallel precision, the practice is to keep the data processing
algorithms as close to the classic conceptions of space and time as possible. Thus,
coordinate-based description of astronomical phenomena is maintained in the form
of astronomical catalogues of stars and quasars, ephemerides of planets and their
satellites, the Earth orientation parameters representing coordinates of the Earth ro-
tational axis, etc. Such an approach simplifies mathematical formalism and allows
us to record astronomical data continuously. This introduction of coordinates to the
algorithms of astronomical data reduction should not be misinterpreted. The coor-
dinates and coordinate-dependent parameters like semi-major axis and eccentricity
of osculating orbit, can be determined from observations only after one fixes the co-
ordinate conditions and remove the residual gauge freedom in the metric tensor that
is solution of the gravitational field equations. As soon as the gauge or coordinate
parametrization of the orbit change, the "determined" values of the coordinates and
coordinate parameters change accordingly (see, for example, the paper by Klioner
and Kopeikin [1994] demonstrating the dependence of the "observed" coordinate
parameters on the choice of parametrization in the case of binary pulsar dynamics).

3.8.7
Experimental testing of general relativity

Each physical theory must have a predictive power and deals with measurements
which goals is to test the predictions and to decide whether the theory is right that
is, if it corresponds to reality, or wrong. The concept of realism of a physical theory
was introduced by Einstein et al. [1935]. They define the element of physical real-
ity as a physical quantity associated with a certain mathematical object within the
theory whose observed value can be predicted by the theory with certainty before
measuring it or disturbing it in any way. Einstein et al. [1935] also defined a com-



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 3 — 2016/2/13 — 14:05 — page 308

308

plete physical theory as one in which every element of physical reality is accounted
for by the mathematical formalism of the theory. Given a complete physical theory,
one can predict the outcome of physical measurements made on any material system
described by the theory. In addition, such a theory should also be capable of describ-
ing the behavior of the measuring devices used to observe a system without recourse
to additional assumptions taking us outside of the realm of the theory.

General relativity is a theory of gravitational field that is an intrinsic element of the
geometric structure of a pseudo-Riemannian spacetime manifold. This structure is
the metric tensor, gαβ, that plays a double role in general relativity as it defines both
the metrical relationships between the elements of physical reality and determines
evolution of gravitational field from the initial data. Hence, measurement of gravi-
tational field in general relativity is the same thing as measurement of the metrical
relationship between events taking place on the spacetime manifold.

Let us consider testing general relativity by taking measurement of the radar dis-
tance % defined by equation (3.286) as an example. For concreteness, one can think
about the radar distance between Earth and Moon measured by lunar laser ranging
(LLR) technique [Battat et al., 2007; Dickey et al., 1994; Kopeikin et al., 2008].
As time passes on, one can make sufficiently large number of measurements of the
radar distance % which will allow us to form a system of equations for determina-
tion of the functional relationship between elements of the physical reality presented
in the right side of equation (3.286). These elements are the worldlines of observer
(Earth), particle (Moon), photon (laser pulse) as well as the metric tensor. Metric ten-
sor is determined by solving the Einstein equations. The worldlines are determined
from equations of motion, which are consequences of the Einstein equations due to
the Bianchi identity. Their solution establishes a functional correspondence between
gravitational field and the worldlines which is unique for each gravity theory. Substi-
tuting solutions for the worldlines and for the metric tensor to the right side of equa-
tion (3.286) allows us to make a theoretical prediction of the radar distance, %c (ϑ, τ),
as a function of the proper time τ of observer and parameters, ϑ = {ϑ1, ϑ2, ..., ϑM},
of the theoretical model. Comparing this prediction with observed value of the radar
distance, %o(τ), at each observational point, determines parameters of the model. As
a rule, this is done by minimizing functional 65)

χ2 =

N∑
i=1

[
%c (ϑ, τi) − %o (τi)

]2 , (3.297)

by the least square method [Bevington and Robinson, 1992; Gubanov, 1997] for a
series of observations taken at times τi = {τ1, τ2, ..., τN}.

Number of the parameters ϑ describing the theoretical model is usually pretty large
and can vary from several hundred to thousands, and even more. Many of these pa-
rameters originate from the Newtonian physics (orbital parameters, multipole mo-
ments of gravitational field, parameters of elasticity of the planets, tides, etc.) and

65) In practice, there are different approaches to determination of parameters but among them, the least
squares method is the most common.
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technical requirements for observing system (clocks, lasers, mounting system, retro-
reflectors, antennas, etc.). Only few parameters remain to test the consistency of
general relativity. Standard tests within the solar system are usually based on the
parameterized post-Newtonian (PPN) formalism [Will, 1993] which introduces to

the metric tensor a set of ten parameters, ϑPPN = {γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4} in
such a way that competing gravitational theories can be accommodated 66). PPN
formalism fixes the gauge freedom of the metric by postulating a special form of
some of the metric tensor coefficients. In this standard PPN gauge (also known as
the Chandrasekhar-Nutku gauge [Chandrasekhar and Nutku, 1969; Schäfer, 1982])
the PPN parameters are given the following significance [Will, 1993]:

– γ describes how much space-curvature is produced by unit rest mass;
– β describes how much nonlinearity is there in the superposition law for gravity;
– ξ describes if there are preferred-location effects associated with gravity field;
– α1, α2, α3 describe if there are preferred frame effects associated with motion of

the solar system with respect to a hypothetical privileged reference frame of the
universe violating the Lorentz invariance;

– ζ1, ζ2, ζ3, ζ4 describe if there exists violation of conservation of total momentum
of the solar system.

In fact, there are three other PPN parameters which are the components of the
velocity of motion of the solar system with respect to the privileged frame of the
universe: w = (wi) = (w1,w2,w3). These parameters are never fit but are always
fixed by assuming that the privileged frame of the universe is that in which the cos-
mic microwave background radiation (CMBR) is isotropic. The reason for fixing the
preferred-frame velocity w is that preferred-frame parameters are always enter PPN
formalism in the form of products: α1w, α2w, α3w. Hence, the tight experimen-
tal limitations currently given on the preferred-frame parameters (see [Will, 2006])
strongly depend on one’s guess about the velocity w of the solar system relative to
a “preferred frame" which was assumed to be the CMBR. But, one does not know
if it defines the preferred coordinate system in the sense forbidden by special rela-
tivity; it is just a convenient frame to describe the global isotropy of the cosmologi-
cal black-body radiation. Furthermore, future observations of the relic gravitational
wave background (GWB), for example, may lead to the frame somehow moving with
respect to the CMBR frame. Since the GWB was formed in the very early universe,
long before the CMBR decoupled from matter, it would be more likely to asso-
ciate it with the preferred frame. However, neither the global topological isotropy of
CMBR nor GWB may be related to the local Lorentz-invariant isotropy of the space-
time itself. Modern multi-connected cosmological models of the universe [Barrow
and Levin, 2001, 2003] also indicate that various possibilities for the global pre-
ferred frame may not coincide with the CMBR and GWB frames. Recently, Bailey
and Kostelecky [2008] have proposed the gravitational Standard-Model Extension
(SME) as a covariant alternative to the PPN formalism in using gravitational experi-

66) The best-known competing theory is the Brans-Dicke theory of gravity that will be discussed in section
4.
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ments to test the spontaneous Lorentz violation in the gravity sector of relativity.
PPN formalism is valid only in the standard PPN gauge and should not be inter-

preted as covariant statements. Misunderstandings can arise if one takes no heed of
this caution. For example, there was some discussion about physical significance
of β parameter as a true marker of the non-linear gravitational effects. Specifically,
Deser and Laurent [1973] pointed out that the non-linear gravity effects interfere
with the choice of coordinates. This led Karlhede [1982] to claim that gravitational
nonlinearities are not observable in the post-Newtonian approximation. This claim
is erroneous since the coordinate transformation do removes the PPN parameter β
from g00 component of the metric tensor but re-introduces it to the space-space, gi j,
components so that β remains among the PPN parameters entering the observable
effects like the shift of Mercury’s perihelion.

A distinctive feature of PPN formalism is that it postulates a complete compat-
ibility of the parameterized metric tensor with the affine connection. Hence, PPN
formalism is not capable to handle alternative theories of gravity which are not fully
metric-based and include additional pieces of the connection - torsion and nonmetric-
ity. Several affine-metric theories have been proposed to fill up this gap in respond
to various yet unexplained phenomena within the solar system, in galactic astron-
omy, and in cosmology [Altschul et al., 2010; Bekenstein, 2004; Blome et al., 2010;
Heinicke et al., 2005; Moffat, 1995]. To answer the question on how the metric
tensor is coupled to the affine connection, one need to introduce additional PPN pa-
rameters tracing the presence of torsion [Mao et al., 2007] and nonmetricity in the
affine connection [Kopeikin, 2004; Kopeikin and Fomalont, 2007].
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3.9
Variational Principle in General Relativity

3.9.1
The action functional

In physics, action is an attribute of the dynamics of a physical system. It is a func-
tional, S , that takes a function of time (for particles) and space (for fields) as input
and returns a scalar. The action can be found for any physical field. However, in
many cases this is not a straightforward task and its solution requires elaboration on
certain assumptions and justifications. General relativity is a theory of gravitational
field described by the metric tensor, gαβ, which is considered as a dynamic variable
in gravity sector of the theory. Therefore, the action of the gravitational field, S H , is
to be build out of the metric gαβ and its partial derivatives gαβ,γ 67). No other variables
are supposed to appear in the gravitational action.

Matter is the source of gravitational field, and one has to find out the action for
matter, S M , that should depend on a set of matter variables, ψ, and their partial
derivatives, ∇αψ. Each of the set of matter variables is a function on spacetime
manifold and possesses indices to indicate its tensorial or spinorial character but
they have been omitted to simplify notations. As the action is invariant, it suggests
that the derivatives of the dynamic variables must be covariant in the most general
case. Moreover, the action of matter is usually a scalar quadratic function build out
of the dynamic variables and their first derivatives 68) It implies that the metric tensor
and its first derivatives should participate in the definition of the action of matter.

In general relativity, the overall action S for a physical system consisting of matter
interacting with gravitational field, is a linear superposition of two terms 69):

S = S H + S M , (3.298)

which is a consequence of the principle of minimal coupling of gravity with matter.
This principle establishes the simplest form of the interaction term between gravity
and matter governed by the principle of equivalence, according to which any physi-
cal equation of special relativity can be turned into its general-relativistic counterpart
by replacing the Minkowski metric, ηαβ, with the relevant metric of spacetime, gαβ,
and by replacing any partial derivative, ∂α, with a covariant one, ∇. The minimal
coupling of matter to gravity leads to a natural absorption of the gravity field vari-
able (metric) and the affine connection to the structure of the Lagrangian S M which
original definition usually comes from special relativity.

67) Covariant derivatives of the metric tensor are identically nil according to the basic principles of general
relativity discussed in section 3.8.2. Thus, covariant derivatives of the metric do not appear in the
action.

68) Higher derivatives are also allowed, for example, in relativistic dynamics of N-body system emitting
gravitational waves [Damour, 1987; Damour et al., 1989; Grishchuk and Kopeikin, 1986].

69) Matter fields are localizable, and can be measured at one point while gravitational field is not localiz-
able due to the principle of equivalence. Hence, one can not have cross-coupling terms in the action
consisting of matter variables and the Christoffel symbols, which are not a part of the covariant deriva-
tive.
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The action is defined as an integral from some scalar function depending on grav-
itational field and matter variables, taken over the entire evolutionary history of the
physical system. The scalar function is usually denoted, L, and is called Lagrangian
that is defined on the entire spacetime manifold. Because the integration must give
us a scalar - the action S , the volume of integration over the manifold must be a
scalar that is invariant with respect to coordinate transformations. To establish the
invariant measure of integration in curved spacetime, let us consider two coordinate
charts, xα and x′α, connected by an invertible coordinate transformation, xα = xα(x′).
The coordinate four-volumes, d4x = dx0dx1dx2dx3 and d4x′ = dx′0dx′1dx′2dx′3, are
related to each other by the determinant of the matrix of the infinitesimal transfor-
mation, J = det

[
∂x′a/∂xβ

]
, that is called the Jacobian

d4x′ = Jd4x . (3.299)

The Jacobian, J, can be expressed in terms of the determinant of the metric tensor
after calculating determinants from both sides of the metric-tensor transformation
equation

gαβ(x) = g′µν(x′)
∂x′µ

∂xα
∂x′ν

∂xβ
. (3.300)

Applying the rule of calculation of determinants from the product of matrices, yields

g = J2g′ , (3.301)

where g = det
[
gαβ(x)

]
and g′ = det

[
g′αβ(x′)

]
. One has to take care about the sign

of the metric tensor determinant in extracting the root square from both sides of the
above equation. Assuming that the primed coordinates, x′α, are the normal Riemann
coordinates, the determinant, g′ = det

[
ηαβ

]
= −1, at the origin of the normal coordi-

nates. Because the signature of the matrix determinant is invariant under diffeomor-
phic coordinate transformations, one comes to the conclusion that determinant of
the metric tensor is always negative, g < 0 and g′ < 0. Accounting for this fact, ex-
tracting the root square from equation (3.301), and substituting the result to equation
(3.299), brings about the equivalence√
−g′d4x′ =

√
−gd4x . (3.302)

It tells us that the invariant measure of a volume on spacetime manifold is,
√
−gd4x.

In most physical theories the Lagrangian does not include derivatives of the dy-
namic variables of the order higher than first. However, it is impossible to find the
Lagrangian of gravitational field, that is a scalar and is built only from the metric and
its first derivatives - the Christoffel symbols. This is because the Christoffel symbols
can be locally eliminated by an appropriate choice of a coordinate chart. Hence, if
such an invariant Lagrangian existed it could be only a trivial constant. Thus, the sec-
ond derivatives of the metric tensor must be included to the gravitational Lagrangian
to build a scalar invariant from the Riemann tensor. It is remarkable that in general
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relativity the second derivatives of the metric tensor entering the gravitational La-
grangian, LH , do not lead to gravitational field equations of the order higher than
second. This is because all terms with the second derivatives of the metric tensor are
grouped to a single term which is a four-dimensional divergence of a vector field.
Due to the Stock’s theorem it reduces to a surface term on the boundary of integra-
tion that does not contribute to the variational equations of the gravity field. It does
not mean, however, that the term with the second derivatives from the metric tensor
should be discarded. Though it does not contribute to the field equations, it remains
essential in definition of the invariant gravitational Lagrangian, and appears later in
the theory of the (pseudo)tensor of energy-momentum of gravitational field and its
conserved quantities [Babak and Grishchuk, 2000; Grishchuk et al., 1984; Popova
and Petrov, 1988; Szabados, 2009].

All in all, one has the functionals of action of matter and gravitational field written
down schematically as

S M =

∫
LM

(
ψ;∇αψ; gαβ

) √
−gd4x , (3.303)

S H =

∫
LH

(
gαβ; gαβ,γ; gαβ,γδ

) √
−gd4x , (3.304)

where both, LH and LM , are invariant scalars, ψ denotes a multiplet of matter vari-
ables of various tensor ranks, comma denotes partial derivatives with respect to a
corresponding coordinate, for example, gαβ,γ = ∂γgαβ, gαβ,γδ = ∂γ∂δgαβ = ∂γδgαβ,
and ∇αψ is a covariant derivative from the matter variable. It will be convenient to
denote it as follows

∇αψ ≡ ψ,α + Γαψ , (3.305)

where comma denotes a partial derivatives from the component of ψ, and Γα consists
of the Christoffel symbols. If the matter field is a tensor of a (p, q) type, ψ ≡ ψβ1 ...βp

γ1 ...γq ,
then,

Γαψ ≡ Γ
β1
αµψ

µβ2 ...βp
γ1γ2 ...γq + ... + Γ

βp
αµψ

β1 ...βp−1µ
γ1γ2 ...γq (3.306)

− Γ
µ
αγ1ψ

β1β2 ...βp
µγ2 ...γq − ... − Γ

µ
αγqψ

β1β2 ...βp
γ1 ...γq−1µ .

In case of a scalar field - tensor of the type (0, 0), Γα = 0. Definition (3.306) is a
direct consequence of equation (3.91) for covariant derivative of a tensor field.

Notice that the covariant derivative enters explicitly only the matter Lagrangian
LM . Metric tensor plays a role of the only gravitational variable in general relativity,
and its covariant derivative equals to zero due to the principle of equivalence. For this
reason, the dynamic gravitational variables in general relativity are the metric tensor
and its partial derivatives. We shall specify explicit form of the Lagrangians in next
section. Here, one would like to bring attention to the fact that any Lagrangian
is defined up to a total covariant divergence from an arbitrary vector field lα that
vanishes on the boundary of integration. Indeed, the replacement

L→ L + ∇αlα , (3.307)
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changes the action

S → S +

∫
∇αlα

√
−gd4x . (3.308)

However, the total divergence from a vector field can be always integrated and re-
duced to a surface integral due to the Gauss theorem∫

∇αlα
√
−gd4x =

∮
√
−glαdΣα , (3.309)

where dΣα is the element of integration on the boundary of the four-dimensional
domain. The surface integral in equation (3.309) is nil, as one has assumed the
field lα = 0 on the boundary. This simple observation tells us that calculations of
variational derivatives are always valid up to a total divergence of a vector field which
can be discarded in the most cases.

3.9.2
Variational equations

A variational principle, also called the principle of least action, is used in mechanics
to obtain the equations of motion for particles and continuous media. It leads to the
development of the Lagrangian and Hamiltonian formulations of classical mechanics
[Arnold, 1995]. The principle can be also applied to continuous distribution of matter
- fields, in order to derive the field equations. The main idea of the principle is that
among all configurations of a physical system under consideration, the physically
realizable one corresponds to a minimal value of the action S . Application of this
principle defines the field equations and the equations of motion of matter 70).

3.9.2.1 Variational equations for matter
Action, S , given in equations (3.298), depends on mutually-independent dynamic
variables, ψ, gαβ, and their derivatives. For each choice of these functions, the action
takes a specific numerical value. Smoothly varying the variables one change the
numerical value of S . The virtual variation is denoted by δψ for matter variables, and
by δgαβ for gravitational field (metric). The variation is defined as an infinitesimal
difference between two values of the variable taken on spacetime manifold at the
same value of coordinates:

δψ ≡ ψ′(x) − ψ(x) , (3.310)

δgαβ ≡ g′αβ(x) − gαβ(x) , (3.311)

where x ≡ xα denotes four-dimensional coordinates of the point. Primed functions,
ψ′ and g′αβ, are not related to ψ and gαβ in the most general case; they are independent
functions satisfying some necessary conditions of differentiability. The variations

70) In order to derive the equations of motion and field equations it is sufficient to request that the action is
an extremal among all possible variations of the system configuration.
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(3.310) and (3.311) may or may not be accompanied by coordinate transformations
that do not appear explicitly in these definitions. These variations should be distin-
guished from the variations which explicitly entail the change of coordinates besides
taking the change in functional values,

δ̂ψ ≡ ψ′(x′) − ψ(x) , (3.312)

δ̂gαβ ≡ g′αβ(x′) − gαβ(x) , (3.313)

where x′ = x′(x) is the transformation from one coordinate chart to another. It
should be emphasized that both forms of the variations can be used in variational
calculus [Mitskevich, 1969] but those, defined by equations (3.310), (3.311) are more
mathematically convenient as they commute with other mathematical operations of
tensor calculus like derivatives, contraction of indices, etc. Since the variations, δ
and δ̂, are infinitesimally small the link between them can be easily established in
the form of the Taylor expansion. We do not use variations (3.312), (3.313) in what
follows.

Virtual variation of the dynamic variables may be a real physical perturbation of
the physical system under consideration but in some cases they are not. The varia-
tions can be also subject to some constrains but one does not consider this case. The
variation of variables lead to variation of the action

δS = S ′ − S , (3.314)

where S ′ has the same functional form as S in equations (3.303), (3.304), but de-
pends on the primed values of the variables ψ′(x) = ψ(x)+δψ, g′αβ(x) = gαβ(x)+δgαβ,
etc. The principle of the least action demands that the physical system evolves along
those trajectories of the variables, which conform to equation

δS = 0 . (3.315)

This equation implies that an infinitesimal change of the total action S should van-
ish if variations of physical fields, ψ, and the metric, gαβ, take the system out of
stationary equilibrium. Whether this equilibrium is minimum, or maximum, or a
saddle point depends on the behavior of the second variation of action [Arnold,
1995; Dubrovin et al., 1984]. We shall assume that variations of all variables and
their derivatives giving rise to variation δS , vanish on the boundary of the domain of
integration in definition of action:

(δψ)boundary =
(
δψ,α

)
boundary = 0 , (3.316a)(

δgαβ
)

boundary
=

(
δgαβ,γ

)
boundary

= 0 . (3.316b)

When only the matter field variation is performed, one gets δS = δS M . Introducing
a new notation,

L ≡
√
−gL , (3.317)
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for the Lagrangian density and expanding action S ′M around the unprimed value of
the matter variable ψ, yields

δS M =

∫ [
∂LM

∂ψ
δψ +

∂LM

∂ψ,α
δψ,α

]
d4x , (3.318)

where δψ,α ≡ δ (∂aψ) is a variation of the partial derivative of the matter field ψ. Ac-
cording to definition (3.310) of variation, the two mathematical operations - partial
derivative and variation - commute, that is 71)

δ (∂aψ) = ∂α (δψ) . (3.319)

It allows us to integrate the second term in right side of equation (3.318) by parts,
and to discard the surface term as it vanishes on the boundary of the domain of
integration. Finally, one gets

δS M =

∫
δLM

δψ
δψd4x , (3.320)

where the expression

δLM

δψ
≡
∂LM

∂ψ
−

∂

∂xα

(
∂LM

∂ψ,α

)
, (3.321)

is called the variational derivative and, here and everywhere else, the comma before
the sub-index denotes a partial derivative ψ,α ≡ ∂αψ. The principle of the least action
demands δS M = 0 for arbitrary variation δψ. The only possible way to satisfy this
principle, is to demand vanishing of the variational derivative of LM ,

δLM

δψ
= 0 . (3.322)

Clearly, equations (3.321), (3.322) entails the Euler-Lagrange equations for the mat-
ter fields.

It is worth mentioning, that although one did calculations in this section with the
partial derivatives from matter variables, the variational equations of motion for mat-
ter are tensorial, so that partial derivatives in equation (3.321) can be replaced with
covariant ones. Indeed, LM ≡ LM

(
ψ;∇αψ; gαβ

)
= LM

(
ψ; ∂αψ + Γαψ; gαβ

)
. There-

fore,

∂LM

∂ψ
=

(
∂LM

∂ψ

)
∇ψ=fixed

+
∂LM

∂ψ,α
Γa , (3.323)

where the partial derivative in the first term is taken for a fixed value of the covariant
derivative of the field ψ 72). Accounting for a rather obvious equivalence relationship

∂LM

∂ψ,α
=
∂LM

∂∇αψ
, (3.324)

71) Notice that variation does not commute with a covariant derivative, since according to equation (3.305)
one has δ (∇aψ) = ∇α (δψ) + ψδΓα.

72) This is an important remark since ∇αψ = ∂αψ+Γαψ depends on the field ψ. This dependence is ignored
when the first term in the right side of equation (3.323) is calculated.
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one can re-write the variational derivative (3.318) in terms of the covariant derivative

δS M =

∫ [
∂LM

∂ψ
δψ +

∂LM

∂∇αψ
∇α(δψ)

]
d4x , (3.325)

where the first term in the integrand must be interpreted now in the sense of equation
(3.323). Integrating second term by parts yields∫

∂LM

∂∇αψ
∇α(δψ)d4x =

∫
∇α

(
∂LM

∂∇αψ
δψ

)
d4x −

∫
∇α

(
∂LM

∂∇αψ

)
δψd4x , (3.326)

The first integral in the right side is effectively a covariant divergence from a vector
density Wα ≡ (∂LM/∂∇αψ) δψ, where L =

√
−gLM is a scalar density. Covariant

divergence from a vector density is simplified to a partial derivative, which can be
integrated by virtue of the Gauss theorem to a surface integral∫

∇αWαd4x =

∫
∂Wα

∂xα
d4x =

∮
WαdΣα , (3.327)

where dΣα is the element of integration on the three-dimensional surface surrounding
the domain of integration in the four-dimensional integral of the action. The surface
integral in equation (3.327) vanishes because of the boundary conditions (3.316)
imposed on variations. It allows us to recast equation (3.321) to explicitly covariant
form

δLM

δψ
≡
∂LM

∂ψ
− ∇α

(
∂LM

∂∇αψ

)
, (3.328)

quod erat demonstrandum. It is worth emphasizing that all equations of variational
analysis of matter variables can be written down in terms of covariant derivatives
instead of partial derivatives. The proof can be accomplished by direct calculations
given, for example, in [Mitskevich, 1969; Szabados, 2009].

3.9.2.2 Variational equations for gravitational field
Our next goal is to vary the action with respect to the metric gαβ, in a fashion similar
to variation with respect to the matter field ψ. One reminds that the variation of the
metric and its first derivatives are chosen to be nil at the boundary of the domain of
integration. Calculating variation of the action δS with respect to the metric variation
in the same manner as in previous section, one obtains

δS = δS H + δS M , (3.329)

where variations

δS H =

∫
δLH

δgαβ
δgαβd4x , (3.330)

δS M =

∫
δLM

δgαβ
δgαβd4x , (3.331)
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are given in terms of the variational derivatives taken with respect to the metric

δLH

δgαβ
≡

∂LH

∂gαβ
−

∂

∂xµ

(
∂LH

∂gαβ,µ

)
+

∂2

∂xµ∂xν

(
∂LH

∂gαβ,µν

)
, (3.332)

δLM

δgαβ
≡

∂LM

∂gαβ
−

∂

∂xµ

(
∂LM

∂gαβ,µ

)
, (3.333)

where the comma next to sub-indices denote a partial derivative, gαβ,µ ≡ ∂µgαβ and
gαβ,µν ≡ ∂µνgαβ. The principle of the least action demands δS = 0, which yields the
variational equations for gravitational field

−
δLH

δgαβ
=
δLM

δgαβ
. (3.334)

Left side of this equation depends only on the metric tensor and its derivatives while
the right side depends on the matter fields being the source of gravity. The right
side of equation (3.334) also depends on the metric and its first derivatives. Hence,
equation (3.334) represents a complicated coupled system of equations for matter
and gravitational field. If the Lagrangian of gravitational field is chosen in the form
provided by Hilbert, the variational equations (3.334) take on the form of the Einstein
field equations 3.251).

3.9.3
The Hilbert action and the Einstein equations

3.9.3.1 The Hilbert Lagrangian
In late June - early July of 1915, Einstein spent several days in Göttingen. In a
series of six lectures, he explained his ideas on gravity. Among other things, he sug-
gested that the Riemann metric’s components, gαβ, be employed as potentials of the
gravitational field. Hilbert got interested in the approach outlined, and joined Ein-
stein in the quest for the fundamental equations governing gravity. These equations
were discovered independently by Hilbert and Einstein, in the months following Ein-
stein’s visit. Working on this problem, the two great minds were not competing but
were actively exchanging information, as can be seen from their correspondence of
November that year. Hilbert was tackling at the problem as a mathematician should,
using variational methods. Einstein’s way was more physically intuitive 73).

Hilbert’s idea was that the Lagrangian, LH , of gravitational field must be propor-
tional to the Ricci scalar R which is the only scalar built of the metric and its first
and second derivatives. It may look like that the appearance of the second deriva-
tives of the metric in the gravitational Lagrangian gives rise to the field equations
of the order higher than second. However, the Ricci scalar depends on the second
derivatives of the metric linearly, and taking the variational derivative (3.332) from
such a Lagrangian can not give higher-order derivatives of the metric tensor in the
field equations, which will become equations of the second order. The principle of

73) A representative selection of excerpts from Einstein’s papers of that period is provided in a review
article by Logunov et al. [2004].
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correspondence with the Newtonian theory (see section 3.8.4.2) fixes the constant of
proportionality between LH and R. Traditional definition of Hilbert’s Lagrangian is

LH = −
1
2κ
√
−gR , (3.335)

where κ = 8πG/c4. Functional derivative fromLH with respect to the metric, defines
the Einstein tensor

Gαβ ≡ +
2κ
√
−g

δLH

δgαβ
. (3.336)

Functional derivative from the Lagrangian density of matter, LM , with respect to the
metric yields the metrical energy-momentum tensor of matter

Tαβ ≡ −
2
√
−g

δLM

δgαβ
, (3.337)

that is also called the Hilbert tensor of energy-momentum. Substituting these defini-
tions to variational equation (3.334) brings forth the Einstein field equations

Gαβ = κTαβ , (3.338)

which were derived by Hilbert from the variational principle 74).

3.9.3.2 The Einstein Lagrangian
Einstein had also proposed a Lagrangian for gravitational field that does not depend
on the second derivatives of the metric tensor. The procedure is based on splitting
the Hilbert Lagrangian in two parts, one of each is a four-dimensional divergence
from a pseudo-vector 75)

Wα ≡
√
−g

(
gβγΓαβγ − gαβΓγβγ

)
=
√
−ggαβgµν

(
gβµ,ν − gµν,β

)
; . (3.340)

Straightforward calculation reveals [Landau and Lifshitz, 1975, §93] that
√
−gR − ∂αWα =

√
−ggµν

(
ΓαµβΓ

β
να − ΓααβΓ

β
µν

)
, (3.341)

where the right side does not contain the second derivatives from the metric. The
Einstein Lagrangian of gravitational field is defined as

LE = −
1
2κ
√
−ggµν

(
ΓαµβΓ

β
να − ΓααβΓ

β
µν

)
. (3.342)

74) Notice that if one has used variational derivatives with respect to the contravariant metric tensor, the
signs in definitions (3.336) and (3.337) had to be changed

Gαβ ≡ −
2κ
√
−g

δLH

δgαβ
, Tαβ ≡ +

2
√
−g

δLM

δgαβ
. (3.339)

Signs in Einstein’s equations remain the same: Gαβ = κTαβ . Comprehensive discussion of various
relationships of variational calculus on curved manifolds is given in textbook by Mitskevich [1969].

75) We call Wα pseudo-vector as it has one index like a vector but it is made of a non-tensorial combination
of the metric tensor and the Christoffel symbols that does not transform as a vector.
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It is not a scalar and can be nullify at each point of spacetime manifold by choosing
the normal Riemannian coordinates. For this reason, the Einstein Lagrangian makes
sense only in the expression for the action. Indeed, the action,

S E =

∫
LEd4x , (3.343)

for the Einstein Lagrangian (3.342) and that,

S H =

∫
LHd4x , (3.344)

for the Hilbert Lagrangian (3.335), differ only by an integral from a total divergence,
∂αWα, which is reduced to a surface integral due to the Gauss theorem. The boundary
conditions (3.316) imposed on the action variables and their derivatives tell us that
the surface term does not play any role in derivation of the Einstein equations, and
can be discarded. Hence, from the point of view of variational calculus, both types of
the action are equivalent for the purpose of derivation of the Einstein field equations.

3.9.3.3 The Einstein Tensor
We still need to find out explicit expression for the Einstein tensor. The most direct
way would be, of course, the calculation of this tensor from its definition (3.336)
given in the form of the variational derivative. The main equations for partial deriva-
tives with respect to the metric tensor and its partial derivatives are

∂gαβ
∂gµν

=
1
2

(
δ
µ
αδ

ν
β + δναδ

µ
β

)
, (3.345a)

∂gαβ,γ
∂gµν,σ

=
1
2

(
δ
µ
αδ

ν
β + δναδ

µ
β

)
δσγ , (3.345b)

∂gαβ,γπ
∂gµν,σρ

=
1
4

(
δ
µ
αδ

ν
β + δναδ

µ
β

) (
δσγ δ

ρ
π + δσπ δ

ρ
γ

)
. (3.345c)

Calculation of variational derivatives (3.332), (3.333) from any Lagrangian with the
help of the above-given equations is straightforward but entails an enormous amount
of tedious tensor algebra76). It can be more conveniently handled by a computer
program for doing calculations with indexed objects [Klioner, 2000].

It turns out more simple to calculate the variational derivative from the variation
of the action for gravitational field. Substituting Lagrangian (3.335) to definition
(3.304) and taking variation one obtains

δS H = −
1
2κ

∫
δRd4x , (3.346)

where the variation of the Ricci scalar density is

δR = δ
(√
−ggαβRαβ

)
= Rδ

√
−g +

√
−gRαβδgαβ +

√
−ggαβδRαβ . (3.347)

76) We thank Dr. Alexander Petrov from Sternberg Astronomical Institute (Moscow) for demonstrating the
technique of variational derivatives on curved manifolds to us.
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Variation

δ
√
−g = −

δg
2
√
−g

, (3.348)

is reduced to calculation of variation from determinant of the metric tensor, g =

det
[
gαβ

]
. To derive this variation, let us recall the explicit expression for determinant

of the metric tensor [Schutz, 1995, §4.12]

g =
1
4!
εαβγδεµνρσgαµgβνgγρgδσ , (3.349)

where εαβγδ is the fully antisymmetric Levi-Civita symbol defined in equation
(3.229), and definition of the elements of the inverse matrix of the metric tensor,

ggαµ =
1
3!
εαβγδεµνρσgβνgγρgδσ . (3.350)

One can easily check that equations (3.349) and (3.350) are consistent by using them
for calculation of transvection of gαβ and gαβ, which amounts to 4 as expected. After
taking variation from both sides of equation (3.349) one gets,

δg = ggαβδgαβ , (3.351)

which yields

δ
√
−g =

1
2
√
−ggαβδgαβ . (3.352)

Second term in the right side of equation (3.347) can be re-written in terms of varia-
tion δgαβ with the help of relationship

gαµδgµβ = −gµβδgαµ , (3.353)

which is a consequence of taking a variation from the identity gαµgµβ = δ
β
α. It results

in relationship 77)

δgµν = −
1
2

(
gµαgνβ + gµβgνα

)
δgαβ , (3.354)

that allows us to recast the second term in equation (3.347) as follows

Rαβδgαβ = −Rαβδgαβ . (3.355)

In order to calculate the third term in the right side of equation (3.347) one uses
definition (3.170) to obtain the Ricci tensor

Rαβ = ∂µΓ
µ
αβ − ∂βΓ

µ
αµ + Γ

µ
αβΓ

ν
µν − Γ

µ
ανΓ

ν
βµ . (3.356)

77) Compare this variation with equation (3.345a). Notice the minus sign in front of the brackets as opposed
to equation (3.345a).
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Since the mathematical operation of taking a partial derivative and the operation of
variation commutes one can write

δRαβ = ∂µδΓ
µ
αβ − ∂βδΓ

µ
αµ + δΓ

µ
αβΓ

ν
µν + Γ

µ
αβδΓ

ν
µν − δΓ

µ
ανΓ

ν
βµ − Γ

µ
ανδΓ

ν
βµ . (3.357)

Next step is to observe that the variation, δΓαβγ, of the Christoffel symbol is a tensor
of third rank. Indeed, this variation consists of a difference between two different
connections, Γ′αβγ and Γαβγ, taken at the same value of coordinates. This difference is
transformed as a tensor in accordance with the reasonings given at the end of section
3.4.5. Thus, covariant derivative of the variation of the Christoffel symbols is

∇αδΓ
µ
βγ = ∂αδΓ

µ
βγ + Γ

µ
ανδΓ

ν
βγ − ΓναγδΓ

µ
νβ − ΓναβδΓ

µ
νγ . (3.358)

This expression allows us to recast equation (3.357) in simpler form

δRαβ = ∇µδΓ
µ
αβ − ∇βδΓ

µ
αµ . (3.359)

Contraction of this equation with gαβ and taking into account that covariant derivative
from the metric tensor is zero, brings about the following expression

gαβδRαβ = ∇µVµ , (3.360)

where one has used a shorthand notation for a vector field

Vµ ≡ gαβδΓµαβ − gαµδΓναν . (3.361)

Now, one can apply a known expression for a covariant divergence of a vector [Mis-
ner et al., 1973, Equation 8.51c]

∇µVµ =
1
√
−g

∂µ
(√
−gVµ

)
, (3.362)

in order to present equation (3.359) in the form

gαβδRαβ =
1
√
−g

∂µ
[√
−g

(
gαβδΓµαβ − gαµδΓναν

)]
. (3.363)

Replacing this expression in the third term in the right side of equation (3.347) and
integrating, yields∫

√
−ggαβδRαβd4x =

∫
∂µ

[√
−g

(
gαβδΓµαβ − gαµδΓναν

)]
d4x (3.364)

=

∮
√
−g

(
gαβδΓµαβ − gαµδΓναν

)
dΣµ ,

where one has used the four-dimensional version of the divergence (Gauss) theorem
[Schutz, 1995, §4.23] in order to reduce the volume integral from a divergence of
a vector field to a hypersurface integral from the vector field itself, with the unit
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element of integration on the surface 78) being dΣµ. Since one assumes that all varia-
tions of fields and their derivatives vanish on the boundary of integration, the surface
integral in equation (3.364) is nil, and does not contribute to the result of calculation
of variation δS H .

Hence, equation (3.346) becomes

δS H =
1
2κ

∫
√
−g

(
Rαβ −

1
2

gαβR
)
δgαβd4x , (3.365)

which should be compared with definition (3.330) of the variational derivative and
that (3.336) of the Einstein tensor. It unveils the structure of the Einstein tensor
obtained from the principle of the least action,

Gαβ ≡ Rαβ −
1
2

gαβR . (3.366)

This tensor was introduced to general relativity by Einstein, independently of
Hilbert. The main motivation for Einstein to use this tensor in the field equations
was its conservation, ∇αGαβ ≡ 0, known under the name of the Bianchi identity that
has been discussed in section 3.7.6.3.

3.9.3.4 The Generalizations of the Hilbert Lagrangian
Progress in understanding the basic fundamental principles of gravitational physics
led scientists to search for generalizations of the Einstein theory of gravity. Cosmol-
ogy suggests existence of a special epoch in the history of the early universe called
inflation [Mukhanov, 2005]. Inflation is associated with a period of an exponentially-
fast expansion of the universe driven by a hypothetical scalar field or a multiplet of
the fields which still may affect the orbital motion of celestial bodies [Damour and
Esposito-Farese, 1992, 1993; Damour and Esposito-Farèse, 1998a] and other astro-
nomical phenomena [Damour and Nordtvedt, 1993a,b]. It suggests to use the scalar-
tensor theory of gravity for discussing relativistic frames and equations of motion
of massive bodies for extension of the existing IAU resolutions on reference frames,
time scales and equations of motion [Kopeikin, 2010a].

Scalar fields admit the equation of state being formally equivalent to the equation
of state of a perfect fluid with negative pressure, p < 0. The most extremal case is
the equation of state p = −ε corresponding to a Lorentz-invariant tensor of energy-
momentum of vacuum

Tαβ
Λ

= −
Λ

κ
gαβ , (3.367)

where Λ is, so-called, cosmological constant having dimension of 1/length2. For-
mally, substitution of this tensor of energy-momentum to the Einstein equations

78) In particular case, when normal to the hypersurface coincides locally with direction of time axis, the
hypersurface element of integration is merely an element dV of spatial volume, dΣµ = (dΣ0, 0, 0, 0) =

(dV, 0, 0, 0).
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would correspond to adding a new term LΛ = Λ to the overall Lagrangian of general
relativity,

L = LΛ + LH + LM . (3.368)

Einstein himself introduced the (negatively-valued) cosmological term, Λ < 0 in
vain hope to build a static cosmological model of universe filled up with matter and
gravitational field obeying the Einstein equations. Tensor of energy-momentum with
a negative Λ-term counteracts gravity and prevents the model of universe from ex-
pansion or collapse if the numerical value of Λ is chosen correspondingly. Through
the fine-tuning of Λ to the average cosmological density of matter, such a model was
assembled, but it turned out to be unstable under small perturbations, so the cosmo-
logical term appeared to be of no use, and Einstein dropped it out from the gravity
field equations. After the expansion of the Universe was discovered by Hubble, the
cosmological models admitting existence of a stationary epoch (like the Lemaître
model [Lemaître, 1931]) fell into disuse for quite a long time. However, the cosmo-
logical constant remained a subject of theoretical and empirical interest. It was born
to a new life and returned to cosmology after the theory of inflation was proposed by
Guth [1981] and further developed by Linde [1990].

The situation became even more favorable to restoration of the cosmological con-
stant, after several observational groups had claimed that the most remote Type-1a
supernovas are moving radially away from the solar system much faster than the
closer ones, a surprise indicating that the Hubble expansion is effectively acceler-
ating, not decelerating. While critics suggested that the distance to cosmological
supernovas was overevaluated (and that their light gets dimmed by inter-galactic
dust, not distance), the belief in accelerated expansion of the universe has become
mainstream. This result promulgated support to the concept of dark energy which,
if exists, yields a nonvanishing cosmological constant and, thereby, the accelera-
tion. Minimalist’s way of implementing the dark energy is simply to postulate the
existence of a cosmological constant as an a priori given entity. A more likely im-
plementation of the dark-energy concept is a scalar field called quintessence with
energy density and pressure obeying the equation of state, p = wε with a constant
parameter, w < −1/3, causing the acceleration of cosmic expansion. Quintessence is
hypothesized to be dynamic and to have density and pressure varying over time and
space [Gromov et al., 2004; Ostriker and Steinhardt, 2001; Teerikorpi et al., 2003].

Quantum mechanics associates the energy of vacuum with the existence of quan-
tum fluctuations of various physical fields virtually present in vacuum - the idea
pioneered by Paul Dirac and later on, in application to gravity, by Andrei Sakharov
[Sakharov, 2000, 1967]. The problem with the idea of the cosmological constant
induced by the fluctuations of quantized fields is that the vacuum energy diverges at
high frequencies. It has a natural cut-off associated with the Planck scale

`Pl ≡

√
G~
c3 = 1.6 × 10−35m , (3.369)

where G and ~ are the universal gravitational and Planck’s constants, respectively.
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Direct employment of this cut-off produces a value of

Λ ∼
1
`2

Pl

' 0.4 × 1070m−2 , (3.370)

which exceeds current limitation on it, coming from measurement of fluctuations of
cosmic microwave background radiation [Tegmark et al., 2004], by about 120 orders
of magnitude. There are other problems discussed in article by Dyson et al. [2002].

The problem of divergency of vacuum energy indicates that classical general rela-
tivity can not be directly extended to the quantum world. It must be generalized to ac-
count for the quantum fluctuations of spacetime itself. There are several approaches
to tackle the problem among which string theory, M-theory, and loop quantum grav-
ity look the most promising. Smolin [2001] suggests that these approaches may
be approximations of a single, underlying theory. From a phenomenological point
of view all these approaches assume that the Hilbert action, S H =

∫
R
√
−gd4x, of

general theory of relativity must be replaced with a new one,

S H → S G =

∫
dDx
√
−gLG

(
R,RabRab,RabcdRabcd, ...

)
, (3.371)

where the new Lagrangian is a function of various scalars, and perhaps their deriva-
tives, made of the Riemann tensor of D-dimensional space (the indices a, b, ... run
through values (0, 1, 2, ...,D) that incorporates higher-order dimensions besides the
known four-dimensional spacetime. These ideas allows an enormous freedom for
theoretical speculations. Nevertheless, the correspondence principle demands that
all such theories must match with general relativity in the low-energy limit. It means
that there must exist a reduction procedure from higher-dimensional space integra-
tion to four-dimensional spacetime where the Lagrangian, LG, appears as a Taylor
expansion with respect to the scalars made of the four-dimensional Riemann tensor,

S G =

∫
d4x
√
−g

(
Λ + R + 1R2ג + 2RµνRµνג + 3RαβγδRαβγδג + ...

)
, (3.372)

with Λ being the cosmological constant, coefficients iג (i = 1, 2, 3, ...) being the cou-
pling constants coming from the reduction of extra-dimensions, and ellipses denot-
ing all the possible scalars one can assemble out of the metric tensor, the Levi-Civita
symbol, and curvature tensor through multiplication, differentiation, and transvec-
tion. It is remarkable that a specifically chosen combinations of the curvature terms
in this expansion allow us to keep the modified differential equations for the modi-
fied gravity field not exceeding the second order. These combinations are known as
the Lovelock scalars [Lovelock, 1971, 1972] among which the Gauss-Bonnet term
is the most famous one,

G ≡ R2 − 4RαβRαβ + RαβγδRαβγδ , (3.373)

This term is only nontrivial in five-dimensional space or greater as it reduces to a
surface term in four-dimensional spacetime,∫

G
√
−gd4x =

∫
∂aD

αd4x =

∮
DαdΣα , (3.374)
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where vectorDα is defined as follows [de Felice and Tsujikawa, 2010],

Dα =
1
2
√
−gεαβγδερσµνΓρµβ

(
Rσνγδ +

2
3

ΓσλγΓ
λ
νσ

)
, (3.375)

where εαβγδ is the anti-symmetric Levi-Civita symbol defined in equation (3.229),
and Γαβγ = gαµΓ

µ
βγ is the Christoffel symbol. Hence, the combination of the cou-

pling constants giving rise to the Gauss-Bonnet term in equation (3.372) should be
either carefully excluded or the Gauss-Bonnet term must be multiplied with some
other functions of the curvature scalars in order to provide a physically meaningful
extension of the Hilbert Lagrangian for gravitational field.

In order to keep the dimension of all terms in the expansion the same as that of
Hilbert’s term L = R, one should account for that the coupling constants have cor-
responding dimensions. Since they are supposedly reflect the presence of quantum
fluctuations of gravity field, their corresponding values are to be, 1ג ∼ 2ג ∼ 3ג ∼ `2

Pl,
and so on. These values are by many orders of magnitude lower than the values of
spacetime curvature achievable in any thinkable gravitational experiment. Hence,
if this scenario for the Lagrangian of gravitational field is selected by Nature one
may safely neglect the nonlinear terms in the action, should they exist. Nonethe-
less, things may be not so straightforward and the coupling constants in the Tay-
lor expansion (3.372) of the gravitational Lagrangian may be generated by different
mechanisms that will take their values to the range of observational capabilities in
cosmology and/or in high-energy particle physics [Carroll et al., 2004; de Felice and
Tsujikawa, 2010].

3.9.4
The Noether theorem and conserved currents

Noether’s theorem states that any differentiable symmetry of the action, S , of a
physical system has a corresponding conservation law. The theorem was proved
by Emmy Noether in 1915 and published in 1918 [Noether, 1918] 79) In order to
analyze the conservation laws in gravity, one needs to perceive the nature of the
variations of dynamic variables defining the evolution of the action of the physical
system.

The Noether theorem will be derived in this section for a general case of a La-
grangian depending on a set of dynamic variable that are tensor fields, φA, where the
cumulative index A labels the fields and their components. Spacetime indices of the
fields are suppressed to avoid complex notations. These indices can be introduced
later, when necessary. The fields are functions defined on a four-dimensional space-
time manifold whose points are parameterized by coordinates x ≡ xα = (x0, xi).

3.9.4.1 The anatomy of the infinitesimal variation
Variation of an independent dynamic field variable consists, in general, of three parts:

79) English translations of the original article are available [Noether, 1971, 2005].
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1) Actual variation that changes the variable from one function to another in func-
tional space without any constrain. Variation of the action is not nil, if the actual
variation is applied.

2) Intrinsic gauge variation that changes the variable from one function to another in
functional space with the constrain that keeps variation of the action equal to zero.

3) Extrinsic gauge variation that is caused by an infinitesimally-small coordinate
transformation. Due to the covariant nature of physical laws, the extrinsic gauge
variation leaves the action unchanged.

The intrinsic and extrinsic gauge variations are essentially disparate as they are as-
sociated with different symmetries of the Lagrangian of the action of the physical
system.

Let us make an infinitely small deformation of both fields and coordinates. Under
the infinitesimal transformation, the change in the coordinates (diffeomorphism) is
written

x′µ = xµ + ξµ(x) , (3.376)

where ξα is a vector field defining a displacement of the coordinate grid, and van-
ishing on the boundary of the integration of the action. It would be right to view
this displacement as a Lie transform of each point, x, of the spacetime manifoldM
to a point, x′, of the deformed manifoldM′, caused by the flow of vector field ξα,
and executed along a congruence of its integral curves (see Figure ??). The overall
variation of the field variables is expressed as

φ′A(x) = φA(x) + δφA(x) , (3.377)

and it results from the three factors: actual change in the fields themselves, the intrin-
sic change associated with the internal (Lie group) symmetry of the field equations,
and the extrinsic change due to the Lie transform of the manifold. The intrinsic and
extrinsic variations are called gauge transformations of the fields.

To isolate the extrinsic gauge variation, let us look at the transformed fields pro-
duced by the diffeomorphism (3.376). It deforms the fields as follows 80)

φ′A(x′) = ΛA
B(x′, x)φB(x) , (3.378)

where ΛA
B(x′, x) is a symbolic notation for the operator of transformation of the field

φA that is produced by the diffeomorphism (3.376). Exact structure of ΛA
B(x′, x) is

dictated by the nature of the field φA and it may be not tensorial, like in case of the
Christoffel symbols which are allowed to be considered as an independent dynamic
variable in variational calculus on curved manifolds [Misner et al., 1973]. From
the point of view of the Lie transform, the transformed field φ′A(x′) resides on the
deformed manifold M′ but one can pull it back to the undistorted manifold M by

80) We recommend to compare the explanation of Lie transform given in this section with that done in
terms of the vector flow in section 3.6.
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making use of the Lie dragging along the integral curves of the field ξα. It is achieved
by doing a Taylor expansion of the field about the point x,

φ′A(x′) = φ′A(x) + ξα∂αφ
A(x) + O

(
ξ2

)
, (3.379)

It is then substituted to the left side of equation (3.378) where the matrix ΛA
B(x′, x)

has to be expanded in Taylor’s series with respect to the magnitude of components of
vector field ξα. Calculating variation (3.377) of the fields reveal that their extrinsic
gauge variation induced by the infinitesimal diffeomorphism, is a Lie derivative (see
section 3.6) of the field along a vector flow, ξα:

δφA = −£ξφ
A . (3.380)

We recall that irrespectively of the nature of the field shown in equation (3.380),
its Lie derivative is a tensor [Mitskevich, 1969; Popova and Petrov, 1988]. In case,
when φA ≡ φ

α1α2 ...αp

β1β2 ...βq
is a tensor field of a (p, q) type, the Lie derivative of the tensor

is given by equation

£ξφ
A ≡ ξµ∇µφ

A − ∇µξ
ν
D
µ
νφ

A , (3.381)

where ∇µ is a covariant derivative defined in terms of the Christoffel symbols of the
metric gαβ, and symbols DµνφA denotes a tensor product

D
µ
νφ

A ≡ (Dµν)
α1 ...αpρ1 ...ρq

β1 ...βqγ1 ...γp
φ
γ1 ...γp
ρ1 ...ρq . (3.382)

Here, the tensor Dµν = 0, if p = q = 0, and in all other cases it is just the constant
tensor operator made of the Kronecker symbols [Szabados, 2009],

(Dµν)
α1 ...αpρ1 ...ρq

β1 ...βqγ1 ...γp
≡

(
δα1
ν δ

µ
γ1 ...δ

αp
γp + ... + δα1

γ1
...δ

αp
ν δ

µ
γp

)
δ
ρ1
β1
...δ

ρq

βq
(3.383)

−
(
δ
ρ1
ν δ

µ
β1
...δ

ρq

βq
+ ... + δ

ρ1
β1
...δ

ρq
ν δ

µ
βq

)
δα1
γ1
...δ

αp
γp .

It can be checked by inspection that definition (3.381) of the Lie derivative is iden-
tical to that given in equation (3.156). Covariant derivative, ∇µ, in equation (3.381)
can be replaced with a partial derivative, ∂µ. This equivalent definition of the Lie
derivative has been given above in equation (3.153).

Finally, one can write decomposition of variation of the physical fields in the La-
grangian of the action as follows,

δφA(x) = δ†φA(x) + δ?φA(x) + δ∗φA(x) , (3.384)

where δ†φA is the actual variation, δ?φA is the intrinsic gauge variation, and

δ∗φA(x) = −£ξφ
A , (3.385)

is the extrinsic gauge variation due to the coordinate diffeomorphism. The intrinsic
gauge transformations correspond to the intrinsic change of the field variables that
are associated with internal gauge symmetries of the physical system, and they have
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nothing to do with the diffeomorphisms at all. An example of such intrinsic gauge
transformation is delivered by the gradient transform (2.24) of electromagnetic vec-
tor potential, A→A′α = Aα+∂αχ, where χ is arbitrary scalar function. This transform
is totally separate from any change in coordinates but leaves the Maxwell equations
(2.16) invariant. Other examples of the intrinsic gauge symmetries may be found
in modern gauge theories dealing with amazingly rich world of elementary particles
and their interactions [O’Raifeartaigh and Straumann, 2000].

3.9.4.2 Examples of the gauge transformations
To see more clearly how equation (3.380) works, let us dwell upon few examples.
First, one takes a scalar field, φA ≡ φ. In this case, equation (3.378) is merely

φ′(x′) = φ(x) , (3.386)

so that ΛA
B = 1 for a scalar field. Applying equation (3.379) and calculating the

variation δφ(x) = φ′(x) − φ(x) yields

δφ = −ξαφ,α ≡ −£ξφ , (3.387)

confirming equation (3.380).
Second example covers a vector field, φA ≡ Aα. Equations (3.378) and (3.379)

read now as follows

A′α(x′) =
∂x′α

∂xβ
Aβ(x) , A′α(x′) = A′α(x) + ξβ∂βAα(x) , (3.388)

and the matrix of the field transformation is

ΛA
B ≡

∂x′α

∂xβ
= δαβ + ∂βξ

α . (3.389)

These equations give rise to the field variation

δAα = −ξβ∂βAα + ∂βξ
αAβ ≡ −£ξAα , (3.390)

again in accordance with equation (3.380). Had the dynamic variable been a co-
vector, Aα, the gauge variation due to the change of coordinates would be given by

δAα = −ξβ∂βAα − ∂αξ
βAβ = −£ξAα . (3.391)

The last example addresses the gauge variation of the metric tensor, gαβ. In this
case equations (3.378) and (3.379) are equivalent to

g′αβ(x′) =
∂xµ

∂x′α
∂xν

∂x′β
gµν(x) , g′αβ(x′) = g′αβ(x) + ξγgαβ,γ(x) . (3.392)

The field transformation matrix is

ΛA
B ≡

∂xµ

∂x′α
∂xν

∂x′β
= δ

µ
αδ

ν
β − δ

µ
α∂βξ

ν − δνβ∂αξ
µ , (3.393)
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so that the previous equations result in the metric variation

δgαβ = −£ξgαβ = −∇αξβ − ∇βξα , (3.394)

where ∇α is a covariant derivative defined in terms of the Christoffel symbols of the
metric tensor as shown in equation (3.34). In case of a contravariant components of
the metric tensor, the gauge variation of these components is

δgαβ = −£ξgαβ = ∇αξβ + ∇βξα , (3.395)

Notice that the extrinsic gauge variation of the metric depends on the covariant
derivative of vector field ξα only if the metric is fully compatible with the affine
connection. If the manifold has torsion and/or nonmetricity they must appear ex-
plicitly in addition to the covariant derivatives of the field ξα. Irrespectively of the
relationship between the metric tensor and the affine connection, the extrinsic gauge
variation of the metric tensor given in the form of the Lie derivative is always valid.

3.9.4.3 Proof of the Noether Theorem
We shall assume in this section that the Lagrangian, L = L

√
−g, of the physical

system depends explicitly on the dynamic field variables, φA, their first and second
derivatives, as well as on coordinates xα,

L ≡ L
(
φA; ∂αφA; ∂αβφA; xα

)
. (3.396)

Noether’s theorem begins with the assumption that a physical system evolves in
accordance with the Euler-Lagrange equations derived from the principle of the least
action for this system,

∂L

∂φA −
∂

∂xα

(
∂L

∂φA
α

)
+

∂2

∂xα∂xβ

 ∂L
∂φA

αβ

 = 0 , (3.397)

where notations φA
α ≡ ∂αφ

A and φA
αβ ≡ ∂αβφ

A for the partial derivatives of φA have
been introduced.

The system that obeys these equations is called on-shell. Noether’s theorem states
that on-shell system may admit a specific transformation of the coordinates and/or
the field variables which does not change the Lagrangian. In other words, the on-
shell Lagrangian may admit a gauge transformation such that its variation

δL = L′ − L = 0 , (3.398)

provided that

L′ = L
(
φA + δφA; φA

α + δφA
α; φA

αβ + δφA
αβ; xα + ξα

)
, (3.399)

where again, φA
α ≡ ∂αφ

A and φA
αβ ≡ ∂αβφ

A. On shell variation of the Lagrangian
assumes that only the intrinsic and extrinsic gauge variations of the fields are allowed

δφA(x) = δ?φA(x) + δ∗φA . (3.400)
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because the actual variations of the fields are nullified, δ†φA(x) = 0, as the fields
obey the Euler-Lagrange equations (3.397).

Expanding the difference in Lagrangians in a Taylor series to first-order in the
infinitesimal variations and making use of the Euler-Lagrange equations (3.397),
allow us to write the Lagrangian variation as follows [Bak et al., 1994],

δL =
∂

∂xα

ξαL +
δL

δφA
α

δφA +
∂L

∂φA
αβ

δφA
α

 , (3.401)

where φA
α ≡ ∂αφ

A, φA
αβ ≡ ∂αβφ

A, and one has introduced a new notation for varia-
tional derivative of the Lagrangian with respect to the field derivatives [Popova and
Petrov, 1988]

δL

δφA
α

≡
∂L

∂φA
α

−
∂

∂xβ

 ∂L
∂φA

αβ

 . (3.402)

Since the gauge variation of the Lagrangian, δL = 0, equation (3.401) can be re-
written as the law of conservation for a vector field

∂JαA
∂xα

= 0 , (3.403)

where

JαA = ξαL +
δL

δφA
α

δφA +
∂L

∂φA
αβ

δφA
α . (3.404)

Vector field JαA, is called Noether’s current, and equation (3.403) finalizes the proof
of the Noether theorem.

Since one has used the Lagrangian density, L = L
√
−g, in derivation of Noether’s

current conservation law, one can integrate equation (3.403) directly over entire
spacetime manifold,

∫
∂αJαAd4x = 0. Applying the divergence theorem, like one

did it in equation (3.327), yields a conserved Noether’s charge,

QA =

∮
JαAdΣα; , (3.405)

where the integration is over any spacelike three-dimensional hypersurface. One
may have as many Noether’ charges as the number of the gauge degrees of freedom
of the physical system under consideration. As a rule, the hypersurface of integration
is chosen to be an infinite three-dimensional space with the volume element dV =

dΣ0. Then, the Noether charge is expressed as a volume integral from the time
component of the Noether current

QA =

∫
J0

AdV; , (3.406)

which does not depend on time, dQA/dt = 0, provided that the surface integral from
spatial components, Ji

A, of the Noether current vanishes at infinity.
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In fact, the Noether current JαA is comprised of two, linearly-independent parts
corresponding to the extrinsic and intrinsic gauge variations of the fields

JαA =
?

JαA +
∗

JαA , (3.407)

where
?

JαA =
δL

δφA
α

δ?φA +
∂L

∂φA
αβ

δ?φA
α , (3.408)

∗

JαA = ξαL +
δL

δφA
α

δ∗φA +
∂L

∂φA
αβ

δ∗φA
α . (3.409)

The Noether current, JαA, is defined not uniquely but up to a term being a divergence
of an antisymmetric tensor of second rank that vanishes on the boundary of integra-
tion of the action. Indeed, let us take the current in the form

JαA = JαA + ∂βX
[αβ]
A , (3.410)

where, X[αβ]
A = (1/2)(XαβA − X

βα
A ), is a fully antisymmetric object. Substituting the

current JαA into the law of conservation (3.403), testifies that the new current, JαA, is
conserved, because ∂αJαA due to identity ∂αβXαβ ≡ 0.

This device of adding the divergence of an antisymmetric tensor, θ[αβ]
A , can be used

to improve the canonical Noether current so as to attain some other property, such
as the symmetry of the energy-momentum tensor while maintaining current conser-
vation and the same value of the Noether charge. Such antisymmetric objects that
are allowed to appear in definition of the Noether current are called super-potentials
[Petrov, 2009, 2010; Petrov and Katz, 2002; Szabados, 2009]. They have been in-
troduced to Noether’s theory by Belinfante [1939, 1940] and Rosenfeld [1940].

3.9.5
The metrical energy-momentum tensor

3.9.5.1 Hardcore of the Metrical Energy-Momentum Tensor
The metrical energy momentum tensor was introduced by Hilbert and is given by
equation (3.337) in terms of the variational derivative from the scalar density of the
Lagrangian of matter, LM =

√
−gLM , where LM is the scalar Lagrangian itself.

Following the principal of minimal coupling of matter and gravitational field, one
assumes that the Lagrangian LM = LM(ψ;∇aψ; gαβ) = LM

(
ψ;ψ,α + Γaψ; gαβ

)
de-

pends on matter variables ψ, the metric tensor gαβ, and its first derivatives gαβ,γ that
enters the covariant derivatives of the matter variables in the form of Γα comprised
of the Christoffel symbols in accordance with equation (3.305).

After taking a variational derivative from LM , equation (3.337) assumes the fol-
lowing form:

Tαβ = −gαβLM − 2
δLM

δgαβ
+ 2Γ

µ
γµ

∂LM

∂gαβ,γ
. (3.411)
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where the variational derivative from the Lagrangian LM is

δLM

δgαβ
=
∂LM

∂gαβ
−

∂

∂xγ

(
∂LM

∂gαβ,γ

)
, (3.412)

and one has taken into account that

Γ
µ
γµ =

1
√
−g

∂
√
−g

∂xγ
. (3.413)

Because the metric tensor and its first partial derivatives enter the symbols Γα in the
covariant derivatives for the matter variables, the separate terms entering equations
(3.411) and (3.412) should be treated as follows

∂LM

∂gαβ
=

(
∂LM

∂gαβ

)
∇ψ=fixed

+
∂LM

∂ψ,ρ

∂Γρ

∂gαβ
ψ , (3.414)

∂LM

∂gαβ,γ
=

∂LM

∂ψ,ρ

∂Γρ

∂gαβ,γ
ψ , (3.415)

where the first term in equation (3.414) is calculated for fixed value of the covariant
derivative of the filed ψ. Calculation of the derivative from Γρ can be done if one
notices that for a material field ψ of any tensorial rank, the following relationship
holds

Γρψ = ΓνρµD
µ
νψ , (3.416)

where Γνρµ is the Christoffel symbol and the constant tensor Dµν has been defined in
equation (3.383). Equation (3.416) reduces calculation of the partial derivatives from
Γρ to that from the Christoffel symbols. Making use of equation (3.345a), (3.345b)
and (3.354) results in

∂Γρ

∂gαβ
= −

1
2

(
ΓαρµD

µβ + Γ
β
ρµD

µα
)
, (3.417)

∂Γρ

∂gαβ,γ
=

1
2

[
δαρD

[γβ] + δ
β
ρD

[γα] + δ
γ
ρD

(αβ)
]
, (3.418)

where indices are raised and lowered with the metric tensor gαβ, while the
square/round brackets around a pair of indices denote a full anti-symmetry/symmetry
with respect to the exchange of the indices.

After accounting for these results in the expression (3.414) and replacing partial
derivatives ∂LM/ψ,α with their covariant counterpart according to equation (3.324),
the metrical tensor of energy-momentum of matter becomes:

Tαβ = −gαβLM − 2
∂LM

∂gαβ
+ ∇γ

{
σα[γβ] + σβ[γα] + σγ(αβ)

}
, (3.419)

where the partial derivative with respect to the metric tensor must be taken for fixed
value of the Christoffel symbols, and one has introduced a shorthand notation for a
new tensor

σαβγ =
∂LM

∂∇αψ
D
β
γψ , σαβγ = gγµσαβµ . (3.420)
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Expression (3.419) can be compared with (3.411) by making use of an exact rela-
tionship

∇γ

{
σα[γβ] + σβ[γα] + σγ(αβ)

}
= ∂γ

{
σα[γβ] + σβ[γα] + σγ(αβ)

}
+ Γ

µ
γµ

{
σα[γβ] + σβ[γα] + σγ(αβ)

}
+ Γαγµσ

γµβ + Γ
β
γµσ

γµα , (3.421)

Formula (3.419) offers a straightforward way of calculation of the metrical energy-
momentum tensor from matter’s Lagrangian LM . Nevertheless, some subtleties are
still involved. Fact of the matter is that calculation of the partial derivative ∂LM/∂gαβ
assumes that the field variables ψ do not depend on the metric tensor implicitly.
Therefore, each time prior to performing the partial differentiation of LM , one has
to make sure this requirement is fulfilled. For example, if the independent dynamic
variable is a co-vector, Aα, the corresponding vector variable, Aα, depends on metric
that participates in rising the index, Aα = gαβAβ but in most cases this equation
is not used explicitly. If this implicit dependence of matter’ variables on metric is
overlooked, a confusion may arise. In some cases the matter variable may include
a functional dependence of the matter variable on metric, ψ = ψ(gαβ). It happens,
for example, in case of the rest-mass density of matter which is referred to a three-
dimensional volume that depends on metric.

3.9.5.2 Gauge Invariance of the Metrical Energy Momentum Tensor
Einstein’s theory of gravity admits only extrinsic gauge symmetry associated with
diffeomorphisms. For this reason, the only gauge variation of the metric tensor,
δgαβ, is that given in equations (3.394) and (3.395) in terms of the Lie derivative
along vanishing on the boundary of integration but otherwise arbitrary vector field
ξα. Let us derive equations of motion of matter from the gauge invariance of the total
action (3.298). The gauge variation of the action with respect to the metric tensor
vanishes, yielding

δS =
1
2κ

∫ (
Gαβ − κTαβ

)
∇αξβ

√
−gd4x = 0 , (3.422)

where one has used equation (3.394) for the gauge variation of the metric tensor.
Integrating by parts the Einstein tensor in equation (3.422) and taking into account
that on the boundary of integration the diffeomorphism ξα = 0, result in∫

Gαβ
∇αξβ

√
−gd4x =

∮
GαβξαdΣβ −

∫
ξα∇βGαβ √−gd4x = 0 , (3.423)

because the surface integral vanishes due to the boundary conditions, and∇βGαβ ≡ 0
due to the Bianchi identity. The equation (3.422) is reduced then to∫

Tαβ
∇αξβ

√
−gd4x =

∮
TαβξαdΣβ −

∫
ξα∇βTαβ √−gd4x = 0 . (3.424)

The surface integral disappears because of the boundary conditions imposed on ξα.
Since vector field ξα is arbitrary inside the domain of integration the integral equation
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(3.423) has the only solution

∇βTαβ = 0 , (3.425)

that is the covariant equation of motion of matter. These equations are valid, if and
only if, the metric tensor satisfies the Einstein field equations. Hence, matter tells the
spacetime manifold how to curve, and the geometry of the manifold tells the matter
how to move. This universal reciprocity of matter and gravity makes investigation of
the problem of motion of extended bodies in general relativity be a rather challenging
exercise which is discussed in next sections. Covariant form of equation (3.425)
fetches out that the metrical energy-momentum tensor is gauge-invariant.

3.9.5.3 Electromagnetic Energy-Momentum Tensor
The independent dynamic variable of electromagnetic field is a co-vector, Aα =

(A0, Ai) = (φ, A), that defines electromagnetic potentials and fields in the form of
the electromagnetic tensor

Fαβ = ∇αAβ − ∇βAα , (3.426)

Physical meaning of the components of the electromagnetic tensor have been ex-
plained in section 2.7.4. Covariant derivatives in Fαβ can be replaced with partial
derivatives due to antisymmetry but only if the spacetime has no additional contri-
bution to the affine connection coming from torsion and/or nonmetricity. In metric-
based theories of gravity, including general relativity, the terms with the Christof-
fel symbols in equation (3.426) are completely canceled out. Hence, the covariant
derivatives in the expression for the electromagnetic tensor are irrelevant but they
will be formally kept in definition (3.426).

Lagrangian for free electromagnetic field is

LM =
1

16π
gρσgµνFρµFσν , (3.427)

and it disentangles the metric tensor from the field variables. One is allowed, of
course, to write the Lagrangian in the form LM ∼ gρσgµνFρµFσν but this is incon-
venient since tensor Fσν has two indices raised with the metric tensor which, thus,
enters implicitly the latter expression and complicates partial differentiation with re-
spect to metric.

The electromagnetic Lagrangian is substituted to definition of the metrical energy-
momentum tensor (3.419). Tensor σαβγ is calculated by taking partial derivatives
from the electromagnetic tensor (3.426) and accounting that DµνAβ = −δ

µ
βAν. It

yields

σαβγ = −
1

4π
FαβAγ , (3.428)

that is antisymmetric with respect to the first two indices, σαβγ = −σβαγ. It results
in mutual algebraic cancelation of all terms with σαβγ entering equation (3.419) in
agreement with one’s observation that the electromagnetic tensor does not entail the
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Christoffel symbols in general relativity. The remaining terms in definition (3.419)
bring about the metrical energy-momentum tensor of electromagnetic field

Tαβ =
1

4π

(
FαµFβ

µ −
1
4

gaβFµνFµν

)
, (3.429)

which should be compared with equation (2.381) for this tensor in the Minkowski
spacetime. As expected, the only difference between the two expressions is in the
replacement of the Minkowski metric ηαβ with the full metric gαβ.

The metrical energy-momentum tensor of free electromagnetic field is identically
traceless

gαβTαβ = 0 . (3.430)

The reason is that free electromagnetic field is represented by an electromagnetic
wave propagating in vacuum with fundamental speed c on a hypersurface of null
cone. Therefore, the energy-momentum tensor is proportional to a direct tensor
product of the null vectors, kα, corresponding to the direction of propagation of the
wave, Tαβ = (a2/8π)kαkβ, where a is the scalar amplitude of the wave. Trace of such
tensor is always zero since kαkα = 0 (for more detail see [Frolov, 1979; Misner et al.,
1973]). Any field propagating in vacuum with the speed c has the same property of
vanishing trace of the energy-momentum tensor [Buchdahl, 1959].

3.9.5.4 Energy-Momentum Tensor of a Perfect Fluid
Consider a perfect fluid, i.e., one lacking viscosity or heat conduction. Its energy
density ε consists of two components,

ε = ρ
(
c2 + Π

)
, (3.431)

where ρ is the rest-mass density defined as rest mass per three-dimensional volume
taken in the frame being comoving with the fluid element, while Π = Π(ρ) is the
compression energy density per unit rest mass. Hence, one can chose the density ρ
as a dynamic variable.

The standard choice for the fluid Lagrangian is [Brumberg, 1972; Fock, 1964;
Hawking and Ellis, 1975]

LM =
ε

c2 = ρ

(
1 +

Π

c2

)
, (3.432)

which does not depend explicitly on derivatives of the dynamic variable ρ. Hence,
terms with σαβγ do not appear in the metrical energy-momentum tensor of the fluid,

c2Tαβ = −gαβε − 2
∂ε

∂gαβ
(3.433)

= −2
(
c2 + Π + ρ

dΠ

dρ

)
∂ρ

∂gαβ
− ρ(c2 + Π)gαβ .

One is challenged with taking a partial derivative from the rest-mass density, ρ, of
the fluid with respect to the metric tensor. The rest-mass density does not depend
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on the metric tensor explicitly but it does not mean that there is no such dependence
at all. The density is defined as the ratio of the rest mass of baryons to a volume
element of the comoving frame. The volume element depends on the metric tensor
as discussed in section 3.9.1 and the derivative ∂ρ/∂gαβ is not zero.

In order to calculate this derivative, let us use the fundamental law of conservation
of baryons that is equivalent to the covariant equation of continuity of the perfect
fluid written as [Misner et al., 1973, Equation 22.1]

∇α (ρuα) =
1
√
−g

∂α
(√
−gρuα

)
= 0 , (3.434)

where uα = dxa/dτ is four-velocity of fluid’s element. This equation suggests that
the infinitesimal variation of density is related to variations of the volume and four-
velocity by equation

δ
(√
−gρuα

)
= 0 , (3.435)

wherefrom one obtains

ρuαδ
√
−g + uα

√
−gδρ + δuαρ

√
−g = 0 . (3.436)

Making transvection of this equation with uα, and taking into account that uαuα =

−c2, one gets

√
−gδρ + ρδ

√
−g −

√
−g

c2 ρuαδuα = 0 , (3.437)

which entails

δρ =
1
c2 ρuαδuα − ρ

δ
√
−g
√
−g

. (3.438)

Varying the normalization condition for four-velocity, uαuα = gαβuαuβ = −c2, one
gets

uαδuα = −
1
2

uαuβδgαβ . (3.439)

Insertion of equations (3.439) and (3.352) in equation (3.438) yield

∂ρ

∂gαβ
= −

ρ

2c2

(
uαuβ + c2gαβ

)
. (3.440)

This result should be substituted to equation (3.433) where a thermodynamic rela-
tionship (2.377) should be also used

ρ
dΠ

dρ
=

p
ρ
. (3.441)

All together, the metrical energy-momentum tensor of the perfect fluid is obtained

c2Tαβ = (ε + p) uαuβ + c2 pgαβ , (3.442)
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or, more explicitly,

Tαβ = ρ

(
1 +

Π

c2

)
uαuβ +

p
c2

(
uαuβ + c2gαβ

)
. (3.443)

This equation generalizes special-relativistic expression (2.371) of the energy-
momentum tensor of the perfect fluid to the case of a curved spacetime.

Notice that projection of the energy-momentum tensor of the perfect fluid on its
four-velocity is positively-defined

Tαβuαuβ ≥ 0 , (3.444)

This inequality is often imposed on the energy-momentum tensor, especially in cases
when the form of the tensor is not known a priory. It is called the weak energy condi-
tion. One can demonstrate that it is satisfied also by the Maxwell field and by other
realistic classical fields encountered in physics. In the quantum field theory, the
weak energy condition often gets violated. This happens because the vacuum energy
density can assume negative values [Mukhanov, 2005]. It is worth mentioning that
condition (3.444) is imposed pointwise, i.e., in tangent space. Being helpful in prov-
ing local theorems, the weak energy condition is unrelated to global (topological)
features of the manifold.

The trace of the energy-momentum tensor

Tαβgαβ = 3p − ε , (3.445)

and is negative for macroscopic bodies, p < ε/3. In case of ultra-relativistic perfect
fluid, velocity of the fluid is approaching to the fundamental speed c, and the trace of
the energy-momentum tensor approaches zero. Relationship between pressure and
energy density for ultra-relativistic fluid is

p =
ε

3
, (3.446)

which is used in cosmology as an equation of state of the radiation-dominating epoch
in the history of the expanding universe [Mukhanov, 2005]

3.9.5.5 Energy-Momentum Tensor of a Scalar Field
Lagrangian of a scalar field φ is given by equation

LM =
1
2

gαβ∇αφ∇βφ − V(φ) , (3.447)

where V(φ) is the potential energy of the field, and one has taken φ and ∇αφ as
independent dynamic variables which have no implicit dependence on the metric
tensor. The metrical energy-momentum tensor of the scalar field is

Tαβ = −gαβLM − 2
∂LM

∂gαβ
, (3.448)
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as the covariant derivative of a scalar field is simply a partial derivative, ∇αφ =

∂αφ, and there is no contribution from tensor σαβγ. Calculation of partial derivative
with respect to the metric tensor is straightforward. The energy-momentum tensor is
obtained in the following form

Tαβ = ∂αφ∂βφ −
1
2

gαβ∂µφ∂µφ + gαβV(φ) (3.449)

which agrees with its special-relativistic expression (2.389).
One notices that the Lagrangian for a scalar field looks similar to the Lagrangian

for a particle in classic mechanics: the first term in equation (3.447) is the kinetic
energy of the field, and the second term is the potential energy of the field. The trace
of the energy-momentum tensor is

Tαβgαβ = −gαβ∂αφ∂βφ + 4V(φ) . (3.450)

The trace is not zero if the field potential energy V(φ) , 0. Only in the case, when
the field has no potential and propagates freely, its trace is zero as a consequence of
the field equations [Mukhanov, 2005].

3.9.6
The canonical energy-momentum tensor

3.9.6.1 Definition
One has introduced definition (3.337) of the metrical tensor of energy-momentum
for matter. The Noether theorem proposes another definition of the matter tensor of
energy-momentum which is called canonical. We shall derive the canonical energy-
momentum tensor, math f rakTαβ, in this section and establish its relationship to the
metrical tensor of energy-momentum, Tαβ.

Let us again assume for simplicity that the Lagrangian of matter contains only first
derivatives of matter variables: LM = LM

(
ψ;ψ,α + Γaψ; gαβ

)
. Second and higher-

order derivatives can be also included [Szabados, 2009] but they perplex calculations
without bringing about essentially new physical information.

Let ξα be an arbitrary vector field on curved spacetime manifold and LM =
√
−gLM is a scalar density of the Lagrangian. Lie derivative of the Lagrangian den-

sity along the vector field is

£ξLM =
∂LM

∂ψ
£ξψ +

∂LM

∂ψ,α
£ξψ,α +

∂LM

∂gαβ
£ξgαβ +

∂LM

∂gαβ,γ
£ξgαβ,γ . (3.451)

Since the Lie derivative commutes with partial derivative

£ξψ,α = (£ξψ),α , £ξgαβ,γ = (£ξgαβ),γ , (3.452)

one is allowed to re-write equation (3.451) in terms of the variational derivatives and
a total divergence,

£ξLM =
δLM

δψ
£ξψ +

δLM

δgαβ
£ξgαβ +

∂

∂xγ

(
∂LM

∂ψ,γ
£ξψ +

∂LM

∂gαβ,γ
£ξgαβ

)
. (3.453)
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Next step is to use equations of motion of matter (3.322), definition of the metrical
tensor of energy-momentum (3.337), and expression (3.415), which is also valid for
the Lagrangian density

∂LM

∂gαβ,γ
=
∂LM

∂ψ,ρ

∂Γρ

∂gαβ,γ
ψ . (3.454)

Then, equation (3.453) takes on the following form,

£ξLM = −

√
−g
2

Tαβ£ξgαβ +
∂

∂xγ

[
∂LM

∂ψ,ρ

(
δ
γ
ρ£ξψ +

∂Γρ

∂gαβ,γ
ψ£ξgαβ

)]
. (3.455)

This equation can be further transformed after observing that

£ξLM =
∂

∂xγ
(ξγLM) , (3.456)

√
−g
2

Tαβ£ξgαβ =
∂

∂xγ
(√
−gT βγξβ

)
, (3.457)

where one has used definition of the Lie derivative from the metric tensor (3.394), the
symmetry and the law of conservation of the metrical tensor of energy-momentum
(3.425) as well as equation (3.362). Now equation (3.455) can be written as a law of
conservation

∂

∂xγ

[
√
−gT γβξβ + ξγLM −

∂LM

∂ψ,ρ

(
δ
γ
ρ£ξψ +

∂Γρ

∂gαβ,γ
ψ£ξgαβ

)]
= 0 , (3.458)

where the term in the round parentheses yet has to be simplified.
Calculation of the derivative from Γρ is performed with the help of equation

(3.418) Making use of that equation along with equation (3.381) for the Lie deriva-
tive of the field ψ, and doing some algebra, one obtains

∂

∂xγ
{√
−g

[(
T γ

β − T
γ
β

)
ξβ −

(
σα[γβ] + σβ[γα] + σγ[αβ]

)
∇βξα

]}
, (3.459)

where

T
γ
β = −δ

γ
βLM +

∂LM

∂∇γψ
∇βψ , (3.460)

σγ[αβ] = −
∂LM

∂∇γψ
gµ[α
D
β]
µψ . (3.461)

Tensor Tγβ is called the canonical energy-momentum tensor, while σγ[αβ] is the ten-
sor of spin also called tensor of helicity. Tensor of helicity has already appeared in
definition (3.419) of the metrical energy-momentum tensor of matter.

3.9.6.2 Relationship to the Metrical Energy-Momentum Tensor
Relationship between the canonical and metrical tensors of energy-momentum of
matter are derived from equation (3.459). Let us introduce a new notation

S αβγ ≡ σα[γβ] + σβ[γα] + σγ[αβ] . (3.462)
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Then, the helicity terms in equation (3.459) can be reshuffled as

∂γ
(√
−gS αβγ

∇βξα
)

= ∂γ
[√
−g∇β

(
S αβγξα

)]
− ∂γ

(√
−gξα∇βS αβγ

)
. (3.463)

Transvection S αβγξα is a second rank tensor that is fully anti-symmetric with respect
to its two free indices, S αβγξα = −S αγβξα. Therefore,
√
−g∇β

(
S αβγξα

)
= ∂β

(
S αβγξα

)
, (3.464)

and

∂γ
[√
−g∇β

(
S αβγξα

)]
=

∂2

∂xβ∂xγ
(
S αβγξα

)
≡ 0 . (3.465)

It cuts equation (3.463) down to

∂γ
[√
−g

(
S αβγ

)
∇βξα

]
= −∂γ

[√
−gξα∇βS αβγ

]
, (3.466)

which allows us to simplify the law of conservation (3.459) to

∂

∂xγ
{√
−gξβ

[
T γβ − Tγβ − ∇α

(
σγ[αβ] + σβ[αγ] + σα[βγ]

)]}
= 0 . (3.467)

The terms enclosed to the curl brackets is a vector density so that the above equation
can be re-written in terms of a covariant law of conservation,

∇γ

{
ξβ

[
T γβ − Tγβ − ∇α

(
σγ[αβ] + σβ[αγ] + σα[βγ]

)]}
= 0 , (3.468)

that is another expression of the Noether theorem pointing out to the existence of a
conserved current

Jγ =
[
T γβ − Tγβ − ∇α

(
σγ[αβ] + σβ[αγ] + σα[βγ]

)]
ξβ , (3.469)

where vector field ξβ is arbitrary. If spacetime has no symmetries, the Noether
current Jγ = 0, and equation (3.469) has a non-trivial solution

T γβ = Tγβ + ∇α
(
σγ[αβ] + σβ[αγ] + σα[βγ]

)
, (3.470)

that relates the metrical and canonical tensors of energy-momentum with the helicity
tensor of matter [Belinfante, 1939, 1940; Rosenfeld, 1940].

The canonical energy-momentum tensor Tαβ is not symmetric in general case. On
the other hand, the metrical energy-momentum tensor Tαβ is always symmetric. It
imposes some limitations on the components of the canonical tensor known as the
Belinfante-Rosenfeld identities. Specifically, subtracting from equation (3.470) its
fully-symmetric part, one obtains an algebraic constrain

T
[βγ] = ∇ασ

α[βγ] . (3.471)

This equation tells us that the antisymmetric part of the canonical energy-momentum
tensor is intimately related to the helicity tensor. Taking a covariant derivative from
previous equation yields a differential relationship

∇νT
ν
µ = Rµαβγσ

αβγ . (3.472)
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One can notice that if the helicity tensor vanishes the metrical and canonical ten-
sors coincide. In the presence of a non-trivial matter’s helicity, the metrical and
canonical tensors are different. Classical concept of the helicity tensor is closely re-
lated to the concept of particle’s spin in quantum theory. Scalar particles have spin
zero, while photons are bosons with spin 1. Gravitational field in a linearized ap-
proximation is described by bosons with spin 2, which are termed gravitons. Due to
the analogy between spin and helicity, one has to expect that helicity of the classical
scalar field is zero, but it does not vanish for electromagnetic and gravitational field.
We discuss this issue below.

3.9.6.3 Killing Vectors and the Global Laws of Conservation
Let us assume that spacetime has a global symmetry associated with existence of a
Killing vector, ξβ, of the metric tensor. Killing vector satisfies equation (3.159), that
is ∇(αξβ) = 0. Since the metrical energy-momentum tensor is conserved indepen-
dently, ∇βT βγ = 0, the Noether current, corresponding to the Killing vector ξβ is
reduced to

Jγ =
[
T
γβ + ∇α

(
σγ[αβ] + σβ[αγ] + σα[βγ]

)]
ξβ . (3.473)

It is more convenient to reassemble this equation by noticing that for any antisym-
metric tensor of a second rank, Aαβ = A[αβ], the following identity is fulfilled,
∇α∇βAαβ = RαβA[αβ] ≡ 0. It brings the Noether current (3.473) to the following
form

Jγ = Tγβξβ − σ
γ[αβ]
∇αξβ . (3.474)

Physical interpretation of the Noether currents in spacetimes with isometries is a
non-trivial problem which continue to attract peer attention of various researchers
(see, for example, [Deruelle et al., 2004; Fatibene et al., 2010; Petrov and Katz,
2002; Uzan et al., 1998], and references therein).

The case of Killing vectors corresponding to isometries of flat Minkowski geom-
etry admits unambiguous and almost obvious interpretation. Four Killing vectors
ξβ, corresponding to global translations, have components ξαβ = δαβ

81). In this case,
the Noether current (3.474) is reduced to Jαβ = Tαβ and represents a linear mo-
mentum of the matter field. Lorentz boosts corresponding to six Killing vectors
ξα[βγ] = xν

(
gνβδαγ − gνγδαβ

)
. The corresponding Noether current (3.474) is the total

angular momentum of matter:

Jα[βγ] = gβµgγν
(
T
α[µxν] + σα[µν]

)
. (3.475)

The total angular momentum consists of two parts - the orbital angular momentum
of Tαβ and the helicity (3.461) also known as the spin angular momentum.

81) Subscript index numerates vectors, while superscript index numerates the components of the vector.
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3.9.6.4 The Canonical Energy-Momentum Tensor for Electromagnetic Field
Lagrangian for electromagnetic field was defined in equation (3.427). The dynamic
matter variable is the electromagnetic co-vector Aα and its derivative Aα,β. Mak-
ing use of equation (3.460) one obtains the canonical energy-momentum tensor of
electromagnetic field

T
αβ =

1
4π

(
Fαγ
∇
βAγ −

1
4

gαβFµνFµν

)
, (3.476)

that is apparently non-symmetric because of a non-vanishing helicity tensor

σα[βγ] = −
1

4π
Fα[βAγ] . (3.477)

Calculating covariant derivative from the helicity tensor, one finds out that

∇γ

(
σα[γβ] + σβ[γα] + σγ[βα]

)
= −

1
4π

Fαγ
∇γAβ . (3.478)

Adding this result to the canonical energy-momentum tensor (3.476) brings back the
metrical energy-momentum tensor of electromagnetic field (3.429). The Belinfante-
Rosenfeld equation (3.471) can be checked easily if one bears in mind that transvec-
tion FµαFβ

µ = Fµ(αFβ)
µ is fully-symmetric. Antisymmetric part of this transvection

vanishes identically leading to equality

T
[αβ] = −

1
4π

Fγ[α
∇
β]Aγ = −

1
4π

Fγ[α
∇γAβ] = ∇γσ

γ[αβ] , (3.479)

quod erat demonstrandum.

3.9.6.5 The Canonical Energy-Momentum Tensor for Perfect Fluid
Derivation of the canonical energy-momentum tensor of a perfect fluid by making
use of the Lagrangian (3.431) is not obvious since it does not depend explicitly on
the partial derivative of the dynamic variable ρ - the rest-mass density of the fluid.
The Lagrangian should be modified to reveal the presence of a dynamic variable
and its partial derivative, which are used in the definition of the canonical energy-
momentum tensor. This requires introduction of a new variable - a scalar potential,
φ, of the perfect fluid that is a gradient of four-velocity of the fluid [Landau and
Lifshitz, 1959, Equation 134.12]

µuα = −∇αφ , (3.480)

where µ is the chemical potential of the fluid in a comoving frame.
The chemical potential, µ, is defined as the total energy required, per baryon, to

inject a small additional amount of fluid into a given sample, without changing its
entropy or volume. Entropy of a perfect fluid is constant and does not change as
the fluid flows. Thus, the chemical potential µ is a unique function of the rest-mass
density ρ like the compression energy, Π, and pressure, p. According to the definition
[Misner et al., 1973, Equation 22.8]

µ =
dε
dρ

, (3.481)
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where ε is the rest energy of the fluid element defined in equation (3.431). Taking
the derivative and accounting for the second law of thermodynamics in the form of
equation (3.441), one obtains an algebraic relationship between the thermodynamic
variables

ε = ρµ − p . (3.482)

Let us consider the product ρµ. The chemical potential can be expressed in terms
of the derivative from the scalar potential after contracting equation (3.480) with
four-velocity of the fluid, and taking into account that uauα = −c2, where c is the
fundamental speed of the Minkowski spacetime. It yields

µc2 = uα∇αφ , (3.483)

which allows us to write the following sequence of equations

c2ρµ = ρuα∇αφ = ∇α (ρφuα) − φ∇α (ρuα) = ∇α (ρφuα) , (3.484)

where one has used equation of continuity (3.434). Equation (3.484) demonstrates
that the product ρµ is a covariant divergence of a four-vector ρφuα. Hence, the
integral of action of a perfect fluid can be transformed as follows∫

ε
√
−gd4x =

∫
(ρµ − p)

√
−gd4x = −

∫
p
√
−gd4x +

∮
ρφuαdΣα , (3.485)

where the surface integral can be discarded. We conclude that the Lagrangian of a
perfect fluid can be also written in the form of pressure

LM = −p = ε − ρµ . (3.486)

Both forms of the Lagrangians given in equations (3.432) and (3.486), are equivalent
for variational analysis of motion of a perfect fluid.

Let us work at this time with the Lagrangian (3.486). One chooses the scalar poten-
tial φ as an independent dynamic variable. Its partial derivative ∇αφ appears explic-
itly in the Lagrangian through the chemical potential. Indeed, contracting equation
(3.480) with itself, one obtains

µ =
1
c

√
−gµν∇µφ∇νφ , (3.487)

which can be plugged to expression (3.486) bringing it down to the following form

LM = −
ρ(φ)

c

√
−gµν∇µφ∇νφ + ε(φ) , (3.488)

where all thermodynamic functions depend on the scalar potential φ implicitly while
the derivatives of the potential appear in the Lagrangian explicitly. We calculate a
partial derivative of the Lagrangian

∂LM

∂∇αφ
= −

ρuα

c2 , (3.489)
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where equations (3.480) and (3.487) have been used for making corresponding re-
placements of the variables. Making use of this result in definition (3.460) of the
canonical energy-momentum tensor, one obtains

c2
T
αβ = (ε + p) uαuβ + c2 pgαβ , (3.490)

which agrees with the metrical tensor of energy-momentum (3.442). It was expected
as the helicity tensor, σα[βγ] = 0, for a perfect fluid.

The Lagrangian defined by equation (3.488) is more convenient for derivation of
the metrical tensor of energy-momentum because the scalar potential φ does not
depend on the metric tensor gαβ at all. Therefore, the only place where the metric
tensor appear is the chemical potential (3.487). It is rather simple to prove that

∂LM

∂gαβ
= −ρ

∂µ

∂gαβ
= −

ρµ

2c2 uαuβ , (3.491)

which reproduces the metrical tensor after substitution of this result to its definition
(3.419).

It is also instructive to see what kind of equations of motion follow from the defi-
nition of the Lagrangian of a perfect fluid taken in form (3.488. Equations of motion
of the fluid with the scalar potential φ as a dynamic variable, are given by variational
equation

δLM

δφ
=
∂LM

∂φ
− ∇α

(
∂LM

∇αφ

)
= 0 . (3.492)

In this equation

∂LM

∂φ
=
∂ε

∂φ
−
∂ρ

∂φ
µ =

(
dε
dρ
− µ

)
∂ρ

∂φ
= 0 , (3.493)

because of definition (3.481) of the chemical potential. On the other hand, making
use of equation (3.489) elucidates that the partial derivative

∇α

(
∂LM

∂∇αφ

)
= −

1
c2∇α (ρuα) = 0 , (3.494)

because of the continuity equation (3.434).

3.9.7
Pseudotensor of Landau and Lifshitz

Formalism of the canonical energy-momentum tensor can be also applied for gravi-
tational field. However, there is a drastic distinction between the case of matter and
gravity. The reason is that the action of matter, S M , depends on two different kind
of dynamic variables - material fields ψ and gravitational field characterized by the
metric tensor gαβ. Gravitational action, S H , depends only on the metric tensor and
its derivatives making the canonical energy-momentum tensor of gravity effectively
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coinciding with the Einstein tensor Gαβ which is zero in vacuum due to the Einstein
equations. It means that the values of the energy and momentum of gravitational
field taken at each point of spacetime manifold are nil - gravitational field is not
localizable at one point. This is a consequence of the principle of equivalence. How-
ever, gravitational field has energy in finite volumes of space as well-known from
the Newtonian gravity.

Several approaches exist in order to quantize gravitational energy in general rela-
tivity . One idea to build the, so-called, pseudotensor of gravitational field. This ap-
proach was originated by Einstein and further developed to perfection by Landau and
Lifshitz [1975]. Another line of research is to chose a non-dynamic background met-
ric [Babak and Grishchuk, 2000; Grishchuk, 2009; Grishchuk et al., 1984; Popova
and Petrov, 1988] or affine connection [Ferraris et al., 2008] on the manifold, and to
build a covariant formalism on this ground. We shall focus here on a more formal
approach of pseudotensor.

We shall assume that the Lagrangian of gravitational field, LH , depends on the met-
ric tensor and its first and second derivatives. We define a canonical pseudotensor,
tαβ, of gravitational field by equation

√
−gtαβ ≡ −LHδ

α
β +

[
∂LH

∂gρσ,α
−

∂

∂xν

(
∂LH

∂gρσ,αν

)]
∂gρσ
∂xβ

+
∂LH

∂gρσ,αν

∂2gρσ
∂xβ∂xν

, (3.495)

where the Lagrangian density LH =
√
−gLH . Taking divergence from both sides

of this equation and using equation (3.332) for variational derivative from the La-
grangian, yield

∂α
(√
−gtαβ

)
= −

δLH

δgρσ

∂gρσ
∂xβ

. (3.496)

Substituting equations of gravitational field (3.334) and using definition (3.337) of
the metrical energy-momentum tensor of matter, Tαβ, result in

∂α
(√
−gtαβ

)
= −

1
2
√
−gT ρσ ∂gρσ

∂xβ
. (3.497)

Accepting that the covariant equations of motion for matter are hold: ∇αTα
β = 0,

the right side of the above equation is

1
2
√
−gT ρσ ∂gρσ

∂xβ
= ∂α

(√
−gTα

β

)
. (3.498)

Thus, equation (3.497) takes on the form of the law of conservation

∂α
[√
−g

(
tαβ + Tα

β

)]
= 0 . (3.499)

This is gravitational analogue of the Noether theorem that implies that the sum of
two terms is equal to a superpotential Uαγ

β = U[αγ]
β such that

√
−g

(
tαβ + Tα

β

)
= ∂γU[αγ]

β . (3.500)
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Pseudotensors, defined by this equation, are not symmetric in the most general
case. Moreover, they are not defined uniquely because the superpotential is defined
only up to a class of equivalence being determined by equation U[αγ]

β = ∂δZαγδ
β,

where the indexed object, Zαγδ
β, possesses the following (anti)symmetry properties:

Zαγδ
β = Z[αγ]δ

β = Zα[γδ]
β. It is impossible to chose on a physical ground the "best"

superpotential. However, one may be guided by pure mathematical reasons of con-
venience in practical calculations. Perhaps, the most reasonable option was proposed
in the textbook by [Landau and Lifshitz, 1975], which is discussed next.

Landau-Lifshitz pseudotensor, tαβLL is defined by equation [Landau and Lifshitz,
1975]

(−g)
(
tαβLL + Tαβ

)
=

1
2κ
∂2
µν

[
(−g)

(
gαβgµν − gαµgβν

)]
, (3.501)

where ∂2
µν = ∂2/∂xµ∂xν - a second partial derivative, and κ = 8πG/c4. Landau-

Lifshitz pseudotensor is not, strictly speaking, a canonical pseudotensor that is de-
fined by equation (3.500) having a factor of

√
−g in its left side. However, it has a

nice property of symmetry, tαβLL = tβαLL, and satisfies the law of conservation

∂α
[
(−g)

(
tαβLL + Tαβ

)]
= 0 . (3.502)

In addition, Landau-Lifshitz pseudotensor is made only of the metric tensor and its
first derivatives.

Calculation of the pseudotensor is performed under assumption that the Einstein
field equations (3.338) are valid. Replacing the metrical energy-momentum tensor
of matter, Tαβ, with the Einstein tensor Gαβ gives us

tαβLL =
1
2κ
∂2
µν

[
(−g)

(
gαβgµν − gαµgβν

)]
−

1
κ

Gαβ , (3.503)

Taking derivatives and reducing similar terms yield expression for the pseudotensor
in terms of the Christoffel symbols

2κtαβLL =
(
2ΓσµνΓ

ρ
σρ − ΓσµρΓ

ρ
νσ − ΓσµσΓ

ρ
νρ

) (
gαµgβν − gαβgµν

)
(3.504)

+ gαµgνσ
(
Γ
β
µρΓ

ρ
νσ + Γ

β
νσΓ

ρ
µρ − Γ

β
σρΓ

ρ
µν − Γ

β
µνΓ

ρ
σρ

)
+ gβµgνσ

(
ΓαµρΓ

ρ
νσ + ΓανσΓ

ρ
µρ − ΓασρΓ

ρ
µν − ΓαµνΓ

ρ
σρ

)
+ gµνgσρ

(
ΓαµσΓ

β
νρ − ΓαµνΓ

β
σρ

)
.

There is another equivalent expression for the pseudotensor, given in terms of
the contravariant Gothic-style metric, gαβ ≡

√
−ggαβ. If one imposes condition,

gαβgβγ = δαγ , the covariant Gothic-style metric will be, gαβ ≡ gαβ/
√
−g. Landau-

Lifshitz pseudotensor, expressed in terms of the Gothic-style metric reads

2κ(−g)tαβLL = ∂µg
αβ∂νg

µν − ∂µg
αµ∂νg

βν +
1
2
g
αβ
gµν∂ρg

µσ∂σg
ρν (3.505)

− g
αµ
gνσ∂rhogβσ∂µgνρ + gβµgνσ∂ρg

ασ∂µg
νρ + gµνg

σρ∂σg
αµ∂ρg

βν

+
1
8

(
2gαµgβν − gαβgµν

) (
2gσρgλω − gρλgσω

)
∂µg

σω∂νg
ρλ .
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Each term in pseudotensor contains a first derivative from the metric tensor. Con-
sequently, pseudotensor vanishes at any point of spacetime manifold when the co-
ordinate system is chosen to make the first derivatives of the metric equal to zero.
This property of pseudotensor is a natural consequence of the equivalence principle
telling us that gravitational energy is not localizable. Therefore, treatment of con-
served quantities in general relativity requires more refined approach [Babak and
Grishchuk, 2000; Petrov and Katz, 2002]. In what follows, the pseudotensor will be
used as a mathematical tool for solving Einstein’s field equations by iterations.
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3.10
Gravitational Waves

Einstein’s theory of general relativity predicts existence of gravitational waves which
is treated as a phenomenon resulting from the fluctuating curvature of spacetime
propagating freely in space. In accordance with Einstein’s equations the curvature
is caused by the presence of material objects like planets, stars, galaxies or material
fields - scalar, electromagnetic, etc. More massive and accelerating object produces
stronger curvature. If massive objects are stars forming a binary system, they move
around each other in spacetime, thus, producing temporal changes in the curvature
that reflects the change in the location of the stars. Under certain circumstances, the
disturbance in curvature tears away from the source of gravity and begins propagat-
ing in space independently. This disturbance is known as gravitational wave and the
process of emission of gravitational waves is called gravitational radiation. Gen-
eral relativity predicts that gravitational waves travel with the fundamental speed c -
the same as the speed of light in vacuum. Amplitude of gravitational wave is char-
acterized by the dimensionless deviation of the metric tensor from the Minkowski
metric, hαβ = gαβ − ηαβ. It diminishes, as the wave gets further away from its source,
inversely proportional to the distance from the source.

As waves of gravitational radiation pass a distant observer, that observer will find
the local curvature of spacetime distorted in a way that resembles lunisolar tides in
the Newtonian gravity. It means that free test particles will feel the presence of the
gravitational wave in the form of a tiny tidal force that will increase and decrease
rhythmically the distances between particles as the wave passes. The magnitude of
this effect is proportional to the amplitude of the gravitational wave passing through
the particles. Binary neutron stars/black holes are considered to be strong sources
of gravitational waves as they orbit each other at small separation and have enor-
mous orbital acceleration. Nevertheless, since astronomical distances to such objects
are large, the resulting amplitude of gravitational waves from these sources that ob-
servers are trying to measure, is very small |hαβ| ≤ 10−21. Scientists are attempting
to find gravitational waves with sensitive detectors of various types [Bertotti et al.,
1999; Cerdonio, 2002; LIGO, 2010; Verbiest et al., 2009] The current best upper
limit on a wave amplitude is 2.3 × 10−26 from the fifth science run of the LIGO de-
tectors [Abbott et al., 2010]. No signal detection from any of the targets was reported
so far.

This section gives a mathematical introduction to the theory of gravitational ra-
diation in the asymptotically-flat spacetime. If spacetime is not asymptotically-flat,
like that in cosmology, more profound mathematical treatment is required [Bardeen,
1980; Grishchuk et al., 1984; Mukhanov, 2005; Ramírez and Kopeikin, 2002].

3.10.1
The Post-Minkowskian approximations

Landau-Lifshitz pseudotensor is used to build a powerful approximation scheme of
solving the Einstein equations in the most general cases when spacetime has no sym-
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metries [Anderson and Decanio, 1975; Blanchet and Damour, 1986; Thorne, 1980].
Such approximations starts from some background geometry that has no dynamical
degrees of freedom and is used as a reference for finding gravitational field. Asymp-
totically flat spacetime is the most simple case of the background geometry with the
background value of the Riemann tensor Rα

βγδ = 0. Therefore, there are coordi-
nates, xα = (x0, xi) = (ct, x), in which the background value of the metric tensor
is given by the Minkowski metric, ηαβ = diag(−1, 1, 1, 1). Hence, the gravitational
field potentials can be defined in the form of perturbation of the flat background

g
αβ = ηαβ + γαβ , (3.506)

where gαβ =
√
−ggαβ, gαβ = gαβ/

√
−g, and it is the flat metric, ηαβ, which is used in

the operation of lowering and rising indices of geometric objects in all subsequent
calculations, for example γαβ = γαµηµβ, γαβ = ηαµηβνγ

µν, etc. Equation (3.506) is
exact. Analogue of equation (3.506) with the two indices lowered, is obtained from
the isomorphism identity, gανgνβ = δαβ , and represents an infinite Taylor series

gαβ = ηαβ − γαβ + γµ(αγβ)µ + O
(
|γαβ|

3
)
. (3.507)

Correspondence with the expansion of the metric tensor

gαβ = ηαβ − hαβ , (3.508)

can be easily established after expansion of determinant of the metric tensor 82) in
powers of γαβ

−g = 1 + γ +
1
2

(
γ2 − γαβγ

αβ
)

+ O
(
|γαβ|

3
)
. (3.509)

where notation γ ≡ γαα = ηαβγ
αβ has been used. Making use of this result along

with equation (3.507) one obtains,

hαβ = γαβ −
1
2
ηαβγ

µ
µ . (3.510)

The Einstein field equations are given by equation (3.501). After substitution of
the metric tensor decomposition (3.506), they become

Gαβ
L = 2κΛαβ , (3.511)

where Λαβ is the effective energy-momentum tensor density of matter and gravita-
tional field, and

Gαβ
L = γαβ + ηαβ∂2

µνγ
µν − ∂α∂νγ

νβ − ∂β∂νγ
να , (3.512)

is a linear differential operator that includes the wave (D’Alambertian) operator,

≡ ηµν∂µ∂ν = −
1
c2

∂2

∂t2 + 4 , (3.513)

82) Determinant of gαβ is equal to the determinant of gαβ, that is det[gαβ] = det[gαβ] = g.
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of the Minkowski spacetime, where 4 is the Laplace operator (1.39).
The effective stress-energy tensor density is

Λαβ = ταβ + tαβ , (3.514)

tαβ = (−g)tαβLL −
1
2κ
∂2
µν

(
γµνγαβ − γµαγνβ

)
, (3.515)

where ταβ ≡ (−g)Tαβ, Tαβ is the metrical energy-momentum tensor of matter, and
tαβLL is the Landau-Lifshitz pseudotensor of the gravitational field. The linear operator
Gαβ

L is conserved identically

∂βG
αβ
L ≡ 0 . (3.516)

This identity brings about the law of conservation of the effective energy-momentum
tensor, Λαβ, which is reduced to

∂β
(
ταβ + tαβ

)
= 0 . (3.517)

This equation yields a local equation of motion of matter moving in the gravitational
field.

Einstein’s equations (3.511) can be significantly simplified if the deDonder (har-
monic) gauge conditions

∂βγ
αβ = 0 , (3.518)

are imposed on the metric tensor. Using these conditions one can reduce equation
(3.511) to a wave equation in the Minkowski space,

γαβ = 2κ
(
ταβ + tαβ

)
, (3.519)

where

2κtαβ = ∂νγ
µα∂µγ

νβ − γµν∂2
µνγ

αβ +
1
2
g
αβ
gµν∂ργ

µσ∂σγ
ρν (3.520)

− g
αµ
gνσ∂ργ

βσ∂µγ
νρ + gβµgνσ∂ργ

ασ∂µγ
νρ + gµνg

σρ∂σγ
αµ∂ργ

βν

+
1
8

(
2gαµgβν − gαβgµν

) (
2gσρgλω − gρλgσω

)
∂µγ

σω∂νγ
ρλ .

Equation of motion of matter (3.517) are valid in the harmonic gauge as a conse-
quence of the gauge condition (3.518) and the reduced field equation (3.519).

Equation (3.519) admits a residual gauge freedom associated with a class of equiv-
alence of diffeomorphisms

x′α = xα + ξα , (3.521)

which preserve the deDonder gauge condition (3.518) if four gauge functions ξα

obeys a homogeneous Beltrami’s equation

gµν∂2
µνξ

α = 0 . (3.522)
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In a linear approximation with respect to the metric tensor perturbation, this exact
equation yields a homogeneous wave equation

ξα = 0 . (3.523)

Equation (3.522) admits a plenty of non-trivial solutions each of which generates a
gauge transformation of gravitational potentials, γαβ, given by the exponential map-
ping

γ′αβ = γαβ + £ξg
αβ (3.524)

= γαβ + ∂αξβ + ∂βξα − ηαβ∂µξ
µ ,

where £ξ denotes the Lie derivative along the vector field ξα.
Equation (3.519) is an inhomogeneous wave equation that can be formally solved

by making use of the Green function for the D’Alambertian operator. There are two
Green functions of the D’Alembert equation - advanced and retarded ones [Arfken
and Weber, 2001]. We employ the retarded Green function as it complies with the
causality principle. Retarded solution of equation (3.519) becomes

γαβ(t, x) = −
κ

2π

∫
ταβ(s, x′) + tαβ(s, x′)

|x − x′|
d3x′ , (3.525)

where

s = t −
1
c
|x − x′| , (3.526)

is the retarded time owing to the finite speed of propagation of gravity from a point
inside the source of gravity with spatial coordinate x′ to the field point having coor-
dinates x and the integration is performed over the entire space 83).

Generally speaking, equation (3.525) represents solution of the gravity field equa-
tions only in a formal sense since the yet unknown potentials, γαβ, enter not only left
but right side of equation (3.525) via tαβ. Nevertheless, one has reached a certain
progress for the integral equation (3.525) can be resolved by iterations if gravita-
tional field is weak, that is if |γαβ| � 1. We shall assume that this condition is
satisfied everywhere. In case, when this assumption is not applied in some space
domain, for example, inside neutron stars or black holes, equation (3.525) should be
used only outside of the strong-field region. Its solution will be characterized by a
number of free parameters (multipole moments) that can be fixed by matching the
weak-field asymptotic expansion of the metric tensor with the interior solution of the
strong gravity-field domain [Damour, 1987; D’Eath, 1975a,b; Thorne, 1980].

83) Although the fundamental speed c entering equation (3.526) is traditionally called “the speed of light",
it has a physical meaning of the speed of gravity as it appears here through a solution of the Einstein
gravity field equations. Various confusions arising due to misinterpretation of the meaning of the in-
variant speed c in different physical equations have been analyzed in [Ellis and Uzan, 2005; Kopeikin
and Fomalont, 2006].
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In a weak-field approximation one expands γαβ in a power series with respect to
|γαβ| where the coupling constant κ can be formally considered as the parameter of
the expansion,

γαβ = κγ
αβ
1 + κ2γ

αβ
2 + . . . . (3.527)

The process of finding functions γαβn (n = 1, 2, . . .) is called the post-Minkowskian
approximations [Blanchet and Damour, 1984a; Damour, 1987] as the iteration pro-
cess of finding the metric starts from the Minkowski spacetime and functions γαβn

are invariant under the Lorentz transformations. Notice that slow motion of matter
comprising the source of the gravitational field is not required to conduct the post-
Minkowskian approximations. The iterative scheme of solving the Einstein equa-
tions that relies upon the assumptions that field is weak and motion of matter is slow,
is called the post-Newtonian approximations [Damour, 1987]. They can be obtained
by expanding the post-Minkowski gravitational potentials, γαβn , in additional series
[Blanchet, 1999] with respect to the slow-motion parameter v/c, where v is a char-
acteristic velocity of matter, and c is the speed of gravity as one solves the gravity
field equations.

Post-Minkowski series (3.527) is substituted to the kernel of integral in equation
(3.525). It leads to the post-Minkowski expansion of both the energy-momentum
tensor of matter, which depends on the metric tensor, and the pseudotensor

ταβ = Tαβ + κτ
αβ
1 + κ2τ

αβ
2 + . . . , (3.528)

tαβ = κtαβ1 + κ2tαβ2 + . . . , (3.529)

where Tαβ denotes the energy-momentum tensor of matter in flat spacetime.
Substitution of the asymptotic expansion (3.527) to the integral equation (3.525)

leads to a formal hierarchy of inhomogeneous wave equations for γαβn s of the type

γ
αβ
1 (t, x) = −

1
2π

∫
Tαβ(s, x′)
|x − x′|

d3x′ , (3.530a)

γ
αβ
2 (t, x) = −

1
2π

∫
τ
αβ
1 (s, x′) + tαβ1 (s, x′)

|x − x′|
d3x′ , (3.530b)

............ ................................................... , (3.530c)

γ
αβ
n (t, x) = −

1
2π

∫
τ
αβ
n (s, x′) + tαβn (s, x′)

|x − x′|
d3x′ . (3.530d)

As soon as the energy-momentum tensor of matter Tαβ is known, one can calculate
the linear, γαβ1 , perturbation of the gravitational field from equation (3.530a). Sub-
stituting γαβ1 to definitions of ταβ1 and tαβ1 , and solving equation (3.530b) for n = 2
give us the quadratic gravitational perturbation, γαβ2 , and so on [Blanchet, 1998].
In principle, this procedure can be repeated iteratively to any order n of the post-
Minkowskian approximation but technical difficulties in handling the calculations
grow enormously as soon as the order of the iterations exceed n = 3 [Blanchet,
2002a; Blanchet and Damour, 1986; Thorne, 1980].
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3.10.2
Multipolar expansion of a retarded potential

Let us consider a field ψ = ψ(t, x) that is produced by some extended source S (t, x)
enclosed in a finite volumeV of space with a characteristic size r0. One assumes the
field ψ obeys the D’Alambert equation

ψ(t, x) = −4πS (t, x) . (3.531)

Let ψ(t, x) be the retarded solution of this equation, that is

ψ(t, x) =

∫
V

S (s, y)
|x − y|

d3y , (3.532)

where

s = t −
1
c
|x − y| , (3.533)

is the retarded time from point y to the field point x.
One is interested in the detailed structure of the solution ψ outside of the source

S at distances |x| > r0. Campbell et al. [1977] and Blanchet and Damour [1986,
1989] had proved a powerful theorem stating that outside of the source the field can
be expanded in the following (exact) multipolar series

ψ(t, x) =

∞∑
l=0

(−1)l

l!
∂L

[
ML(u)

r

]
, (3.534)

where r = |x| is distance from the coordinate origin to the field point, u = t − r/c
is the retarded time counted from the coordinate origin, multi-index L = i1...il, the
l-th order partial derivative ∂L ≡ ∂i1 ...∂il , and the functions ML(u) are the symmetric
trace-free (STF) multipole moments of the source

ML(u) =

∫
V

d3yy<L>Ŝ l(u, y) , (3.535)

with the kernel

Ŝ l(u, y) =
(2l + 1)!!

2l+1l!

∫ +1

−1
dz

(
1 − z2

)l
S

(
u +
|y|
c

z, y
)
. (3.536)

STF combination of coordinates, y<L> = y<i1 ...il>, in equation (3.535) is defined as

y<i1 ...il> =

[l/2]∑
k=0

al
kδ

(i1i2 ...δi2k−1i2k yi2k+1 ...il)|y|2k , (3.537)

where the round brackets around a group of indices denote full symmetrization with
respect to permutation of the indices, [l/2] denotes the integer part of l/2, repeated
indices denotes Einstein’s summation, and numerical coefficient

al
k = (−1)k l!

(l − 2k)!(2k)!!
(2l − 2k − 1)!!

(2l − 1)!!
. (3.538)
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For practical purposes it is often useful to consider the slow-motion (post-
Newtonian) expansion of function Ŝ l in equation (3.536). This expansion assumes
that any temporal change inside the source has a characteristic time much larger than
the time interval taken by the field to cross the source. It means that one can expand
function S entering the integrand of equation (3.536) in a Taylor series with respect
to the argument z. Performing this expansion and integrating with respect to z, one
obtains [Blanchet and Damour, 1989; Campbell et al., 1977]

Ŝ l(u, y) =

∞∑
k=0

(2l + 1)!!
2kk!(2l + 2k + 1)!!

|y|2k

c2k

∂2k

∂u2k S (u, y) , (3.539)

so that the multipole expansion (3.535) takes the following form of an asymptotic
series

ML(u) =

∫
V

d3yy<L>
[
S (u, y) +

1
2(2l + 3)

|y|2

c2

∂2S (u, y)
∂u2 (3.540)

+
1

8(2l + 3)(2l + 5)
|y|4

c4

∂4S (u, y)
∂u4 + ...

]
.

The series contains only even powers of distance, |y|, and time derivatives of function
S (u, y).

3.10.3
Multipolar expansion of gravitational field

Multipolar expansion of the retarded potential (3.532) can be used in order to derive
the multipolar expansion of gravitational field perturbations γαβ in terms of symmet-
ric and trace-free (STF) tensors which represent a set of irreducible harmonics of the
group of rotation, S O(3), in three-dimensional space [Blanchet and Damour, 1986;
Coope et al., 1965; Thorne, 1980]. General solution is complicated because gravi-
tational field is non-linear, and one has to solve the (infinite) hierarchy of the post-
Minkowski integrals (3.530) by successive iterations. There is a certain progress in
understanding of how to solve this problem, and the achievements have been summa-
rized in review papers by Blanchet [2002a]; Blanchet et al. [2001a]. For the purpose
of this book, it is sufficient to describe only a linearized solution for functions γαβ1
that has been found by Blanchet and Damour [1986]; Damour and Iyer [1991a];
Thorne [1980].

Straightforward application of formula (3.534) to equation (3.530a) yields

κγ
αβ
1 (t, x) = −

4
c4

∞∑
l=0

(−1)l

l!
∂L

 Mαβ
L (u)
r

 , (3.541)

where

Mαβ
L (u) =

∫
V

d3yy<L>Ŝ αβ
l (u, y) , (3.542)

Ŝ αβ
l (u, y) =

(2l + 1)!!
2l+1l!

∫ +1

−1
dz

(
1 − z2

)l
Tαβ

(
u +
|y|
c

z, y
)
. (3.543)



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 3 — 2016/2/13 — 14:05 — page 356

356

Functions Mαβ
L are integrals from the conserved energy-momentum tensor of matter,

Tαβ, taken over the finite volumeV of the astronomical system, but they are not the
multipole moments of gravitational field as yet. The reason is that gravity is a ten-
sor field of rank two, while Mαβ

L have been found with a retarded potential adapted
for expansion of a scalar field. Hence, Mαβ

L mixes up tensor, vector and scalar har-
monics that should be decomposed in a sum of algebraically-independent pieces of
three-dimensional STF tensors. Time-time component of perturbation, γ00

1 , has no
spatial indices and behaves like a scalar under spatial rotations. Hence, it does not re-
quire any further STF decomposition. Spacetime components, γ0i

1 , and space-space
components γi j

1 behave under spatial rotations as a spatial vector and tensor of the
second rank respectively, and have to be decomposed in STF harmonics with the help
of the irreducible Cartesian-tensor technique introduced by Coope [1970]; Coope
and Snider [1970]; Coope et al. [1965]. This procedure involves rather tedious alge-
bra and cumbersome intermediate calculations which can be found in [Damour and
Iyer, 1991a]. Simplifications can be achieved if one remembers that gravitational
potentials γαβ1 are subject to the harmonic gauge condition (3.518).

Implementing this condition and taking into account that some residual gauge
freedom remains, one arrives to the following multipolar expansion of gravitational
field of an isolated astronomical system emitting gravitational waves [Blanchet and
Damour, 1986; Damour and Iyer, 1991a; Thorne, 1980]

κγ
αβ
1 = γ

αβ
can + ∂αξβ + ∂βξα − ηαβ∂µξ

µ , (3.544)

where γαβ1can is, the so-called, canonical perturbation, and ξα are the gauge functions.
The canonical perturbation is

γ00
can = −

4GM
c2r

−
4G
c2

IiN i

r2 −
4G
c2

∞∑
l=2

(−1)l

l!
∂L

[
IL(u)

r

]
, (3.545a)

γ0i
can = −

2G
c3

εipqSpNq

r2 +
4G
c3

∞∑
l=2

(−1)ll
(l + 1)!

εipq∂pL−1

[
SqL−1(u)

r

]
(3.545b)

−
4G
c2

Pi

r
+

4G
c3

∞∑
l=2

(−1)l

l!
∂L−1

[
İiL−1(u)

r

]
,

γ
i j
can = −

4G
c4

∞∑
l=2

(−1)l

l!
∂L−2

 Ïi jL−2(u)
r

 (3.545c)

−
8G
c4

∞∑
l=2

(−1)ll
(l + 1)!

∂pL−2

εpq(iṠ j)qL−2(u)
r

 .
where overdot denotes a time derivative, Ni = N i = xi/r is a unit vector directed
from the origin of the coordinate system to the field point, u = t − r/c is the retarded
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time due to finite value c of the speed of propagation of gravity, and

M =

∫
V

T 00(t, y)d3y , (3.546)

Ii =

∫
V

T 00(t, y)yid3y , (3.547)

Pi =

∫
V

T 0i(t, y)d3y , (3.548)

Si =

∫
V

εi jky jT 0k(t, y)d3y , (3.549)

are correspondingly the total mass, the dipole moment, the linear momentum and the
angular momentum (spin) of the system while IL and SL (≤ 2) are two independent
sets of mass-type and spin-type multipole moments of the gravitational field.

Mathematical technique of the retarded Green function applied for finding the
multipolar expansion of gravitational field (3.545) is valid for arbitrary location of
the center of mass of the system with respect to the origin of the coordinate chart
used for calculations. Position of the center of mass is determined by the dipole
moment, Ii, which is zero if the center of mass is placed to the coordinate origin.
In the linearized approximation the dipole moment, Ii, of the system can be either
a constant or a linear function of time because solution (3.545) is Lorentz-invariant
[Fock, 1964; Pirani, 1965]. The law of conservation of the energy-momentum tensor
establishes a relationship between the time derivative of the dipole moment and the
linear momentum of the system,

Pi = İi . (3.550)

In linearized approximation the linear momentum is conserved

Ṗi = Ïi = 0 , (3.551)

as a consequence of the law of conservation of the energy-momentum tensor,
∂µT µν = 0. Total mass M and spin Si of the system are conserved and remain
constant in the linearized approximation,

Ṁ = 0 , Ṡi = 0 , (3.552)

again as a consequence of the law of conservation of the energy-momentum ten-
sor. All other multipoles can be arbitrary functions of time depending on a temporal
behavior of matter comprising the system. Gravitational waves emitted by the sys-
tem, reduce its total energy and spin, and change the linear momentum. Hence, in
higher-order approximations the total mass, spin and the linear moment of the system
become functions of time with the time derivatives being not equal to zero [Thorne,
1980].

The canonical form of the metric tensor (3.545) depends on the STF multipole
moments IL(u) and SL(u) taken at the retarded instant of time

u = t −
r
c
, (3.553)
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that is caused by the finite speed c of propagation of gravity from the astronomical
system to the field point. In the most general case of arbitrary internal motion of mat-
ter of the isolated astronomical system, the multipole moments with multipolarity,
l ≥ 2, are given by [Blanchet, 1998; Damour and Iyer, 1991a]

IL(u) =

∫
V

d3yy<L>Îl(u, y) −
1
c2

d
du

∫
V

d3yy<pL>Î
p
l+1(u, y) (3.554)

+
1
c4

d2

du2

∫
V

d3yy<pqL>Î
pq
l+2(u, y) ,

SL(u) =

∫
V

d3yεpq<il yL−1>pŜ
q
l (u, y) (3.555)

−
1
c2

d
du

∫
V

d3yεpq<il yL−1>pkŜ
kq
l+1(u, y) ,

where the kernels of the integrands are

Îl(u, y) =

∫ +1

−1
dzδl(z)σ

(
u +
|y|
c

z, y
)
, (3.556a)

Ŝi
l(u, y) =

∫ +1

−1
dzδl(z)σi

(
u +
|y|
c

z, y
)
, (3.556b)

Îi
l+1(u, y) =

4(2l + 1)
(l + 1)(2l + 3)

∫ +1

−1
dzδl+1(z)σi

(
u +
|y|
c

z, y
)
, (3.556c)

Ŝ
i j
l+1(u, y) =

2l + 1
(l + 2)(2l + 3)

∫ +1

−1
dzδl+1(z)σi j

(
u +
|y|
c

z, y
)
, (3.556d)

Î
i j
l+2(u, y) =

2(2l + 1)
(l + 1)(l + 2)(2l + 5)

∫ +1

−1
dzδl+2(z)σi j

(
u +
|y|
c

z, y
)
, (3.556e)

the kernel densities

σ ≡ T 00 + T kk , σi ≡ T 0i , σi j ≡ T i j , (3.557)

and the kernel’s function

δl(z) ≡
(2l + 1)!!

2(2l)!!

(
1 − z2

)l
. (3.558)

The moments IL(u) and SL(u) given by equations (3.554) and (3.555) are exact
in any post-Newtonian order and can be applied even for ultra-relativistic motion
of matter inside the source of gravity. The moments are defined as integrals from
densities (3.557) having compact support. Extension of this formalism to higher
post-Minkowskian approximations is fulfilled by doing subsequent iterations which
is formally reduced to the replacement of the compact support densities, σαβ, with
the effective energy-momentum tensor, ταβ, which depends on the pseudotensor of
gravitational field. The pseudotensor is made of the gravitational potentials, γαβ,
and is distributed all over the space. It is not surprising that its integration becomes
a challenging mathematical problem. Correspondingly, in the higher-order post-
Newtonian approximations the multipole moments are expressed by means of more
complicated functionals [Blanchet, 2002a].
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If the temporal changes of the interior of the astronomical system are slow, the
multipole moments of gravitational field can be presented as post-Newtonian asymp-
totic series with respect to the small parameter v/c, where v is a characteristic ve-
locity of matter’s motion corresponding to a characteristic time T of the internal
changes in matter’s density distribution. Introducing a characteristic wavelength, o,
of gravitational waves emitted by the system, the slow-motion parameter becomes
v/c ∼ r0/o � 1, where r0 is the characteristic size of the system. Smallness of this
parameter indicates that the geometric size of the system is much smaller than the
wavelength of gravitational waves emitted by the system.

In the first post-Newtonian approximation the multipole moments of the gravita-
tional field read [Damour and Iyer, 1991a]

I1PN
L =

∫
V

d3y
[
y<L>σ +

|y|2y<L>∂2
t σ

2c2(2l + 3)
−

4(2l + 1)y<pL>∂tσi

c2(l + 1)(2l + 3)

]
+ O

(
v4

c4

)
,(3.559)

S1PN
L =

∫
V

d3yεpq<il yL−1p>σq + O
(

v2

c2

)
.

3.10.4
Gravitational field in transverse-traceless gauge

Harmonic coordinates xα that have been used in the post-Minkowski iteration
scheme, are defined as solutions of the homogeneous wave equation xα = 0 up
to the gauge functions ξα. The canonical part of the gravitational perturbation, γαβcan,
is defined by the condition that all gauge functions ξα = 0. The canonical metric
tensor (3.545) depends only on two sets of the multipole moments, IL(u) and SL(u),
which corresponds to the existence of only two degrees of freedom (polarizations)
of freely-propagating gravitational field in general relativity. A generic expression
for the harmonic metric tensor is obtained by making use of gauge transformation
(3.544) with the gauge functions, ξα, which satisfy to a homogeneous wave equa-
tion (3.523). The most general solution of this equation contains four sets of STF
multipoles [Blanchet and Damour, 1986; Thorne, 1980]

ξ0 =

∞∑
l=0

∂L

[
WL(u)

r

]
, (3.560)

ξi =

∞∑
l=0

∂iL

[
XL(u)

r

]
+

∞∑
l=1

{
∂L−1

[
YiL−1(u)

r

]
+ εipq∂pL−1

[
ZqL−1(u)

r

]}
,(3.561)

where WL, XL, YiL−1, and ZiL−1 are Cartesian STF tensors depending on the re-
tarded time u = t− r/c. Their specific form is a matter of computational convenience
for derivation and interpretation of observable effects produced by the gravitational
field since, whatever choice of the gauge functions ξα one makes, it does not influ-
ence measurable astronomical quantities like phase or frequency of electromagnetic
wave (see section 7).
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One particular choice of the gauge functions is especially important. It allows us to
eliminate from the metric tensor perturbation all non-propagating degrees of freedom
by making use of the so-called transverse-traceless (TT) gauge. It is achieved by
picking up the following gauge functions

ξ0 =
G
c2

∞∑
l=1

(−1)l

l!
∂L

I(−1)
L (u)

r

 , (3.562)

ξi =
G
c3

∞∑
l=1

(−1)l

l!
∂iL

I(−2)
L (u)

r

 − 4G
c3

∞∑
l=1

(−1)l

l!
∂L−1

[
IiL−1(u)

r

]
(3.563)

−
4G
c3

∞∑
l=2

(−1)ll
(l + 1)!

εipq∂pL−1

S(−1)
qL−1(u)

r

 ,
where one has used a shorthand notation for time integrals from STF multipoles
[Blanchet and Damour, 1988]

I
(−1)
L (u) ≡

u∫
−∞

IL(τ)dτ , S
(−1)
L (u) ≡

u∫
−∞

SL(τ)dτ , I
(−2)
L (u) ≡

u∫
−∞

I
(−1)
L (τ)dτ .

(3.564)

The gauge functions after being substituted to equation (3.544), transform the
canonical metric tensor perturbation to a remarkably simple form [Kopeikin et al.,
2006]

γ00
TT =

4GM
c2r

, (3.565a)

γ0i
TT =

2G
c3

εipqSpNq

r2 , (3.565b)

γ
i j
TT = Pi jpqγ

pq
can , (3.565c)

where Nq = xq/r is a unit vector directed from the origin of the coordinates to the
field point, the differential operator of TT-projection, Pi jkl, is given by [Misner et al.,
1973]

Pi jpq = PipP jq −
1
2

Pi jPpq , (3.566)

with

Pi j = δi j − ∆−1∂i∂ j , (3.567)

and ∆ and ∆−1 denote the Euclidean Laplacian and the inverse Laplacian operators
respectively. The projection operator has the following properties

δi jPi j = P j j = 2 , Pi jP jk = Pik, δi jPi jpq = δpqPi jpq = 0 . (3.568)
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It makes evident that the spatial components of the TT metric tensor perturbation
are indeed traceless, δi jγ

i j
TT = 0. For this reason, the metric tensor components hi j

TT

coincide with the Gothic metric components: hi j
TT = γ

i j
TT .

When comparing the canonical metric tensor with that given by equations (3.565)
it is instructive to use the following exact relationships being valid for r , 0,

(−2)ÏL(u) = IL(u) , (3.569)

∆

[
IL(u)

r

]
=
ÏL(u)

r
. (3.570)

This is a consequence of the fact that function (−2)ÏL(u) is solution of the homo-
geneous D’Alambert equation, that is,

[
(−2)IL(u)/r

]
= 0 for r , 0. Previous

equations immediately yield

IL(u)
r

= ∆−1
[
ÏL(u)

r

]
, (3.571)

(−2)IL(u)
r

= ∆−1
[
IL(u)

r

]
. (3.572)

The TT metric tensor perturbation (3.565) is similar to the Coulomb gauge in elec-
trodynamics [Jackson, 1998].

Standard textbooks, like [Landau and Lifshitz, 1975; Misner et al., 1973], intro-
duce TT gauge only for a plane gravitational wave. In this case the time-time and
time-space components of the TT metric are nil: γ00

TT = γ0i
TT = 0. Flanagan and

Hughes [2005] remarked that this condition along with the tracelessness of the spatial
components of the metric comprise five constraints on the metric, while the residual
gauge freedom in the harmonic gauge is parameterized by only four functions that
satisfy the wave equation. This may look contradictive and one has avoided this con-
tradiction in the description of the TT metric tensor (3.565) that properly introduces
the non-zero values of the time-time and time-space components of the metric tensor
along with all other multipolar harmonics of the gravitational field generated by the
isolated astronomical system. The TT metric (3.565) is valid everywhere in space
outside of the system and is not limited by the plane-wave or radiative approximation
that is derived in next section.

3.10.5
Gravitational radiation and detection of gravitational waves

Direct experimental detection of gravitational waves is a fascinating, yet unsolved
problem of modern fundamental physics [Fairhurst et al., 2010]. Enormous efforts
are applied to make a progress in its solution both by theorists and experimental-
ists. Main theoretical efforts are presently focused on calculation of templates of the
gravitational waves emitted by coalescing binary systems comprised of neutron stars
and/or black holes [Blanchet, 2002a; Sathyaprakash and Schutz, 2009] as well as cre-
ation of improved filtering technique for gravitational wave detectors [Babak, 2008;
Owen and Sathyaprakash, 1999] which will enable one to extract the gravitational
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wave signal from all kind of interferences present in the data collected by the grav-
itational wave observatories [Babak et al., 2009; Porter, 2009]. Direct experimental
efforts have led to the construction of several ground-based optical interferometers
some being with arms reaching few miles [LIGO, 2010]. Certain work is under way
to build super-sensitive cryogenic-bar gravitational-wave detectors of Weber’s type
[Aguiar et al., 2008; Astone et al., 2007; Barriga et al., 2010; Weber, 1961]. Laser
interferometric space projects such as LISA [LISA, 2010] and ASTROD [Ni, 2009]
aimed to significantly increase the sensitivity of the gravitational-wave detectors are
currently under intensive discussion at NASA, ESA and China.

Direct detection of gravitational waves is supposed to be done with the gravita-
tional wave detectors which primary element is an optical interferometer. The in-
terferometer consists of many electronic feed-back components, a laser with highly-
stabilized optical frequency and mirrors suspended at the ends of the interferometric
arms on thin silica strings. The laser beam is split and bounces many times in the
arms between the mirrors, then recombines in the optical instrument in such a way
that interference occurs between them. The mirror’s suspension system isolates them
from noise of terrestrial origin (industrial, geophysical, thermal, laboratory-induced,
etc.) in a certain frequency band ∼ 10 ÷ 1000 Hz for ground-based gravitational-
wave detectors. The high-quality noise isolation allows for free movement of the
mirrors in this frequency band. The experimental problem of detection of gravita-
tional waves is reduced to the observation of motion of the mirrors which behave
like test particles in the field of the incident gravitational wave. Photons of a laser
beam are also freely-moving test particles. Therefore, gravitational wave interacts
with both photons and mirrors and perturbs their motion. These perturbations in the
motion of mirrors and photons must be explicitly calculated and clearly separated to
avoid possible misinterpretations of observable effects of the gravitational wave.

It turns out that the canonical form of the metric tensor (3.545) in harmonic co-
ordinates is extremely well-adapted for performing analytic integration of equations
of motion of photons. Freely-moving mirrors also experience influence of gravita-
tional waves emitted by the isolated astronomical system and move with respect to
the harmonic coordinates in a complicated way. For this reason, the effects imposed
by the gravitational waves on the light propagation get mixed up with the motion of
mirrors in these coordinates. Arnowitt et al. [1962] (ADM) showed that there exist
coordinates which have a special property such that freely-falling proof masses that
are originally at rest, will not move with respect to these coordinates despite the per-
turbations imposed on them by the gravitational waves 84). This means that the ADM
coordinates themselves are not inertial and, although have some nice mathematical
properties, should be used with care in the interpretation of gravitational-wave ex-
periments. Making use of the ADM coordinates simplifies mathematical analysis of

84) The initial condition of non-moving test particles is crucial. Nonvanishing initial velocity leads to the
respond of the test particles on the incoming gravitational wave signal in TT gauge [Bolotovskiĭ and
Serov, 1994; Braginskii and Grishchuk, 1985]. Consideration was also given to the conditions under
which the TT gauge can be applied and to possible existence of gravitational-wave pulses for which
the relative velocity of two test particles being initially at rest, is nonzero after passage of the pulse
Grishchuk and Polnarev [1989].
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the gravitational-wave signal incoming to the ground-based detectors or observed by
other astronomical technique like very long baseline interferometry [Kopeikin et al.,
2006; Pyne et al., 1996], pulsar timing array [Foster and Backer, 1990; Manchester,
2008], etc. This is because proof masses (mirror) do not move with respect to the
ADM coordinates.

The ADM formalism is based on the slicing of spacetime by spatial hypersurfaces
with arbitrary choice of time coordinate defined by the lapse, N ≡ 1/

√
−g00, and

shift, Ni ≡ g0i, functions [Arnowitt et al., 1962]. This 3+1 spacetime split is invari-
ant with respect to a group of kinemetric transformations thoroughly discussed by
Zel′manov [1944]; Zel′manov and Agakov [1989]. One can impose a certain ADM
gauge condition to restrict the freedom of Zel’manov’s kinemetric transformations
in order to simplify the Einstein field equations in the ADM formalism. The gauge
conditions must be compatible with the general ADM decomposition of space-space
components gi j of the metric tensor and its corresponding conjugated momentum,
πi j, into their longitudinal, transverse, and transverse-traceless parts 85) [Schäfer,
1982, 1985]. In the linear approximation the ADM gauge conditions read [Kopeikin
et al., 1999; Schäfer, 1985]

2∂ih0i − ∂0hkk = 0 , 3∂ jhi j − ∂ihkk = 0 , (3.573)

where hαβ is the perturbation of the Minkowski metric introduced in equation
(3.508). The first ADM gauge condition in equation (3.573) is simply, πii = 0 which
is reduced to a limitation on components of the Christoffel symbols, Γ0

ii = 0. The
second ADM gauge condition in equation (3.573) is a consequence of the ADM
decomposition of the metric tensor perturbation

hTT
i j = hi j −

1
3
δi jhkk , (3.574)

where hTT
i j denotes the transverse-traceless part of hi j obeying to ∂ jhTT

i j = 0 and
hTT

ii = 0, and the trace hkk = 3h00. For comparison, the harmonic gauge conditions
(3.518) in the linear approximation read,

2∂ih0i − ∂0hkk = ∂0h00 , 2∂ jhi j − ∂ihkk = 2∂0h0i − ∂ih00 . (3.575)

The ADM and harmonic gauge conditions (3.573) can not be satisfied simultane-
ously inside the regions occupied by matter, for example, in the interior of a star.
However, outside of matter (in vacuum) they can comply with each other as well as
with the Chandrasekhar-Nutku gauge conditions [Chandrasekhar and Nutku, 1969],
frequently used in relativistic celestial mechanics 86) and gravitational-wave astron-
omy [Schaefer, 1983; Schäfer, 1982]

2∂ih0i − ∂0hkk = 0 , 2∂ jhi j − ∂ihkk = −∂ih00 . (3.576)

Indeed, it is straightforward to check out that the metric tensor (3.565) satisfies all
these gauge conditions, at least, in the linearized post-Minkowskian approximation.

85) The momentum πi j = −
√
−g

(
Ki j − gi jK

)
with Ki j = −NΓ0

i j , and K = Kii = K11 + K22 + K33.
86) For example, PPN metric tensor [Will, 1993] obeys the Chandrasekhar-Nutku gauge conditions.
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One can call the coordinates in which the metric tensor is given by equations (3.565)
as the TT-harmonic coordinates [Kopeikin et al., 1999] and they have mathematical
advantages of both harmonic and TT coordinates. Thus, the TT-harmonic coordi-
nates allow us to get a full analytic solution of the propagation of a laser beam in the
optical interferometer and to significantly suppress the effects produced by the mo-
tion of mirrors (with respect to the coordinate grid) caused by gravitational waves.
In other words, all physical effects of the gravitational waves are relegated in these
coordinates to the solution of equations of light propagation. This conclusion is valid
in the linearized approximation of general relativity and is not extended to the sec-
ond post-Minkowskian approximation where gravitational-wave effects on light and
motion of observers can not be disentangled because of non-linearity of gravitational
field, and have to be analyzed all together. Our TT-harmonic coordinates represent
an essential generalization of the standard TT coordinates [Flanagan and Hughes,
2005; Misner et al., 1973; Weber, 1961] because they can be used at arbitrary dis-
tances from the isolated system emitting gravitational waves while the standard TT
coordinates can be introduced only in those domain of space where gravitational
wave can be considered as plane one.

The space around the astronomical system emitting gravitational waves, can be
conventionally split in three concentric domains called the near zone, the buffer (in-
termediate) zone, and the wave zone respectively [Fock, 1964; Misner et al., 1973].
The size of each zone depends on the characteristic wavelength, o, of gravitational
waves emitted by the system. Roughly speaking, the radius of the near zone is, r < o
and the wave zone has radius r > o. The buffer zone is a fairly narrow shell of over-
lapping between the near and wave zones. This separation can be further specialized
depending on internal structure and the degree of non-stationarity of a particular as-
tronomical system [Blanchet, 2002a; Blanchet and Damour, 1986; Thorne, 1980].
Gravitational field of the isolated system, given by equations (3.565), can be further
decomposed in a Taylor series with respect to powers of the inverse distance 1/r.
Gravitational waves that can propagate freely through space are associated only with
the very first term in this expansion that is proportional to 1/r, because only these
terms are essential in the wave zone and contribute to the flux of gravitational radia-
tion coming away from the system [Misner et al., 1973]. Mathematical equation for
STF partial derivative from the retarded integrals is as follows [Thorne, 1980]

∂<L>

[
F(u)

r

]
= (−1)lN<L>

l∑
k=0

(l + k)!
2kk!(l − k)!

(l−k)
F (u)
rk+1 (3.577)

where Ni = xi/r is a unit vector directed from the origin of the coordinates to the field
point, N<L> = N<i1 Ni2 ...Nil>, and the symbol (l−k) above function F(u) denotes time
derivative with respect to the retarded time u = t−r/c of the (l−k)-th order. Applying
this formula in equation (3.565c) and taking only the leading term, one obtains the
wave-zone TT projection of the metric field [Blanchet and Damour, 1989]

hi j
rad =

4G
c2r

Pi jpq
∞∑

l=2

1
cll!

[
NL−2

(l)
IpqL−2 (u) −

2l
(l + 1)c

NkL−2εkn(p
(l)
Sq)nL−2 (u)

]
,
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(3.578)

where NL−2 = Ni1 Ni2 ...Nil−2 , NkL−2 = NkNL−2, and the symbol (l) above the multipole
moments denotes an l-th order time derivative with respect to the retarded time u =

t − r/c, and the operator of TT projection (3.566) is simplified in the wave zone to

Pi jpq =
(
δip − NiNp

) (
δ jq − N jNq

)
−

1
2

(
δi j − NiN j

) (
δpq − NpNq

)
. (3.579)

Since the radiation field hi j
rad is subject to four algebraic conditions

hii
rad = 0 , Nih

i j
rad = 0 , (3.580)

only two, out of six components of hi j
rad are algebraically independent. They are

called h+ and h× components respectively and characterize two states of polarization
of gravitational radiation [Landau and Lifshitz, 1975; Misner et al., 1973; Weinberg,
1972]. If z-axis of the asymptotically Cartesian coordinate chart xi = (x, y, z) is taken
in the direction, N i, of propagation of gravitational wave, the two polarizations are
given by the following components of the radiative metric: h+ = hxx

rad = −hyy
rad and

h× = hxy
rad = hyx

rad. Rotation around z-axis shows that the metric field is transformed
as a tensor wave with helicity equal two. In quantum-mechanical language the weak
gravitational wave propagating on a flat Minkowski background corresponds to a
massless boson of spin 2 called graviton [Grishchuk, 1977].

In higher post-Minkowskian approximations, the radiative multipole moments en-
tering equation (3.578) acquire additional relativistic corrections due to the process
of the back-scattering of gravitational waves on the static curvature induced by the
total mass (and spin) of the system - the effect known under the name of tail of gravi-
tational waves. Radiative multipole moments with the tail-induced contributions are
[Blanchet, 2002a; Blanchet et al., 2001a]

UL = IL +
2GM

c3

∫ +∞

0
dζÏL(u − ζ)

ln ζ +
2l2 + 5l + 4

l(l + 1)(l + 2)
+

l−2∑
k=1

1
k

 , (3.581)

VL = SL +
2GM

c3

∫ +∞

0
dζS̈L(u − ζ)

ln ζ +
l − 1

l(l + 1)
+

l−1∑
k=1

1
k

 . (3.582)

The radiative moments, UL and VL, should replace the multipole moments IL and
SL in equation (3.578) if the contribution from the tails of gravitational waves is
required to be taken into account.

Gravitational-wave detector measures variations, δ%, of the radar distance, %, be-
tween two mirrors suspended at the ends of the interferometer’s arms. The radar
distance, % = cτ, is defined as the product of the speed of light, c, in vacuum by
the proper time, τ, taken by photon to travel between the mirrors (see section 2.6.4).
This definition is given in terms of invariant quantities and, for this reason, is gauge-
invariant as explained in section 3.8.6.4. If wavelength o of incoming gravitational
wave is much larger than %, the variation of the radar distance caused by the wave is
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given by simple equation

δ%

%
=

1
2

kik jh
i j
rad , (3.583)

where ki is the unit vector directed along the line of propagation of the laser beam in
the interferometer’s arm. It should not be confused with the unit vector Ni pointing to
the direction of propagation of the gravitational wave. In the coordinate chart with
z-axis directed along vector N i of propagation of the gravitational wave, the unit
vector ki has the following components: ki = (cos θ cos φ, cos θ sin φ, sin θ) where
the spherical angles change in the range, −π/2 ≤ θ ≤ π/2, 0 ≤ φ < 2π. In these
coordinates, equation (3.583) can be expressed in terms of two polarizations of the
gravitational radiation. Specifically,

δ%

%
=

1
2

cos2 θ (h+ cos 2φ + h× sin 2φ) . (3.584)

Equation (3.584) describes the measured respond of the gravitational-wave detector
to the gravitational-wave signal. It shows that the respond is maximal when the grav-
itational wave propagates perpendicular to the interferometer’s arms and it vanishes
in case of parallel propagation of the laser beam and the gravitational wave. Though,
one has used particular coordinates in order to derive this equation, the detector’s
respond does not depend on their choice as its left side is defined in terms of gauge-
invariant radar distance % and its gauge-invariant variation δ%. Equation (3.583)
describes the leading term in the detector’s respond. The residual terms in the right
side of equation (3.584) as well as the entire mathematical structure of the respond
have been studied in papers by Baskaran and Grishchuk [2004] and Kopeikin and
Korobkov [2005]; Kopeikin et al. [2006].
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4
Relativistic Reference Frames
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4.1
Historical Background

General theory of relativity is the most powerful theoretical tool for doing experi-
mental gravitational physics both in the solar system and outside of its boundaries.
It has passed a multitude of tests with unparallel degree of accuracy [Damour, 2000;
Schäfer, 2000; Turyshev, 2009a; Will, 2006]. However, alternative theoretical mod-
els are still required for deeper understanding of the geometric nature of spacetime
gravitational physics and for studying presumable violations of general relativistic
relationships, which are predicted by quantum-gravity theorists. Those hypotheti-
cal violations may be observed in the near-future gravitational experiments designed
for testing the principle of equivalence [Worden et al., 2000], mapping astromet-
ric positions of stars in the Milky Way with a micro-arcsecond precision [Linde-
gren, 2009; Lindegren et al., 1995; Lindegren and Perryman, 1996], searching for
extra-solar planets [SIM, 2010], testing near-zone gravitomagnetic effects associ-
ated with finite speed of propagation of gravity [Fomalont and Kopeikin, 2003;
Kopeikin, 2001, 2004], detection of freely-propagating gravitational waves [LIGO,
2010; LISA, 2010], and others.

In the year 2000 the International Astronomical Union (IAU) had adopted new res-
olutions [Brumberg et al., 1998; Soffel et al., 2003] which lay down a self-consistent
general relativistic foundation for applications in modern geodesy, fundamental as-
trometry, celestial mechanics and spacetime navigation in the solar system. These
resolutions combine two independent approaches to the theory of relativistic refer-
ence frames in the solar system developed in a series of publications by Brumberg
and Kopeikin (BK formalism) and Damour, Soffel and Xu (DSX formalism). The
description of the BK and DSX formalisms is given on a joint theoretical platform
in a review article [Soffel et al., 2003], which also provides a detailed list of relevant
bibliographic references.

It seems worthwhile to extend the IAU 2000 resolutions to incorporate the param-
eterized post-Newtonian (PPN) formalism [Nordtvedt, 1970; Will, 1993] to the IAU
theory of general relativistic reference frames in the solar system, thus, widening
domain of applicability of the IAU resolutions to a more general class of gravity the-
ories. We fulfill this task in the present book, thus, making the IAU resolutions fully
compatible with the JPL equations of motion used for calculation of ephemerides
of major planets, Sun and Moon. These equations generalize the famous Einstein-
Infeld-Hoffmann (EIH) equations [Einstein et al., 1938] by including to them two
PPN parameters β and γ [Seidelmann and Urban, 2010]. The IAU 2000 resolutions
were compatible with the generalized EIH equations only in the case of β = γ = 1.

PPN parameters β and γ signifies the presence of a hypothetical scalar field, which
contributes to gravitational force through the coupling to the metric tensor. This
causes deviation of the metric tensor from general relativity. The scalar field has
not yet been detected but its properties are so appealing that it already plays sig-
nificant role in modern physics. For example, scalar field helps us to explain the
origin of masses of elementary particles [Higgs, 1964], to solve various cosmolog-
ical problems [Linde, 2000; Sahni and Starobinsky, 2000], to disclose the nature
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of dark energy in the universe [Caldwell et al., 1998], to develop a gauge-invariant
theory of cosmological perturbations [Kopeikin et al., 2001; Ramírez and Kopeikin,
2002] uniting in a natural way the ideas contained in the original gauge-invariant
formulation by Bardeen [Bardeen, 1980] with a coordinate-based approach by Lif-
shitz [1946]; Lifshitz and Khalatnikov [1963]. A recent book by Mukhanov [2005]
reviews the results related to the development of Bardeen’s theory of cosmological
perturbations.

The present book employs a general class of the scalar-tensor theories of grav-
ity initiated in the pioneering works by Jordan [Jordan, 1949, 1959], Fierz [Fierz,
1956] and, especially, Brans and Dicke [Brans and Dicke, 1961; Dicke, 1962a]. A
well-written introduction to this theory and other relevant references can be found
in the books [Will, 1993] and [Weinberg, 1972]. This class of theories is based on
the metric tensor gαβ, representing the gravitational field, and a scalar field φ that
couples with the metric tensor through function θ(φ), which remains unspecified.
One stipulates that φ and θ(φ) are analytic functions, which can be expanded about
their cosmological background values φ̄ and θ̄. Existence of the scalar field φ brings
about the dependence of the universal gravitational constant G on the background
value of the field φ̄, which evolves as the universe expands. This book does not deal
with cosmology and considers φ̄ as a constant which means that the dynamic of or-
bital motions take place on time scales much shorter than the Hubble cosmological
time 10-15 billion of years. Time dependence of φ̄ may be taken into consideration
later by making use of a formal replacement: φ̄ → φ̄0 + ˙̄φ(t − t0), where t0 is an
initial epoch, and t is the time. Such a replacement makes the universal gravitational
constant G a linear function of time which time dependence may be studied experi-
mentally in various type of observations like timing of binary pulsars or lunar laser
ranging.

The purpose of this chapter is to develop a theory of relativistic reference frames
in an N-body problem (solar system) with two parameters β and γ of the PPN for-
malism. There is a principal difficulty in developing such a theory associated with
the problem of construction of a local reference frame in the vicinity of each self-
gravitating body (Sun, Earth, planet) comprising the N-body system. Standard text-
book on the PPN formalism [Will, 1993] does not treat this problem beyond the
Newtonian approximation. The original PPN formalism was constructed in a class
of asymptotically-flat, global coordinates covering the entire spacetime and moving
with respect to each other with a constant speed. The primary PPN coordinates have
the origin fixed at the barycenter of the solar system. PPN formalism admits the
existence of several long-range fields - scalar, vector, tensor - which are responsible
for gravity besides the metric tensor of general theory of relativity. After imposing
the boundary conditions on all these fields at infinity the standard PPN metric tensor
combines the contribution of these fields to a single expression for the metric tensor,
so that they get mixed up with the Newtonian and other general relativistic poten-
tials. It makes technically impossible to single out the alternative fields in the match-
ing procedure that is used to find out relativistic spacetime transformation between
the local frame of a self-gravitating body (Earth, Moon, etc.) and the global PPN
coordinates. This prevents us to use the law of transformation of the fields, which
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is a crucial element of the general-relativistic theory of reference frames. Rapidly
growing precision of optical and radio astronomical observations as well as demands
of gravitational wave astronomy require to work out a PPN theory of such relativis-
tic transformations between the local and global frames generalizing the BK-DSX
theory underlying the IAU 2000 resolutions.

It is quite straightforward to construct the local Fermi coordinates along a world-
line of a massless particle [Ni and Zimmermann, 1978b]. Such approach can be
directly applied in the PPN formalism to construct the Fermi reference frame around
a worldline of, for example, an artificial satellite. However, the necessity to account
for gravitational self-field effects of the particle (extended body) changes physics of
the problem and introduces new mathematical aspects to the existing procedure of
construction of the Fermi frame. This was recognized in papers [Klioner and Soffel,
2000; Shahid-Saless and Ashby, 1988], where possible approaches aimed to derive
the relativistic transformation between the local (geocentric, planetocentric) and the
PPN global coordinates were discussed in the framework of the “canonical" PPN
formalism. The approach proposed in [Shahid-Saless and Ashby, 1988] is based on
the formalism that was originally worked out by Ashby and Bertotti [1984, 1986] in
order to construct a local inertial frame in the vicinity of a self-gravitating body that
is a member of an N-body system. Fukushima [1988] has independently developed
similar ideas by making use of a slightly different mathematical technique. In the
Ashby-Bertotti formalism the PPN metric tensor is taken in its standard form [Will,
1993] and massive bodies are treated as point-like massive particles without rota-
tion (massive monopoles). Construction of a local inertial frame in the vicinity of
such massive particle requires to impose some specific restrictions on the worldline
of the particle. Namely, the particle is assumed to be moving along a geodesic de-
fined on the “effective" spacetime manifold which is obtained by elimination of the
body under consideration from the expression for the standard PPN metric tensor.
This way of introduction of the “effective" background manifold is possible but not
defined uniquely, thus, bringing about an ambiguity in the construction of the “ef-
fective" manifold [Kopejkin, 1988a]. Moreover, the assumption that the bodies are
point-like and non-rotating is not quite appropriate for the tasks of modern geodesy
and relativistic celestial mechanics of the solar system. For example, planets in the
solar system have appreciable rotational speeds and noticeable higher-order mul-
tipole moments. Gravitational interaction of the multipole moments of a celestial
body with the external tidal field of other planets and Sun does not allow the body to
move along the geodesic [Kopejkin, 1988a]. Deviation of the body’s center-of-mass
worldline from the geodesic can be significant and important in numerical calcula-
tions of planetary ephemerides (see, e.g., [Newhall et al., 1983] and discussion on
page 307 in [Kopejkin, 1991a]) and must be taken into account, when one constructs
a theory of the relativistic reference frames in the N-body system.

Different approach to the problem of construction of a local (geocentric) refer-
ence frame in the PPN formalism was proposed in the paper by Klioner and Soffel
[Klioner and Soffel, 2000]. These authors have used a phenomenological approach,
which does not demand that the PPN metric tensor in local coordinates is a solu-
tion of the field equations of a specific theory of gravity. The intention was to make
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the parameterized formalism of the relativistic reference frames as general as possi-
ble. To this end, the paper [Klioner and Soffel, 2000] stipulated that the structure of
the metric tensor written down, for example, in the local geocentric reference frame
must possess the following properties:

A. gravitational field of external bodies (Sun, Moon, planets) is represented in the
vicinity of the Earth in the form of relativistic tidal potentials which should reduce
in the Newtonian limit to the Newtonian tidal potential,

B. switching off the tidal potentials must reduce the metric tensor of the local co-
ordinates to its standard PPN form given in the book by Will [Will, 1993, Table
4.1]

Direct calculations revealed that under assumptions made in [Klioner and Soffel,
2000] the properties (A) and (B) work in general relativity but can not be satisfied
simultaneously in the proposed extension of the PPN formalism. This is a direct
consequence of a subtle inconsistency presents in the matching procedure applied
in [Klioner and Soffel, 2000] in order to transform the metric tensor from the local
geocentric coordinates to the global barycentric ones.

More specifically, at each step of the matching procedure four kinds of differ-
ent terms in the metric tensor have been singled out and equated independently in
the corresponding matching equations for the metric tensor (for more details see
[Klioner and Soffel, 2000, page 024019-10]):

M1 - the terms depending on the interior structure of the body under consideration
(Earth);

M2 - the terms which are functions of time only;
M3 - the terms which are linear functions of the local spatial coordinates;
M4 - the terms which are quadratic and higher-order polynomials of the local coor-

dinates.

It is implicitly assumed by Klioner and Soffel [2000] that the application of these
conditions will not give rise to contradictions with other equations and phenomeno-
logical principles of the parameterized gravitational theory in the curved spacetime.
Keeping this in mind, the matching conditions are implemented in order to solve the
four types of the matching equations.

Unfortunately, a scrutiny analysis [Kopeikin and Vlasov, 2004] of the procedure
for construction of reference frames in the PPN formalism, proposed in [Klioner and
Soffel, 2000], shows that it does not comply with the relativistic equations for grav-
itational field. First of all, the number of the matching equations is rigidly linked to
the number of the field variables used in the gravitational theory under consideration
and can not be chosen arbitrary. In general theory of relativity the only gravitational
field variable is the metric tensor. Therefore, in general relativity it is necessary and
sufficient to write down the matching equations for the metric tensor only. However,
any alternative theory of gravity has additional long-range fields (scalar, vector, ten-
sor), which contribute to the gravitational field as well as the metric tensor. Hence,
in any of these theories one has to write down the matching equations not only for
the metric tensor but also for the additional fields in order to get correspondence
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between the geocentric and barycentric coordinates parameterized by the PPN pa-
rameters. This problem has not been addressed in [Klioner and Soffel, 2000], which
assumed that it will be sufficient (like in general relativity) to write down and to solve
the matching equations merely for the metric tensor in order to obtain complete infor-
mation about the structure of the parameterized post-Newtonian transformation from
the local to global frames. This might incidentally work for some particular case of
alternative theory of gravity but the result of matching would remain rather formal
whereas the physical content and the degree of applicability of the post-Newtonian
transformation between the coordinates will have remained unclear.

The present book relies upon different technique that was worked out in [Kopeikin
and Vlasov, 2004] and is applicable to a quite general class of the scalar-tensor the-
ories of gravity operating with two fields - the metric tensor and a scalar field. Our
approach consistently uses the matching equation for the metric tensor along with
that for the scalar field, which are direct consequences of the gravity field equations.
Our results modify essentially those obtained by Klioner and Soffel [Klioner and
Soffel, 2000]. This modification is a clear indication that the phenomenological con-
struction of the reference frames in the framework of the PPN formalism introduces
too many degrees of the gauge freedom which can not be uniquely fixed due to the
absence of clearly formulated field equations. Phenomenological restriction of this
freedom can be done in many different ways ad liberum, thus leading to additional
(researcher-dependent) ambiguity in the interpretation of relativistic effects in the lo-
cal (geocentric) reference frame. This is definitely not the goal of the physical theory
of reference frames, which intends to get physically-meaningful interpretation of the
results of gravitational experiments.

The main drawback of the Klioner-Soffel approach [Klioner and Soffel, 2000] to
the parameterized theory of relativistic reference frames is that the metric tensor in
the local coordinates is not determined from the field equations but is supposed to be
found from the four matching conditions (M1)-(M4) indicated above. It forces the
researchers to introduces a function Ψ [Klioner and Soffel, 2000, equation (3.33)],
which is not a solution of any gravity field equations. Moreover, the first of the
matching conditions (M1) requires that all internal potentials generated by Earth’s
matter can be fully segregated from the other terms in the metric tensor. It can be
done in general relativity and in the scalar-tensor theory of gravity as a consequence
of the field equations [Kopeikin and Vlasov, 2004; Kopejkin, 1988a]. We shall also
demonstrate how it works in the present book. However, complete separation of the
internal potentials describing interior gravitational field of the Earth from the other
terms in matching equations may not work out in arbitrary alternative theory of grav-
ity admitting existence of additional long-range vector and/or tensor fields. Thus, the
overall class of gravity theories to which the first of the matching conditions (M1)
can be applied remains unclear and yet, has to be determined.

Our point of view is that in order to eliminate any mathematical inconsistency and
undesirable ambiguities in the construction of the PPN metric tensor in the local ref-
erence frame of the body under consideration and to apply a rigorous procedure for
derivation of the relativistic coordinate transformations between the local and global
coordinates, a specific theory of gravity must be unavoidably used. It makes the
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field equations known and the number of the field variables entering the PPN met-
ric tensor in the local coordinates becomes exactly equal to the number of matching
equations. Hence, all of them can be determined unambiguously without any addi-
tional postulates. Thus, a parameterized theory of relativistic reference frames in a
self-gravitating N-body system is built by making use of the following procedure:

1) Chose a class of gravitational theories with a well-defined field variables and a
system of the field equations.

2) Impose a specific gauge condition on the metric tensor and the other fields to
single out a class of admissible coordinates, and to reduce the field equations to a
solvable form.

3) Solve the reduced field equations in the global coordinates, xα = (x0, xi), by im-
posing a fall-off boundary condition on the field variables at infinity.

4) Solve the reduced field equations in the local coordinates, wα = (w0,wi), defined
in the vicinity of a worldline of the center-of-mass of each body. This specifies N
local coordinate systems.

5) Make use of the residual gauge freedom to eliminate nonphysical degrees of free-
dom from the field variables and to find out the most general structure of the space-
time coordinate transformation between the global and local coordinates.

6) Transform the metric tensor and the other fields from the local coordinates to the
global ones by making use of the general form of the coordinate transformations
found at the previous step.

7) Derive from this transformation a set of matching (first-order differential and/or
algebraic) equations for all functions entering the field variables and the coordinate
transformations.

8) Solve the matching equations and determine all unknown functions entering the
matching equations explicitly.

This procedure works perfect in the case of general relativity [Soffel et al., 2003]
and is valid also in the class of the scalar-tensor theories of gravity [Kopeikin and
Vlasov, 2004]. We do not elaborate on this procedure in the case of vector-tensor
and tensor-tensor theories of gravity. This problem is progressively complicated and
supposed to be solved somewhere else.

The scalar-tensor theory of gravity employed in this book operates with one ten-
sor, gαβ, and one scalar, φ, fields. The tensor field gαβ is the metric tensor of the
Riemannian spacetime manifold. The scalar field φ couples to the metric tensor, and
is generated by matter of the gravitating bodies comprising N-body system. One as-
sumes that the N-body system (solar system, binary star) consists of extended bodies,
which gravitational field is weak everywhere. Besides, the characteristic velocity of
motion of matter of the bodies is slow. These assumptions allow us to use the post-
Newtonian approximation (PNA) scheme developed earlier by various researchers
in order to find solutions of the scalar-tensor field equations with non-singular distri-
bution of matter in space. PNA solves the gravity field equations by making use of
Taylor expansions with respect to the weak-field and slow-motion parameters. The
reader is referred to the cornerstone works [Anderson and Decanio, 1975; Anderson
et al., 1982; Blanchet and Damour, 1984b; Brumberg, 1972, 1991; Chandrasekhar,
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1965; Chandrasekhar and Esposito, 1970; Chandrasekhar and Nutku, 1969; Fock,
1964; Futamase and Itoh, 2007; Futamase and Schutz, 1983; Infeld and Plebanski,
1960] which reflect different aspects of the post-Newtonian approximations. The
present book extends and improves general relativistic calculations performed in pa-
pers [Brumberg and Kopeikin, 1989; Brumberg and Kopejkin, 1989a,b; Kopeikin,
1989a,b; Kopejkin, 1988a, 1991a,b]. It takes into account the post-Newtonian def-
inition of multipole moments of an isolated self-gravitating body (or a system of
bodies) introduced by Thorne [1980] and further developed by Blanchet and Damour
[1989]; Damour and Iyer [1991a].

The approach, used in this book, does not specify the internal structure of the bod-
ies so that one’s consideration is not restricted with the case of a perfect fluid as it
is customary done in the PPN formalism [Will, 1993]. This extension of the formal-
ism is important for subsequent consideration of the Newtonian and post-Newtonian
respond of the gravitating bodies to elastic deformations caused by tides and other
phenomena. Interesting details of the post-Newtonian development of the theory of
elasticity in application to geophysics are discussed in papers [Xu et al., 2005, 2003].
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4.2
Isolated Astronomical Systems

4.2.1
Field equations in the scalar-tensor theory of gravity

The purpose of this book is to develop a parameterized theory of relativistic ref-
erence frames for N-body gravitating system in the framework of PPN formalism,
which contains 10 phenomenological parameters [Will, 1993]. Michelson-Morley
and Hughes-Drever experiments strongly restricted possible violations of the local
isotropy of space, whereas Eötvös-Dicke-Braginsky experiments verified a weak
equivalence principle with very high precision [Will, 1993, 2006]. These remark-
able experimental achievements along with the modern theoretical attempts to unify
gravity with other fundamental fields strongly restrict the class of viable alterna-
tive theories of gravity, and, very likely, reduce the number of the parameters of
the standard PPN formalism [Will, 1993] from 10 to two - β and γ. Experimental
testing of the Lorentz-invariance of the gravity field equations (that is, Einstein’s
principle of relativity for gravitational field) requires that one introduces more pa-
rameters [Kopeikin, 2004; Kostelecky, 2008; Will, 1993] but this book stipulates
that the Lorentz-invariance is not violated. Parameters β and γ appear naturally in
the class of alternative theories of gravity with one or several scalar fields [Damour
and Esposito-Farese, 1992; Will, 1993], which can be taken as a starting point for
making further generalization of the IAU 2000 resolutions on relativistic reference
frames [Soffel et al., 2003]. For this reason, this book deals only with the class of
scalar-tensor theories of gravity assuming that additional vector and/or tensor fields
do not exist. For simplicity, one focuses on the case with one real-valued scalar field
φ loosely coupled with the tensor gravity by means of a coupling function θ(φ) [Will,
1993].

One stipulates that both the gravitational and the scalar field are generated by mat-
ter of the only one astronomical system comprising of N extended bodies which
matter occupies a finite domain in space. Such an astronomical system is called iso-
lated [Dixon, 1979; Fock, 1964; Papapetrou, 1951a] and the solar system consisting
of Sun, Earth, Moon, and other planets is its particular example. Astronomical sys-
tems like a galaxy, a globular cluster, a binary star, etc. typify other specimens of
the isolated systems. A number of bodies in the N-body system which must be taken
into account depends on the accuracy of astronomical observations and is determined
mathematically by the magnitude of residual terms which one must retain in calcu-
lations to construct relativistic theory of reference frames being compatible with the
accuracy of the observations. Since other gravitating bodies residing outside of the
N-body system, are ignored, the spacetime can be considered on the global scale
as asymptotically-flat so the metric tensor gαβ at infinity is the Minkowski metric
ηαβ = diag(−1,+1,+1,+1).

Field equations in the scalar-tensor theory are derived from the action [Will, 1993]
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S =
c4

16π

∫ (
φR − θ(φ)

∂αφ∂αφ

φ
−

16π
c4 L(gµν, ψ)

)
√
−g d4x , (4.1)

where the first, second and third terms in the right side of equation (4.1) are
the Lagrangian densities of gravitational field, scalar field and matter respectively,
g = det[gαβ] < 0 is the determinant of the metric tensor gαβ, R is the Ricci scalar, ψ
indicates dependence of the Lagrangian L on the matter fields, and θ(φ) is the above-
mentioned, coupling function, which is kept arbitrary. The action (4.1) makes the
class of the scalar-tensor theories to be sufficiently large. For the sake of simplicity,
let us postulate that the self-coupling potential of the scalar field is identically zero
so that the scalar field does not interact with itself, and there is no such term in the
action. This is because there is no reason to expect that this potential can lead to
measurable relativistic effects within the boundaries of the solar system. However,
this potential can be important in the case of a strong gravitational field and its in-
clusion to the post-Newtonian theory of coalescing binary neutron stars can lead to
interesting physical consequences [Damour and Esposito-Farese, 1992].

Equations of the gravitational field are obtained by taking variational derivative of
the action (4.1) with respect to gαβ and it’s spatial derivatives [Misner et al., 1973;
Weinberg, 1972]. The variational principle yields

Rµν =
8π
φc2

(
Tµν −

1
2

gµνT
)

+ θ(φ)
∂µφ∂νφ

φ2 +
1
φ

(
∇µνφ +

1
2

gµν gφ

)
, (4.2)

where

g ≡ gµν
∂2

∂xµ∂xν
− gµνΓαµν

∂

∂xα
(4.3)

is the scalar Laplace-Beltrami operator [Dubrovin et al., 1984] and Tµν is the energy-
momentum tensor of matter comprising the N-body system, T = Tα

α is the trace of
the tensor. It is defined by the variational equation [Landau and Lifshitz, 1975;
Misner et al., 1973]

1
2
√
−g Tµν ≡

∂(
√
−gL)

∂gµν
−

∂

∂xα
∂(
√
−gL)

∂gµν,α
, (4.4)

where gµν,α ≡ ∂αgµν, and will be specified more explicitly in next section.
Equation governing the scalar field is obtained by variation of the action (4.1) with

respect to φ and it’s spatial derivatives. After making use of the contracted form of
equation (4.2) it yields

gφ =
1

3 + 2θ(φ)

(
8π
c2 T − ∂αφ∂αφ

dθ
dφ

)
, (4.5)

which shows that the source of the scalar field is the trace of the energy-momentum
tensor of matter as well as the kinetic energy of the scalar field itself if the derivative
dθ/dφ , 0.
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In what follows, one will also utilize another version of the Einstein equations
(4.2) which is obtained after conformal transformation of the metric tensor

g̃µν =
φ

φ0
gµν , g̃µν =

φ0

φ
gµν . (4.6)

Here φ0 denotes the background value of the scalar field which is explained in more
detail in (4.13). It is worth noting that the determinant g̃ of the conformal metric
tensor relates to the determinant g of the metric gµν as g̃ = (φ/φ0)4g. The confor-
mal transformation of the metric tensor leads to the conformal transformation of the
Christoffel symbols and the Ricci tensor as well [Wald, 1984, Appendix D]. Denot-
ing the conformal Ricci tensor by R̃µν one can reduce the field equations (4.2) to a
simpler form

R̃µν =
8π
φc2

(
Tµν −

1
2

gµνT
)

+
2θ(φ) + 3

2φ2 ∂µφ∂νφ . (4.7)

The metric tensor gµν is called the physical (Jordan-Fierz-frame) metric [Will, 1993]
because it is used in real measurements of time intervals and space distances. The
conformal metric g̃µν is called the Einstein-frame metric. Its main advantage is that
this metric is in many technical aspects more convenient for doing calculations than
the Jordan-Fierz frame metric. Indeed, if the last (quadratic with respect to the scalar
field) term in equation (4.7) was omitted, it would make it look similar to the Einstein
equations of general relativity with the gravitational constant G = 1/phi. This depen-
dence may explain the Dirac’s hypothesis [Dirac, 1937] about the gradual change of
the gravitational constant as the Universe expands [Jordan, 1959]. Nevertheless, one
prefers to construct the parameterized post-Newtonian theory of reference frames for
N-body problem in terms of the Jordan-Fierz-frame metric gµν in order to avoid the
unnecessary conformal transformation to convert the results of the calculations to a
physically-measurable form.

4.2.2
The energy-momentum tensor

In order to find the gravitational field and determine the motion of the bodies com-
prising the N-body system one needs:

1) to specify a model of matter that makes up the N-body system,
2) to specify the gauge condition imposed on the metric tensor gαβ,
3) to simplify (reduce) the field equations by making use of the chosen gauge condi-

tion,
4) to solve the reduced field equations for the metric tensor gαβ and the other fields,
5) to derive equations of motion of the bodies that are consistent with the solutions

of the field equations.

This program will be completed in the present book for the case of an isolated system
of N bodies moving slowly and having weak gravitational field everywhere. In prin-
ciple, the formalism, which will be developed, allows us to treat N-body systems
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consisting of black holes, neutron stars, or other compact relativistic bodies if the
strong-field space domains are excluded after appropriate matching of them to the
weak-field zones [Damour, 1987; D’Eath, 1975a,b]. The most important example
of the weak-field and slow-motion N-body system is the solar system and one can
keep this example in mind for future practical applications of the PPN formalism
developed in the present book.

One assumes that the N-body system is isolated which means that the tidal influ-
ence of other matter in the Milky Way on this system is neglected. Besides, one
stipulates that there is no flux of gravitational radiation incoming to the system from
outside. This boundary condition picks up the retarded solution of the wave equa-
tions describing the evolution of the metric tensor and the scalar field. Thus, the
spacetime is considered as asymptotically-flat very far away outside of the system
so that the barycenter of the N-body system is either at rest or moves with respect to
the asymptotically-flat space along a straight line with a constant velocity.

One assumes that the matter comprising the bodies of the N-body system is de-
scribed by the energy-momentum tensor with some physically-reasonable equation
of state, which is not specified because it does not affect the result of analytical cal-
culations which follow. Following Fock [Fock, 1964] and Papapetrou [Papapetrou,
1951a], who developed similar ideas, the energy-momentum tensor is defined as

c2T µν = ρ
(
c2 + Π

)
uµuν + πµν , (4.8)

where ρ and Π are the density and the specific internal energy of matter in the co-
moving frame, uα = dxα/cdτ is the dimensionless four-velocity of the matter with
τ being the proper time along the worldline of the matter’s particle, and παβ is the
anisotropic tensor of stresses that is symmetric and orthogonal to four-velocity

uαπαβ = 0 . (4.9)

Original PPN formalism [Will, 1993] treats the matter of the N-body system as a
perfect fluid for which

παβ =
(
gαβ + uαuβ

)
p , (4.10)

where p is an isotropic pressure. Perfect-fluid approximation is not sufficient in
the Newtonian theory of motion of the solar system bodies where tidal phenomena
and dissipative forces play essential role [Zharkov and Trubitsyn, 1978]. It is also
inappropriate for consideration of last stages of coalescing binary systems for which
a full relativistic theory of tidal deformations must be worked out. For this reason one
abandons the perfect-fluid approximation and incorporate the anisotropic stresses to
the PPN formalism. General relativistic consideration of the anisotropic stresses has
been also achieved in papers [Damour et al., 1991, 1992, 1993; Xu et al., 2005,
2003].

Conservation of the energy-momentum tensor ∇νT µν = 0 leads both to the equa-
tion of continuity [Misner et al., 1973]

∇α (ρuα) =
1
√
−g

∂α
(
ρ
√
−guα

)
= 0 , (4.11)
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and to the second law of thermodynamics that is expressed as a differential rela-
tionship between the change in the specific internal energy and the stress tensor and
matter’s deformation

ρuα∂αΠ + παβuα;β = 0 . (4.12)

The above equations fully define the structure of the tensor of energy-momentum
and will be employed later for solving the field equations, and for derivation of the
orbital and rotational equations of motion of the bodies.

4.2.3
Basic principles of the post-Newtonian approximations

Field equations (4.2) and (4.5) all together represent a system of eleventh non-linear
differential equations in partial derivatives and one has to find their solutions for
the case of an N-body system. General relativity is obtained as a limiting case
when the field φ is constant and, thus, unobserved. General relativity has only
ten field equations for the metric tensor. Equations (4.2) and (4.5) are compli-
cated due to their non-linearity, and can be solved only by making use of approx-
imation methods. Two basic methods for solving these equations are known as the
post-Minkowski [Blanchet and Damour, 1984b, 1986; Damour, 1987] and the post-
Newtonian [Damour, 1987] approximation schemes. The post-Newtonian approxi-
mation (PNA) scheme deals with slowly-moving bodies having weak gravitational
field. It makes PNA more appropriate for constructing theory of the relativistic ref-
erence frames and relativistic celestial mechanics in the solar system than the post-
Minkowskian approximation (PMA) scheme, which operates with fast moving bod-
ies and solves the gravity field equations in terms of retarded gravitational potentials.
For this reason, the PNA scheme is sufficient in this chapter though some elements
of the post-Minkowskian approximation (PMA) scheme will be used for definition
of the multipole moments of the gravitational field. PMA will be also used for dis-
cussion of relativistic astrometry in chapter 7.

Post-Newtonian approximations are based on assumption that expansion of the
metric tensor in the near zone of a source of gravity can be done in inverse powers
of the fundamental speed c that is equal to the speed of light in vacuum. This ex-
pansion may be not analytic in higher post-Newtonian approximations in a certain
class of coordinates [Blanchet and Damour, 1986; Kates and Kegeles, 1982]. Exact
formulation of a set of basic axioms required for doing the post-Newtonian expan-
sion was given by Rendall [Rendall, 1992]. Practically, it requires to have several
small parameters characterizing the source of gravity. They are: εi ∼ vi/c, εe ∼ ve/c,
and ηi ∼ Ui/c2, ηe ∼ Ue/c2, where vi is a characteristic velocity of motion of matter
inside a body, ve is a characteristic velocity of the relative motion of the bodies with
respect to each other, Ui is the internal gravitational potential of each body, and Ue

is the external gravitational potential between the bodies. If one denotes a character-
istic radius of a body as L and a characteristic distance between the bodies as R, the
internal and external gravitational potentials will be Ui ' GM/L and Ue ' GM/R,
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where M is a characteristic mass of the body. Due to the virial theorem of the Newto-
nian gravity [Binney and Tremaine, 2008] the small parameters are not independent.
Specifically, one has ε2

i ∼ ηi and ε2
e ∼ ηe. Hence, parameters εi and εe are sufficient

in doing post-Newtonian approximations. Because within the solar system these pa-
rameters do not significantly differ from each other, they will be not distinguished
when doing the post-Newtonian iterations. In particular, notation ε ≡ 1/c is used
to mark the powers of the fundamental speed c in the post-Newtonian terms. This
parameter is also considered as a primary parameter of the PNA scheme to each
allother parameters are approximately equal, for example, εi = εvi, ηi = ε2Ui, etc.

One assumes that the scalar field can be expanded in power series around its back-
ground value φ0, that is

φ = φ0(1 + ζ) , (4.13)

where ζ is dimensionless perturbation of the scalar field around its background value.
The background value φ0 of the scalar field can depend on time due to the cosmo-
logical evolution of the universe but, according to Damour and Nordtvedt [1993b],
such time-dependence is expected to be rather insignificant due to the, presumably,
rapid decay of the scalar field in the course of cosmological evolution following
immediately after the Big Bang. According to theoretical expectations [Damour and
Nordtvedt, 1993b] and experimental data [Damour, 2000; Schäfer, 2000; Will, 1993]
the variable part ζ of the scalar field must have a very small magnitude so that one
can expand all quantities depending on the scalar field in Taylor series using the
maximal value of the absolute magnitude ζ as a dimensionless small parameter. In
particular, decomposition of the coupling function θ(φ) can be written as

θ(φ) = ω + ω′ ζ + O(ζ2) , (4.14)

where ω ≡ θ(φ0), ω′ ≡ (dθ/dζ)φ=φ0
are constants, and one imposes the fall-off

boundary condition on the scalar field perturbation ζ that assumes ζ approaches zero
as the distance from the N-body system grows to infinity.

Accounting for the decomposition of the scalar field and equation (4.5) the gravity
field equations (4.2) take the following form

Rµν =
8πG

(1 + ζ)c2

[
Tµν −

ω + 1
2ω + 3

gµνT
(
1 +

ω′ ζ

(ω + 1)(2ω + 3)

)]
(4.15)

−
1
2

gµν
ω′∂αζ∂

αζ

2ω + 3
+
ω∂µζ∂νζ

(1 + ζ)2 +
∇µνζ

1 + ζ
,

where G = 1/φ0 is the bare background value of the universal gravitational constant
and one has taken into account only the linear and quadratic terms with respect to the
perturbation of the scalar field, which is sufficient for developing the post-Newtonian
parameterized theory of the reference frames in the solar system.

We look for solutions of the field equations (4.15) in the form of a Taylor expansion
of the metric tensor and the scalar field with respect to the post-Newtonian parameter
ε such that

gαβ = ηαβ + hαβ , (4.16)
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and

h00 = ε2 (2)

h00 +ε4 (4)

h00 +O(ε5) , (4.17)

h0i = ε
(1)

h0i +ε3 (3)

h0i +O(ε5) , (4.18)

hi j = ε2 (2)

hi j +ε4 (4)

hi j +O(ε5) , (4.19)

ζ = ε2
(2)

ζ +ε4
(4)

ζ +O(ε5) , (4.20)

where
(n)

hαβ and
(n)

ζ denote terms of the order εn (n = 1, 2, 3...). It has been estab-
lished that the post-Newtonian expansion of the metric tensor in general theory of
relativity is, in fact, non-analytic [Damour, 1987; Kates and Kegeles, 1982]. How-
ever, the non-analytic terms emerge much later, in the approximations of higher
post-Newtonian order and do not affect the results of this section since the first post-

Newtonian approximation operates only with analytic terms
(2)

h00,
(4)

h00,
(1)

h0i,
(3)

h0i,
(2)

hi j

and
(2)

ζ .
The reader may have noticed that the post-Newtonian expansion of the spacetime

metric perturbation h0i starts from the terms of the order of ε. This term is fully
associated with the definition of the local coordinate basis at the origin of the coor-
dinates. The basis may be not orthogonal and/or locally rotating with angular speed
Ωi, which is the reason behind this “anomalous" ε-behavior of h0i [Misner et al.,
1973; Ni and Zimmermann, 1978b]. We shall keep the linear with respect to ε term
in h0i for some time and discard it after its role in the construction of the relativis-
tic reference frames will be completely established. In what follows, the simplified
notations for the metric tensor and scalar field perturbations will be used:

N ≡
(2)

h00 , L ≡
(4)

h00 , Ni ≡
(1)

h0i , Li ≡
(3)

h0i , Hi j ≡
(2)

hi j , H ≡
(2)

hkk , (4.21)

and

ϕ ≡ (ω + 2)
(2)

ζ . (4.22)

The scalar-tensor theory of gravity stipulates that the spacetime manifold admits
the affine connection without torsion [Misner et al., 1973; Wald, 1984; Weinberg,
1972]. Christoffel symbols for the metric tensor (4.16) are defined by standard ex-
pression

Γαβγ =
1
2

gαδ
(
∂γgβδ + ∂βgγδ − ∂δgβγ

)
=

1
2

(
ηαδ − hαδ

) (
∂γhβδ + ∂βhγδ − ∂δhβγ

)
+O

(
h3

)
,

(4.23)

where the metric tensor components are taken from equations (4.17)-(4.19). Calcu-
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lation results in

Γ0
00 = −

ε3

2

(
(2)

h00,0 +
(1)

h0i
(1)

h0i,0

)
+ O(ε4) , (4.24)

Γ0
0i = −

ε2

2

[
(2)

h00,i −
(1)

h0 j

(
(1)

h0i, j −
(1)

h0 j,i

)]
+ O(ε3) , (4.25)

Γi
00 = ε2

(
(1)

h0i,0 −
1
2

(2)

h00,i

)
(4.26)

+ε4
(

(3)

h0i,0 −
1
2

(4)

h00,i −
(2)

hi j
(1)

h0 j,0 +
1
2

(1)

h0i
(2)

h00,0 +
1
2

(2)

hik
(2)

h00,k

)
+ O(ε5) ,

Γi
0k = ε

(
(1)

h0i,k −
(1)

h0k,i

)
(4.27)

+
ε3

2

[
(3)

h0i,k −
(3)

h0k,i +
(2)

hik,0 +
(2)

hi j

(
(1)

h0k, j −
(1)

h0 j,k

)
+

(1)

h0i
(2)

h00,k

]
+ O(ε4) ,

Γ0
ik = −ε

(
(1)

h0i,k +
(1)

h0k,i

)
(4.28)

−
ε3

2

[
(3)

h0i,k +
(3)

h0k,i −
(2)

hik,0 +
(2)

h00

(
(1)

h0i,k +
(1)

h0k,i

)
−

(1)

h0 j

(
(2)

hi j,k +
(2)

hk j,i −
(2)

hik, j

)]
+ O(ε4) ,

Γi
jk =

ε2

2

[
(2)

hi j,k +
(2)

hik, j −
(2)

h jk,i +
(1)

h0i

(
(1)

h0 j,k +
(1)

h0k, j

)]
+ O(ε3) . (4.29)

In what follows, the calculations neglect all terms which are quadratic with respect

to
(1)

h0i. Dropping out the corresponding terms in equations (4.24)-(4.29) yields

Γ0
00 = −

ε3

2
(2)

h00,0 +O(ε4) , (4.30)

Γ0
0i = −

ε2

2
(2)

h00,i +O(ε3) , (4.31)

Γi
00 = ε2

(
(1)

h0i,0 −
1
2

(2)

h00,i

)
+ ε4

(
(3)

h0i,0 −
1
2

(4)

h00,i +
1
2

(2)

hik
(2)

h00,k

)
+ O(ε5) , (4.32)

Γi
0k = ε

(
(1)

h0i,k −
(1)

h0k,i

)
+
ε3

2

(
(3)

h0i,k −
(3)

h0k,i +
(2)

hik,0

)
+ O(ε4) , (4.33)

Γ0
ik = −

ε3

2

(
(3)

h0i,k +
(3)

h0k,i −
(2)

hik,0

)
+ O(ε4) , (4.34)

Γi
jk =

ε2

2

(
(2)

hi j,k +
(2)

hik, j −
(2)

h jk,i

)
+ O(ε3) . (4.35)

These expressions will be used in the present chapter.
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The post-Newtonian expansion of the metric tensor and scalar field introduces a
corresponding expansion of the energy-momentum tensor

T00 =
(0)

T 00 +ε2 (2)

T 00 +O(ε4) , (4.36)

T0i = ε
(1)

T 0i +ε3 (3)

T 0i +O(ε5) , (4.37)

Ti j = ε2 (2)

T i j +ε4 (4)

T i j +O(ε6) , (4.38)

where again
(n)

Tαβ (n = 1, 2, 3...) denote terms of order εn. In the first post-Newtonian

approximation only terms
(0)

T 00,
(2)

T 00,
(1)

T 0i and
(2)

T i j are needed. They are given by the
following equations

(0)

T 00 = ρ∗ , (4.39)
(1)

T 0i = −ρ∗
(
vi + N i

)
, (4.40)

(2)

T i j = ρ∗
(
vi + N i

) (
v j + N j

)
+ πi j , (4.41)

(2)

T 00 = ρ∗
(

v2

2
− vkNk −

1
2

NkNk + Π − N −
H
2

)
. (4.42)

Here one has used the invariant density [Fock, 1964]

ρ∗ ≡
√
−gu0ρ = ρ + ε2ρ

(
1
2

H +
1
2

v2 +
1
2

NkNk + vkNk

)
, (4.43)

that replaces density ρ and is more convenient in calculations because it satisfies the
exact Newtonian-like equation of continuity (4.11) which can be recast to [Fock,
1964; Will, 1993]

cρ∗,0 +
(
ρ∗vi

)
,i

= 0 , (4.44)

where vi = cui/u0 is the 3-dimensional velocity of matter.

4.2.4
Gauge conditions and residual gauge freedom

In the physics of gauge theories, choosing a gauge denotes a mathematical proce-
dure for removing redundant degrees of freedom in field variables. By definition, a
gauge theory maps each physically distinct configuration of the field variables to an
equivalence class of the configurations. Any two configurations in the same equiva-
lence class are related by a gauge transformation in a configuration space. Most of
the quantitative physical predictions of a gauge theory can only be obtained under
a coherent prescription for suppressing these unphysical degrees of freedom. The
scalar-tensor theory of gravity belongs to the class of the metric theories of grav-
ity [Will, 1993] admitting the gauge transformations of the metric tensor, which are
equivalent to the coordinate transformations. Fixing the gauge starts from the choice
of a particular class of equivalence of the coordinates. There are many ways to do
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it. One of the most convenient choices was proposed by Nutku [Nutku, 1969a,b]. It
generalizes the harmonic gauge of general theory of relativity [Misner et al., 1973]
that was used in formulation of the IAU 2000 resolutions of relativistic reference
frames.

The Nutku gauge conditions imposed on the components of the metric tensor are
chosen as follows

∂ν

(
φ

φ0

√
−g gµν

)
= 0 . (4.45)

By making use of the conformal metric tensor one can recast equation (4.45) to the
same form as the de Donder (or harmonic) gauge conditions in general relativity
[Fock, 1964; Papapetrou, 1951a]

(
√
−g̃ ∂νg̃µν) = 0 . (4.46)

In what follows, one will use a more convenient form of equation (4.45) written as

gµνΓαµν = ∂α
(
ln

φ

φ0

)
, (4.47)

so that the Laplace-Beltrami operator (4.3) assumes the form

g ≡ gµν
(

∂2

∂xµ∂xν
−

1
φ

∂φ

∂xµ
∂

∂xν

)
. (4.48)

Dependence of this operator on the scalar field is a property of the adopted gauge
condition.

Any function F(xα) satisfying the homogeneous Laplace-Beltrami equation,
gF(xα) = 0, is called harmonic. Notice, however, that gxα = −∂α ln φ , 0,

so that the coordinates xα defined by the gauge conditions (4.47) are not harmonic
functions but are getting pretty close to them as the scalar field gradually switches off.
Therefore, the coordinates singled out by the Nutku condition (4.45) will be called
quasi-harmonic. They have many properties similar to the harmonic coordinates in
general relativity. The choice of the quasi-harmonic coordinates for constructing
theory of the relativistic reference frames in the scalar-tensor theory of gravity is
justified by the following three factors: (1) the quasi-harmonic coordinates become
harmonic when the scalar field φ→ φ0, (2) the harmonic coordinates are used in the
resolutions of the IAU 2000 [Soffel et al., 2003] on relativistic reference frames, (3)
the condition (4.45) significantly simplifies the field equations and makes it easier
to find out their solution. One could use, of course, the harmonic coordinates too,
as it has been done, for example, by Klioner and Soffel [Klioner and Soffel, 2000].
They are defined by the condition gµνΓαµν = 0 but as one has found [Kopeikin and
Vlasov, 2004] the field equations and the spacetime transformations in these coordi-
nates are more complicated in contrast to the quasi-harmonic coordinates defined by
the Nutku condition (4.45).



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 4 — 2016/2/13 — 14:05 — page 385

385

Post-Newtonian expansion of the gauge condition (4.45) yields

Nk,k = 0 , (4.49)
c
2

(
2ϕ
ω + 2

+ N + H − NkNk
)
,0

=
N j

2

(
2ϕ
ω + 2

+ N + H − NkNk
)
, j

(4.50)

+
(
H jkN j

)
,k

+ Lk,k ,

1
2

(
2ϕ
ω + 2

− N + H − NkNk
)
,i

= −Li,0 + Hik,k − cNi,0 + Nk (
Ni,k − 2Nk,i

)
,(4.51)

where the comma with subsequent index denotes a partial derivative with respect
to a corresponding coordinate. It is worth noting that in the first PNA the gauge-

conditions (4.49)-(4.51) do not restrict the metric tensor component
(4)

h00≡ L, which
is determined uniquely by the field equations and the gauge fixing at previous steps.

Gauge equations (4.49)-(4.51) define the class of equivalence of the quasi-
harmonic coordinates, that is they do not fix the coordinates uniquely. Indeed, if
one changes coordinates

xα −→ wα = wα (xα) , (4.52)

keeping the gauge condition (4.47) demands only that the new coordinates wα must
satisfy the homogeneous wave equation

gµν(xβ)
∂2wα

∂xµ∂xν
= 0 , (4.53)

which still has an infinite set of non-trivial solutions describing the residual gauge
freedom. This residual gauge freedom is used in construction of the relativistic the-
ory of reference frames. It is worth noticing that in the scalar-tensor theory the
residual gauge freedom is described by the same equation (4.53) that is also valid
in the case of the harmonic coordinates in general relativity. We shall discuss the
implementation and meaning of the residual gauge freedom in applicability to the
theory of astronomical reference frames in more detail in Chapter 5.

4.2.5
The reduced field equations

The covariant field equations (4.2) and (4.5) are valid in any coordinates. For this
reason, their general solution contains four arbitrary functions describing the class
of equivalence of the coordinate transformations. This class of equivalence can be
significantly narrowed down after imposing the gauge conditions on the field vari-
ables - the metric tensor and the scalar field. The resulting equations are called the
reduced field equations. The post-Newtonian form of the reduced field equations
is obtained after making use of the post-Newtonian expansions, given by equations
(4.17)-(4.42) and taking into account the gauge conditions (4.49)-(4.51).

In accordance with equation (4.14) the post-Newtonian approximation of the
scalar-tensor theory of gravity with a variable coupling function θ(φ) has two con-
stant parameters, ω and ω′, characterizing the degree of deviation from Einstein’s
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general relativity. They are related to the standard PPN parameters γ and β [Will,
1993] as follows

γ = γ(ω) = 1 −
1

ω + 2
, (4.54)

β = β(ω) = 1 +
ω′

(2ω + 3)(2ω + 4)2 . (4.55)

General relativity is obtained as a limiting case of the scalar-tensor theory when
parameters γ = β = 1. In order to obtain this limit parameter ω must go to infinity
with ω′ growing slower than ω3. If it were not the case one could get limω→∞ γ = 1
but limω→∞ β , 1 which is not a general relativistic limit.

The background value of the scalar field, φ0, and the parameter of coupling ω

determine the observed numerical value of the universal gravitational constant

G =
2ω + 4
2ω + 3

G , (4.56)

where G ≡ 1/φ0. Had the background value of the scalar field been driven by
cosmological evolution, the measured value of the universal gravitational constant
would depend on time, and one could expect to detect it experimentally. The best
upper limit on time variability of G is imposed by lunar laser ranging (LLR) as
|Ġ/G| ≤ 0.5 × 10−11 yr−1 [Schäfer, 2000].

One draws attention of the reader that the book [Will, 1993] uses a different nor-
malization factor in definition of parameter β. Specifically, parameter Λ ≡ β−1 is in-
troduced as Λ = ω′(2ω+3)−2(2ω+4)−1 [Will, 1993, equation (5.36)]. The difference
from definition (4.55) arises due to the different definitions of the derivative of the
coupling function θ with respect to the scalar field, that is (ω′)Will = φ−1

0 (ω′)this book.
Taking into account equation (4.56) and the system of units, where G = 1, reveals
that our definition of parameter β coincides with that given in [Will, 1993]. One also
notices that the scalar field perturbation (4.22) is expressed in terms of parameter γ
as

(2)

ζ= (1 − γ)ϕ . (4.57)

This excludes factor γ − 1 in denominator of the right side of the field equation for
variable ϕ (see below).

After making use of the definition of the tensor of energy-momentum, equations
(4.39)-(4.42), and that of the PPN parameters, equations (4.54)-(4.56), one obtains
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the final form of the reduced field equations:

ϕ = −4πGρ∗ , (4.58){
N + ε2

[
L +

N2

2
+ 2(β − 1)ϕ2

]}
= (4.59)

−8πGρ∗ +
1
2

(
Ni,k − Nk,i

) (
Ni,k − Nk,i

)
+ ε2

{
H<i j>N,i j

−8πGρ∗
[
(γ +

1
2

) v2 + Π + γ
πkk

ρ∗
−

H
6
− (2β − γ − 1)ϕ

]}
,

Ni = 0 , (4.60)

Li = 8πGρ∗
[
(1 + γ)vi + N i

]
− 2cNkNi,0k , (4.61)

Hi j = −8πGγρ∗δi j + Nk,i

(
Nk, j − N j,k

)
− Ni,k

(
N j,k + Nk, j

)
, (4.62)

where ≡ ηµν∂µ∂ν is the D’Alembert (wave) operator of the Minkowski spacetime,
and H<i j> ≡ Hi j − δi jH/3 is the quadrupole symmetric trace-free (STF) part of the
spatial components of the metric tensor perturbation [Thorne, 1980]. We keep in the
field equations the terms being quadratic in Ni, but discard the cubic terms and ones
being proportional to the products of Ni and the metric perturbations.

Equations (4.58)-(4.62) are valid in any quasi-harmonic coordinates, which are de-
fined up to the residual gauge transformation satisfying to the wave equation (4.53).
We shall study the degrees of the residual gauge freedom in constructing the global
coordinates for the entire N-body system and the local coordinates for each of the
bodies. Global coordinates in the solar system are identified with the barycentric
reference frame and the local coordinates are associated with the Earth and planets.
The most interesting case of practical applications is the geocentric coordinate frame
attached to the Earth.
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4.3
Global Astronomical Coordinates

4.3.1
Dynamic and kinematic properties of the global coordinates

When one considers an isolated astronomical system, consisting of N extended bod-
ies – the solar system is a typical example. In the simplest case the N-body system
has no hierarchical structure and is comprised of single bodies separated by large dis-
tance from each other, like it is shown in Figure 4.1. However, in the most general
case the N-body system has more complicated hierarchic structure, which consists of
a sequence of sub-systems enclosed to each other like in a Russian nesting doll. Each
subsystem is comprised of Mp bodies, where p is a serial number of the sub-system.
In its own turn each of the sub-systems can contain several sub-sub-systems, and so
on. The solar system with the Sun and planetary sub-systems has this hierarchical
structure. In order to describe dynamical behavior of the entire N-body system and
reduction of astrometric observations of distant reference sources of light, one needs
to introduce a global four-dimensional coordinate system. We denote such global
coordinates xα = (x0, xi), where x0 = ct is time coordinate and xi ≡ x are spatial co-
ordinates. Adequate description of internal dynamical behavior of the sub-systems
of the bodies and/or one of the celestial bodies requires introducing a set of local
coordinates attached to each of the sub-systems or to a separate body (see Fig 4.2).
The hierarchic structure of the coordinate charts in the sub-system repeats that of the
N-body system and is fully compatible with the mathematical concept of the differ-
entiable spacetime manifold [Dubrovin et al., 1984; Misner et al., 1973; Schouten,
1954]. We shall discuss local coordinates later in section 4.5.

Let us define the metric tensor perturbation with respect to the Minkowski metric
in accordance with equation (4.16)

hαβ(t, x) ≡ gαβ(t, x) − ηαβ . (4.63)

We demand that quantities rhαβ and r2∂γhαβ are bounded, and that at the null-ray
infinity the perturbation decays as follows

lim
r→∞

t+r/c=const.

hαβ(t, x) = 0 , (4.64)

where r = |x|. Additional boundary condition at the null-ray infinity must be im-
posed on the derivatives of the metric tensor to prevent existence of a non-physical
radiative solution associated with the advanced wave potentials. It is defined as
[Fock, 1964]

lim
r→∞

t+r/c=const.

[(
rhαβ

)
,r +

(
rhαβ

)
,0

]
= 0 . (4.65)

equation (4.65) is known as a "no-incoming-radiation" boundary condition [Damour,
1983; Fock, 1964]. In the case of an isolated astronomical system this condition sin-
gles out a causal solution of the gravitational field equation depending on the retarded
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Figure 4.1 The picture illustrates an astronomical N-body system and coordinate charts
associated with it. Global coordinates, xα = (ct, xi), cover the entire space, have origin at the
barycenter of the system, and match the inertial coordinates of the Minkowski spacetime at
infinity. Each body is affiliated with its own local coordinate chart, wα = (cu,wi), having origin at
the center of mass of the body. Local coordinates are not asymptotically Minkowskian at large
distance from the body and do not cover the entire space.
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Barycenter of the N−body system

Figure 4.2 The picture illustrates a hierarchy of coordinate charts existing in N-body
astronomical system (solar system) consisting of several sub-systems: M1, M2,...,Mp. One
global coordinate chart, xα = (ct, xi), covers the entire space and has its origin at the
barycenter of the N-body system. Each sub-system consists of several gravitationally-bounded
bodies (a planet and its moons) and has its own local coordinate chart, wα = (cu,wi), having its
origin at the center of mass of the sub-system. At the same time, each body from the
sub-system possesses its own local coordinate chart, ξα = (cs, ξi). The hierarchy can have as
many levels as the number of the consecutive sub-systems enclosed to each other.
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time t − r/c only. Similar boundary conditions are imposed on the perturbation of
the scalar field defined in equation (4.14),

lim
r→∞

t+r/c=const.

ζ(t, x) = 0 , (4.66)

lim
r→∞

t+r/c=const.

[
(rζ) ,r + (rζ) ,0

]
= 0 . (4.67)

In principle, the boundary conditions (4.65) and (4.67) are not explicitly required in
the first post-Newtonian approximation for solving the field equations (4.58)-(4.62)
because the gravitational potentials in this approximation are time-symmetric. How-
ever, they are convenient for doing calculations and are physically motivated by the
principle of causality applied to the gravitational field. Therefore, in what follows
the radiative boundary conditions (4.65) and (4.67) will be used for giving precise
definition of the multipole moments of the gravitational field of the isolated astro-
nomical system.

The global coordinates xα cover the entire spacetime and they set up a primary
basis for construction of the theory of relativistic reference frames in the N-body
system [Kopejkin, 1988a]. We shall stipulate that the origin of the global coordi-
nates coincides with the barycenter of the N-body system at any instant of time. This
condition can be satisfied after choosing a suitable definition of the post-Newtonian
dipole moment Di of the N-body system and equating its numerical value to zero
along with its first time derivative (see section 4.4.5). This can be always done in
general relativity in low orders of the post-Newtonian approximation scheme if one
neglects the octuple and higher-order multipole gravitational radiation [Blanchet,
1998]. In the scalar-tensor theory of gravity one has also to take into account gravita-
tional wave emission in the form of scalar field modes [Damour and Esposito-Farese,
1992] but it does not affect the first post-Newtonian approximation. There are alter-
native theories of gravity, which violate the third Newton’s law of the gravitational
interaction between celestial bodies. The dipole moment Di of N-body system is
not conserved in such theories even in the first post-Newtonian approximation [Will,
1993]. We do not consider such theories which are physically implausible.

We shall also assume that the spatial axes of the global coordinates do not rotate in
space either kinematically or dynamically [Brumberg and Kopejkin, 1989b]. Notice
that the angular velocities of dynamic and kinematic rotations of a reference frame
are not distinguished in classic celestial mechanics. However, they have different
meaning already in the first post-Newtonian approximation due to the presence of
the relativistic geodetic precession caused by the orbital motion of the body around
the center of mass of the N-body system. Spatial axes of a coordinate chart are called
kinematically non-rotating if their orientation is fixed with respect to the Minkowski
coordinates defined at the infinite past and infinite distance from the solar system
called the past null infinity [Misner et al., 1973]. Such kinematically non-rotating
coordinate system can be built on the stellar sky by making use of quasars as refer-
ence objects with accuracy better than 100 µas (see [Johnston et al., 2000] and refer-
ences therein). Quasars are uniformly distributed all over the sky and have negligibly
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small parallax and proper motion that is defined as its transverse motion in the plane
of the sky being orthogonal to the line of sight of observer located at the barycenter
of the solar system. Thus, kinematically non-rotating character of coordinates can
be determined only through the experimental analysis of the global properties of the
spacetime manifold including its topology. This consideration reveals that the theory
of reference frames in N-body system based on the assumption that the spacetime is
asymptotically-flat may be corrupted by the influence of some cosmological effects.
Hence, a more appropriate approach to the reference frames taking into account that
the background spacetime is the Friedman-Robertson-Walker universe is to be devel-
oped. One has started a constructive work in this direction in papers [Kopeikin et al.,
2001; Ramírez and Kopeikin, 2002]. More work is required to match observational
predictions of the post-Newtonian approximations with the cosmological model.

Dynamically non-rotating coordinate chart is defined by the condition that equa-
tions of motion of test particles moving with respect to these coordinates do not
have any term that might be interpreted as either the Coriolis or the centripetal force
[Brumberg and Kopejkin, 1989b]. This definition relies only upon the local prop-
erties of spacetime and does not require the astronomical observations of distant
celestial objects like stars or quasars. Dynamical definition of the spatially non-
rotating coordinates is used in construction of modern ephemerides of the solar sys-
tem bodies which are based on radar and laser ranging measurements to planets and
Moon as well as on their radio and optical observations (see [Johnston et al., 2000;
Kovalevsky et al., 1989; Seidelmann and Urban, 2010] and references therein). Be-
cause of the assumption that the N-body system under consideration is isolated, one
can theoretically postulate that the global coordinates do not rotate in any sense.

4.3.2
The metric tensor and scalar field in the global coordinates

The metric tensor gαβ(t, x) is obtained by solving the field equations (4.58)-(4.62)
after imposing the boundary conditions (4.64)-(4.67). In what follows, a trivial solu-
tion of the homogeneous equation (4.60) for spacetime component g0i of the metric
tensor is chosen, Ni = 0. This is because Ni describes rotation (angular velocity) of
the spatial axes of the coordinate chart but the previous section postulates that the
global coordinates are not rotating. Solution of the other field equations are obtained
by applying the Green function method for elliptic equations. They are given in the
following form

ϕ(t, x) = U(t, x) , (4.68)

N(t, x) = 2 U(t, x) , (4.69)

L(t, x) = 2Φ(t, x) − 2βU2(t, x) − c2χ,00(t, x) , (4.70)

Li(t, x) = −2(1 + γ) Ui(t, x) , (4.71)

Hi j(t, x) = 2γ δi j U(t, x) , (4.72)
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where

Φ(t, x) ≡ (γ +
1
2

)Φ1(t, x) + (1 − 2β)Φ2(t, x) + Φ3(t, x) + γΦ4(t, x) , (4.73)

and the gravitational potentials U, U i, χ, and Φk (k = 1, ..., 4) can be represented as
linear combinations of the gravitational potentials of each body, that is

U =
∑

A

U (A) , Ui =
∑

A

U (A)

i , Φk =
∑

A

Φ(A)

k , χ =
∑

A

χ(A) . (4.74)

Herein, the gravitational potentials of body A are defined as integrals taken over the
volume of this body

U (A)(t, x) = GI(A)

−1 {ρ
∗} , (4.75)

U (A)

i (t, x) = GI(A)

−1

{
ρ∗vi

}
, (4.76)

χ(A)(t, x) = −GI(A)

1 {ρ
∗} , (4.77)

Φ(A)

1 (t, x) = GI(A)

−1

{
ρ∗v2

}
, (4.78)

Φ(A)

2 (t, x) = GI(A)

−1 {ρ
∗U} (4.79)

Φ(A)

3 (t, x) = GI(A)

−1 {ρ
∗Π} , (4.80)

Φ(A)

4 (t, x) = GI(A)

−1

{
πkk

}
, (4.81)

where notation I(A)
n { f } (n = 1, 2, 3...) is used to define the volume integral

I(A)
n { f } (t, x) =

∫
VA

f (t, x′)|x − x′|n d3x′ , (4.82)

with n being an integer, and VA - the volume of integration. Potential χ is determined
as a particular solution of the inhomogeneous equation

∇2χ = −2U , (4.83)

with the right side defined in a whole space. Nevertheless, its solution given by
equation (4.77) has a compact support concentrated inside the volumes of the bod-
ies [Fock, 1964]. It is worthwhile to emphasize that all the integrals defining the
metric tensor in the global coordinates are taken over the hypersurface of constant
coordinate time t. Spacetime transformations can change the hypersurface of the
coordinate time, hence transforming the volume of integration in the integrals. This
important issue should be taken into account properly. It will be further discussed in
section 5.2.3.
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4.4
Gravitational Multipoles in the Global Coordinates

4.4.1
General description of multipole moments

In what follows, a set of certain parameters, describing properties of gravitational
and scalar fields and depending on the integral characteristics of the N-body system,
will be indispensable. These integral parameters are called multipole moments. In
the Newtonian approximation they are uniquely defined as coefficients in the Taylor
expansion of the Newtonian gravitational potential U in powers of 1/r, where r = |x|
is the radial coordinate distance from the origin of a coordinate system to a field
point. The Newtonian multipole moments are functions of time in the most general
astronomical situations because the body can oscillate, wobble and change its inter-
nal structure due to radiation or other processes. However, very often one assumes
that mass is conserved and the center of mass of the N-body system is located at the
origin of the coordinate chart under consideration. Provided that these assumptions
are satisfied, the monopole and dipole multipole moments remain constant.

General relativistic multipolar expansion of gravitational field is in many aspects
similar to the Newtonian multipolar decomposition. However, due to the non-
linearity and tensorial character of gravitational interaction in general theory of rel-
ativity and the scalar-tensor theory of gravity, the definition of relativistic multipole
moments gets much more complicated in contrast to the Newtonian theory. Further-
more, the gauge freedom existing in the general theory of relativity clearly indicates
that any multipolar decomposition of gravitational field will be coordinate-dependent
making the definition of the multipoles affected by the choice of the gauge. Hence, a
certain care is required for unambiguous physical interpretation of various relativis-
tic effects associated with the multipoles For example, section 6.3 demonstrates how
the appropriate choice of coordinates allows us to eliminate a number of coordinate-
dependent terms in equations of motion of spherically-symmetric bodies depending
on the "quadrupoles" defined in the global coordinate system.

The papers [Blanchet, 1987; Blanchet and Damour, 1986; Thorne, 1980] proved
that in general relativity the multipolar expansion of the gravitational field of an iso-
lated gravitating system is characterized by only two independent sets of multipoles
called as mass-type and current-type moments. In particular, Thorne [Thorne, 1980]
had systematized and significantly perfected works of previous researchers [Brown,
1896; Epstein and Wagoner, 1975; Pirani, 1965; Sachs, 1961; Wagoner, 1979], and
defined the two sets of the post-Newtonian multipole moments as follows [Thorne,
1980, equations (5.32a) and (5.32b)]

IL
Thorne =

∫ (
τ00xL + Al0r2x<L−2τal−1al> + Bl0x j<L−1τal> j + Cl0xLτ j j

)
d3x ,(4.84)

SL
Thorne = εpq<al

∫ (
xL−1>pτ0q + El0r2xL−2∂tτ

al−1> jx j + F l0xL−1>kp∂tτ
kq
)

d3x ,(4.85)
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where the numerical coefficients

Al0 =
l(l − 1)(l + 9)

2(l + 1)(2l + 3)
, Bl0 = −

6l(l − 1)
(l + 1)(2l + 3)

, (4.86)

Cl0 =
2l(l − 1)

(l + 1)(2l + 3)
, El0 =

(l − 1)(l + 4)
2(l + 2)(2l + 3)

, (4.87)

F l0 = −
l − 1

(l + 2)(2l + 3)
, (4.88)

and the multipolar integer-valued index l runs from 0 to infinity. In these expressions

ταβ =
(
1 + 4ε2U

)
Tαβ +

c4

16πG
Nαβ , (4.89)

is the effective energy-momentum tensor of Landau-Lifshitz [Landau and Lifshitz,
1975] evaluated at the post-Newtonian order in the harmonic gauge with

N00 = −
14
c4 U,p U,p , (4.90)

N0i =
4
c5

[
4U,p

(
U p,i −U i,p

)
− 3U,i U p,p

]
, (4.91)

N i j =
2
c4

(
2U,i U, j −δi jU,p U,p

)
, (4.92)

and U, U i are gravitational potentials of the isolated astronomical system defined in
equations (4.74).

Thorne [Thorne, 1980] had systematically neglected all surface terms in the so-
lution of the boundary-value problem of gravitational field equations in order to
derive the multipoles (4.84), (4.85). However, the part Nαβ of the effective energy-
momentum tensor ταβ falls off as 1/r4 as a coordinate distance r from the isolated
system grows. For this reason, the multipole moments defined in equations (4.84),
(4.85) are formally divergent. This divergency is, in fact, artificial and can be com-
pletely eliminated if one makes use of a more rigorous mathematical technique de-
veloped by Blanchet and Damour [1989] for the mass-type multipole moments and
by Damour and Iyer [1991b] for the spin-type multipoles. This technique is based
on the theory of distributions (generalized functions) [Gelfand, 1964] and consists
in the replacement of the energy-momentum pseudotensor ταβ with the effective lo-
calized source ταβc , which has a compact support inside the region occupied by mat-
ter of the isolated system [Blanchet and Damour, 1989; Damour and Iyer, 1991b].
Blanchet and Damour [1989] proved that formal integration by parts of the inte-
grands of Thorne’s multipole moments (4.84), (4.85) with subsequent discarding all
surface terms recovers the multipole moments derived by Blanchet and Damour by
making use of the compact-support effective source ταβc . It effectively demonstrates
that Thorne’s post-Newtonian multipole moments are physically (and computation-
ally) meaningful provided that one operates only with compact-support terms in the
integrands of equations (4.84), (4.85) after their rearrangement and integration by
parts of the non-linear source of gravitational field Nαβ given by equations (4.90)-
(4.92). This transformation was done by Blanchet and Damour [1989] who extracted
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the non-divergent core of Thorne’s multipole moments. We shall use their result in
this book.

In the scalar-tensor theory of gravity the multipolar series gets more involved be-
cause of the presence of the scalar field. This brings about an additional set of scalar
multipole moments which are intimately related with the multipolar decomposition
of the scalar field outside of the gravitating system. We emphasize that definition
of the multipole moments in the scalar-tensor theory of gravity depends not only on
the choice of the gauge conditions but also on the freedom of conformal transforma-
tion of the metric tensor as was pointed out by Damour and Esposito-Farese [1992]
who also derived (in the global coordinates) the set of multipole moments for an iso-
lated astronomical system in the framework of two-parametric scalar-tensor theory
of gravity.

We shall study the problem of the multipolar decomposition of gravitational and
scalar fields both of the whole N-body system and of each body comprising the sys-
tem in the framework of the scalar-tensor theory of gravity. We shall follow the line
of study outlined and elucidated in works [Blanchet and Damour, 1989; Damour and
Esposito-Farese, 1992; Thorne, 1980; Will, 1993]. The multipole moments under
discussion will include the sets of active, conformal and scalar multipole moments.
These three sets are constrained by one identity (see equation (4.120)). Hence, only
two of the sets are algebraically (and physically) independent. The multipole mo-
ments will be defined in various reference frames associated both with an isolated
astronomical system and with a separated body (or a sub-system of the bodies) com-
prising the isolated system.

4.4.2
Active multipole moments

Let us introduce the metric tensor potentials

V =
1
2

{
N + ε2

[
L +

N2

2
+ 2(β − 1)ϕ2

]}
, (4.93)

V i = −
Li

2(1 + γ)
, (4.94)

which enter g00(t, x) and g0i(t, x) components of the metric tensor respectively. Fur-
thermore, throughout this chapter Ni = 0, and the spatial metric component Hi j is
chosen to be isotropic, that is its symmetric and trace-free (STF) part H<i j> = 0
[Kopeikin and Vlasov, 2004]. Then, the field equations for these potentials follow
from equations (4.59), (4.61) and read

V = −4πGσ , (4.95)

V i = −4πGσi , (4.96)

where one has introduced the active mass density

σ = ρ∗
{

1 + ε2
[
(γ +

1
2

) v2 + Π + γ
πkk

ρ∗
−

H
6
− (2β − γ − 1)ϕ

]}
, (4.97)
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and the active current mass density

σi = ρ∗ vi . (4.98)

It is worthwhile to observe that in the global coordinates one has H = Hii = 6γU(t, x)
and ϕ(t, x) = U(t, x). Hence, the expression (4.97) for the active mass density in
these coordinates is simplified and reduced to

σ = ρ∗
{

1 + ε2
[
(γ +

1
2

) v2 + Π + γ
πkk

ρ∗
− (2β − 1)U

]}
. (4.99)

Solutions of equations (4.95) and (4.96) are retarded wave potentials [Landau and
Lifshitz, 1975] satisfying the boundary conditions (4.64)-(4.65) and determined up
to the solution of a homogeneous wave equation. Taking into account that potentials
V and Vi are, in fact, components of the metric tensor, solutions of equations (4.95)
and (4.96) can be written down as

V(t, x) = G
∫
D

σ(t − ε|x − x′|, x′)
|x − x′|

d3x′ + c2 ∂0ξ
0 , (4.100)

V i(t, x) = G
∫
D

σi(t − ε|x − x′|, x′)
|x − x′|

d3x′ +
c3

2(1 + γ)

[
∂0ξ

i − ∂iξ
0
]
, (4.101)

where D designates a domain of integration going over the entire space, and the
gauge functions ξ0 and ξi are solutions of the homogeneous wave equation. One
notices that because the densities σ and σi vanish outside the bodies the integration
in equations (4.100) and (4.101) is performed only over the volume occupied by
matter of the bodies.

We take a special choice of the gauge functions as proposed in [Blanchet and
Damour, 1989]

ξ0 = −2(1 + γ)ε3G
∞∑

l=0

(−1)l

(l + 1)!
2l + 1
2l + 3

[
1
r

∫
D

σk(t − εr, x′) x′<kL> d3x′
]
,L
,(4.102)

ξi = 0 . (4.103)

Such gauge transformation preserves the gauge condition (4.45) and does not change
the post-Newtonian form of the scalar multipole moments, which will be discussed
in the next section. Then, one can show that potentials V and V i can be expanded out-
side of the N-body system in a multipolar series as follows [Blanchet and Damour,
1989]

V(t, x) = G
∞∑

l=0

(−1)l

l!

[
I<L>(t − εr)

r

]
,L
, (4.104)

V i(t, x) = G
∞∑

l=0

(−1)l

(l + 1)!

[ İ<iL>(t − εr)
r

]
,L

(4.105)

−
l + 1
l + 2

εipq

[
S <pL>(t − εr)

r

]
,qL

 ,
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where the dot above function denotes differentiation with respect to time t. equations
(4.104) and (4.105) define the active mass multipoles, IL, and the spin multipoles,
S L, which can be expressed in the first PNA in terms of integrals over the N-body
system’s matter as follows

I<L>(t) =

∫
D

σ(t, x′)x′<L> d3x′ +
ε2

2(2l + 3)

[
d2

dt2

∫
D

σ(t, x′)x′<L>x′2 d3x′

− 4(1 + γ)
2l + 1
l + 1

d
dt

∫
D

σi(t, x′)x′<iL> d3x′
]
, (4.106)

S <L>(t) =

∫
D

εpq<al x̂′L−1>pσq(t, x′) d3x′ . (4.107)

As one can see the mass and spin multipole moments of the scalar-tensor theory
define the tensor part of gravitational field of the metric tensor outside N-body sys-
tem as perfect as in general relativity [Blanchet and Damour, 1989; Thorne, 1980].
When β = γ = 1 these multipole moments coincide with their general relativistic
expressions [Blanchet and Damour, 1989]. However, in order to complete the mul-
tipole decomposition of the gravitational field in the scalar-tensor theory one needs
to obtain a multipolar expansion of the scalar field as well.

4.4.3
Scalar multipole moments

In order to find out the post-Newtonian definition of the multipole moments of the
scalar field one again uses the technique developed in works [Blanchet and Damour,
1989; Thorne, 1980]. One takes equation (4.5) and write it down with the post-
Newtonian accuracy by making use of a new (scalar) potential

V̄ = c2ζ +
ε2

2

[
η − (γ − 1)(γ − 2)

]
ϕ2 . (4.108)

Then, equation (4.5) assumes the form

V̄ = −4πGσ̄ , (4.109)

where notation η ≡ 4β − γ − 3 stands for the Nordtvedt parameter [Will, 1993] and
the scalar mass density σ̄ is defined as

σ̄ = (1 − γ)ρ∗
{

1 − ε2
[
1
2

v2 − Π +
πkk

ρ∗
+

H
6

]}
− ε2

[
η + γ(γ − 1)

]
ρ∗ϕ . (4.110)

One can easily check out that in the global coordinates, where H = 6γU(t, x) and
ϕ(t, x) = U(t, x), the scalar mass density is simplified and is given by

σ̄ = (1 − γ)ρ∗
[
1 − ε2

(
1
2

v2 − Π +
πkk

ρ∗

)]
− ε2ηρ∗U . (4.111)
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Solution of equation (4.109) is the retarded scalar potential

V̄(t, x) = G
∫
D

σ̄(t − ε|x − x′|, x′)
|x − x′|

d3x′ . (4.112)

Multipolar decomposition of the potential (4.112) has the same form as in equation
(4.104) with the scalar mass multipole moments defined as integrals over a volume
occupied by matter of the N-body system

Ī<L>(t) =

∫
D

σ̄(t, x′)x′<L> d3x′ +
ε2

2(2l + 3)
d2

dt2

∫
D

σ̄(t, x′)x′<L>x′2 d3x′ . (4.113)

We conclude that in the scalar-tensor theory of gravity the multipolar decomposi-
tion of gravitational field requires introduction of three sets of multipole moments
- the active mass moments IL, the scalar mass moments ĪL, and the spin moments
S L. Neither the active nor the scalar mass multipole moments alone lead to the laws
of conservation of energy, linear momentum, etc. of an isolated system; only their
linear combination does. This linear combination of the multipole moments can be
derived after making conformal transformation of the metric tensor, solving the Ein-
stein equations for the conformal metric, and finding its multipolar decomposition in
the similar way as it was done in section 4.4.2.

4.4.4
Conformal multipole moments

Let us now define the conformal metric potential

Ṽ =
1

1 + γ

[
Ñ + ε2

(
L̃ +

Ñ2

2

)]
. (4.114)

The conformal field equations (4.7) in the quasi-harmonic gauge of Nutku (4.46)
yield

Ṽ = −4πGσ̃ , (4.115)

where one has introduced a conformal mass density

σ̃ = ρ∗
{

1 + ε2
[
3
2

v2 + Π +
πkk

ρ∗
−

H
6
− (1 − γ)ϕ

]}
, (4.116)

which has been calculated directly from equation (4.7) by making use of the defini-
tion of the conformal metric (4.6) and the post-Newtonian expansions of correspond-
ing quantities described in section 4.2.3. Remembering that in the global coordinates
H = 6γU(t, x) and ϕ(t, x) = U(t, x) one can simplify expression for the conformal
mass density, which assumes the form

σ̃ = ρ∗
[
1 + ε2

(
3
2

v2 + Π +
πkk

ρ∗
− U

)]
. (4.117)
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This equation coincides precisely with the post-Newtonian mass density as defined
in general relativity [Damour and Esposito-Farese, 1992; Fock, 1964; Will, 1993].
The conformal current density σ̃i is defined in the approximation under consideration
by the same equation as equation (4.98), that is σ̃i = σi. The field equation for the
conformal vector potential Ṽ i has the form (4.96), therefore in this approximation
Ṽ i = V i.

Solution of equation (4.115) gives the retarded conformal potential

Ṽ(t, x) = G
∫
D

σ̃(t − ε|x − x′|, x′)
|x − x′|

d3x′ . (4.118)

Multipolar expansion of conformal potentials Ṽ and Ṽ i is done in the same way as it
was done previously in section 4.4.2. It turns out that the conformal spin moments
coincide with the active spin moments (4.107), and the expansion of the potential
Ṽ(t, x) acquires the same form as that given in equation (4.104) but with all active
multipole moments replaced with the conformal multipoles, Ĩ<L>, defined as follows

Ĩ<L>(t) =

∫
D

σ̃(t, x′)x′<L>d3x′ +
ε2

2(2l + 3)

[
d2

dt2

∫
D

σ̃(t, x′)x′<L>x′2d3x′(4.119)

−8
(2l + 1)

l + 1
d
dt

∫
D

σi(t, x′)x′<iL>d3x′
]
.

These conformal mass multipole moments coincide exactly with those introduced
in general relativity by Blanchet and Damour [1989] who also proved [Blanchet and
Damour, 1989, appendix A] that their definition is compatible after formal discarding
all surface integrals with the mass multipole moments introduced originally in the
first post-Newtonian approximation in general relativity by Thorne [Thorne, 1980].

There is a simple algebraic relationship between the three mass multipole mo-
ments, IL, ĪL and ĨL in the global frame. Specifically, one has [Kopeikin and Vlasov,
2004]

I<L> =
1 + γ

2
Ĩ<L> +

1
2

Ī<L> . (4.120)

We shall show later in section 4.5.3 that relationship (4.120) between the multipole
moments obtained in the global coordinates (t, x) for the case of an isolated astro-
nomical N-body system preserves its form in the local coordinates for each gravitat-
ing body (a sub-system of the bodies) as well.

4.4.5
Post-Newtonian conservation laws

It is crucial for the following analysis to discuss the laws of conservation for an
isolated astronomical N-body system in the framework of the scalar-tensor theory
of gravity. These laws will allow us to formulate the post-Newtonian definitions of
mass, the center of mass, the linear and the angular momenta for the isolated system
which are used in derivation of equations of motion of the bodies comprising the
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system. In order to derive the laws of conservation one employs a general relativistic
approach developed in [Landau and Lifshitz, 1975] and extended to the Brans-Dicke
theory by Nutku [Nutku, 1969a].

To this end, it is convenient to recast the field equations (4.2) to the form

Θµν ≡ (−g)
φ

φ0

[
c2T µν + tµν

]
=

c4

16πφ0
∂αβ

[
(−g)φ2(gµνgαβ − gµαgνβ)

]
, (4.121)

where tµν is an analog of the Landau-Lifshitz pseudo-tensor of the gravitational field
[Landau and Lifshitz, 1975] in the scalar-tensor theory of gravity. This pseudotensor
is defined by the equation [Nutku, 1969a]

tµν =
c4

16π
φ3

φ2
0

τ̃
µν
LL +

c4

16π
2θ(φ) + 3

φ

(
∂µφ∂νφ −

1
2

gµν∂λφ∂λφ
)
, (4.122)

where τ̃
µν
LL is the (standard) Landau-Lifshitz pseudotensor [Landau and Lifshitz,

1975] expressed in terms of the conformal metric g̃αβ and its derivatives.
The conservation laws are now obtained from equation (4.121)

∂νΘ
µν ≡ ∂ν

[
(−g)

φ

φ0
(c2T µν + tµν)

]
= 0 . (4.123)

They are a direct consequence of anti-symmetry of the right side of equation (4.121)
with respect to the upper indices ν and α. In what follows, one concentrates on the
laws of conservation in the first post-Newtonian approximation only. Hence, one
neglects the energy, linear and angular momenta taken away from the system by
gravitational waves (see [Damour and Esposito-Farese, 1992] where the role of the
gravitational waves is discussed). Under these circumstances the massM, the linear
momentum Pi, and spin Si of the isolated gravitating N-body system are conserved
and defined as

M = ε2
∫
D

Θ00 d3x , (4.124)

Pi = ε

∫
D

Θ0i d3x , (4.125)

Si = ε

∫
D

εi
jkw jΘ0k d3x , (4.126)

where the integration is performed over the whole space. Let us remark that the in-
tegrals (4.124)-(4.126) are finite (not divergent) since in the first PNA the integrands
Θ00 and Θ0i are of O(r−4) for large r and decay faster than the volume of integration
grows. Moreover, in this approximation the domain of integration can be reduced
from the entire space to the volume of the bodies comprising the system. This is be-
cause the integrand in equations (4.124)-(4.126) can be integrated by parts with all
the surface terms going to zero at infinity. After all, what remains are the integrals
shown below in equations (4.129)-(4.131) where the functions under the integrals
have only the compact support inside the bodies.
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Taking into account the asymptotic behavior of Θ00 and the differential law of
conservation (4.123), one can prove that the linear momentum Pi can be represented
as the time derivative of the function

Di = ε2
∫
D

Θ00xi d3x , (4.127)

which is interpreted as the integral of the center of mass of the N-body system.
Hence, integrating one more time one gets

Di(t) = Pi t + Ki , (4.128)

where Ki is a constant vector defining a constant displacement of the barycenter of
the N-body system from the origin of the global coordinate frame. One can chose
Ki = 0 and Pi = 0. In such case Di = 0, and the center of mass of the N-body
system will always coincide with the origin of the global reference frame. Such
global reference frame is called the Barycentric Celestial Reference Frame (BCRF)
and it is used in the IAU 2000 resolutions [Soffel et al., 2003] discussed in chapter
9 of this book. BCRF is a primary tool in description of ephemerides of the solar
system bodies, navigation of spacecrafts in deep space and reduction of astronomical
observations of various types.

Direct calculations of the pseudotensor (4.122) with subsequent comparison with
the conformal multipole moments (4.119) reveal that for the isolated system the
post-Newtonian conserved quantities are

M ≡ Ĩ =

∫
D

ρ∗
[
1 + ε2

(
Π +

v2

2
−

U
2

)]
d3x + O(ε4) , (4.129)

Di ≡ Ĩi =

∫
D

ρ∗xi
[
1 + ε2

(
Π +

v2

2
−

U
2

)]
d3x + O(ε4) , (4.130)

Pi = Ḋi =

∫
D

{
ρ∗vi

[
1 + ε2

(
Π +

v2

2
−

U
2

)]
+ ε2πikvk −

ε2

2
ρ∗W i

}
d3x + O(ε4) ,(4.131)

where by definition

W i(t, x) = G
∫
D

ρ∗(t, x′)v′ · (x − x′)(xi − x′i)
|x − x′|3

d3x′ , (4.132)

and the integration is performed over the hypersurface of constant global coordinate
time t. It is evident from equations (4.129) and (4.130) that it is the conformal
moments, Ĩ and Ĩi, which define the conserved mass M and linear momentum Di of
the N-body system. The active monopole and dipole moments defined by equation
(4.106) for l = 0, 1 are not consistent with the laws of conservation and, hence, can
not serve to define the conserved quantities in the scalar-tensor theory of gravity. We
fix position of the center of mass (barycenter) of the N-body system in the global
coordinates by equating the conformal dipole moment of the system to zero, that is
Ĩi = 0, for any instant of time.
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Now one can proceed further and construct local coordinates in the vicinity of
a gravitating body or a sub-system of bodies which are members of the entire N-
body system. For concreteness and for the sake of simplicity the focus will be on
the construction of the local coordinate chart around one body (Earth, planet, etc.).
Extension of this formalism to the planetary sub-system like the Earth-Moon is given
in paper by [Xie and Kopeikin, 2010].
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4.5
Local Astronomical Coordinates

4.5.1
Dynamic and kinematic properties of the local coordinates

A local coordinate chart (local coordinates) is constructed in the vicinity of the
worldline of each body comprising the N-body system. Thus, in principle, N lo-
cal coordinate charts wα must be introduced in addition to one global coordinate
system xα (see Figure 4.1). In the case of N-body system, which is divided into
sub-systems of bodies, the number of the local coordinates increases in accordance
with the underlying hierarchic structure of the N-body system (see Figure 4.2). An
example is the Earth-Moon sub-system that is gravitationally bounded and requires
introduction of the local coordinates associated with the center of mass of the sub-
system [Kopeikin et al., 2008; Xie and Kopeikin, 2010] besides the local coordinates
attached to the Earth and Moon. The principles of construction of the local coordi-
nates are the same for any weakly gravitating body. A sub-system of bodies can be
also viewed as a single body with a time-dependent internal structure governed by
the internal gravitational field of the sub-system. For this reason, it is sufficient to
work out the description of one local coordinate chart, wα = (cu,w), around a single
self-gravitating body as the other local coordinate charts have a similar mathemat-
ical structure [Kopejkin, 1991b]. For practical applications in the solar system the
most important local coordinates are associated with the Earth and they are called
geocentric coordinates. They play an important role in formulation of the IAU 2000
resolutions on the reference frames in the solar system [Soffel et al., 2003]. The
important physical difference between the global and local coordinates is that the
local coordinates are not asymptotically-Minkowski far away from the body because
the gravitational field of the body under consideration must smoothly match with
the tidal gravitational field of external bodies in a buffer region of space between
the bodies. It means that the metric tensor in the local coordinates diverges as the
coordinate distance from the body grows [Ni and Zimmermann, 1978b], [Misner
et al., 1973, see pages 172, 327]. Further discussion will be focused primarily on the
construction of the local geocentric reference frame.

Mathematical development of the theory requires to assume that each body con-
sists of viscoelastic matter which admits continuous distribution of mass density,
anisotropic stresses, and internal velocity field. If one had “turned off" gravitational
field of all external bodies (Moon, Sun, planets) the gravitational field of the body
under consideration (Earth) would be described by a set of the (internal) multipole
moments defined by equations given in previous section. However, one can not ne-
glect gravitational field of the external bodies if one wants to take into account the
Newtonian [Melchior, 1983] and relativistic effects associated with tides [Kopejkin,
1988a; Mashhoon, 1975; Xu et al., 2003]. The tidal deformation of the body is com-
prehensively large, for example, at the latest stage of coalescence of neutron stars
in binary systems emitting gravitational radiation and, no doubt, must be taken into
account in calculation of templates of gravitational waves emitted by such systems.
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Terrestrial tides are not so dramatically large. However, modern astronomical obser-
vations are so accurate that the tidal gravitational field influences many aspects of the
rotational and orbital motions of the Earth [Melchior, 1983], which require a very ac-
curate theoretical modeling. Gravitational potential of the tidal force is represented
in the local coordinates as a Taylor series with respect to spatial coordinates with
time-dependent coefficients, which are called the external (tidal) multipole moments
[Kopejkin, 1988a; Suen, 1986; Thorne and Hartle, 1985]. This series usually starts
in the Newtonian approximation from the second order (quadratic) polynomial term
because the monopole and dipole external multipole moments are not physically as-
sociated with the tidal force, which origin in relativity is explained in terms of the
Riemann curvature of spacetime that is given by the second derivatives from the
metric tensor (see sections 1.2.6 and 3.7). In general relativity this monopole-dipole
effacing property of the external gravitational field is extended from the Newtonian
gravity to the post-Newtonian approximations as a consequence of the Einstein prin-
ciple of equivalence (EEP) [Will, 1993, see §2.3]. In particular, EEP suggests that it
is always possible to chose the local coordinates in such a way that all first derivatives
of the metric tensor (i.e., the Christoffel symbols) will vanish along a geodesic world-
line of a freely-falling test particle [Ni and Zimmermann, 1978b]. This is equivalent
to making a suitable coordinate transformation on the spacetime manifold from the
global to local frame [Dubrovin et al., 1984; Schouten, 1954]. In general relativity
EEP is also valid for a self-gravitating body moving in external gravitational field
of other bodies. The original proof was given for black holes in papers [D’Eath,
1975a,b] and for extended bodies it was elaborated in [Breuer and Rudolph, 1982;
Brumberg and Kopejkin, 1989a; Damour et al., 1991, 1992; Kopeikin, 1985; Kope-
jkin, 1991b].

As contrasted with general relativity, the scalar-tensor theory of gravity has a scalar
component of the gravitational field, which can not be eliminated by a coordinate
transformation to the local frame of the body being in a free fall. This is because the
scalar field does not change its numerical value under pointwise coordinate transfor-
mations and can not be eliminated if it has a non-zero value at least in one coordinate
chart on spacetime manifold. It means that the scalar field can not obey the princi-
ple of equivalence and the gravitational field in the scalar-tensor theory can not be
reduced in the local coordinates to the pure tidal field. In particular, this was the rea-
son why Einstein had rejected a scalar theory of gravity based exclusively on a scalar
potential (for more detail see discussion in [Misner et al., 1973; Will, 1993]). One
of the consequences of the violation of the principle of equivalence in scalar-tensor
theory of gravity is the appearance of, the so-called, Nordtvedt effect [Nordtvedt,
1968a,b] that is also discussed in [Will, 1993, see §8.1]. The Nordtvedt effect can be
observed only for massive, self-gravitating bodies. This is because the scalar field is
not observed directly but is organically incorporated to the metric tensor, which can
be reduced to the Minkowski metric at the origin of the local coordinates as long as
the body’s gravitational field is negligibly small.

Standard parameterized post-Newtonian formalism pretends to describe any pos-
sible deviation from general relativity phenomenologically by introducing a met-
ric tensor parameterized with 10 parameters [Nordtvedt, 1970; Nordtvedt and Will,
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1972; Will, 1993]. However, this leads to a major problem in experimental gravity as
it remains unclear how to incorporate a local coordinate system to the standard PPN
formalism in a self-consistent way. Theoretical principles demand that one needs to
know the nature of the fundamental fields (scalar, vector, tensor, spinor, etc.) enter-
ing the metric tensor because these fields have different behavior under coordinate
transformations. To construct a local coordinate system, solution of the field equa-
tions for the fundamental fields must be found directly in the local coordinate system.
Then, this solution must be matched to the solution of the same field equations in the
global coordinates. Finally, the transformation law of the fields must be used along
with the transformation law of the metric tensor in order to find out the relativis-
tic spacetime transformation between the global and local coordinate systems. The
standard PPN formalism misses all these steps, thus, making correct interpretation
of more subtle gravitational experiments difficult or even impossible.

We demand that the origin of the local coordinates coincides with the body’s cen-
ter of mass at any instant of time. This requires a precise definition of the center
of mass of each body with respect to its local coordinates. However, when one
takes into account the post-Newtonian corrections, the concept of the body’s cen-
ter of mass becomes ambiguous because it can be chosen in several different ways
depending on what kind of definition of the internal dipole moment of the body in
the multipolar expansion of the local metric tensor is chosen. One has proven by
straightforward calculations [Kopeikin and Vlasov, 2004] that it is the conformal
dipole moment given in equation (4.130), which gives a physically meaningful def-
inition of the body’s center of mass. The reason is that this is the only definition
which allows us to derive equations of translational motion of the body where all
self-accelerated terms violating the Newton’s third law are suppressed and vanish
identically. This property of the conformal dipole moment is closely related to its
conservation for an isolated system of N bodies as demonstrated in section 4.4.5.

In general, the body (Earth) as a part of the N-body system is not isolated and
interacts gravitationally with other bodies of the Solar system (Moon, Sun, etc.). For
this reason, the second and higher order time derivatives of the conformal dipole
moment of the body are not equal to zero. It means that there is a local force exerted
on the body by external gravitational field, which prevents its linear momentum (the
first time derivative of the body’s dipole moment) to remain constant. Nevertheless,
if one chooses a local frame moving with a certain acceleration all time derivatives
of the body’s dipole moment can be made equal to zero. Such a local frame does
not move along a geodesic worldline [Kopejkin, 1988a] bringing about a non-zero
value of the external dipole moment in the multipolar expansion of the homogeneous
solution of the gravitational field equations (see section 6.1.4). A proper choice of the
body’s center of mass and the local acceleration of the body-centered frame allow us
to eliminate the coordinate-dependent terms in the equations of motion of the body
and clarify the origin of the Nordtvedt effect for extended bodies.

We admit that the local coordinates can be, in general, dynamically rotating. It
means that translational equations of motion of a test particle written down in the
local coordinates can include the Coriolis and centrifugal forces. If one excludes the
dynamic rotation of the local coordinates, their spatial axes will slowly precess in the
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kinematic sense with respect to the spatial axes of the global coordinates [Brumberg
et al., 1998; Soffel et al., 2003]. This effect is called the geodetic precession, and it
obeys the law of parallel transport of vectors on a curved spacetime manifold [Misner
et al., 1973]. Nowadays, the IAU recommends that one uses a kinematically non-
rotating geocentric system with the spatial axes that are anchored to distant quasars
being considered as reference points of the international celestial reference system
(ICRS) (see [Mignard, 2000] for more detail). The metric tensor of the kinemati-
cally non-rotating geocentric coordinates has an external dipole moment in ĝ0i(u,w)
component of the geocentric metric tensor describing the dynamic rotation of the
spatial axes of the geocentric coordinates. This dipolar term would be equal to zero
if the geocentric coordinates were chosen to be dynamically non-rotating. The an-
gular velocity of the dynamical rotation is equal to that of the geodetic precession of
the Earth’s angular momentum vector as it moves around the Sun. Numerical value
of the geodetic precession is fixed by the corresponding IAU resolution in agreement
with observations of the reference quasars. At this step of development of the theory,
the angular velocity of the dynamical rotation is not specified in order to keep the
formalism as general as possible.

4.5.2
The metric tensor and scalar field in the local coordinates

We denote the local (for example, geocentric) coordinates by wα = (w0,wi) =

(cu,wi) where u stands for the local coordinate time. All quantities related to the
body around which the local coordinate frame is constructed, will be labeled by
subindex B standing for “body". One is looking for the solution of the field equa-
tions (4.58)-(4.62) inside a world tube containing the worldline of the body’s center
of mass and spreading up to the nearest external body, so that the only source of
matter inside the region covered by the local frame is the matter of the central body.
Thus, the right side of equations (4.58)-(4.62) contains the energy-momentum tensor
of the body’s matter only. Spatial domain of applicability of the local coordinates
can be extended after finding the spacetime transformation from the local to global
coordinates as it will be explained in Section 5.1.3.

Solution of the differential equations (4.58)-(4.62) is a linear combination of gen-
eral solution of the homogeneous equation and a particular solution of the inhomo-
geneous equation. Solution for a scalar field in the local coordinates is written as

ϕ̂(u,w) = ϕ̂(B)(u,w) + ϕ̂(E)(u,w) + ϕ̂(C)(u,w) , (4.133)

whereas the metric tensor, ĝµν(u,w) = ηµν + ĥµν(u,w), is given in the form

ĥµν(u,w) = ĥ(B)
µν(u,w) + ĥ(E)

µν(u,w) + ĥ(C)
µν(u,w) , (4.134)

where the terms with sub-index B refer to the body in question and describe the
internal solution of the inhomogeneous equations, terms with sub-index E refer to
the external bodies (Moon, Sun, etc.) and describe the external solution of the ho-
mogeneous equations, and terms with sub-index C, which stands for coupling, arise
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because of the non-linearity of the gravity field equations for the metric tensor. One
notices that in the first post-Newtonian approximation the coupling terms appear
only in ĝ00(u,w) component of the metric tensor and are not required in calculation
of the scalar field.

We do not impose any other specific limitations on the structure of the metric
tensor in the local coordinates. All information about its structure can be obtained
from the solution of the field equations (4.58)-(4.62). One draws attention of the
reader that a hat over all quantities is a label referred to the local coordinates wα.
It is used because the functional dependence of one and the same quantity looks
different in different coordinates. For example, for any function F(x) and coordinate
transformation x = x(w) one has F(x) = F[x(w)] ≡ F̂(w). One can not use the same
notation for this function in all coordinates because the numerical value of F(w)
differs from F(x) [Dubrovin et al., 1984; Schouten, 1954].

4.5.2.1 The Scalar Field: Internal and External Solutions
equation (4.58) gives internal, ϕ̂(B)(u,w), and external, ϕ̂(E)(u,w), solutions for the
scalar field in the following form

ϕ̂(B)(u,w) = Û (B)(u,w) , (4.135)

ϕ̂(E)(u,w) =

∞∑
l=0

1
l!

PLwL . (4.136)

Here Û (B)(u,w) is the Newtonian potential defined in equation (4.141), PL ≡ PL(u)
are external STF multipole moments [Thorne, 1980] in the multipolar decomposition
of the scalar field generated by the bodies which are external with respect to the
central body. These external moments are defined on the worldline of the body in
question and are functions of the local time u only. The internal solution ϕ̂(B)(u,w)
describes the scalar field, which is generated by the body only.

4.5.2.2 The Metric Tensor: Internal Solution
The boundary conditions imposed on the internal solution for the metric tensor are
identical with those given in equations (4.64)-(4.65). For this reason the internal
solution for the metric tensor looks formally similar to that obtained in the global
coordinates in section 4.3.2, where all quantities must be referred now only to the
body under consideration. One obtains

N̂ (B)(u,w) = 2Û (B)(u,w) , (4.137)

L̂(B)(u,w) = 2Φ̂(B)(u,w) − 2β
[
Û (B)(u,w)

]2
− c2χ̂(B)

,00(u,w) , (4.138)

L̂(B)

i (u,w) = −2(1 + γ)Û (B)

i (u,w) , (4.139)

Ĥ(B)

i j (u,w) = 2γδi jÛ (B)(u,w) , (4.140)
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where all gravitational potentials of the central body are taken over the volume of
the body’s matter defined as a cross-section of the body’s world tube with the hyper-
surface of a constant local coordinate time u. Specifically, one has

Û (B)(u,w) = GÎ(B)

−1 {ρ
∗} , (4.141)

Û (B)

i (u,w) = GÎ(B)

−1

{
ρ∗νi

}
, (4.142)

Φ̂(B)(u,w) = (γ +
1
2

)Φ̂(B)

1 (u,w) + (1 − 2β)Φ̂(B)

2 (u,w) (4.143)

+Φ̂(B)

3 (u,w) + γΦ̂(B)

4 (u,w),

where

Φ̂(B)

1 (u,w) = GÎ(B)

−1

{
ρ∗ν2

}
, (4.144)

Φ̂(B)

2 (u,w) = GÎ(B)

−1

{
ρ∗Û (B)

}
, (4.145)

Φ̂(B)

3 (u,w) = GÎ(B)

−1 {ρ
∗Π} , (4.146)

Φ̂(B)

4 (u,w) = GÎ(B)

−1

{
πkk

}
, (4.147)

χ̂(B)(u,w) = −GÎ(B)

1 {ρ
∗} , (4.148)

the symbol νi = dwi/du is the velocity of the body’s matter with respect to the origin
of the local coordinates, and one has introduced a special notation

Î(B)
n { f }(u,w) =

∫
VB

f (u,w′)|w − w′|n d3w′ , (4.149)

for integrals over the body’s volume. We emphasize once again that the integrand of
Î(B)

n { f }(u,w) is a function, which is taken over the intersection of the hypersurface of
the constant time u with the world tube of the body. Changing the hypersurface of
integration alters the value of the integral.

The local metric given by equations (4.137)-(4.140) must obey the gauge condition
(4.45) which yields

1
c
∂Û (B)

∂u
+
∂Û (B)

k

∂wk = O(ε2) . (4.150)

This is the only gauge condition, which can be imposed on the local metric in the
first post-Newtonian approximation. We note that equation (4.150) is satisfied due
to the validity of the equation of continuity (4.44).
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4.5.2.3 The Metric Tensor: External Solution
Solution of the homogeneous field equations for the metric tensor given in this sec-
tion extends the multipolar formalism for description of vacuum gravitational fields
developed in [Suen, 1986; Thorne and Hartle, 1985]. Brief introduction to this for-
malism is given in Appendix A. Boundary conditions imposed on the external solu-
tion must ensure its convergency on the worldline of the origin of the local coordi-
nates, where w = 0. However, the external solution for the metric tensor diverges
as the radial distance r = |w| from the origin of the local coordinates grows. This is
because the gravitational field of the external bodies has a tidal character and does
not asymptotically vanish in the local coordinates for large r [Suen, 1986; Thorne
and Hartle, 1985].

Explicit form of the external solution for the linearized metric tensor perturbation
in the local coordinates is given by

N̂ (E)(u,w) = 2
∞∑

l=0

1
l!

QLwL + Ω2w2 −ΩpΩqwpwq , (4.151)

N̂ (E)

i (u,w) = Vi + εipqΩpwq , (4.152)

L̂(E)

i (u,w) =

∞∑
l=1

1
l!
εipqCpL−1w<qL−1> +

∞∑
l=0

1
l!

ZiLwL +

∞∑
l=0

1
l!

S Lw<iL> , (4.153)

Ĥ(E)

i j (u,w) = 2δi j

∞∑
l=0

1
l!

YLwL +

∞∑
l=0

1
l!

BLw<i jL> +
1
3

(
δi jΩ

2 −ΩiΩ j
)

w2 (4.154)

+

∞∑
l=1

1
l!

(
DiL−1w< jL−1> + εipqEpL−1w< jqL−1>

)Sym(i j)

+

∞∑
l=2

1
l!

(
Fi jL−2wL−2 + εpq(iG j)pL−2w<qL−2>

)
,

where Ωi is the angular velocity of kinematic rotation of the local frame with respect
to the global coordinates,Vi is the linear velocity of the local frame with respect to
the local frame moving along geodesic worldline (see below), and symbol “Sym(i j)"
around indices denote symmetry with respect to the indices that is equivalent to the
round brackets around indices, for instance, [Ti jL]Sym(i j) ≡ T(i j)L = (1/2)[Ti jL + T jiL].
Equations (4.151)-(4.154) keep rotational terms of the linear, O(Ω), and quadratic,
(Ω2), orders, which are relevant in discussion of the Newtonian motion of test parti-
cles.

It is worth to notice that the external solution for the metric tensor in the local
coordinates contains the monopole terms: Q and Y . We accept that time inter-
vals and spacial distances are measured in the international system of units (SI)
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irrespectively of the choice of coordinates. Then, term Q defines the rate of the
coordinate time u at the origin of the local frame, and Y defines the scale of the
spatial coordinates. Both these terms are equated to zero in most theoretical works
but one prefers to keep them in one’s equations for generality. This is because the
IAU resolutions [Soffel et al., 2003] implicitly introduce the non-zero values of Q
and Y through the scaling transformations of time and space coordinates [Brum-
berg and Kopeikin, 1990; Klioner et al., 2009a]. Currently, IAU adopts functions
Q = Y ≡ LC = 1.48082686741 × 10−8 ± (2 × 10−17 [Fukushima, 2002; Irwin and
Fukushima, 1999]. Papers [Brumberg and Kopeikin, 1990; Klioner et al., 2009a;
Kopeikin, 2010a] provide more detailed theoretical review of the problem of the
relativistic time scales in the solar system.

In order to understand physical meaning of various components of the external
solution for the metric tensor in the local coordinates it is instructive to write down
the Newtonian equation of motion of a test particle falling freely in the gravitational
field, defined only by the external metric. This equation is a geodesic worldline,
which is defined by the law of parallel transport of the particle’s four velocity. After
calculation of the Christoffel symbols (4.24)-(4.29) the particle’s acceleration reads

d2wi

du2 = Qi − V̇i − 2εi jkΩ
jνk − εi jkΩ̇

jwk +
(
Ω2δi j −ΩiΩ j

)
w j (4.155)

+Qi jw j +

∞∑
l=2

1
l!

QiLwL + O
(
ε2

)
,

where νi ≡ dwi/du, and one has neglected the post-Newtonian corrections. Linear
combination of the first two terms in the right side of this equation, Qi−V̇i, describe
kinematic acceleration of the particle with respect to the coordinate chart having
the origin moving along another geodesic. The third term, 2εi jkΩ

jνk, in the right
side of equation (4.155) is the famous Coriolis acceleration [Landau and Lifshitz,
1969] caused by the motion of the particle and rotation of the spatial axes of the
local frame with the angular velocity Ωi. The forth term, εi jkΩ̇

jwk, in the right side
of equation (4.155) is an acceleration due to the non-uniform rotation of the local
frame. The fifth term,

(
Ω2δi j −ΩiΩ j

)
w j, describes a centrifugal acceleration of

the particle. The sixth term, Q<i j>w j, is a quadrupole tidal acceleration due to the
presence of the external gravitational field of the other bodies. Last term in the right
side of equation (4.155) is the tidal acceleration due to the higher order multipoles
of the external gravitational field of the other bodies. It is interesting to note that
the centrifugal and the quadrupole tidal accelerations have similar structure. The
difference, however, is that the matrix of the centrifugal acceleration, Ω2δi j − ΩiΩ j,
is not trace-free as oppose to the tidal matrix, Qi j. However, the trace-free part of
Ω2δi j−ΩiΩ j can be singled out and absorbed to the definition of Qi j, which indicates
that the definition of Qi j should be always specified along with the specification of
the matrix of the centrifugal acceleration.

It is convenient to construct the external part of the metric tensor in such a way
that the space and time axes become orthogonal at the origin of the local coordinates.
This can be achieved, if one chooses function Vi = 0. This condition also allows
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us to give a unique interpretation of the dipole term Qi as being equal to the inertial
force per unit mass exerted on the free falling particle due to the accelerated mo-
tion of the origin of the local frame under consideration with respect to a geodesic
worldline. In other words, the metric tensor with Vi = 0 and Qi , 0 specifies a
local coordinate chart such that its origin moves with acceleration Qi with respect
to a geodesic worldline defined on the background spacetime, which is determined
exclusively by the external part of the metric tensor. We also notice that the dipole
term Zi in equation (4.153) is just a post-Newtonian correction toVi and would also
destroy orthogonality of spatial axes of the local frame at its origin. Thus, in addition
to the condition, Vi = 0, one demands Zi = 0. Therefore, the acceleration of the
origin of the local coordinates (the test particle coordinates wi = 0) is now defined
by a single function Qi in equation (4.151).

A set of eleven external STF multipole moments PL, QL, CL, ZL, S L, YL, BL, DL,
EL, FL, GL (the sign of angular brackets <> is omitted for simplicity, i.e. PL ≡

P<L>, etc.) is defined on the worldline of the origin of the local coordinates so that
these multipoles are functions of the local coordinate time u only. Furthermore, the
external multipole moments are symmetric and trace-free (STF) geometric objects
with respect to any of two indices, which are transformed as tensors with respect to
a linear transformation of spatial coordinates. In what follows, the angular velocity
of rotation of the local frame, Ωi, is assumed to be so small that the metric tensor
component εN̂ (E)

i is comparable with the post-Newtonian correction ε3L̂(E)

i . For this
reason, all terms which are quadratic with respect to N̂ (E)

i or are products of N̂ (E)

i with
either N̂ (E), or L̂(E)

i or Ĥ(E)

i j , will be neglected. Only linear with respect to N̂ (E)

i terms
and their first derivatives will be retained in the calculations which follow.

Imposing the gauge conditions (4.49)-(4.51) on the metric tensor given by equa-
tions (4.151)-(4.154) reveals that only 7 from 11 external multipole moments are
algebraically independent. More specifically, the gauge condition (4.51) leads to the
following relationship between the moments

DL =
2l(2l − 1)

2l + 1

[
YL + (1 − γ)PL − QL

]
, (l ≥ 1) . (4.156)

Three other relationships are obtained after accounting for equation (4.156) in the
gauge condition (4.50), which yields

S L = ẎL+(1−γ)
2l2 + l + 1

(l + 1)(2l + 3)
ṖL−

2l2 − 3l − 1
(l + 1)(2l + 3)

Q̇L , (l ≥ 0) , (4.157)

and

Ei =
2
5

Ω̇i , (4.158)

EL = 0 , (l ≥ 2) (4.159)

BL = 0 , (l ≥ 0) . (4.160)
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equations (4.156)-(4.160) allow us to eliminate the external multipole moments
BL, EL, DL, S L from the local metric so that the spacetime and space-space compo-
nents of the external metric tensor assume a simpler form

L̂(E)

i (u,w) =

∞∑
l=1

1
l!
εipqCpL−1w<qL−1> +

∞∑
l=1

1
l!

ZiLwL (4.161)

+

∞∑
l=0

1
l!

[
ẎL + (1 − γ)

2l2 + l + 1
(l + 1)(2l + 3)

ṖL −
2l2 − 3l − 1

(l + 1)(2l + 3)
Q̇L

]
w<iL> ,

Ĥ(E)

i j (u,w) =
1
5

(
εipqΩ̇pw< jq> + ε jpqΩ̇pw<iq>

)
+ 2δi j

∞∑
l=0

1
l!

YLwL (4.162)

+2
∞∑

l=0

2l + 1
(2l + 3) l!

[(
YiL + (1 − γ)PiL − QiL

)
w< jL>

]Sym(i j)

+

∞∑
l=0

1
(l + 2)!

Fi jLwL +

∞∑
l=0

1
(l + 2)!

εpq(iG j)pLw<qL> .

Remaining seven multipole moments PL, QL, ZL, CL, YL, FL, GL and the angular
velocity of rotation, Ωi, can not be constrained by imposing the gauge conditions.
However, the residual gauge freedom described by the differential equation (4.53)
allows us to find out further limitations on the remaining 7 sets of the multipole mo-
ments, which are explicitly shown in the right side of equations (4.161) and (4.162).
Examination of the residual gauge degrees of freedom makes it clear which mul-
tipole moments are, in fact, physically meaningful, that is can not be excluded by
infinitesimal coordinate transformations.

In order to eliminate the gauge-dependent external multipoles, which do not carry
out gravitational degrees of freedom, one uses the property of the gauge-invariance
of the linearized Riemann tensor [Misner et al., 1973, see Box 18.2] under infinites-
imally small coordinate transformations ŵα = wα + ξα(xβ)

Rαβγδ(ŵ) = Rαβγδ(w) . (4.163)

equation (4.163) must be understood as invariance of the functional form of the Rie-
mann tensor with respect to infinitesimally small gauge transformation. Computing
all components of the Riemann tensor for the external metric tensor (4.151), (4.161)
and (4.162), one finds that the external part of the Riemann tensor depends only on
three sets of the external multipole moments PL, QL, CL while all other multipole
moments vanish. More specifically, the components of the Riemann tensor com-
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puted by making use of the external metric tensor only, are 1)

R(E)

0i0 j = −ε2
∞∑

l=0

1
l!

Qi jLw<L> (4.164)

+ε4
{
δi j

[
(1 − γ)

 P̈
3

+

∞∑
l=1

1
l!

P̈Lw<L>


−

∞∑
l=1

2(l + 2)
(2l + 3)l!

Q̈Lw<L>

−

∞∑
l=0

∞∑
k=0

1
l!k!

QmL

(
QmK + (γ − 1)PmK

)
w<L>w<K>

]
+

∞∑
l=0

1
l!

ĊpLε
pq(iδ j)<qwL> +

∞∑
l=0

1
l!

Żi jLw<L>

+2
∞∑

l=1

2l + 1
(2l + 3)l!

[2Q̈L + (γ − 1)P̈L]δ(i< j)wL>

−2
∞∑

l=0

1
(2l + 5)l!

Q̈L(iw j)w<L>

−
1
2

∞∑
l=0

1
(2l + 7)l!

Q̈i jLw<L>w2

+3
∞∑

l=0

∞∑
k=0

1
l!k!

QiLQ jKw<L>w<K>

+2
∞∑

l=0

∞∑
k=1

1
l!k!

Qi jLQKw<L>w<K>

+2(β − 1)
∞∑

l=0

∞∑
k=0

1
l!k!

PiLP jKw<L>w<K>

+2(β − 1)
∞∑

l=0

∞∑
k=1

1
l!k!

Pi jLPKw<L>w<K>

+2(γ − 1)
∞∑

l=0

∞∑
k=0

1
l!k!

QL(iP j)Kw<L>w<K>
}
,

1) Equation (4.165) corrects equation (B.2) from paper [Kopeikin and Vlasov, 2004].
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R(E)

0i jk = ε3
{ ∞∑

l=1

l
(l + 2) l!

[
δi jQ̇kL − δikQ̇ jL

]
wL (4.165)

+2
∞∑

l=0

1
(l + 3) l!

[
Q̇i jLwkL − Q̇ikLw jL

]
+(γ − 1)

[ ∞∑
l=0

l + 1
(l + 2) l!

(
δi jṖkL − δikṖ jL

)
wL

+

∞∑
l=0

1
(l + 3) l!

(
Ṗi jLwkL − ṖikLw jL

)]
+

∞∑
l=0

l + 1
(l + 2)!

(
εp jkCipL −

1
2
εip jCkpL −

1
2
εipkC jpL

)
wL

−
1
2

∞∑
l=0

l
(l + 3) l!

(
εpq jCkipL − εpqkC jipL

)
w<qL>

}
,

R(E)

i jkp = ε2
{ ∞∑

l=0

1
l!

[
δipQ jkL + δ jkQipL − δikQ jpL − δ jpQikL

]
wL (4.166)

+(γ − 1)
∞∑

l=0

1
l!

[
δipP jkL + δ jkPipL − δikP jpL − δ jpPikL

]
wL

}
.

Here, the multipole moments PL are caused by the presence of the scalar field. One
can notice that only three sets of the external moments have real physical meaning.
In what follows, the moments PL, QL, and CL are chosen as the primary external
multipoles. Other four multipole moments YL, ZL, FG and GL can be chosen arbi-
trary which corresponds to the presence of four residual gauge degrees of freedom
generated by the coordinate transformations confined by equation (4.53).

Hereafter one assumes that the angular velocity of dynamic rotation of the local
frame

Ωi = 0 , (4.167)

which gives N̂ (E)

i (u,w) = 0. This assumption greatly simplifies subsequent calcu-
lations without missing any significant physics. One has to notice, however, that
rotating local coordinates have a certain practical value for satellite geodesy [Kaula,
1966; Milani et al., 1987] and global positioning system (GPS) [Ashby, 1998; Ries,
2009].

Various authors used the residual gauge freedom differently in order to take ad-
vantage of one or another property of the metric tensor in their analysis. We shall
follow the convention accepted in papers [Damour et al., 1991; Kopejkin, 1988a;
Soffel et al., 2003; Thorne and Hartle, 1985], which postulate that the space-space
component ĝi j(u,w) of the local metric tensor must be proportional to the unit matrix
(the Kronecker symbol) δi j. This postulate is in agreement with the standard PPN
formalism, where the standard gauge is used to make the space-space component of
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the metric tensor isotropic [Will, 1993, see §4.2]. The isotropic gauge allows us to
eliminate the non-linear term H<i j>N,i j in equation (4.59) in the time-time compo-
nent of the metric tensor because the STF part H<i j> = 0 in this gauge.

In order to diagonalize ĝi j(u,w) one chooses the external multipoles FL, GL as
follows

FL = 0 , (4.168)

GL = 0 , (4.169)

for all l ≥ 0. Furthermore, one makes the choice of

YL = QL + (γ − 1)PL , (4.170)

for all YL with l ≥ 1. The monopole moment Y (l=0) is left arbitrary. The gauge
restrictions (4.168)-(4.170) imposed on the external multipoles makes the space-
space component of the metric tensor diagonal in the entire domain of validity of the
local coordinates. In what follows, one prefers to preserve some gauge freedom by
leaving the set of the external multipoles ZL (l ≥ 2) arbitrary.

Finally, the external metric tensor in the isotropic gauge assumes a "canonical"
form

N̂ (E)(u,w) = 2
∞∑

l=0

1
l!

QLwL , (4.171)

L̂(E)

i (u,w) =

(
Ẏ +

1
3

Q̇ +
1 − γ

3
Ṗ
)

wi +

∞∑
l=1

1
l!
εipqCpL−1w<qL−1> (4.172)

+ 2
∞∑

l=1

2l + 1
(2l + 3)(l + 1)!

[
2Q̇L + (γ − 1)ṖL

]
w<iL> +

∞∑
l=1

1
l!

ZiLwL ,

Ĥ(E)

i j (u,w) = 2δi j

Y +

∞∑
l=1

1
l!

[
QL + (γ − 1)PL

]
wL

 . (4.173)

where the (time-dependent) monopole terms Q , 0 and Y , 0.
Now one can compute ĥ(E)

00(u,w) component of the external metric tensor up to the
post-Newtonian order by making use of equation (4.59). The most general solution
of this equation is determined up to that of a homogeneous wave equation, which
has the same form as equation (4.171). For this reason, it is not written explicitly
as it is absorbed to the post-Newtonian corrections to the multipole moments QL in
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equation (4.171). Hence, one obtains

L̂(E)(u,w) = −2

 ∞∑
l=1

1
l!

QLwL

2

− 2(β − 1)

 ∞∑
l=1

1
l!

PLwL

2

(4.174)

+

∞∑
l=0

1
(2l + 3)l!

Q̈LwLw2 .

It is interesting to note that the summation in the first two terms in the right side
of equation (4.174) originally starts from l = 0 as appears in equations (4.136) and
(4.151). However, the product of a harmonic polynomial with the monopoles Q
and P represents a homogeneous solution of the Laplace equation and, therefore,
can be absorbed to the Newtonian-like polynomial QLwL in equation (4.171) by
means of a corresponding re-definition of the multipoles QL. This can be always
done because the precise mathematical structure of the multipoles QL as functions
of the coordinates and velocities of the external bodies has not yet been specified.
This observation also helps us to recognize that the scalar field affects the external
solution of the metric tensor in the local coordinates starting from quadratic, with
respect to spatial coordinates w, terms only.

External scalar field per se can not be eliminated by a pointwise coordinate trans-
formation but it enters the external metric tensor in such a way that it is absorbed
to the multipole moments QL of the metric tensor. Hence, the external multipoles
PL do not contribute explicitly to the Newtonian equations of translational motion of
test particles and extended bodies - only their non-linear combination is observable
(see section 6.1).

4.5.2.4 The Metric Tensor: The Coupling Terms
The coupling terms in the metric tensor in local coordinates are given as a particular
solution of the inhomogeneous equation (4.59) with the right side taken as a prod-
uct of the internal and external solutions having been found at previous step of the
approximation procedure. Solving equation (4.59) yields the coupling terms of the
metric tensor in the local coordinates

L̂(C)(u,w) = −2Û (B)(u,w) × (4.175)

×

Y + (2β − γ − 1)P + 2
∞∑

l=0

1
l!

[
QL + (β − 1)PL

]
wL


−2G

∞∑
l=1

1
l!

[
QL + 2(β − 1)PL

]
Î(B)

−1

{
ρ∗wL

}
.

This completes derivation of the metric tensor in the local coordinates.

4.5.3
Multipolar expansion of gravitational field in the local coordinates

The local coordinates are introduced in the vicinity of each of the gravitating body
comprising the N-body system. We consider one of them and call it the "central"
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body which is indexed by the letter ’B’. This body, for example, can be the Earth,
and, in such case, the local coordinates are called the geocentric coordinates [Soffel
et al., 2003,?]. Gravitational field of the central body taken alone, that is when all
other (external) bodies are ignored, is described in the local coordinates in terms of
the metric tensor and scalar field which depend on the internal field potentials Û(B),
Û i

(B), Φ̂
(B)
1 , etc., defined in equations (4.141)-(4.148). Multipolar decomposition of

the internal metric tensor of the central body is basically equivalent to the procedure
of the multipolar decomposition of the gravitational field of N-body in the global
coordinates described in section 4.4. However, in contrast to the whole N-body
system, the central body is not gravitationally isolated from the other bodies of this
system and interacts with their tidal fields. This interaction brings about the coupling
terms (4.175) to the metric tensor in the local coordinates, which can contribute to the
numerical values of the body’s multipole moments in the multipolar decomposition
of the local metric tensor. The presence of the coupling terms introduces ambiguity
in the definition of the multipoles in the local coordinates and rises a question about
how it should be resolved. This problem was first noticed by Thorne and Hartle
[Thorne and Hartle, 1985].

The solution of the ambiguity problem can be found only after equations of motion
of the central body will have been derived with taking into account for all its multi-
poles. One has two possibilities: either to include or to exclude the contribution of
the coupling terms to the multipole moments of the body, and one has explored both
of them [Kopeikin and Vlasov, 2004]. It turns out that the final form of the equa-
tions of motion can be significantly simplified if the coupling terms are included to
the definition of the multipole moments. In fact, if one excludes the contribution of
the coupling terms from the definition of the internal multipoles, it produces a lot of
additional terms in the equations of motion, which vanish after suitable re-definition
of the multipole moments. One can check that the final form of such re-normalized
equations of motion coincides with that, which would be obtained, if one included
the coupling terms in the local metric tensor to the definition of the internal multi-
poles of the central body from the very beginning. The significantly simple form of
the re-normalized equations of motion is a direct indication that the coupling terms
must be included to the definition of the multipole moments of the body in the local
coordinates. This resolves the Thorne-Hartle ambiguity [Thorne and Hartle, 1985]
in the definition of the multipole moments.

Thus, the formal procedure of the multipolar decomposition of the gravitational
field in the local coordinates is based on the same field equations (4.95), (4.109) and
(4.115) for active, scalar and conformal potentials, whose right sides depend on the
active, scalar and conformal mass densities defined by equations (4.97), (4.110) and
(4.116) respectively. Each density depends on the trace of the space-space compo-
nent of the metric tensor, H, and the scalar field, ϕ. In accordance with the definition
of the multipole moments in the local coordinates, these functions must include the
contribution of the external gravitational and scalar fields. In other words, com-
putation of the mass densities in equations (4.97), (4.110) and (4.116) in the local
coordinates must rely upon the trace of the metric tensor, H, defined by the sum of
equations (4.140) and (4.173), and the scalar field, ϕ, defined by the sum of equa-
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tions (4.135) and (4.136). Solving equations (4.95), (4.109), (4.115) with the above-
defined mass densities and expanding the metric potentials in the multipolar series,
yield the internal multipole moments of the central body in the local coordinates.

One has constructed three sets of the mass multipole moments - active, scalar, and
conformal - in the global coordinates. The same type of the multipoles for each body
presents in the local coordinates as well. The active STF mass multipole moments
of the central body are [Kopeikin and Vlasov, 2004]

IL =

∫
VB

σB(u,w)w<L> d3w +
ε2

2(2l + 3)
× (4.176)

×

[
d2

du2

∫
VB

σB(u,w)w<L>w2 d3w − 4(1 + γ)
2l + 1
l + 1

d
du

∫
VB

σi
B(u,w)w<iL> d3w

]

− ε2
∫

VB

d3wσB(u,w) ×

×

Y + (2β − γ − 1)P +

∞∑
k=1

1
k!

[
QK + 2(β − 1)PK

]
wK

 w<L> ,

where VB denotes the volume of the body under consideration and the active mass
density in the body’s interior is defined as

σB = ρ∗
{

1 + ε2
[
(γ +

1
2

)ν2 + Π + γ
πkk

ρ∗
− (2β − 1)Û(B)

]}
, (4.177)

where Û(B) is the gravitational potential of the body given by equation (4.141).
The scalar STF mass multipole moments of the body are defined as

ĪL =

∫
VB

σ̄B(u,w)

1 − ε2

Y − γP +

∞∑
k=1

1
k!

QKwK


 w<L> d3w (4.178)

+
ε2

2(2l + 3)
d2

du2

∫
VB

σ̄B(u,w)w<L>w2 d3w

+ ε2
∫

VB

ρ∗(u,w)

4(1 − β)
∞∑

k=1

1
k!

PKwK − ηP

 w<L>d3w ,

where the scalar mass density of the body’s matter is defined by

σ̄B = (1 − γ)ρ∗
[
1 − ε2

(
1
2
ν2 − Π +

πkk

ρ∗

)]
− ε2ηρ∗Û(B) . (4.179)

The conformal STF mass multipole moments of the body are

ĨL =

∫
VB

σ̃B(u,w)

1 − ε2

Y + (1 − γ)P +

∞∑
k=1

1
k!

QKwK


 w<L> d3w (4.180)

+
ε2

2(2l + 3)

[
d2

du2

∫
VB

σ̃B(u,w)w<L>w2 d3w −
8(2l + 1)

l + 1
d
du

∫
VB

σi
B(u,w)w<iL> d3w

]
,
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with the conformal mass density of the body’s matter defined as

σ̃B = ρ∗
[
1 + ε2

(
3
2
ν2 + Π +

πkk

ρ∗
− Û(B)

)]
. (4.181)

Notice that the conformal density does not depend on the PPN parameters β and γ.
The density of mass current is defined in the local coordinates by

σi
B = ρ∗νi , (4.182)

and the spin multipole moments of the body are determined by the formula

S L =

∫
VB

εpq<al ŵL−1>pσ
q
B(u,w) d3w . (4.183)

Extrapolation of this definition to the post-Newtonian approximation is discussed in
section 6.2.

It is important to emphasize that the algebraic relationship (4.120) preserves its
form for the internal mass multipoles taken for each body separately, that is

IL =
1 + γ

2
ĨL +

1
2
ĪL . (4.184)

Validity of this relationship can be checked out by a straightforward calculation
[Kopeikin and Vlasov, 2004]. We also draw attention of the reader that the hyper-
surface of the integration in equations (4.176), (4.178), (4.180) is that of a constant
local coordinate time u, which does not coincide with the hypersurface of the con-
stant coordinate time t in the global coordinates (see Figure 4.3). This remark is
of a great importance for correct implementation of the matching procedure of the
local and global coordinates discussed in the next section. It will be also important
in section 6.3 for an adequate mathematical derivation of equations of motion of the
body, which requires comparison of the definition of the multipole moments of the
body in the local and global coordinates.
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2

C

D

G

L

t = constant

u = constant

Body’s World Tube

A

A

Figure 4.3 Two 3-dimensional hypersurfaces of constant time related to the global (G) and
local (L) coordinates are shown. The two hypersurfaces do not coincide because the origin of
the local coordinates moves with respect to the global one. The body’s world tube embraces a
worldline of the origin of the local coordinates. The world tube cross-section, A1, is a part of the
hypersurface of constant time t of the global coordinates, and that, A2, is a part of the
hypersurface of constant time u of the local coordinates. The line CD marks the
two-dimensional intersection of the two hypersurfaces. All integrals depending on density,
velocity and other internal characteristics of the body, are performed in the global coordinates
over the cross-section A1 whereas in the local coordinates the integration is performed over the
cross-section A2.
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5
Post-Newtonian Coordinate Transformations
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5.1
The Transformation from the Local to Global Coordinates

5.1.1
Preliminaries

General relativistic post-Newtonian coordinate transformation from local, wα, to
global, xα, coordinates are used in standard algorithms of data processing of vari-
ous astronomical observations to reduce the observable quantities to the barycentric
coordinates of the solar system [Kovalevsky et al., 1989; Seidelmann and Urban,
2010] where they are stored (cataloged) at a certain astrometric epoch recommended
for the international usage by IAU resolutions. The most commonly used epochs are
J2000 and B1950, that is, instantaneous orientation of the barycentric coordinates is
fixed by the position of vernal equinox on the sky in 2000AD or 1950AD.

Post-Newtonian coordinate transformation from the local to global coordinates is
an inalienable part in the procedure of derivation of general relativistic equations
of motion of test particles (like artificial satellites), extended bodies in the solar
system [Ashby and Bertotti, 1984, 1986; Brumberg and Kopeikin, 1989; Brum-
berg and Kopejkin, 1989a,b; Damour et al., 1991, 1992; Klioner and Soffel, 2000;
Klioner and Voinov, 1993; Kopeikin, 1989a,b; Kopejkin, 1988a, 1991b; Mashhoon,
1985; Shahid-Saless and Ashby, 1988] as well as compact relativistic stars in binary
systems emitting gravitational waves [Damour, 1983, 1987; D’Eath, 1975a,b; Gr-
ishchuk and Kopeikin, 1986; Kopeikin, 1985]. Though calculations of equations of
relativistic celestial mechanics are done mostly in the framework of general relativ-
ity, it is widely accepted that scalar fields exist since they provide elegant solution
of various problems encountered in modern theoretical physics of fundamental par-
ticles, gravitation, and cosmology [Macías et al., 2001]. Therefore, it is natural to
generalize the existing form of general-relativistic post-Newtonian transformation
from the local to global coordinates [Soffel et al., 2003] to make them compatible
with the scalar-tensor theory of gravity [Kopeikin, 2010a]. Solution of this prob-
lem in terms of the PPN parameters β and γ has been found in paper [Kopeikin
and Vlasov, 2004] and is explained in the present section. Alternative approach was
worked out by Klioner and Soffel [Klioner and Soffel, 2000]. It is compared it with
the approach of the present book in sections 4.1 and 5.2.1.

The PPN coordinate transformations from the local geocentric (GCRS) coordi-
nates to global barycentric (BCRS) coordinates can be found by making use of the
mathematical technique of matching of asymptotic expansions [Eckhaus, 1973] as
proposed by D’Eath [1975a,b]. The idea is that the metric tensor represents one and
the same solution of the field equations, which is given in the form of two differ-
ent post-Newtonian expansions depending on whether it is expressed in terms of the
global or local coordinates. However one chooses the coordinates the solution must
describe the same physical situation. Therefore, the two post-Newtonian expansions
of the metric tensor must match smoothly in space domain, where both coordinate
charts overlap. This domain of the matching is defined as a region in which the post-
Newtonian expansion of the metric tensor exists and is not divergent. In the case of a
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weak gravitational field this domain extends from the origin of the local coordinates
associated with the body under consideration (Earth) up to the closest celestial body
(Moon). In N-body system comprised of the bodies with a strong gravitational field
like neutron stars and/or black holes, the local coordinates overlap with the global
ones in a smaller domain, called the buffer region, in which the gravitational field of
the body and the tidal gravitational field of external bodies are comparatively weak
[D’Eath, 1975a,b; Thorne and Hartle, 1985]. The domain of applicability of the local
coordinates can be stretched out to a larger distance if the post-Newtonian expansion
of the metric tensor in the local coordinates is written down in a self-closed form
[Klioner and Voinov, 1993].

A special relativistic part of transformation from the local to global coordinates
is a linear Poincaré transformation (see Section 2.3.6) that takes into account only
kinematic aspects of the transformation depending on the velocity of motion of the
local frame with respect to the global one. The special relativistic transformation
is described at each instant of time by 10 parameters characterizing the structure
of the tangent Minkowski spacetime at each point of the worldline of the origin of
the local coordinates [Fock, 1964; Landau and Lifshitz, 1975; Misner et al., 1973].
These parameters include 3 space and 1 time translations, 3 spatial rotations, and
3 Lorentz boosts depending on 3-velocity of the origin of the local frame with re-
spect to the global coordinates. General relativity generalizes the Poincaré trans-
formation by accounting for the presence of dynamic effects (acceleration) in the
motion of the local frame as well as for the effects of the external gravitational field
of the other bodies and the background curvature of the spacetime. Papers [Ashby
and Bertotti, 1986; D’Eath, 1975a,b; Kopejkin, 1988a] demonstrated that in general
relativity the post-Newtonian coordinate transformation from the local to global co-
ordinates is, actually, non-linear and has more than 10 parameters, all depending
on time. Scalar-tensor theory of gravity brings about additional complications to the
relativistic theory of reference frames in the solar system that is caused by the depen-
dence of the post-Newtonian transformation on the scalar field, which is described
by two more parameters, γ and β. However, the scalar-tensor theory does not change
the basic approach to finding the parameterized post-Newtonian (PPN) transforma-
tion, which structure remains the same as that used in general theory of relativity. A
new feature that must be carefully incorporated to the theory is the matching of the
post-Newtonian expansions of the scalar field besides the metric tensor [Kopeikin
and Vlasov, 2004].

The PPN coordinate transformation between the global and local coordinates be-
longs to the class of transformations which must comply with the gauge condition
(4.45). Therefore, one should begin with finding the most general structure of such
coordinate transformations. As soon as this structure is known it can be further spe-
cialized by reducing the number of the gauge degrees of freedom. This is achieved
by making use of the matching technique applied for establishing a one-to-one cor-
respondence between the two asymptotic expansions of the metric tensor and scalar
field written down in the global and local coordinates. This procedure allows us
to deduce the PPN coordinate transformation with the PPN parameters β and γ in
the form which is consistent with the covariant nature of the scalar-tensor theory of
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gravity. We shall show that the PPN transformation from the local to global coordi-
nates can be represented as an expansion in a Taylor series with respect to two small
parameters, ε = 1/c and r/R, where r is the distance from the origin of the local
coordinates (the body) to the matching point, and R is a characteristic distance from
the body to the nearest external body. Coefficients of the power series expansion of
the PPN transformation are symmetric and trace-free (STF) tensors depending on
time, which are determined in the course of the matching procedure simultaneously
with the external multipole moments, PL, QL, CL of the metric tensor and scalar
field. The STF coefficients of the PPN coordinate transformation are functions of
time that are ’pinned down’ to the origin of the local coordinates. The matching
procedure shows that the STF coefficients of the most general form of the PPN co-
ordinate transformation couples linearly with the external STF multipole moments
of the local metric tensor in equations (4.151)-(4.154). For this reason the matching
allows us to derive only a set of equations defining their algebraic sum. It reflects the
presence of the residual gauge freedom, which can be used in order to simplify either
the structure of the PPN coordinate transformation or that of the metric tensor in the
local coordinates. One has used this gauge freedom in section 4.5.2.3 to suppress the
number of the external multipole moments, which have no direct physical meaning.
Elimination of the non-physical multipole moments from the metric tensor leads to
more simple structure of the PPN transformation as well. These subtle issues are
discussed in the next sections in more detail.

5.1.2
General structure of the coordinate transformation

The most general structure of the PPN coordinate transformation from the local,
wα = (cu,wi), to global, xα = (ct, xi), coordinates in the weak-field and slow-motion
post-Newtonian approximation is given by two equations:

u = t + ε2ξ0(t, x) , (5.1)

wi = Ri
B + ε2ξi(t, x) , (5.2)

where ξ0 and ξi are the post-Newtonian corrections to the Galilean transformation:
u = t, wi = Ri

B, Ri
B = xi − xi

B(t), and xi
B(t) is the position of the origin of the local

frame at time t with respect to the origin of the global coordinates. We shall prove
later on that the origin of the local coordinates can be always chosen at any instant
of time at the center of mass of the central body around which the local coordinates
have been constructed. In what follows, velocity and acceleration of the origin of the
local coordinates are denoted as vi

B ≡ ẋi
B and ai

B ≡ ẍi
B respectively, where here and

everywhere else, the overdot must be understood as an ordinary time derivative with
respect to time t.

Pointwise matching equations for the scalar field, the metric tensor, and the
Christoffel symbols are given by the law of their transformation from one set of
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coordinates to another [Dubrovin et al., 1984; Misner et al., 1973; Schouten, 1954]

ϕ(t, x) = ϕ̂(u,w) , (5.3)

gµν(t, x) = ĝαβ(u,w)
∂wα

∂xµ
∂wβ

∂xν
, (5.4)

Γ
µ
αβ(t, x) = Γ̂νρσ(u,w)

∂xµ

∂wν

∂wρ

∂xα
∂wσ

∂xβ
+
∂xµ

∂wν

∂2wν

∂xα∂xβ
. (5.5)

One recalls that g0i component of the metric tensor does not contain terms of the
order O(ε) because one has stipulated that both the global and the local frames are
not dynamically rotating. This fact, after having been implemented in equation (5.4),
implies that function ξ0(t, x) from equation (5.1) must be subject to the following
restriction

ξ0,k = −vi
B + O(ε2) (5.6)

. This is a partial differential equation, which can be integrated yielding the following
result as

ξ0(t, x) = −A(t) − vk
BRk

B + ε2κ(t, x) + O(ε4) , (5.7)

where A(t) and κ(t, x) are analytic but otherwise yet unspecified functions except
that functionA(t) depends only on time t.

Let us now use the gauge conditions in the form of equation (4.47) in order to
impose further restrictions of the PPN functions ξ0 and ξi entering equations (5.1)
and (5.2). The gauge conditions (4.47) can be written in arbitrary coordinates as an
exact equality

gαβΓµαβ =
ζ ,µ

1 + ζ
, (5.8)

where ζ is the perturbation of the scalar field defined in equation (4.13). The law of
transformation of the Christoffel symbols, equation (5.5), after being substituted to
equation (5.8) yields a partial differential equation of the second order

gαβ(t, x)
∂2wµ

∂xα∂xβ
= 0 , (5.9)

which fully agrees with equation (4.53, and describes a residual gauge freedom of
the PPN transformation in the scalar-tensor theory of gravity.

Let us now substitute functions u ≡ w0/c and wi from equations (5.1) and (5.2),
and ξ0 from equation (5.7) to equation (5.9). One obtains two Poisson equations

∇2κ(t, x) = 3vk
Bak

B − Ä − ȧk
BRk

B + O(ε2) , (5.10)

∇2ξi(t, x) = −ai
B + O(ε2) , (5.11)
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which define two functions κ and ξi. General solution of these, elliptic-type equa-
tions can be written down in the form of a Taylor expansion with respect to the
scalar and vector spherical harmonics as explained in appendix A. Furthermore, the
solution for functions κ(t, x) and ξi(t, x) consist of two parts - a general solution of
the homogeneous Laplace equation and a particular solution of the inhomogeneous
Poisson equation. We exclude a singular part of the general solution of the homoge-
neous equation, which diverges at the origin of the local coordinates wi = 0. Such
ill-behaved terms may appear in other alternative theories of gravity, which admit vi-
olation of the fundamental law of conservation of the linear momentum. The scalar-
tensor theory of gravity does not admit the appearance of such singular functions in
the local metric as they have no counterparts and can be matched neither with scalar
field nor the metric tensor expressed in the global coordinates.

After taking into account this remark, integration of equations (5.10) and (5.11)
results in

κ =
(1
2

vk
Bak

B −
1
6
Ä

)
R2

B −
1
10

ȧk
BRk

BR2
B + Ξ(t, x) , (5.12)

ξi = −
1
6

ai
BR2

B + Ξi(t, x) , (5.13)

where functions Ξ and Ξi are non-singular solutions of the homogeneous Laplace
equation. These solutions can be written down in the form of harmonic polynomials

Ξ(t, x) =

∞∑
l=0

1
l!
B<L>RL

B , (5.14)

Ξi(t, x) =

∞∑
l=1

1
l!
D<iL>RL

B +

∞∑
l=0

εipq

(l + 1)!
F<pL>R<qL>

B +

∞∑
l=0

1
l!
E<L>R<iL>

B , (5.15)

where the polynomial coefficients B<L>, D<L>, F<L>, and E<L> are time-dependent
STF tensors. These tensors are defined on the worldline of the origin of the local co-
ordinates and depend only on the global time t. Explicit form of these functions will
be obtained later in the process of matching of the global and local metric tensors
as well as the scalar field. Finally, one draws attention of the reader that STF func-
tions entering the coordinate transformations (5.14) and (5.15) have been denoted
by capital calligraphic letters, while the STF multipole moments entering the ex-
pressions for the local metric, equations (4.171)-(4.173), and the scalar field (4.136)
have been denoted by the capital Roman letters. These notations are supposed to
help to distinguish the different mathematical origination of these functions.

5.1.3
Transformation of the coordinate basis

Further derivation of the PPN coordinate transformation makes use of the matching
equation (5.4) for the metric tensor applied in the domain of overlapping of the local
and global coordinates. This equation contains the matrix of transformation Λβ

α =
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∂wβ/∂xα between the two coordinate bases, êα ≡ ∂/∂wα and eα ≡ ∂/∂xα, in the local,
wα, and global, xα, coordinates respectively. Transformation between the bases reads

eα = Λβ
αêβ , (5.16)

and one assumes that the matrix of the transformation Λβ
α is non-singular. It means

that it can be inverted so that the inverse matrix βαג is defined by a standard rule
[Misner et al., 1973]

Λα
βג
β
γ = δαγ . (5.17)

The inverse matrix is required to get the inverse PPN transformation between the
two bases. The matrix Λα

β can be expanded in the post-Newtonian series, which
is a consequence of the post-Newtonian expansion of the coordinate transformation
described in a previous section. The post-Newtonian expansion of the matrix of the
transformation is as follows

Λ0
0 = 1 + ε2

B(t, x) + ε4
D(t, x) + O(ε5) , (5.18)

Λ0
i = −εvi

B + ε3
B

i(t, x) + O(ε5) , (5.19)

Λi
0 = −εvi

B + ε3
P

i(t, x) + O(ε5) , (5.20)

Λi
j = δi

j + ε2
R

i
j(t, x) + O(ε4) , (5.21)
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where the coefficients of the expansion are the following functions of the global
coordinates:

B(t, x) = v2
B − ak

BRk
B − Ȧ , (5.22)

D(t, x) =

(
1
3
Ä − vk

Bak
B +

1
5

ȧk
BRk

B

) (
v j

BR j
B

)
(5.23)

+

(
1
2

a2
B +

3
5

vk
Bȧk

B −
1
10

äk
BRk

B −
1
6

...
A

)
R2

B

+

∞∑
l=0

1
l!

(
Ḃ<L> − vk

BB<kL>

)
RL

B ,

B
i(t, x) =

(
vk

Bak
B −

1
3
Ä

)
Ri

B −
1
10

ȧi
BR2

B −
1
5

ȧk
BRk

BRi
B +

∞∑
l=0

1
l!
B<iL>RL

B , (5.24)

P
i(t, x) =

1
3

ai
Bvk

BRk
B −

1
6

ȧi
BR2

B +

∞∑
l=1

1
l!

(
Ḋ<iL> − vk

BD<ikL>

)
RL

B − vk
BD<ik> (5.25)

+εipq

∞∑
l=1

1
l!

(
Ḟ<pL−1> −

l
l + 1

vk
BF<pkL−1>

)
RqL−1

B

−vk
Bεipk

∞∑
l=0

1
(l + 1)!

F<pL>RL
B +

∞∑
l=0

1
l!
Ė<L>R<iL>

B

−

∞∑
l=0

l + 1
l!
E<L>v<i

B RL>
B ,

R
i

j(t, x) = −
1
3

ai
BR j

B +

∞∑
l=0

1
l!

(
D<i jL> + δi jE<L> +

1
l + 1

εip jF<pL>

)
RL

B (5.26)

+εipq

∞∑
l=0

l + 1
(l + 2)!

F< jpL>RqL
B +

∞∑
l=0

1
l!
E< jL>R<iL>

B

−2
∞∑

l=0

1
(2l + 3)l!

E<iL>R< jL>
B .

Components of the inverse matrix αβג can be deduced from equations (5.22)-(5.26)
by applying relationship (5.17).

Formulas (5.22)-(5.26) allow us to evaluate the size of the entire domain of ap-
plicability of the local coordinates. The radius of this domain is determined by the
condition that the determinant of the matrix Λα

β of the coordinate transformation is
zero. Calculating the determinant of the matrix one obtains

det
(
Λα

β

)
= 1 + ε2

[
−Ȧ + 3E −

4
3

(
ak

B −
5
2
Ek

)
Rk

B (5.27)

+

∞∑
l=2

(l + 1)(2l + 3)
(2l + 1)l!

E<L>RL
B

 + O
(
ε4

)
.
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Radius of convergence of the polynomial in the right side of equation (5.27) crucially
depends on the choice of functions EL. Later on, one will derive equations (5.64),
(5.65)) which will be used to prove that it is possible to make function Ei = ai

B,
and all other functions EL = 0 for any l ≥ 2. Then, if one also takes into account
equations (5.57) and (5.63) from the next section (putting for simplicity Q = Y = 0
in there), the determinant (5.27) turns to zero at the distance RB ≈ c2/(2aB). In
case of the local geocentric frame attached to the Earth and moving around the Sun
with acceleration aB ' 0.6cm/s2, the distance RB is about 1021 cm. Hence, the local
geocentric frame covers a region which includes the entire solar system. In case of
a binary pulsar with a characteristic size of the orbit ∼ 1010 cm, the local coordinate
system attached to the pulsar covers the region with a radius about 1014 cm, which
also significantly exceeds the distance between the pulsar and its companion. This
remark can be important for researchers doing analysis of the physical processes
going on in pulsar’s magnetosphere [Mestel, 2000].

This consideration suggests that the metric tensor defined originally in the local
coordinates only in the domain restricted by the distance to the nearest external grav-
itating body can be extrapolated far beyond this boundary. Such extrapolation can
be accomplished by choosing another form of the solution of the homogeneous field
equations in the local coordinates describing the background gravitational field of
external bodies. Some research in this direction had been pursued by Klioner and
Voinov [1993].
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5.2
Matching Transformation of the Metric Tensor and Scalar Field.

5.2.1
Historical background

PPN coordinate transformations (5.18)-(5.26)) introduced in the previous chapter
depend on a number undetermined functions that are to be specified for practical as-
tronomical calculations in the solar system. Moreover, the metric tensor in the local
coordinates (4.171)-(4.175) is expressed in terms of the external multipole moments
QL, PL, etc., which have not been specified in terms of coordinates and velocities of
the solar system either. On the other hand, the metric tensor (4.68)-(7.62.7) in the
global coordinates is fully defined in terms of the integrals taken over the distribution
of matter of the N body system. It is clear that the two post-Newtonian expressions
of the metric tensor must match each other if the PPN coordinate transformation of
the metric tensor is applied. The same rule should be true for the scalar field. The
matching determines the external multipole moments in the local coordinates and
the functions in the PPN coordinate transformation, thus, fixing the residual gauge
freedom. This mathematical technique is known in the theory of differential equa-
tions as the method of matched asymptotic expansions (also called the boundary
layer method [Zwillinger, 1998]), which has been originally developed for finding
solutions of the ordinary and partial differential equations long time ago [Eckhaus,
1973; Hinch, 1991].

The idea of implementing this method in general relativity goes back to a earlier
work by Einstein and Rosen [1935], where the authors discussed the problem of mo-
tion of gravitationally-interacting particles by treating them as topological structures
(‘bridges’) on spacetime manifold endowed with metric that is a regular solution of
the Einstein field equations. Fock [Fock, 1964] had applied the matching technique
to join two expansions of the metric tensor in the near and far (radiative) zones of
an isolated astronomical system emitting gravitational radiation 1) Manasse [1963]
studied a radial fall of a small black hole onto a massive gravitating body and cal-
culated a tidal distortion of the black hole’s horizon by making use of the matching
technique. Thorne [Thorne, 1969] and Burke [Burke, 1971] suggested to use the
matching technique for imposing an outgoing-wave radiation condition on the post-
Newtonian metric tensor for an isolated N body system emitting gravitational waves.
This method helps to pick up a causal solution of the homogeneous Einstein equa-
tions in the post-Newtonian approximation scheme and to postpone the appearance
of ill-behaved (divergent) integrals, at least, up to the fourth PNA [Anderson et al.,
1982; Anderson and Madonna, 1983; Kates and Madonna, 1982].

Demiański and Grishchuk [1974] used the matching technique to show that a black
hole orbits its companion of a comparable mass in accordance with the Newtonian
equations of motion. At about the same time, D’Eath [1975a,b] had explored the idea
of matching, proposed by Hawking, to work out a detailed post-Newtonian solution

1) Blanchet [Blanchet, 1987] discusses Fock’s procedure in more detail.
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of the problem of motion of two Kerr black holes comprising a binary system. He
made use of the matching of the internal (local coordinates) and external (global
coordinates) solutions of the Einstein equations and successfully derived general-
relativistic (a la Einstein-Infeld-Hoffmann) equations of motion of the black holes
in the first post-Newtonian (1 PN) approximation. Kates [1980a,b] extended the
analysis and obtained gravitational radiation-reaction force (2.5 PNA) for two black
holes making up a binary system. He has also elaborated on a rigorous mathematical
treatment of the matched asymptotic expansions technique for various applications
in general relativity [Kates, 1981]. Damour [1983] used the asymptotic matching
technique to solve the problem of motion of two spherically-symmetric and non-
rotating compact bodies with the gravitational radiation reaction force taken into
account. He proved that the body’s mass which appears in the external solution of
the two-body problem as a constant parameter, is the same as that characterizing
the Schwarzschild metric of a non-rotating black hole. Thorne and Hartle [1985]
applied the matching technique to study the problem of translational motion and
precession of compact bodies possessing the intrinsic quadrupole moments. Their
method being combined with the mathematical technique of D’Eath [1975a], was
employed by Kopejkin [1988a] to derive the post-Newtonian equations of motion of
extended bodies in N-body system in the weak-field and slow-motion approximation.
The paper [Kopejkin, 1988a] also demonstrates how to construct a local coordinate
system in the post-Newtonian approximation with the origin moving exactly along
the worldline of the center of mass of the extended body having arbitrary shape and
rotating.

The matching technique used by Kopejkin [1988a] led to the development of the
Brumberg-Kopeikin (BK) formalism in the theory of astronomical reference frames
for the solar system. Later on, it has been improved in a series of subsequent pub-
lications [Brumberg and Kopeikin, 1989, 1990; Brumberg and Kopejkin, 1989a,b;
Klioner and Voinov, 1993; Kopeikin and Vlasov, 2004; Kopejkin, 1991b]. Similar
matching technique was used in papers by Damour et al. [1991, 1992] resulting in
Damour-Soffel-Xu (DSX) formalism of the post-Newtonian celestial mechanics of
an isolated astronomical system. Both BK and DSX formalisms are complementary
and were used in making resolutions on the relativistic reference frames and time
scales in the solar system adopted by the 20-th General Assembly of the IAU [Soffel
et al., 2003]. In the present book the technique of the matched asymptotic expan-
sions is applied in the framework of the scalar-tensor theory of gravity. It helps us
to incorporate the IAU resolutions on reference frames in the solar system to the
parameterized post-Newtonian (PPN) formalism [Will, 1993] linking experimental
gravity and fundamental astronomy.

Both BK and DSX formalisms use the same theoretical principles in constructing
the post-Newtonian celestial mechanics of N-body system except for minor mathe-
matical differences. This book elaborates further on the BK-DSX formalism for the
purposes of applied relativity in astronomy. More specifically, this book:

• extends the BK-DSX formalism to the class of scalar-tensor theories of gravity;
• gives the post-Newtonian definition of the internal multipole moments in the
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scalar-tensor theory of gravity and incorporates them to the PPN coordinate trans-
formations and equations of motion;

• develops the correct matching procedure of the metric tensor and scalar field in the
scalar-tensor theory of gravity;

• constructs a set of global and local coordinates;
• describes relativistic celestial dynamics of the N-body system consisting of the

rotating bodies possessing any number of the internal multipoles.

We follow closely to the line of study published by Kopeikin and Vlasov [2004].
It should be noticed that Damour and Esposito-Farese [1992] also proposed def-

inition of the post-Newtonian multipole moments for an isolated N-body system in
the scalar-tensor theory of gravity. However, they have focused on discussing ex-
perimental tests of this theory with pulsar timing and gravitational wave astronomy
but did not work out the matching procedure for construction of the astronomical
reference frames in the solar system.

Klioner and Soffel [Klioner and Soffel, 2000] have also tried to re-build the stan-
dard PPN formalism [Will, 1993] by making use of the DSX matching technique
and to construct the PPN local coordinates for a parameterized description of the
celestial mechanics of N-body system. They have used the PPN-parameterized def-
initions of the post-Newtonian multipoles given in [Damour and Esposito-Farese,
1992]. However, the paper [Klioner and Soffel, 2000] did not rely upon a particular
class of alternative gravitational theory and abandoned the use of gravitational field
equations in the matching procedure. It makes the Klioner-Soffel parametrization of
the IAU theory of reference frames doubtful (see [Kopeikin and Vlasov, 2004] for
further discussion).

5.2.2
Method of the matched asymptotic expansions in the PPN formalism

Method of the matched asymptotic expansions is the most powerful mathematical
tool for solving differential equations depending on small parameters for which a
regular perturbation series method fails. It occurs any time when solution of the
differential equation can not satisfy to all boundary conditions simultaneously [Eck-
haus, 1973; Hinch, 1991]. In this case the solution is looked for in the form of
several asymptotic expansions each being valid in a smaller domain of spacetime
and satisfying, at least, one of the boundary conditions. Subsequent matching of
the asymptotic expansions in a buffer region (boundary layer) where, at least, two
of the asymptotic expansions are valid and convergent, allows us to find the law of
transformation from one expansion to another and to retrieve coefficients of these
expansions. This completes the procedure of solving the differential equation.

In the present book the asymptotic post-Newtonian expansions, which are used in
the matching procedure, are solutions of the gravity field equations for the metric
tensor and scalar field. They are found in the global and local coordinates and are
subject to different boundary conditions imposed respectively at infinity and at the
origin of the local coordinates. These solutions are shown in equations (4.68)-(4.72)
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and (4.135), (4.136), (4.171)-(4.175). Solution for the metric tensor and scalar field
in the global coordinates is valid everywhere inside and outside of the N-body system
up to infinity including the interior of the bodies. This is because one has stipulated
that in global coordinates the gravity field is weak everywhere, regular at infinity,
and has no singularities because one works with a smooth distribution of matter
having continuous tensor of energy-momentum. Had one worked with the tensor of
energy-momentum of massive, point-like particles one would have singularities on
the particle’s worldlines [Infeld and Plebanski, 1960]. In such case the method of
matched asymptotic expansions is the only way to derive the equations of motion of
the particles without ambiguities [Blanchet, 2002b].

Because the spacetime singularities are not admitted, it is tempting to think that a
single global coordinate chart is sufficient to describe the post-Newtonian celestial
dynamics of the N-body system. This idea was indeed dominating in earlier works
deriving the relativistic equations of motion [Brumberg, 1972; Fock, 1964; Infeld
and Plebanski, 1960; Landau and Lifshitz, 1975; Soffel, 1989]. A single coordinate
chart is still implemented in relativistic astrophysics for calculating equations of mo-
tion of massive point particles [Damour and Schäfer, 1985; Jaranowski and Schäfer,
1998; Memmesheimer and Schäfer, 2005; Schäfer, 1985] in a model of coalescing
binary systems consisting of two black holes. However, the single coordinate chart
is not sufficient for purposes of applied relativity and relativistic celestial mechanics
of the solar system for two reasons.

First, the local coordinates are required to give physically meaningful definition of
the internal multipole moments of each body In addition, one must know how this
definition relates to the definition of these multipoles given in the global coordinates.
This relationship between the two definitions of the internal multipole moments is a
key element in the procedure of derivation of the equations of motion of extended
bodies having finite size [Kopeikin and Vlasov, 2004]. We discuss the importance
of this issue in section 6.3 in more detail.

Second, the global barycentric coordinates of the solar system are not appropri-
ate reference frame for analysis of gravitational experiments and motion of artificial
satellites orbiting the Earth [Brumberg and Kopejkin, 1989a]. They are also inappro-
priate in data processing of Very Long Baseline Interferometry (VLBI) [Kopeikin,
1990]. This is because the Earth is embedded to the gravitational field of other bod-
ies of the solar system and moves with acceleration with respect to them (orbits
the barycenter of the solar system). Simple translation of the origin of the global
coordinates to the geocenter (the Galilean transformation) that was frequently used
in early publications [Brumberg, 1972; Caporali, 1981; Fock, 1964; Spyrou, 1975;
Will, 1993] does not take into account relativistic aspects of the coordinate transfor-
mations on the curved spacetime manifold and, hence, can not eliminate a large num-
ber of coordinate-dependent (nonphysical) effects, which complicate adequate phys-
ical interpretation of astronomical observations [Brumberg and Kopejkin, 1989b;
Kopejkin, 1988a; Mashhoon, 1985; Soffel et al., 1986]. Will [1993] understood this
problem fairly well but he did not propose any method for construction of the local
coordinates in the vicinity of a massive body in the post-Newtonian approximation.
The number of the coordinate-dependent effects becomes much smaller if one uses
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correct relativistic procedure to transform the global coordinates to the local ones.
Such post-Newtonian transformation simplifies drastically the analysis of astronom-
ical observations and the description of relativistic dynamics of the lunar motion and
artificial satellites [Brumberg, 1991; Brumberg and Kopejkin, 1989a; Damour et al.,
1994; Xie and Kopeikin, 2010].

The internal solution for the metric tensor and scalar field in the local coordinates
contain the external multipole moments which can not be found as explicit functions
of time without matching of the local solution of the gravity field equations to the
global one. The matching allows us to express the external multipole moments in
terms of the gravitational potentials (4.74) characterizing the global metric tensor
and scalar field. At the same time the matching procedure determines the structure
and a particular form of the PPN coordinate transformation between the global and
local coordinates.

Solution of some problems in cosmology [Deruelle and Mukhanov, 1995] requires
to match not only the metric tensor but its first derivatives as well. This is typical in
case of the presence of one or more boundary layers separating matter’s world tube
from empty spacetime. The problem of the boundary layers is beyond of the scope
of this book. One stipulates that the metric tensor and scalar field are smoothly
differentiable functions in the matching domain and their first derivatives have no
jumps. Therefore, equation (5.5) is a consequence of the matching equation (5.4).
Matching of the local and global solutions of the metric tensor and scalar field is
based on equations (5.3) and (5.4), and consists of the following steps:

Step 1. One re-writes expressions for the local metric tensor and scalar field in the
right side of equations (5.3) and (5.4) in terms of the global coordinates (t, x). This
is achieved by making use of a Taylor expansion of ϕ̂(u,w) and ĝαβ(u,w) around
the point xα = (ct, x).

Step 2. One calculates the partial derivatives of the local coordinates with respect to
the global ones, that is the matrix of transformation of the coordinate bases given
in section (5.1.3).

Step 3. One separates the gravitational potentials in the left side of equations (5.3)
and (5.4) in two parts - one relating to the body under consideration (Earth) and
the other characterizing the external bodies (Moon, Sun, etc.):

U(t, x) = U (B)(t, x) + Ū(t, x) , (5.28)

U i(t, x) = U (B)

i (t, x) + Ū i(t, x) , (5.29)

χ(t, x) = χ(B)(t, x) + χ̄(t, x) , (5.30)

Φk(t, x) = Φ(B)

k (t, x) + Φ̄k(t, x) , (k = 1, ..., 4) , (5.31)

where functions with index (B) are given by integrals (4.75)-(4.82) taken only over
the volume of the body in question, and the bar over the other functions indicates
that the corresponding sum in the definitions (4.74) of these functions excludes the
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body with the index B, that is the sum takes into account only the external bodies

Ū =
∑
A,B

U (A) , Ūi =
∑
A,B

U (A)

i , Φ̄k =
∑
A,B

Φ(A)

k , χ̄ =
∑
A,B

χ(A) . (5.32)

Step 4. One expands the gravitational potentials of the external masses (that is func-
tions with the bars in equations (5.28)-(5.32)) in a Taylor series in powers of
Ri

B = xi − xi
B in the vicinity of the origin of the local coordinates, that is the point

xi = xi
B.

Step 5. One equates similar terms of these Taylor expansions from the left side of
the matching equations (5.3) and (5.4) with the corresponding Taylor expansions
entering their right side.

Step 6. One separates the matching equations in symmetric and anti-symmetric
parts that are algebraically independent. Equating left and right sides of these
equations determine all functions in the local metric tensor and scalar field, which
remained undetermined so far, as well as the form of the expansion coefficients in
the coordinate transformations. This fixes the residual gauge freedom and brings
about the laws of translational and rotational motion of the local reference frame.

Let us now explain each step of the matching procedure in more detail.

5.2.3
Transformation of gravitational potentials from the local to global coordinates

5.2.3.1 Transformation of the Internal Potentials
At the first step of the matching procedure one has to transform the metric tensor and
the scalar field in the right side of matching equations (5.3) and (5.4) from the local,
wα = (cu,w), to global, xα = (ct, x), coordinates. It is also conceivable to make a
reciprocal transform of all functions in the left side of equations (5.3) and (5.4) to
the local coordinates wα = (cu,w). However, it is more convenient and simpler to
express the metric tensor and scalar field from the right side of equations (5.3) and
(5.4) in global coordinates xα = (ct, x) in accordance to the transformations (5.1),
(5.2), (5.12)-(5.15), which are already displayed in terms of the global coordinates.
One reminds that the internal gravitational potentials associated with the scalar field,
equation (4.135), and the metric tensor, equations (4.141)-(4.148), are defined in the
local coordinates wα = (cu,w) as integrals over a hypersurface of constant coordi-
nate time u. On the other hand, the corresponding gravitational potentials, equations
(4.75)-(4.81), are defined in the global coordinates xα = (t, x) as integrals over a
hypersurface of constant coordinate time t. These two hypersurfaces do not coin-
cide in the post-Newtonian theory of gravity and can intersect only at the points that
form a two-dimensional sub-hypersurface (see Figure 4.3). For this reason, in order
to transform the internal potentials defined in the local coordinates, wα = (cu,w),
to those defined in the global coordinates, xα = (ct, x), one needs to make a point-
wise transformation given by equations (5.1)-(5.2) along with a Lie transform of
integrands of the integrals, which displaces the integrands from the hypersurface of
constant time u to that of constant time t (see Fig 5.1). This procedure was worked
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Figure 5.1 Matching the local and global coordinates requires to calculate integrals from
various functions, depending on the internal structure of the body, over two different
hypersurfaces of constant time, u and t, as shown in Figure 4.3. Relationship between the
integrals taken on the two hypersurfaces is established with the help of the Lie transport from
one hypersurfaces to another. The integral curves used in the Lie transport are the worldlines
of the four-velocity of body’s matter. For the sake of simplicity, only one of such lines, MN, is
shown in the figure. Dashed line is the worldline of the origin of the local coordinates, which
coincides with the center of mass of the body under consideration. In the most general case,
the worldline of the center of mass is not tangent to the four-velocity of any material particle
inside the body.
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out by Kopejkin [1991b] and applied by Brumberg and Kopejkin [1989a] for solv-
ing the problem of motion of artificial satellites. Pati and Will [2000] discuss it for
derivation of equations of motion of extended bodies via direct integration of the
relaxed Einstein equations. We describe the Lie transport below in more detail.

Let us assume that the field point P at which the matching of the internal and exter-
nal solutions of the metric tensor and the scalar field is done, has global coordinates
xα(P) = (ct, x) and local coordinates wα(P) = (cu,w) (see Figure 5.1). Notice that
the coordinates have different numerical values but the physical point P is one and
the same. These coordinates are related by the pointwise PPN transformation given
by equations (5.1)-(5.2). By definition, the matching point P belongs simultaneously
to both the hypersurface of constant time u and to that of the constant time t. Let
us consider a matter element of the body B located at the point N and lying on the
same hypersurface of the constant time u inside body’s world tube. One assumes
that the point N has local coordinates, wα(N) = (cu,w′(u)), and global coordinates,
xα(N) = (ct′, x′(t′)). We emphasize that the time coordinate u of the points P and
N has the same numerical value because they are located on the same hypersurface
of the constant time u. However, the value of the time coordinate t′ of the point N
is different from that of the time coordinate t of the point P, that is t′ , t, because
the hypersurfaces of the constant global time passing through the points P and N do
not coincide. Let us consider a worldline of the element of the body’s matter passing
through the point N and intersecting a hypersurface of the constant time t at the point
M. This worldline allows us to map the coordinates of the element of the body’s
matter from the hypersurface t′ to the hypersurface t. By the construction, the point
M must have the global coordinates xα(M) = (ct, x′(t)).

One can expand the spatial coordinates of the element of the body’s matter in a
Taylor series with respect to time

x′i(t′) = x′i(t) + v′i(t)(t′ − t) + O
(
∆t2

)
, (5.33)

where v′i is the spatial velocity of the matter element taken at the point M, and
∆t ≡ t′ − t. Let us use letters O and Q to denote positions of the origin of the local
coordinates on two hypersurfaces, t and t′, respectively (see Figure 5.1). Global co-
ordinates of the origin of the local coordinates, taken on two different hypersurfaces,
are related by equation

xi
B(t′) = xi

B(t) + vi
B(t)(t′ − t) + O

(
∆t2

)
. (5.34)

The time interval ∆t = t′−t separating the two hypersurfaces of the constant global
coordinate time, t and t′, is found under condition that the matching point P is fixed.
According to equation (5.1) the relationship between the local time u and the global
time t′ at the point N is

u = t′ + ε2ξ0(t′, x′) + O
(
ε4

)
. (5.35)

Subtracting equation (5.1) from equation (5.35) and accounting for the fact that the
spacetime interval between points N and P is small, one obtains

∆t = t′ − t = ε2
[
ξ0(t, x) − ξ0(t, x′)

]
+ O

(
ε4

)
, (5.36)
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where the notation x′ ≡ x′(t) emphasizing that the point x′ belongs to the hypersur-
face of the constant time t.

Local coordinates of the point N are transformed to the global coordinates as fol-
lows

w′i = x′i(t′) − xB(t′) + ε2ξi (t′, x′(t′)) . (5.37)

Expanding functions in the right side of equation (5.37) in the vicinity of the time
instant, t, and taking into account equations (5.33)-(5.36) yield

w′i = R′iB + ε2
[
ξ′i − (v′i − vi

B)
(
ξ′0 − ξ0

)]
+ O

(
ε4

)
, (5.38)

where ξ′i ≡ ξi(t, x′), ξ′0 ≡ ξ0(t, x′), and R′iB = x′i(t) − xi
B(t).

Transformation (5.38) is used for deriving a relationship between the absolute val-
ues of distances |w′ −w| and |x′ − x|, which enter the denominators of the integrands
in the integrals defining the internal gravitational potentials. Subtracting equation
(5.2) from equation (5.38) and taking the absolute value of the difference, give us the
following equation

|w′ − w| = |x′ − x| + ε2
[
nk

(
ξ′k − ξk

)
− nk

(
v′k − vk

B

) (
ξ′0 − ξ0

)]
+ O

(
ε4

)
, (5.39)

where ξ′i ≡ ξi(t, x′), ξi ≡ ξi(t, x), and ni ≡ (x′i − xi)/|x′ − x|.
We must also perform a Lie transform to find a relationship between the volume

elements d3w′ and d3x′ taken at the points N and M respectively. We note that the
invariant density ρ∗ introduced in equation (4.43), possesses one more remarkable
property in addition to equation (4.44) pointed out by Kopejkin [1991b]. Specifi-
cally, the Lie derivative of the product of the invariant density and the volume ele-
ment is zero, which means that this product is Lie invariant

ρ∗
(
t, x′(t)

)
d3x′(M) = ρ∗

(
t′, x′(t′)

)
d3x′(N) = ρ∗

(
u,w′

)
d3w′(N) . (5.40)

Locally measurable velocity ν′i of the body’s element at the point N is defined
with respect to the origin of the local coordinate system. It relates to velocity v′i of
the same element of the body taken at point M in the global coordinates by equation

ν′i(u) = v′i(t) − vi
B(t) + O

(
ε2

)
, (5.41)

which can be derived from equation (5.38) by direct differentiation with respect to
time.

Equations (5.39)-(5.41) allow us to obtain the post-Newtonian transformations of
the internal gravitational potentials from the local to global coordinates. Calcula-
tions are straightforward and are not reproduced here. The transformations of the
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potentials are given by the following equations

Û (B)(u,w) = U (B)(t, x) + ε2U(B)(t, x) + O(ε4) , (5.42)

Û (B)

i (u,w) = U (B)

i (t, x) − vi
BU (B)(t, x) + O(ε2) , (5.43)

χ̂(B)(u,w) = χ(B)(t, x) + O(ε2) , (5.44)

Φ̂(B)

1 (u,w) = Φ(B)

1 (t, x) + v2
BU (B)(t, x) − 2vi

BU i
(B)(t, x) + O(ε2) , (5.45)

Φ̂(B)

2 (u,w) = Φ(B)

2 (t, x) −GI(B)

−1

{
ρ∗Ū(t , x)

}
+ O(ε2) , (5.46)

Φ̂(B)

3 (u,w) = Φ(B)

3 (t, x) + O(ε2) , (5.47)

Φ̂(B)

4 (u,w) = Φ(B)

4 (t, x) + O(ε2) , (5.48)

where the post-Newtonian correction U(B)(t, x) to the Newtonian potential U (B)(t, x)
reads

U(B)(t, x) = GI(B)

−2

{
ρ∗nk

(
v′k − vk

B

) (
ξ′0 − ξ0

)
− ρ∗nk

(
ξ′k − ξk

)}
. (5.49)

This correction is the result of the post-Newtonian coordinate transformation (5.1),
(5.2) and the Lie transport of the integrand of the Newtonian gravitational potential
from one hypersurface of constant time to another. Transformation of all other in-
ternal gravitational potentials from the local to global coordinates does not require
taking into account relativistic corrections as it exceeds the accuracy of the first post-
Newtonian approximation.

The matching procedure also requires to derive explicit transformation of the sec-
ond time derivative of the potential χ. This transformation can be directly obtained
from the definition of the potential given in equation (4.77) and the mapping equation
(5.44). After straightforward calculation one gets

∂χ̂(B)(u,w)
∂u2 = c2χ(B)

,00(t, x)+ak
Bχ

(B)

,k (t, x)+2cvk
Bχ

(B)

,0k(t, x)+vi
Bv j

Bχ
(B)

,i j(t, x)+O(ε2) , (5.50)

where χ(B)

,0 and χ(B)

,i denote the partial derivatives of χ(B) with respect to the global
coordinate time x0 = ct and space xi, respectively.

5.2.3.2 Transformation of the External Potentials
External potentials in the internal solution of the metric tensor depend in the local co-
ordinates wα = (cu,w) on the external multipole moments QL = QL(u), CL = CL(u),
PL = PL(u), which are defined at the origin of the local coordinates as functions of
time u only. The origin of the local coordinates resides in Figure 5.1 at the point
B where the hypersurface of the constant time u intersects with the worldline of the
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origin. However, functions entering the left side of matching equations (5.3), (5.4),
depend on time t. Hence, before performing the post-Newtonian coordinate trans-
formation of the external potentials they must be Lie transported along the worldline
of the origin of the local coordinates from the point B to the point A located on the
hypersurface of the constant global coordinate time t. Time shift ∆t along this world-
line is determined by equation (5.36) where one has to associate the point x′ with
the origin of the local coordinates, that is x′ = xB, under condition that the matching
point P is taken as defined in previous section. Keeping in mind that the external
potentials are scalars with respect to the Lie transport, one obtains

QL(B) = QL(A) + Q̇L(A)∆t + O
(
∆t2

)
, (5.51)

where the dot over QL means differentiation with respect to time t. After making use
of equations (5.1) and (5.36), accounting for that the local coordinates of the point B
are wα(B) = (cu, 0) and the global coordinates of the point A are xα(A) = (ct, xB(t)),
one gets

QL(u) = QL(t) − ε2Q̇L(t)
[
ξ0(t, xB) − ξ0(t, x)

]
+ O

(
ε4

)
. (5.52)

Formulas for the multipole moments CL and PL are derived similarly.
Now one applies the coordinate transformation of the space coordinates given by

equation (5.2) to transform the STF product of the local coordinates. One gets

w<i1i2 ...il> = R<i1i2 ...il>
B + lε2R<i1i2 ...il−1

B ξil> + O
(
ε4

)
. (5.53)

After combining equations (5.52)-(5.53) together, the post-Newtonian transforma-
tion of the Newtonian part of the external potential of the internal solution for the
metric tensor assumes the following form

∞∑
l=0

1
l!

QL(u)wL =

∞∑
l=0

1
l!

QL(t)RL
B + ε2

[
ξ0(t, x) − ξ0(t, xB)

] ∞∑
l=0

1
l!

Q̇L(t)RL
B (5.54)

+ε2
∞∑

l=1

1
(l − 1)!

QkL−1(t)R<L−1
B ξk> + O

(
ε4

)
.

This is the most complicated transformation of the external potential that is needed.
It takes into account the relativistic nature of the PPN coordinate transformation and
is reciprocal to equation (5.42) for the internal Newtonian gravitational potential.
All other external potentials present in the local metric (4.171)-(4.173) enter its post-
Newtonian part and are transformed like in the Newtonian theory without taking into
account the post-Newtonian corrections in the right side of equation (5.53).

5.2.4
Matching for the scalar field

Scalar field appears explicitly only in the post-Newtonian terms. For this reason
matching of its asymptotic expansions given in the local and global coordinates is
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quite straightforward. We operate with the external and internal solutions of the
scalar field given by equations (4.68) and (4.135), (4.136) respectively. Matching
equation (5.3) reveals that the internal potentials referred to the body B cancel out in
its left and right sides due to equation (5.42) while the potential depending on mul-
tipoles PL matches to the Newtonian potential of the external bodies and its deriva-
tives. More specifically, for any index l ≥ 0 the matching yields

PL = Ū,L(xB) + O(ε2) , (5.55)

where the external Newtonian potential Ū is defined in equation (5.32) and is taken
at the origin of the local coordinates, that is at the point xi = xi

B(t) and at the instant
of time t. Thus, for each index l the STF scalar multipole PL of the external bodies is
defined as the l-th spatial derivative of the Newtonian gravitational potential Ū. One
reminds that according to equation (4.22 the scalar field was normalized to the factor
γ−1, where ω+2 = 1/(1−γ), so that physically observed scalar field ζ = (1−γ)ϕ. It
vanishes in general relativity, where the multipole moments PL = 0 playing no role.

5.2.5
Matching for the metric tensor

5.2.5.1 Matching g00(t, x) and ĝαβ(u,w) in the Newtonian approximation
Matching equation (5.4) with g00(t, x) component of the metric tensor standing in its
left side has a Newtonian limit. In the Newtonian approximation the equation (5.4)
reads

N̂(u,w) = N(t, x) + 2B(t, x) − v2
B + O(ε2) . (5.56)

FunctionB(t, x) is taken from equation (5.22) while components N(t, x) and N(u,w)
of the metric tensors in the global and local coordinates are taken from equations
(4.69) and (4.171) respectively. One finds that after making use of equation (5.42) the
internal gravitational potentials Û(B)(u,w) and U(B)(t, x) are equal and, hence, drop
out of the left and right sides of equation (5.56). Expanding the external gravitational
potential Ū(t, x) in a Taylor series around the origin of the local coordinates, xi

B,
and equating similar terms in polynomials having the same power of Ri

E , yields a
set of matching equations for the external multipoles QL and functions entering the
coordinate transformation. In the Newtonian approximation the set of the matching
equations reads

Q + Ȧ =
1
2

v2
B + Ū(xB) + O(ε2) , (5.57)

Qi = Ū,i(xB) − ai
B + O(ε2) , (5.58)

QL = Ū,L(xB) + O(ε2), (l ≥ 2) . (5.59)

Equation (5.57) makes it evident that function A = A(t) and the external
monopole Q = Q(t) can not be determined from the matching procedure separately
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- only their linear combination Q + Ȧ can be determined. Hence, either Q or A
can be chosen arbitrary. The most preferable choice is to take Q = 0 as it simplifies
further equations. This choice was adopted, for example, in papers [Damour et al.,
1991; Kopejkin, 1988a; Thorne and Hartle, 1985]. It is also consistent with the rec-
ommendation of the IAU [Soffel et al., 2003,?], which makes ĝ00(u,w) component
of the local metric tensor equal to −1 at the origin of the local coordinates if grav-
itational field of the Earth is neglected. However, if one chooses Q = 0 the rate of
the coordinate time u can be different from that of the coordinate time t because the
average value of functions v2

B and Ū is not zero for the circular orbit [Murray, 1983].
Hence, the choice of Q = 0 can be inconvenient for astronomical data reduction
codes and for calculation of ephemerides in the solar system. Therefore, two time
scales, T DB = kBt and T DT = kEu, have been introduced in such a way that their
rate at the origin of the local coordinate system is the same [Brumberg and Kopeikin,
1990; Irwin and Fukushima, 1999; Soffel et al., 2003,?]. This makes function

Q(t) = − < Ȧ >= a + bt + ct2 + ... , (5.60)

that is a polynomial of time with numerical coefficients calculated by means of nu-
merical integration of equation (5.57) over sufficiently long interval of time [Brum-
berg and Kopeikin, 1990; Irwin and Fukushima, 1999]. Time-rate adjustment coef-
ficients kB and kE relate to each other as [Brumberg and Kopeikin, 1990; Irwin and
Fukushima, 1999]

kB

kE
= 1 + c−2Q(tepoch) , (5.61)

where tepoch is the astronomical epoch, let say J2000, chosen by convention.
In accordance with the interpretation given by Misner et al. [1973]; Thorne and

Hartle [1985], function Qi from (5.58) must be understood as an inertial acceleration
measured by accelerometer being at rest at the origin of the local coordinates under
condition that the internal gravitational field of the body B is neglected. The choice,
Qi = 0, (see, e.g., [Ashby and Bertotti, 1984; Thorne and Hartle, 1985]) leads to
construction of a freely-falling, local coordinate frame, which origin moves along
a geodesic worldline on the background spacetime manifold defined by the gravita-
tional potentials of all celestial bodies of the N-body system but the body B. Such
choice of Qi, however, disengage the worldline of the center of mass of the body B
from that of the origin of the local coordinates (see Figure 5.2). Indeed, the center
of mass of the body B does not move along the geodesic worldline due to the inter-
action of its internal multipole moments with the tidal gravitational field of external
bodies [Kopejkin, 1988a, 1991a,b]. For this reason, a special procedure must be ap-
plied for finding function Qi such that it will make the origin of the local coordinates
following the same worldline as the center of mass of the body B. This procedure is
described later in section 6.1.4 in full details.

STF external multipoles QL (l ≥ 2) are defined in the Newtonian approximation
by equation (5.59). They describe gravitoelectric [Mashhoon, 1985; Mashhoon and
Theiss, 2001] tidal field of external bodies at the origin of the local coordinates. Post-
Newtonian corrections to the Newtonian value of the multipoles QL can be important
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A B

Spin
Center of mass of the body

World line of the body’s center of mass

World line of the origin of the local frame

Figure 5.2 Worldlines of the origins of two local coordinates are shown. The curve (A)
indicates the worldline of the origin of the local coordinates A falling freely in the background
spacetime described by the external metric tensor g(E)

αβ . The curve (B) depicts motion of the
origin of the local coordinates B always located at the center of mass of the body under
consideration. In general, the two worldlines do not coincide due to the existence of the inertial
force,MQi, in the local coordinate system B. This force arises due to the gravitational coupling
between the internal multipole moments of the body with the external gravitoelectric and
gravitomagnetic tidal fields [Mashhoon, 1985; Mashhoon and Theiss, 2001] of the background
metric produced by bodies of the N-body system with the body B excluded.
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for lunar laser ranging and other experimental tests of general relativity conducted in
the near-Earth space. The post-Newtonian corrections to the external multipoles can
be also important in construction of the relativistic theory of accretion disc around a
star in a close binary system [Cherepashchuk, 2003]. These corrections are derived
later and shown explicitly in equation (5.89).

5.2.5.2 Matching gi j(t, x) and ĝαβ(u,w).
One substitutes gi j(t, x) component of the metric tensor in the global coordinates to
the left side of the matching equation (5.4) and expand this equation by taking into
account all post-Newtonian terms of order O(ε2). One finds that in this approxima-
tion the matching equation reads

Ĥi j(u,w) = Hi j(t, x) − Ri
j(t, x) − R j

i(t, x) + vi
Bv j

B + O(ε2) , (5.62)

where the matrix of transformation Ri
j(t, x) from the local, wα, to global, xα, co-

ordinates is given in equation (5.26) whereas components of the metric tensor are
defined by equation (4.72) in the global coordinates and by equation (4.173) in the
local coordinates. Comparing similar terms in both sides of the matching equation,
one finds that the internal gravitational potentials of the central body B, Û (B)(u,w)
and U (B)(t, x), entering the left and right sides of the matching equation, cancel each
other. The remaining terms descibe the background gravitational field of external
bodies and their matching gives the following set of equations:

Y + E =
1
6

v2
B + γŪ(xB) + O(ε2) , (5.63)

Ei = ai
B + O(ε2) , (5.64)

EL = O(ε2) (l ≥ 2) , (5.65)

Di j =
1
2

v<i
B v j>

B + O(ε2) , (5.66)

DL = O(ε2) (l ≥ 3) , (5.67)

FL = O(ε2) (l ≥ 2) , (5.68)

which define the structure of the PPN transformation between spatial coordinates of
the global and local frames.

Function Y = Y(t) defines the unit of measurement of spatial distance in the local
coordinates. It is convenient from theoretical point of view to chose Y = 0 as it
was done, for example, in [Kopejkin, 1988a; Thorne and Hartle, 1985]. However,
introduction of TDB and TDT time scales in ephemeris astronomy forces us to make
Y , 0 to compensate the effect of function Q , 0 from equation (5.57) on equations
of motion [Brumberg and Kopeikin, 1990; Soffel and Brumberg, 1991]. Specific
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choice of function Y is a matter of pure practical application of the PPN theory of
reference frames in the solar system. Standard decision is to make Y = Q [Brumberg
and Kopeikin, 1990; Klioner et al., 2009a] to preserve the canonical form of the
Newtonian law of gravity. One does not impose any restriction on function Y at this
step of the matching procedure. It will allow us to trace how functions Q and Y
affect equations of motion of extended bodies not only in the Newtonian but also in
the post-Newtonian approximation.

5.2.5.3 Matching g0i(t, x) and ĝαβ(u,w).
Matching condition (5.4) for g0i(t, x) has the following explicit form:

L̂i(u,w) = Li(t, x) +Bi(t, x) −Pi(t, x) + vi
B

[
B(t, x) + N(t, x)

]
(5.69)

+v j
B

[
Hi j(t, x) − Ri

j(t, x)
]

+ O(ε2) ,

where one has employed equations (5.56) and (5.62) for making simplifications.
The metric tensor given in the global coordinates by equations (4.69), (4.71) and
(4.72), and in the local coordinates by equations (4.140) and (4.161) is substituted to
equation (5.69) where one also uses equations (5.29) and (5.43) for vector-potentials
Ui(t, x) and Û(B)

i (u,w) respectively. Examination of the final form of equation (5.69)
reveals that all gravitational potentials depending on the internal structure of the body
B (Earth) cancel out. Remaining terms in the matching equation (5.69) depend only
on the background values of the gravitational potentials of external bodies. They
yield a number of relationships which allow us to express the external multipole
moments entering the metric tensor in the local coordinates and functions in the PPN
coordinate transformations (5.12)–(5.15) in terms of the gravitational potentials of
the external bodies. These relationships are as follows

Bi = 2(1 + γ)Ū i(xB) − (1 + 2γ)vi
BŪ(xB) −

1
2

vi
Bv2

B − vi
BQ + O(ε2) , (5.70)

B<ik> = 2(1 + γ)
[
Ū<i,k>(xB) − v<i

B Ū ,k>(xB)
]

+ 2v<i
B ak>

B + Z<ik> + O(ε2) , (5.71)

B<iL> = 2(1 + γ)
[
Ū<i,L>(xB) − v<i

B Ū ,L>(xB)
]

+ ZiL + O(ε2) , (l ≥ 2), (5.72)

and

εipk

(
Cp + Ḟp

)
= −2(1 + γ)Ū[i,k](xB) + (1 + 2γ)v[i

B Ū ,k](xB) + v[i
B Qk] + O(ε2) , (5.73)

εip jCpL−1 =
4l(1 + γ)

l + 1
× (5.74)

×

v[i

BŪ
, j]L−1

(xB) − Ū[i, j]L−1(xB) −
1
l

l−1∑
k=1

δ
ak[i ˙̄U

, j]L−2
(xB)

 + O(ε2) .

As one can see the matching equation (5.69) gives rise to two groups of equations,
namely, equations (5.70)-(5.72), and equations (5.73 - (5.74), which have different
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properties of symmetry with respect to their spatial indices. More specifically, the
group of equations (5.70)-(5.72) depend only on STF tensors, which are symmet-
ric and trace-free with respect to the entire set of indices {i, a1, a2, ..., al}. On the
other hand, equations (5.73), (5.74) are symmetric with respect to the set of indices
{a1, a2, ..., al} but they are anti-symmetric with respect to any pair of indices com-
posed of index i and any index from the set {a1, a2, ..., al}. This separation of the
matching equation (5.69) in two groups is due to the fact that this equation has a free
(vector-type) index i and can be split in fully symmetric and antisymmetric parts
in accordance with the Clebsch-Gordan decomposition of a vector field into its ir-
reducible representations (see [Blanchet and Damour, 1986; Gelfand et al., 1958;
Thorne, 1980] for more details).

Let us now discuss a freedom in choosing the angular speed of rotation of spatial
axes of the local coordinates. From the discussion in previous sections one knows
that there are two possible definitions of the rotation of the local coordinates - either
dynamical or kinematical. Dynamically non-rotating local coordinates are defined
by the condition that the external dipole moment Ci = 0 in equation (4.161). On
the other hand, the kinematically non-rotating local coordinates are obtained if one
chooses function Fi = 0 in equation (5.15) describing the coordinate transformation
of spatial axes. If one does not impose any restriction on the choice of Ci, then,
equation (5.73) can be rewritten as

Ḟi = εi jk

[
(1 + γ)Ū j,k(xB) − (γ +

1
2

)v j
BŪ ,k(xB) −

1
2

v j
BQk

]
−Ci + O(ε2). (5.75)

The first term in equation (5.75) describes the Lense-Thirring gravitomagnetic pre-
cession, the second term describes the de Sitter precession, and the third term de-
scribes the Thomas precession of the spatial axes of the local coordinates with re-
spect to the global ones. We emphasize that in the scalar-tensor theory of gravity
both the Lense-Thirring and the de Sitter precessions depend on the PPN parameter
γ while the Thomas precession does not. The reason is that the Thomas precession
is a special relativistic effect [Misner et al., 1973] and can not depend on a particular
choice of a specific gravitational theory. If one chooses function Ci = 0, the spa-
tial axes of the local coordinates will rotate kinematically with respect to the global
coordinates. On the other hand, the choice Ḟi = 0 makes the local coordinates kine-
matically non-rotating with respect to the global coordinates. The spatial axes of
the kinematically non-rotating coordinates are fixed with respect to distant quasars
with negligibly small proper motions. These quasars form the International Celestial
Reference Frame (ICRF) [Johnston et al., 2000].

Functions BL enter the PPN time coordinate transformation as seen from equation
(5.14), and couples with the gauge-dependent multipole moments ZL, which can be
chosen arbitrary. There are two, the most preferable options:

1) One simplifies the structure of time transformation described by equation (5.12)
as much as possible. In this case the gauge multipoles ZL must chosen such that
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functions BL in the time transformation would assume the most simple form

B<ik> = 2v<i
B ak>

B + O(ε2) (5.76)

B<iL> = O(ε2) , (l ≥ 2) . (5.77)

Here the choice of Bi j in equation (5.76) eliminates all terms depending explicitly
on the velocity of the origin of the local coordinates vi

B. Substituting equations
(5.76) and (5.77) into equations (5.71) and (5.72) yield in this case

ZiL = −2(1 + γ)
[
Ū<i,L>(xB) − v<i

B Ū ,L>(xB)
]

+ O(ε2) , (l ≥ 1). (5.78)

This makes the metric tensor and the scalar field in the local coordinates deter-
mined by four sets of the independent external multipoles PL, QL, CL, and ZL.
However, the multipole moments ZL are not physically meaningful and describe
the gauge-dependent (unobservable) coordinate effects.

2) One removes from the metric tensor in the local coordinates all physically mean-
ingless multipole moments ZL. The cost of this choice is a more complicated form
of the time transformation, equation (5.12), that contains now an infinite number
of coefficients BL. Assuming that all ZiL = 0 for l ≥ 1 one obtains from equations
(5.71) and (5.72)

B<ik> = 2(1 + γ)
[
Ū<i,k>(xB) − v<i

B Ū ,k>(xB)
]

+ 2v<i
B ak>

B + O(ε2) , (5.79)

B<iL> = 2(1 + γ)
[
Ū<i,L>(xB) − v<i

B Ū ,L>(xB)
]

+ O(ε2) , (l ≥ 2). (5.80)

At the present step of the matching procedure one prefers to keep the multipole mo-
ments ZL unspecified. This theoretically-flexible choice gives us freedom in making
the residual gauge transformations for various practical purposes.

5.2.5.4 Matching g00(t, x) and ĝαβ(u,w) in the post-Newtonian approximation.
Matching of the metric tensor at the post-Newtonian order of O(ε4) allows us to infer
the post-Newtonian equations of motion of the origin of the local coordinates as well
as the post-Newtonian corrections to the external multipole moments QL and the
coefficients of the post-Newtonian part of equation (5.14) describing transformation
between the coordinate times u and t of the local and global coordinates. Expansion
of the matching equation (5.4) for the case of the metric tensor component, g00(t, x),
up to the post-Newtonian order generalizes equation (5.56) as follows

N̂(u,w) + ε2L̂(u,w) = N(t, x) + 2B(t, x) − v2
B (5.81)

+ε2
[
L(t, x) − 3B2(t, x) + 2D(t, x) − 2B(t, x)N(t, x)

+ 4v2
BB(t, x) + 2v2

B N(t, x) + 2vi
BLi(t, x) + 2vi

BBi(t, x)

−
2
3

v2
BR

k
k(t, x) + 2vi

Bv j
BR

i
j(t, x) −

5
3

v4
B +

1
3

v2
B H(t, x)

]
+ O(ε3) ,
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where the gravitational potentials in the right side of this equations are determined
by equations (4.69)-(4.72) and those in the left side are given by equations (4.137),
(4.138), (4.171), (4.174) and (4.175). Solution of equation (5.81) is done in several
steps.

First of all, one substitutes the components of the transformation matrix of the
coordinate bases given by equations (5.22)-(5.26), to equation (5.81). Then, one
analyzes terms depending separately on the internal gravitational potentials referred
to the body B and those referred to the external bodies. The internal gravitational
potentials should be transformed from the local to global coordinates by making use
of equations (5.42)-(5.50). One notices that the transformation equation (5.49) for
the Newtonian gravitational potential of the body B can be written explicitly in terms
of the functions coming about from the matching procedure at lower orders. Taking
definitions of the gauge functions ξ0 and ξi from section 5.1.2 and substituting to
them functions determined at previous steps of the matching procedure, one obtains
explicit form of the relativistic correction, U(B)(t, x), from equation (5.49), which
describes the post-Newtonian part of the transformation of the Newtonian potential
from the local to global coordinates. It reads

U(B)(t, x) = U (B)(t, x)
(

1
2

v2
B − γŪ(xB) − ak

BRk
B + Y

)
(5.82)

+
1
2

vi
Bv j

Bχ
(B)

,i j(t, x) + cvk
Bχ

(B)

,0k(t, x)

−
1
2

ak
Bχ

(B)

,k (t, x) − vk
BUk

(B)(t, x) + O(ε2) .

At the second step, one substitutes formula (5.82) for the internal Newtonian po-
tential of the body B to the matching equation and use transformation equations
for other internal potentials. One gets a rather remarkable result - both the New-
tonian and post-Newtonian terms depending on the internal structure of the body
B cancel out and disappear from the matching equation (5.81). This property of
independence of the matching equation on the internal potentials is called the effac-
ing principle [Kopeikin and Vlasov, 2008]. The effacing property of the matching
equation can be explained in terms of the laws of conservation of intrinsic linear
and angular momenta of the body B which are valid not only in general relativ-
ity but in the scalar-tensor theory of gravity as well [Damour and Esposito-Farese,
1992; Will, 1993]. For this reason, the scalar field can produce neither a net self-
force nor a self-torque exerted on the body. Calculation given above, proves that
the effacing principle is valid in the first post-Newtonian approximation for ex-
tended bodies having arbitrary internal structure and shape. This principle was ex-
trapolated to the 2.5 post-Newtonian approximation for spherically-symmetric and
weakly-gravitating bodies in papers [Kopeikin, 1985; Kopejkin, 1988b] by applying
the Fock-Papapetrou [Fock, 1964; Papapetrou, 1951a] method of derivation of rela-
tivistic equations of motion of extended bodies. Damour [1983] proved the effacing
principle for spherically-symmetric neutron stars up to the 2.5 post-Newtonian ap-
proximation by making use of the Einstein-Infeld-Hoffmann (EIH) technique [Ein-
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stein et al., 1938] along with the method of analytic continuation of generalized
functions (distributions) [Gelfand et al., 1958], which are used for definition of a
singular energy-momentum tensor of point-like particles.

At the third step, one picks up and equates in equation (5.81) the gravitational
potentials generated by all bodies being external with respect to the body B (Earth).
This step requires that one knows the law of transformation of function

∑ 1
l! QL(u)wL

from the local to global coordinates within the post-Newtonian accuracy. General
formula of transformation of this function is given by equation (5.54) but it should
be further specified. This is achieved by substituting to this formula the explicit
expressions for functions ξ0 and ξi displayed in equations (5.7), (5.12)-(5.15). One
gets

∞∑
l=0

1
l!

QL(u)wL =

∞∑
l=0

1
l!

QL(t)RL
B

[
1 + lε2

(
γŪ(xB) − Y

)]
(5.83)

+ ε2

− ∞∑
l=1

1
(l − 1)!

QkL−1F jkR< jL−1>
B + Q̇vk

BRk
B


+ ε2

∞∑
l=1

1
(l − 1)!

[1
2

v j
Bvk

BQ jL−1R<kL−1>
B +

(
ak

BQL −
1
l

vk
BQ̇L

)
R<kL>

B

]
+ ε2

∞∑
l=0

1
(2l + 3)l!

[1
2

v j
Bvk

BQ jkL −
1
2

ak
BQkL − vk

BQ̇kL

]
RL

B R2
B + O(ε4) .

Matching equation (5.81) requires to calculate function χ̄,00(t, x) explicitly. This
function is generated by the external bodies and enters g00(t, x) component of the
metric tensor in the global coordinates as shown in equations (4.70) and (5.30). Con-
trary to other potentials Ū(t, x) , Ū i(t, x) , Φ̄k(t, x), which are solutions of the homo-
geneous Laplace equation in the vicinity of the body B, function χ̄(t, x) is a particular
solution of the Poisson equation [Fock, 1964]

∇2χ̄(t, x) = −2Ū(t, x) . (5.84)

After solving this equation and expanding its solution into STF scalar harmonics (see
appendix A) one obtains

χ̄(t, x) =

∞∑
l=0

1
l!
χ̄,<L>(xB)RL

B −

∞∑
l=0

1
(2l + 3)l!

Ū,L(xB)RL
B R2

B . (5.85)

Differentiating left and right sides of equation (5.85) two times with respect to the
global coordinate time, t, yields

χ̄,tt(t, x) =

∞∑
l=0

1
l!
χ̄,tt<L>(xB)RL

B +

∞∑
l=0

1
(2l + 3)l!

× (5.86)

×
[
ak

BŪ,kL(xB) + 2vk
B

˙̄U,kL(xB) − v j
Bvk

BŪ, jkL(xB) − ¨̄U,L(xB)
]
RL

B R2
B .
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Finally, one expands all functions in both sides of equation (5.81) in the Taylor
series with respect to the distance Ri

B from the body B, and reduce all similar terms.
One finds that those terms which do not depend on Ri

B (that is, functions of time
t only) form ordinary differential equation of a first order for function B(t) which
appears in equation (5.12). This differential equation reads

Ḃ(t) = −
1
8

v4
B − (γ +

1
2

)v2
BŪ(xB) + (β −

1
2

)Ū2(xB) + Q
[
1
2

v2
B +

3
2

Q − Ū(xB)
]

(5.87)

+2(1 + γ)vk
BŪk(xB) − Φ̄(xB) +

1
2
χ̄,tt(xB) + O(ε2) .

Terms, which are linear with respect to Ri
B, give us the post-Newtonian equa-

tion of translational motion of the origin of the local coordinates, xi
B(t), in the

global (barycentric) coordinates. It generalizes the Newtonian equation (5.58). The
barycentric acceleration of the origin of the local coordinates with respect to the
barycenter of the N-body system is

ai
B = Ū,i(xB) − Qi + ε2

[
F ikQk + Φ̄,i(xB) −

1
2
χ̄,itt(xB) + Qi

(
Y − 2Q

)
(5.88)

+2(1 + γ) ˙̄U i(xB) − 2(1 + γ)vk
BŪk,i(xB) − (1 + 2γ)vi

B
˙̄U(xB)

+(2 − 2β − γ)Ū(xB)Ū,i(xB) + (1 + γ)v2
BŪ,i(xB) −

1
2

vi
Bvk

BŪ,k(xB)

−
1
2

vi
Bvk

Bak
B − v2

Bai
B − (2 + γ)ai

BŪ(xB)
]

+ O(ε4) .

This equation contains the external dipole moment, Qi, which must be calculated
with the post-Newtonian accuracy in order to complete derivation of the post-
Newtonian equation of translational motion of the origin of the local coordinates.
A simple choice of Qi = 0 does not allow us to keep the origin of the local co-
ordinates at the center of mass of the body B (Earth) for sufficiently long interval
of time. This is because the internal moments of the body B interact with the tidal
gravitational field of external bodies (Moon, Sun, etc.) so that the body B does not
move along a geodesic worldline while the choice of Qi = 0 makes the origin of the
local coordinates moving along a geodesic worldline [Kopejkin, 1988a; Thorne and
Hartle, 1985]. Thus, function Qi must be defined in such a way that the body’s center
of mass and the origin of the local coordinates could coincide at any instant of time.
This problem is equivalent to solution of the problem of motion of the body’s center
of mass with respect to the origin of the local coordinates and will be discussed in
the next section.

Terms which are quadratic, cubic, etc., with respect to the distance,Ri
B, deter-

mine the post-Newtonian corrections to the external STF multipole moments QL =

QN
L + ε2QpN

L , where the Newtonian term QN
L is shown in equation (5.59). The post-
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Newtonian corrections are

QpN

L (t) = X<L> + ŻL + Φ̄,<L>(xB) −
1
2
χ̄,tt<L>(xB) +

(
lY − 2Q

)
Ū,L(xB) (5.89)

+2(1 + γ) ˙̄U<il ,L−1>(xB) − 2(1 + γ)vk
BŪk,L(xB)

+(l − 2γ − 2)v<il
B

˙̄U ,L−1>(xB) + (1 + γ)v2
BŪ,L(xB)

−
l
2

vk
Bv<il

B Ū ,L−1>k(xB) + (2 − 2β − lγ)Ū(xB)Ū,L(xB)

−(l2 − l + 2 + 2γ)a<il
B Ū ,L−1>(xB) − lFk<il Ū ,L−1>k(xB) , (l ≥ 2)

where one has used notations

X<i j> = 3a<i
B a j>

B , (5.90)

X<L> = 0 , (l ≥ 3). (5.91)

These equations finalize the description of the STF multipole moments entering ex-
ternal solution of the metric tensor in the local coordinates wα = (cu,w) and the
parameterized post-Newtonian transformation between the local and global coordi-
nates.

5.2.6
Final form of the PPN coordinate transformation

For the sake of convenience one summarizes the final form of the parameterized
post-Newtonian coordinate transformation from the local to global coordinates. It is
given by two equations, which are

u = t − ε2
(
A + vk

BRk
B

)
(5.92)

+ ε4

B +

(1
3

vk
Bak

B −
1
6

˙̄U(xB) +
1
6

Q̇
)
R2

B −
1
10

ȧk
BRk

BR2
B +

∞∑
l=1

1
l!
B<L>RL

B

 + O(ε5) ,

wi = Ri
B + ε2

[(1
2

vi
Bvk

B + γδikŪ(xB)δikY + F ik
)
Rk

B + ak
BRi

BRk
B −

1
2

ai
BR2

B

]
+ O(ε4) .(5.93)

Here functionsA and B are solutions of the ordinary differential equations

Ȧ =
1
2

v2
B + Ū(xB) − Q , (5.94)

Ḃ = −
1
8

v4
B − (γ +

1
2

)v2
BŪ(xB) + Q

[
−

1
2

v2
B +

3
2

Q − Ū(xB)
]

(5.95)

+ (β −
1
2

)Ū2(xB) + 2(1 + γ)vk
BŪk(xB) − Φ̄(xB) +

1
2
χ̄,tt(xB) ,
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while the other functions are defined as follows

Bi = 2(1 + γ)Ū i(xB) − (1 + 2γ)vi
BŪ(xB) −

1
2

vi
Bv2

B − vi
BQ , (5.96)

B<ik> = Zik + 2(1 + γ)Ū<i,k>(xB) − 2(1 + γ)v<i
B Ū ,k>(xB) + 2v<i

B ak>
B , (5.97)

B<iL> = ZiL + 2(1 + γ)Ū<i,L>(xB) − 2(1 + γ)v<i
B Ū ,L>(xB) , (l ≥ 2), (5.98)

Ḟ ik = (1 + 2γ)v[i
B Ū ,k](xB) − 2(1 + γ)Ū[i,k](xB) + v[i

B Qk] . (5.99)

These equations will be used in subsequent sections for derivation of the post-
Newtonian equations of motion of extended bodies. They are also convenient for
comparison with the relativistic transformations derived by other researchers [Ashby
and Bertotti, 1986; Brumberg and Kopejkin, 1989a; Damour et al., 1991, 1992;
Fukushima, 1988; Klioner and Soffel, 2000; Kopejkin, 1988a; Soffel et al., 2003].
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6
Relativistic Celestial Mechanics
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6.1
Post-Newtonian Equations of Orbital Motion

6.1.1
Introduction

In the Newtonian theory of gravity the definitions of mass and the center of mass
of an extended body that is a member of N-body system, are fairly straightforward
concepts. These definitions can be extrapolated without any change to the relativis-
tic theory of gravity as proposed by Fock [Fock, 1964]. He used the Newtonian
definitions with a corresponding replacement of matter’s density ρ with the invariant
density ρ∗ which obeys the exact, Newtonian-like equation of continuity (4.44) at
any order of the post-Newtonian approximations. The invariant density is defined
as the ratio of the unit mass of baryons per unit of the proper volume. Integration
of the invariant density over the total volume of the body gives its total baryonic
mass, which is constant asfollows from equation (1.35). The invariant density is also
useful to introduce the Newtonian definitions of the body’s center of mass, and its
linear momentum. The baryonic mass, the center of mass, and the linear momentum
of body B are given 1) by integrals [Brumberg, 1972; Fock, 1964]

M∗ =

∫
VB

ρ∗(u,w)d3w , (6.1)

J i
∗ =

∫
VB

ρ∗(u,w)wid3w , (6.2)

Pi
∗ =

∫
VB

ρ∗(u,w)νid3w . (6.3)

Notice that the integrals are written down in the local coordinates and the integration
is performed over the hypersurface of constant time u. In fact, the value of the
integrals does not depend on the choice of the coordinates and the hypersurface
of integration because the product of the invariant density and three-dimensional
volume of integration is invariant by definition: ρ∗(u,w)d3w = ρ∗(t, x)d3x.

Newtonian definitions of the center of mass and the linear momentum of the body
were used by Fock [Fock, 1964], Papapetrou [Papapetrou, 1951a], Petrova [Petrova,
1949], Brumberg [Brumberg, 1991], and some other researchers2) for derivation of
the post-Newtonian equations of translational motion of spherically-symmetric bod-
ies. It is reasonable to expect that equations of motion of such bodies would de-
pend only on their masses, as in the case of massive point particles that is called
the principle of effacing of the internal structure [Kopeikin and Vlasov, 2008]. This
expectation is confirmed in the Newtonian theory, where the motion of spherically-
symmetric bodies is indistinguishable from that of point particles. However, the

1) One skips in this section label B for all quantities referred to body B as it does not cause misinterpreta-
tion. The bodies will be labeled with indices A, B, C, and so on, whenever confusion could arise.

2) See, e.g., [Caporali, 1981; Contopoulos and Spyrou, 1976; Spyrou, 1975, 1978] and references therein.
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earlier works in the relativistic celestial mechanics could not provide proof of the ef-
facing principle beyond the Newtonian approximation because the post-Newtonian
equations of motion of the spherically-symmetric bodies, unlike the Newtonian the-
ory, contained not only their baryonic masses, M∗, but also other characteristics
such as the internal kinetic and gravitational energy, elastic energy, and even their
moments of inertia [Brumberg, 1972, 1991; Caporali, 1981; Contopoulos and Spy-
rou, 1976; Dallas, 1977; Fock, 1964; Spyrou, 1975, 1978].

Explicit appearance of such terms in the post-Newtonian equations of motion
complicates their interpretation and calculation of ephemerides. For this reason,
the dependence of the post-Newtonian equations of motion on the parameters char-
acterizing the internal structure of the bodies was silently ignored and researchers
used the Einstein-Infeld-Hoffmann (EIH) equations of point-like masses [Einstein
et al., 1938], where the internal structure of the bodies is irrelevant. The situation re-
mained unsatisfactory for many years. Some researchers even argued that motion of
spherically-symmetric extended bodies must be different from that of compact rela-
tivistic objects like neutron stars and black holes even if they have the same masses as
the extended bodies. This point of view is clearly incompatible with the Newtonian
equations of motion of two black holes as it was shown by Demiański and Grishchuk
[1974] who proved, at least in the Newtonian approximation, that equations of mo-
tion of black holes are the same as for spherically-symmetric stars made of ordinary
matter. D’Eath [1975a,b] extended this result to the post-Newtonian approximation
by making use of the method of matched asymptotic expansions.

Einstein envisaged that the internal structure of bodies should not affect their or-
bital equations of motion. This suggests that motion of two spherically-symmetric
bodies having the same mass but different distribution of intrinsic density, pressure,
etc., is to be indistinguishable. Physical intuition led Einstein to the development
of the EIH method of derivation of the post-Newtonian equations of motion from
vacuum Einstein’s equations where the bodies are treated as point-like singularities
of gravitational field. Since gravity is a pure geometric phenomenon in general rel-
ativity, it must tell the spherical bodies how to move, irrespectively of the details of
their internal structure. Fock [Fock, 1957] was not convinced with the Einstein’s ar-
gument because the mathematical nature of the EIH singularities and their relation to
real celestial bodies (planets, stars) was not quite clear at that time. In addition, most
of astronomical bodies are made of ordinary matter and are represented mathemati-
cally by smooth, differentiable functions having a compact support (a finite volume
in space). Fock 3) proposed a post-Newtonian method of derivation of relativistic
equations of motion by integrating the energy-momentum tensor of continuous mat-
ter over the volumes of the extended bodies. Fock’s method clarified the functional
dependence between the equations of motion of bodies and their internal structure.
It does not contradict to EIH equations because all terms depending on the internal
structure of the bodies can be absorbed to relativistic mass, center of mass, and other
parameters of the bodies after corresponding redefinition of these parameters.

3) Papapetrou [Papapetrou, 1951a,b] developed similar approach independently and approximately at the
same time.
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Indeed, theoretical study [Grishchuk and Kopeikin, 1986; Kopeikin, 1985] of rel-
ativistic orbital motion of two spherically-symmetric compact stars comprising a
binary system revealed that the Newtonian definitions of mass, the center of mass
and the linear momentum of the bodies given in equations (6.1)-(6.3) are not ap-
propriate for calculating their post- and post-post-Newtonian equations of motion.
One has shown [Kopeikin, 1985; Kopejkin, 1988b] that if the Newtonian mass and
the center of mass are replaced with the appropriate relativistic definitions, all terms
in the equations of motion depending on the internal structure of the bodies are ef-
fectively eliminated after applying the procedure of relativistic renormalization of
masses. Damour [1983] called this property the effacing principle and confirmed
it for spherically-symmetric and compact relativistic bodies using the mathematical
technique of matched asymptotic expansion.

Newtonian theory predicts that if celestial bodies have no spherically-symmetric
distribution of matter, their equations of motion must depend on additional integral
parameters, which are the multipole moments of the bodies characterizing irregu-
larities in the distribution of mass inside the bodies. It is natural to expect that the
post-Newtonian equations of motion of the bodies with arbitrary internal distribution
of density and velocity of matter will depend on more complicated set of the param-
eters including the mass-type and current-type multipole moments given by equa-
tions (4.176) and (4.183) respectively. However, it was not quite clear until recently
whether some other parameters would appear in the relativistic equations of motion
in addition to these two sets of the internal multipoles. Scrutiny analysis of this ques-
tion in general relativity elucidated that the post-Newtonian equations of motion of
extended bodies with arbitrary internal structure do contain only the mass and cur-
rent multipoles [Damour et al., 1991, 1992, 1993; Kopeikin and Vlasov, 2004] and
does not depend on any other internal characteristic of the bodies.

The principle of effacing of the internal structure of the bodies is not valid in al-
ternative theories of gravity because of the violation of the strong principle of equiv-
alence [Dicke, 1962a; Nordtvedt, 1968a,b; Will, 1993] due to the presence of other
long-range gravitational fields. This violation reveals already in the Newtonian equa-
tions of motion where two masses - inertial and gravitational - become slightly dif-
ferent. Hence, the motion of spherically-symmetric bodies is characterized by two
parameters (inertial mass and gravitational mass) as contrasted to general relativity.
One may expect that equations of motion of non-spherically symmetric and rotating
bodies in alternative theories of gravity will depend not only on the set of mass-type
and current-type multipoles but on some other integral characteristics of the bodies
like the moments of inertia. The reader will see that this is indeed true in section 6.3.

Consistent derivation of relativistic equations of motion in alternative theories of
gravity follows the general relativistic ideas and require introducing the local coor-
dinates associated with each body. The problems is that the global coordinates of
N-body system are inappropriate for giving adequate physical definition of the inter-
nal multipole moments of each body in N-body system. Local coordinates should be
constructed around each body in order to eliminate the Lorentz and Einstein contrac-
tions and other gauge-dependent contributions caused by orbital motion of the body
with respect to the global coordinates. Consistent relativistic concept of the local
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coordinates built around each massive, extended body in N-body system, was de-
veloped in papers [Brumberg and Kopejkin, 1989a; Damour et al., 1991; Kopejkin,
1988a; Mashhoon, 1985] and outlined in this book in chapter 4. It was also dis-
cussed in papers [Ashby and Bertotti, 1984, 1986; Fukushima, 1988; Shahid-Saless
and Ashby, 1988] under restriction that the center of mass of the body moves along
a geodesic worldline on the background spacetime formed by the gravitational po-
tentials of the external bodies. This restriction is pretty limited and can not be im-
plemented in the most general case of non-spherical and rotating bodies because
their worldlines obey the relativistic Mathisson-Papapetrou-Dixon equation of mo-
tion (3.227a) which is not geodesic [Damour et al., 1991; Kopejkin, 1988a].

Another essential part of the post-Newtonian celestial mechanics besides the the-
ory of relativistic reference frames deals with the problem of relativistic definition
of the multipole moments of the gravitational field of the whole N-body system and
each body separately. Solution of this problem was proposed by Thorne [Thorne,
1980] but his definition of the multipoles suffered from divergencies at higher post-
Newtonian approximations. Blanchet and Damour [1989] eliminated the divergen-
cies and introduced a compact-support, post-Newtonian definition of the mass-type
multipole moments which are symmetric and trace-free (STF) tensors with respect
to the transformation of the rotation group SO(3). Blanchet-Damour (BD) defini-
tion was fruitfully employed in a series of papers by Damour, Soffel and Xu (DSX)
[Damour et al., 1991, 1992] for deriving the post-Newtonian equations of motion of
extended bodies in general relativity. They had also proved that the only parame-
ters entering the general-relativistic equations of motion are the Tolman (relativistic)
masses of the bodies along with the STF multipole moments of the bodies.

This section generalizes the DSX equations of motion and derives the parame-
terized post-Newtonian equations of translational motion of extended bodies in the
scalar-tensor theory of gravity. One proves that these equations depend only on the
inertial and gravitational masses of the bodies and a set of active multipole moments
of the bodies defined earlier in section 4.5.3. In case of spherically-symmetric bodies
the only parameters present in the equations are the inertial and gravitational masses
which are different because of coupling of the scalar field with the intrinsic gravita-
tional potential of the body. This difference between the two masses was discussed
by Nordtvedt [1968a,b]. It leads to a specific Nordtvedt effect in the relative motion
of the Moon around the Earth [Will, 1993].

The post-Newtonian definition of mass and center of mass of a single body are
derived from equations (4.129) and (4.130). They are conserved quantities if the
body is isolated. It is reasonable to suggest that the gravitational interaction of the
body with other bodies of N-body system violates these conservation laws. Dixon
[Dixon, 1979] and Thorne and Hartle [Thorne and Hartle, 1985] showed that the law
of conservation of mass is indeed violated if the body is not spherically-symmetric
(see next section for more detail). However, the law of conservation of the center
of mass and the linear momentum of the body can be retained even in case of the
gravitational interaction of the body with the external environment in case of a proper
choice of the local coordinates [Kopeikin and Vlasov, 2004; Kopejkin, 1988a].

The scalar-tensor theory of gravity admits three types of multipole moments -
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active, conformal and scalar - which can be used for definition of body’s mass and
its center of mass. These moments were introduced in section 4.5.3 and are defined
by equations (4.106), (4.113) and (4.119). The active and scalar dipole moments of
the body are not appropriate for definition of its center of mass and derivation of its
orbital equations of motion because they violate the third Newton’s law and lead to
self-acceleration of the body which is physically unacceptable. The conformal dipole
moment does not have this drawback and is used in the scalar-tensor theory of gravity
for definition of the body’s center of mass and derivation of equations of motion of
the body. Self-acceleration terms do not appear in the equations, which right side
has a remarkably simple structure of the post-Newtonian force that is a function of
the active multipole moments of the body coupled with the tidal gravitational field
[Kopeikin and Vlasov, 2004].

Let us discuss the derivation and specific properties of orbital equations of motion
of the bodies in more detail starting from the explicit form of the local (macroscopic)
equations of motion of matter in local coordinates.

6.1.2
Macroscopic post-Newtonian equations of motion

Macroscopic post-Newtonian equations of motion of matter consist of three groups:
(1) the equation of continuity, (2) the thermodynamic equation relating the elastic
energy Π with the tensor of stresses παβ, and (3) the Navier-Stokes equation describ-
ing dependence of acceleration of the macroscopic element of matter on external
gravitational and internal forces caused by the stresses.

The equation of continuity in the local coordinates (u,w) has the most simple form
in terms of the invariant density ρ∗, and reads

∂ρ∗

∂u
+
∂
(
ρ∗νi

)
∂wi = 0 . (6.4)

This equation is exact, that is takes into account all post-Newtonian corrections as
follows from the definition of the invariant density ρ∗ and equation (4.44).

The thermodynamic equation relating the internal elastic energy Π and the inter-
nal tensor of stresses παβ is required in the post-Newtonian calculations only in a
linear order where the tensor of stresses is completely characterized by its spatial
components πi j. Expanding the exact equation (4.12) one obtains

dΠ

du
+
πi j

ρ∗
∂νi

∂w j = O(ε2) , (6.5)

where the operator of convective time derivative d/du ≡ ∂/∂u + νi∂/∂wi.
The Navier-Stokes equation follows from the spatial part of the covariant law of
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conservation of the energy-momentum tensor ∇νT iν = 0. It yields

ρ∗
d
du

{
νi + ε2

[(
1
2
ν2 + Π +

1
2

N̂ +
1
3

Ĥ
)
νi + L̂i

]}
+ ε2

∂
(
πi jν

j
)

∂u
= (6.6)

1
2
ρ∗
∂N̂
∂wi −

∂πi j

∂w j + ε2
{
ρ∗

[
1
2
∂L̂
∂wi +

1
4

(
ν2 + 2Π + N̂

) ∂N̂
∂wi +

1
6
ν2 ∂Ĥ
∂wi + νk ∂L̂k

∂wi

]

+
1
6
πkk

∂Ĥ
∂wi +

1
2
πik

(
∂N̂
∂wk −

1
3
∂Ĥ
∂wk

)
+

1
2

(
N̂ −

1
3

Ĥ
)
∂πik

∂wk

}
+ O(ε4) ,

where gravitational potentials N̂, Ĥ, L̂, L̂i are components of the metric tensor in the
local coordinates as defined in section 4.5.2.

6.1.3
Mass and the linear momentum of a self-gravitating body

There are two algebraically independent definitions of the post-Newtonian mass in
the scalar-tensor theory - the active mass and the conformal mass, which come out
of equations (4.176) and (4.180) respectively, when index l = 0. One has pointed out
in section 4.5.3 that if the body under consideration is a member of N-body system,
the contribution of gravitational potential of the external bodies should be included
to the definition of the STF multipole moments of the body. It allows us to can-
cel out in equations of motion all terms depending on the internal structure of the
body, which appear in the intermediate calculations but can not be absorbed to the
post-Newtonian definition of the STF multipoles. Disappearance of such terms in
equations of motion extrapolates applicability of the effacing principle from general
theory of relativity to the scalar-tensor theory of gravity, at least, in the first post-
Newtonian approximation. Thorne and Hartle [Thorne and Hartle, 1985] discussed
the contribution of the gravitational field of external bodies in the definition of the
body’s internal multipoles but they did not come up with a definite answer. Our res-
olution of this question is based on direct calculation of equations of motion with
several possible definitions of the center of mass and the STF multipoles. Cumber-
some and tedious calculations [Kopeikin and Vlasov, 2004] reveal that the equations
of motion have the most simple form and admit the minimal set of parameters, if and
only if, one takes the conformal definition of mass and the center of mass for each
body and include the gravitational potential of external bodies to the definition of the
body’s multipole moments.

Conformal multipoles are defined in equation (4.180) and, when index l = 0, can
be reduced to simpler form yielding the conformal mass of the body

M̃ = M − ε2

[Y + (1 − γ)P
]
M +

∞∑
l=1

l + 1
l!

QLI
L

 + O(ε4) , (6.7)

where

M =

∫
VB

ρ∗
[
1 + ε2

(
1
2
ν2 + Π −

1
2

Û(B)
)]

d3w + O(ε4) , (6.8)
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is general relativistic definition of the post-Newtonian mass of the body [Will, 1993].
Gravitationally-isolated, single body has only mass M. Gravitational interaction with
other bodies of the N-body system brings about additional contribution to the rela-
tivistic mass of the body which is described by the last term in the right side of
equation (6.7).

Discussion of the strong principle of equivalence requires definition of the active
mass of the body as well. It is obtained from equation (4.176), when index l = 0,
and reads

M = M + ε2
{1

6
(γ − 1)Ï(2) −

1
2
η

∫
VB

ρ∗Û(B)d3w (6.9)

−
[
Y + (2β − γ − 1)P

]
M −

∞∑
l=1

1
l!

[
(γl + 1)QL + 2(β − 1)PL

]
IL

}
+ O(ε4) ,

where

I(2) =

∫
VB

ρ∗w2d3w , (6.10)

is the second order (rotational) moment of inertia of the body.
It is not difficult to derive a relationship between the active and conformal post-

Newtonian masses by making use of equations (6.7)-(6.9). Direct comparison yields

M̃ = M + ε2
{1

2
η

∫
VB

ρ∗Û(B)d3w −
γ − 1

6
Ï(2) (6.11)

+2(β − 1)
(
MP +

∞∑
l=1

1
l!

PLI
L
)

+ (γ − 1)
∞∑

l=1

1
(l − 1)!

QLI
L
}

+ O(ε4) ,

where η = 4β− γ− 3 is called the Nordtvedt parameter [Will, 1993]. This parameter
characterizes the degree of violation of the strong principle of equivalence for self-
gravitating bodies [Nordtvedt, 1968a,b]. Numerical value of this parameter is known
with the precision better than 0.02% from the lunar laser ranging (LLR) experiment
[Dickey et al., 1994], which lasts continuously already for more than 30 years.

One can see that in the scalar-tensor theory of gravity the conformal mass of the
body differs from its active mass. If the body is completely isolated the difference
originates from the Nordtvedt effect, that is for η , 0, and from the time-dependence
of the body’s rotational moment of inertia (for example, due to radial oscillations
of the body). In case of the presence of external bodies the additional difference
between the masses originates from the coupling of the external gravitational field
multipoles, QL and PL, with the internal multipole moments IL of the body.

General relativistic post-Newtonian mass M of an individual body in N-body sys-
tem is not conserved. Indeed, taking a time derivative from both sides of equation
(6.8) and making use of the macroscopic equations of motion given in section 6.1.2,
one gets [Caporali, 1981]

Ṁ = ε2
∞∑

l=1

1
l!

QLİ
L + O(ε4) , (6.12)
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where the dot above M denotes the time derivative with respect to the local coor-
dinate time u. This equation reveals that general relativistic mass of the body is
constant, if and only if, the mass-type multipole moments IL of the body do not
depend on time and/or there is no external tidal field, that is QL = 0. It is worth
noticing that the conformal and active post-Newtonian masses are not constant in
the presence of the tidal field even if the body’s multipole moments IL are constant.
This is because the external multipole moments QL enter definitions (6.7) and (6.9)
of these masses explicitly and, in general, they depend on time. Hence, differentia-
tion of equations (6.7) and (6.9) shows that the time derivatives of the conformal and
active masses are not zero.

Direct calculation of the equations of motion elucidates that definition of the con-
formal mass dipole moment derived from equation (4.180) for l = 1, gives the most
physically-justified choice of the post-Newtonian center of mass for each body. This
is because after differentiation with respect to time only the conformal dipole mo-
ment leads to the law of conservation of the body’s linear momentum, when one
neglects the influence of other external bodies. The post-Newtonian scalar or active
dipole moments do not possess such property. Thus, the post-Newtonian center of
mass of the body, J i ≡ Ĩi, is derived from equation (4.180) for l = 1, and reads

J i =

∫
VB

ρ∗wi
[
1 + ε2

(
1
2
ν2 + Π −

1
2

Û(B)
)]

d3w (6.13)

−ε2

[Y + (1 − γ)P
]
J i
∗ +

∞∑
l=1

l + 1
l!

QLI
iL

+
1
2

∞∑
l=1

1
(2l + 1)(l − 1)!

QiL−1N
L−1

 + O(ε4) ,

where here and everywhere else

NL =

∫
VB

ρ∗w2w<L>d3w , (l ≥ 0) (6.14)

denotes a new STF tensor [Klioner and Soffel, 2000]. One calls attention of the
reader that for l = 0 the scalar functionN ≡ I(2), where I(2) is the rotational moment
of inertia that has been defined in equation (6.10).

It is worth emphasizing that the post-Newtonian definitions of mass and the center
of mass of the body depend not only on the internal distribution of matter’s density,
velocity, and stresses inside the body but also on terms describing the coupling of the
internal gravitational field of the body with external masses. Inclusion of these cou-
pling terms to definitions (6.7), (6.9) and (6.13) drastically simplifies translational
equations of motion and bring them to the form, which can be reduced to the EIH
equations of motion in the limiting case of spherically symmetric bodies. This settles
the question about whether the coupling of internal and external gravitational fields
should be included in the definitions of the post-Newtonian mass and the center of
mass.
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The post-Newtonian linear momentum of the body, Pi, is defined as the first time
derivative of the dipole moment given by equation (6.13), that is Pi = J̇ i, where the
dot indicates a derivative with respect to local coordinate time u. After taking the
derivative, one obtains

Pi =

∫
VB

ρ∗νi
[
1 + ε2

(
1
2
ν2 + Π −

1
2

Û(B)
)]

d3w (6.15)

+ε2
∫

VB

[
πikν

k −
1
2
ρ∗Ŵ (B)

i

]
d3w

−ε2 d
du

[Y + (1 − γ)P
]
J i
∗ +

∞∑
l=1

l + 1
l!

QLI
iL

+
1
2

∞∑
l=1

1
(2l + 1)(l − 1)!

QiL−1N
L−1


+ε2

∞∑
l=1

1
l!

[
QLİ

iL +
l

2l + 1
QiL−1Ṅ

L−1
]
− ε2

∞∑
l=1

1
l!

QL

∫
VB

ρ∗νiwLd3w ,

where function

Ŵ (B)

i (u,w) = G
∫

VB

ρ∗(u,w′)ν′k(wk − w′k)(wi − w′i)
|w − w′|3

d3w′ . (6.16)

Until now the point xB(t) in the global coordinates represented location of the
origin of the local coordinates taken at time t. In general, the origin of the local
coordinates does not coincide with the center of mass of the body, which can move
with respect to the local coordinates with some velocity and acceleration. In order
to keep the center of mass of the body at the origin of its local coordinates one must
prove that for any instant of time the dipole moment defined by equation (6.13) and
its time derivative (that is, the linear momentum of the body) given by equation
(6.15) can be made equal to zero. This requirement can be achieved, if and only if,
the second time derivative of the dipole moment with respect to the local coordinate
time u is identically equal to zero, that is

Ṗi = 0 . (6.17)

It is remarkable that this equation can be satisfied after making an appropriate choice
of the external dipole moment Qi that characterizes a locally measurable accelera-
tion of the origin of the local coordinates with respect to a geodesic worldline of the
background spacetime. This statement has been proven in [Kopejkin, 1988a] in the
Newtonian approximation and, then, extended up to the post-Newtonian approxima-
tion in [Damour et al., 1991]. The present book investigates the consequences of
equation (6.17) in the post-Newtonian approximation of the scalar-tensor theory of
gravity characterized by two PPN parameters, β and γ.
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6.1.4
Translational equation of motion in the local coordinates

Translational equation of motion of a body in its own local coordinates, wα = (cu,w),
is derived by making use of the definition of the conformal linear momentum, Pi,
of the body that is defined in equation (6.15). Taking a derivative of equation (6.15)
with respect to the local coordinate time u, making use of macroscopic equations of
motion (6.4)-(6.6) and integrating by parts, one obtains

Ṗi = MQi(u) +

∞∑
l=1

1
l!

QiL(u)IL(u) + ε2∆Ṗi (6.18)

−ε2
{ ∞∑

l=2

1
(l + 1)!

[
(l2 + l + 4)QL − 2(1 − γ)PL

]
ÏiL

+

∞∑
l=2

2l + 1
(l + 1)(l + 1)!

[
(l2 + 2l + 5)Q̇L − 2(1 − γ)ṖL

]
İiL

+

∞∑
l=2

2l + 1
(2l + 3)(l + 1)!

[
(l2 + 3l + 6)Q̈L − 2(1 − γ)P̈L

]
IiL

+

[
3Qk − (1 − γ)Pk

]
Ïik +

3
2

[
4Q̇k − (1 − γ)Ṗk

]
İik

+
3
5

[
5Q̈k − (1 − γ)P̈k

]
Iik +

∞∑
l=2

1
l!

ŻiLI
L

+

∞∑
l=1

1
(l + 1)!

εipq

[
ĊpLI

<qL> +
l + 2
l + 1

CpLİ
qL

]
−2

∞∑
l=1

l + 1
(l + 2)!

εipq

[(
2QpL − (1 − γ)PpL

)
ṠqL

+
l + 1
l + 2

(
2Q̇pL − (1 − γ)ṖpL

)
SqL

]
−

∞∑
l=1

l(l + 2)
(l + 1)(l + 1)!

CiLS
L

−
1
2
εikq

[(
4Qk − 2(1 − γ)Pk

)
Ṡq +

(
2Q̇k − (1 − γ)Ṗk

)
Sq

]
+
(
Pi − Qi

)[1 − γ
6
Ï(2) +

1
2
η

∫
VB

ρ∗Û(B)d3w

+

∞∑
l=2

1
l!

(
2(β − 1)PL − (1 − γ)lQL

)
IL

]}
+ O(ε4) ,

where one has shown explicitly all terms proportional to the external dipole moment
Qi and again used notation η = 4β − γ − 3 for the Nordtvedt parameter. The post-
Newtonian correction ∆Ṗi in the first line of equation (6.18) is given by a rather long
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expression

∆Ṗi =

∞∑
l=1

1
l!

[2(1 − γ)(2l + 1)
(2l + 3)(l + 1)

d
du

∫
VB

ρ∗νkw<kL>d3w (6.19)

+(γ − 1)
∫

VB

(ρ∗ν2 + σ̂kk)wLd3w

+2(1 − β)
∫

VB

ρ∗
(
Û(B) +

∞∑
n=0

1
n!

PNwN
)
wLd3w

](
PiL − QiL

)
+(Qi − Pi)

[
2(β − 1)Pk + (γ − 1)Qk

]
Ik −

1
3

[
6Ÿ + 4(1 − γ)P̈

]
Ii

−ŻikI
k − εipq

(
ĊpIq + 2Cpİq

)
−

[
Q̇ + 4Ẏ + 2(1 − γ)Ṗ

]
İi − 2

[
Y − (β − 1)P

]
Ïi .

One emphasizes thatM and IL (l ≥ 1) in equations (6.18), (6.19) are respectively
the active mass and the active multipole moments of the body, both depending on
time u taken at the origin of the local coordinates.

External dipole moment Qi defines acceleration of the origin of the local coordi-
nates with respect to a geodesic worldline passing through the origin of the local
coordinates at the instant of time u. This acceleration is not restricted by the gravita-
tional field equations and can be chosen arbitrary. Its choice determines the world-
line of the origin of the local coordinates. If one chooses Qi = 0 the origin of the
local frame, xB, will move along a geodesic worldline defined in the global frame by
equation (5.88) while the center of mass of the body under consideration will move
in accordance with the equation of motion (6.18) with respect to this geodesic.

Practical applications, however, demand [Kopejkin, 1988a; Soffel et al., 2003] to
chose the origin of the local frame being always located at the center of mass of the
body. This can be accomplished by assuming that the forces exerted on the body
obeys the third Newton’s law in the local coordinates. It can be satisfied by equating
the net force to zero, that is imposing condition (6.17) with Ṗi ≡ J̈ i = 0. It leads to
appearance in the local coordinates of the force of inertia associated with the inertial
acceleration Qi, which compensates the force of the gravitational interaction between
the internal multipole moments of the body and the external multipoles of the tidal
gravitational field. The local coordinates become non-inertial but it makes equation
(6.17) justified for any instant of time. Subsequent integration of this equation with
respect to time allows us to make the origin of the local coordinates moving along
the worldline of the center of mass of the body. This is achieved after the conformal
dipole moment J i is subject to the following conditions: J̇ i = J i = 0. Similar con-
ditions are obtained for the active dipole moment, Ïi = İi = Ii = 0 but only in the
Newtonian approximation. In the post-Newtonian approximation the active dipole
moment of the body Ii , 0, even if the conformal multipole moment of the body
J i = 0, because these two moments differ in the post-Newtonian approximation as
shown in section 4.5.3, and more explicitly in equation (6.28).

Placing the origin of the local coordinates at the body’s center of mass with (J̈ i =
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J̇ i = J i = 0) and noticing that QL = PL for any index l ≥ 2 makes the post-
Newtonian function ∆Ṗi = 0. Relationship (6.18) becomes algebraic equation for
function Qi, which can be immediately solved. Separating Qi from all other terms
in equation (6.18), taking all terms with Qi to the left side, and solving for Qi yields
the following post-Newtonian equation

M̃i jQ j = Fi
N + ε2

(
Fi

pN + ∆Fi
pN

)
+ O(ε4) , (6.20)

where the conformal anisotropic tensor of mass

M̃i j = M̃δi j − ε
2
[
3Ïi j − 2

∞∑
l=1

1
l!

(
Q jLI

iL − QiLI
jL
)]
, (6.21)

and the tidal gravitational forces

Fi
N = −

∞∑
l=1

1
l!

QiL(u)IL(u) , (6.22)

Fi
pN =

∞∑
l=2

l2 + l + 2(1 + γ)
(l + 1)!

QLÏ
iL + 6Q̇kİ

ik + 3Q̈kI
ik (6.23)

+

∞∑
l=2

(2l + 1)
(l + 1)!

( l2 + 2l + 2γ + 3
l + 1

Q̇Lİ
iL +

l2 + 3l + 2γ + 4
2l + 3

Q̈LI
iL
)

+

∞∑
l=2

1
l!
εipq

(
ĊpL−1I

qL−1 +
l + 1

l
CpL−1İ

qL−1
)

−2(1 + γ)
∞∑

l=2

l
(l + 1)!

εipq

(
QpL−1Ṡ

qL−1 +
l

l + 1
Q̇pL−1S

qL−1
)
,

−

∞∑
l=1

l(l + 2)
(l + 1)(l + 1)!

CiLS
L +

∞∑
l=2

1
l!

ŻiLI
L − εipqQ̇pS

q

∆Fi
pN = (1 − γ)

(1
2
εikqṖkS

q −
3
2

Ṗkİ
ik −

3
5

P̈kI
ik
)

(6.24)

+ (1 − γ)
[ ∞∑

l=1

1
l!

(
QkLI

iL − QiLI
kL

)
− Ïik

]
Pk

+

[1
2
η

∫
VB

ρ∗Û(B)d3w +
1 − γ

6
Ï(2) +

∞∑
l=2

2(β − 1) + (γ − 1)l
l!

QLI
L
]
Pi .

Equations (6.20)-(6.24) describe the inertial acceleration Qi of the body in the lo-
cal coordinates in the presence of external bodies, which create the inertial force
standing in the right side of equation (6.20) and displace the motion of the body’s
center of mass from a geodesic worldline. Newtonian, Fi

N , and the post-Newtonian,
Fi

pN , tidal forces are caused by gravitational coupling of the body’s internal (active)
multipole moments, IL and SL, with the external multipole moments, QL and CL.
The post-Newtonian tidal force, Fi

pN , is reduced in the limit of γ = 1 to general rela-
tivistic expression derived previously by Damour et al. [1991]. The spin-dipole term,
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∼ Ci jS
j, in equation (6.23) has been derived by Mathisson [Mathisson, 1937] and Pa-

papetrou [Papapetrou, 1951a] with a different mathematical technique. The deriva-
tion has been reproduced in the paper by Dixon [Dixon, 1979], who has worked out
a powerful geometric approach to the problem of motion of extended bodies based
on the invariant concept of the ’skeletonized’ tensor of energy-momentum of matter.
Dixon also obtained equation (6.22) with the internal multipole moments IL defined
in terms of the ’skeletonized’ tensor of matter. Our equations (6.20)-(6.24) represent
a comprehensive post-Newtonian generalization of the Mathisson-Papapetrou-Dixon
equations of motion for rotating bodies with arbitrary internal structure.

It is worthwhile to emphasize that summation with respect to index l in equation
(6.22) begins from l = 1. The point is that one has defined the center of mass of
the body B in terms of the conformal dipole moment J i by the condition J i = 0.
However, the force Fi

N depends on the active multipole moments of the body and the
active dipole moment Ii , J i. Hence, Ii , 0, and one should retain the dipole term
with l = 1 in equation (6.22). The contribution to the force Fi

N coming out of the
non-zero active dipole of the body has a post-Newtonian order of magnitude and can
be written down more explicitly as(
Fi

N

)
dipole

= −Qi jI
j , (6.25)

where the active dipole moment Ii is

I j = ε2
{
−

1
2
η

∫
VB

ρ∗Û(B)w jd3w +
1
5

(γ − 1)
[
3Ṙ j −

1
2
N̈ j

]
(6.26)

+

∞∑
l=0

1
l!

[
(1 − γ)l QL + 2(1 − β)PL

]
I jL

+
1
2

∞∑
l=0

1
(2l + 3)l!

[
(γ − 1)Q jL + 4(1 − β)P jL

]
NL

}
+ O

(
ε4

)
,

where

Ri =

∫
VB

ρ∗νkw<kwi>d3w . (6.27)

If one takes into account the explicit relationship between the multipole moments
PL of the scalar field and gravitational potential of the external bodies, then equation
(6.26) can be slightly simplified

I j = ε2
{
−

1
2
η

∫
VB

ρ∗Û(B)w jd3w +
1
5

(γ − 1)
[
3Ṙ j −

1
2
N̈ j

]
(6.28)

+ 2(1 − β)
[
Ū(xB)I j + ak

BI
jk +

1
3

a j
BN

]
−

η

2

∞∑
l=0

1
(2l + 3)l!

Q jLN
L +

∞∑
l=1

(1 − γ)l + 2(1 − β)
l!

QLI
jL
}

+ O
(
ε4

)
.

It is clear that the active dipole moment of the body can contribute to the equations
of motion of the body only in the scalar-tensor theory of gravity because in general
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relativity β = γ = 1 and there is no difference between the conformal and active
internal dipoles. One notices the presence of the self-gravitational energy coupled
with the Nordtvedt parameter η = 4β − γ − 3 in the definition of the active dipole
moment of the body. Similar terms appear in the definition of the active mass of
the body leading to inequality of inertial and gravitational masses of the body. Pres-
ence of the Nordtvedt parameter-dependent term in the active dipole moment is not
important for the bodies, whose shape is close to spherically-symmetric. However,
it may play a role in motion of sub-systems, like Earth and Moon, which possess
a large deviation from spherical symmetry. More detailed study of this problem is
desirable.

Gravitational force ∆Fi
pN presents only in the scalar-tensor theory of gravity. Its

magnitude is proportional to the external dipole moment of the scalar field, Pi, and its
time derivatives. The dipole Pi couples with the self-gravitational energy ∼

∫
ρ∗Û(B)

of the body, with the energy of external gravitational field, and with the kinetic en-
ergy of the body’s internal motion given by the term Ï(2). Next section will demon-
strate that it is this coupling that is responsible for the inequality of inertial and
gravitational masses of the body (the Nordtvedt effect) leading to violation of the
strong principle of equivalence.

6.1.5
Orbital equation of motion in the global coordinates

Equation of orbital motion of the center of mass of body B in the global coordinates
xα = (ct, x) are obtained from the equation of motion (5.88) of the origin of the local
coordinates, xB, where the inertial acceleration Qi obeys the translational equation
of motion (6.20). One uses equation (5.58) to replace, in forces Fi

pN , and ∆Fi
pN all

terms depending explicitly on Qi, with a linear combination of the barycentric accel-
eration ai

B and the gradient Ū,i(xB) of the gravitational potential of external bodies,
Qi = Ū,i(xB)−ai

B. Moreover, one expresses the scalar external multipoles in terms of
the external gravitational potential: PL = Ū,L(xB), that is equation (5.55). Then, we
take all terms depending on the gradient Ū,i(xB) of the external gravitational poten-
tial, to the right side of equation (5.88) and put those depending on the barycentric
acceleration of the body’s center of mass ai

B, to its left side. It brings equation of
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motion (5.88) to the following form

M̃Bai
B = MB

{
Ū,i(xB) + ε2

[
Φ̄,i(xB) −

1
2
χ̄,itt(xB)

]}
− Fi

N − ε
2Fi

pN (6.29)

+ ε2MB

{[
γδikv2

B − vi
Bvk

B − 2(γ + β)δikŪ(xB)
]
Ū,k(xB) −AQ̇i

+2(1 + γ) ˙̄U i(xB) − 2(1 + γ)vk
BŪk,i(xB) − (1 + 2γ)vi

B
˙̄U(xB)

}
+ ε2

{[
2Q − Y − v2

B − (2 + γ)Ū(xB)
]
δik −

1
2

vi
Bvk

B − F ik +
3
MB

Ïik

+
1
MB

∞∑
n=1

1
n!

[
QiNI

kN − QkNI
iN

]} ∞∑
l=2

1
l!

QkLI
L

+ ε2(1 − γ)
{
ÏikŪ,k(xB) +

3
2
İik ˙̄U,k(xB) +

3
5
Iik ¨̄U,k(xB)

+
1
2
εipkS

p ˙̄U,k(xB) +

∞∑
l=1

1
l!

(
QiLI

kL − QkLI
iL
)
Ū,k(xB)

}
+ O(ε4) ,

where the external potentials Ū(xB), Ū i(xB), Φ̄(xB) and χ̄(xB) are taken on the world-
line of the center of mass of the body B at the instant of time t as defined in equation
(5.32). The external potential of any other body A (A,B) can be further expanded
in a multipolar series around its own center of mass xA so that the orbital equation
of motion (6.29) will depend on the active multipole moments of the body B and
the multipole moments of other bodies of the N-body system. Some research in this
direction has been pursued in papers by Xu et al. [1997] and Racine and Flanagan
[2005]. Complete calculation of the orbital equations of motion of the bodies with
all possible multipole moments taken into account, have been recently executed by
Y. Xie and S. Kopeikin. This general result is too complicated and goes beyond the
scope of the present book. One considers more simple case of the post-Newtonian
equations of spherically-symmetric and rotating bodies in section 6.3 as it has prac-
tical application in calculation of ephemerides of the solar system bodies. Moreover,
it allows us to reproduce the most important physical aspects of the post-Newtonian
celestial mechanics.

One has to notice that the inertial mass M̃B of the body B in the left side of equa-
tion (6.29) is its conformal mass. It is not equal to the gravitational mass MB of
the body appearing in the right side of this equation as its active mass. The differ-
ence between the two masses is given by equation (6.11) and leads to violation of
the strong principle of equivalence for massive extended bodies in the scalar-tensor
theory of gravity. The fact that inertial and gravitational masses can not be equal
in alternative theories of gravity was pointed out by Dicke [Brans and Dicke, 1961;
Dicke, 1962a,b] and Nordtvedt [Dickey et al., 1994; Nordtvedt, 1973, 1970]. The
difference between the masses originates from the coupling of the external scalar
multipole Pi = Ū,i(xB) with gravitational and kinetic internal energies of the body as
shown in equation (6.24). This coupling contributes to the gravitational mass of the
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body but does not affect its inertial mass.
Forces Fi

N and Fi
pN are given by equations (6.22) and (6.23). Terms in the first

and second curled brackets of equation (6.29), which are proportional to massMB,
are the post-Newtonian corrections to the Newtonian force acting on the body B
considered as a monopole massive particle. The group of terms in the third and forth
curled brackets in equation (6.29) represents the post-Newtonian correction to the
Newtonian tidal force Fi

N and takes into account higher-order internal multipoles of
the body B. In particular, these terms contain the time-dependent scaling functions, Q
and Y , which define the unit of time and length in the local coordinates [Klioner et al.,
2009a; Kopeikin, 2010a]. This correction also contains matrix of the relativistic
precession F ik given by equation (5.99).

Equation (6.29) describes a generic case of orbital equation of motion of extended
bodies having arbitrary structure and rotation. They must be supplemented by the
post-Newtonian equations of rotational motion of the bodies, which will be derived
in the next section.
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6.2
Rotational Equations of Motion of Extended Bodies

6.2.1
The angular momentum of a self-gravitating body

Rotational equations of motion of a body define orientation of its angular momentum
(spin) at each instant of time with respect to the local coordinates wα = (cu,w),
which spatial axes are not dynamically-rotating. It means that the spatial axes are
transported in spacetime along the worldline of the origin of the local coordinates
in accordance with the Fermi-Walker law [Misner et al., 1973] given by equation
(5.99) describing orientation of the spatial axes of the local coordinates with respect
to the global coordinates at each instant of time.

First, one needs to introduce the post-Newtonian definition of the angular momen-
tum of an extended body that is a member of N-body system. It seems that the most
straightforward procedure to get it is to use the multipolar expansion of ĝ0i(u,w)
component of the metric tensor calculated up to the post-post-Newtonian approxi-
mation [Misner et al., 1973; Thorne and Hartle, 1985]. Damour and Iyer [1991a,b]
have indeed applied this procedure for deriving the post-Newtonian definition of the
angular momentum of a single, isolated body. Unfortunately, it is not known if this
procedure can be applied to defining the post-Newtonian angular momentum of a
body from N-body system as it involves a lot of mathematical subtleties, yet unre-
solved. Therefore, another approach, proposed by Damour et al. [1993], will be used
to bypass this difficulty.

Let us introduce a bare spin of a single body B in the local coordinates by making
use of the following post-Newtonian definition [Misner et al., 1973]

Si = ε

∫
εi jkw jΘ̂0kd3w , (6.30)

where a hat above any quantity means that it is expressed in the local coordinates,
and

Θ̂0k = (−ĝ)
φ

φ0

(
c2T̂ 0k + t̂0k

)
, (6.31)

is a linear combination of the tensor of energy-momentum of matter T µν and the
pseudo-tensor of gravitational field t̂µν. Definition of the bare spin of the body B
by equation (6.30) corresponds to the conserved spin of an isolated astronomical
system of N bodies as defined in equation 4.126. One also stipulates that the center
of mass of the body B is chosen in the local coordinates such that its conformal
dipole moment J i is zero.

Integration in equation (6.30) is formally performed in the local coordinates over
entire space. Tensor of energy-momentum T̂ 0k includes the matter of the body B
only but one assumes that it depends on the complete metric tensor ĝµν in the local
coordinates. On the other hand, one postulates that the pseudo-tensor t̂0k depends
only on the internal part of the metric tensor in the local coordinates of the body B.
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Integration by parts allows us to represent the bare spin of the body B in equation
(6.30) in the following form

Si = ε2
∫

VB

εi jkw j
{
ρ∗νk

[
c2 +

1
2
ν2 + Π + (2γ + 1)Û(B) (6.32)

+

∞∑
l=1

1
l!

(
3QL + 2(γ − 1)PL

)
wL + 3Y + (1 − γ)P

]
+ πknνn −

1
2
ρ∗

[
Ŵ (B)

k + (3 + 4γ)Ûk
(B)

]}
+ O

(
ε4

)
,

where the integration is now only over the volume of the body B and potential Ŵ (B)

k
is defined by equation (6.16). Equation (6.32) will be used to derive the rotational
equations of motion of the angular momentum of the body.

6.2.2
Equations of rotational motion in the local coordinates

Rotational equations of motion for body’s spin are derived by differentiation of equa-
tion (6.32) with respect to the local coordinate time u. After taking the time deriva-
tive and making use of the macroscopic equations of motion in local coordinates
given in section 6.1.2, one makes several transformations of the integrand to reduce
similar terms and to simplify the final result. After tedious but straightforward cal-
culations, one obtains equations of the rotational motion of the body B

dSi

du
= T i + ε2

(
∆T i −

d
du

∆Si
)

+ O
(
ε4

)
, (6.33)

whereT i is a linear superposition of generic Newtonian and post-Newtonian torques,
∆T i is its post-Newtonian correction in the scalar-tensor theory of gravity due to the
explicit presence of the scalar field, and ∆Si can be considered as a supplementary
post-Newtonian contribution to the bare spin Si. The torque and other terms in the
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right side of equation (6.33) read as follows:

T i =

∞∑
l=0

1
l!
εi jk

[
I jL

(
QkL − ε

2ŻkL

)
+ ε2S jLCkL

]
(6.34)

+
[
Y + Q + (2β − γ − 1)Ū(xB)

] ∞∑
l=0

1
l!
εi jkI

jLQkL ,

∆T i = εi jka j
B

[
3(1 − γ)

5
Ṙk +

γ − 1
10
N̈k +

η

2

∫
VB

ρ∗Û(B)wkd3w (6.35)

+
η

2

∞∑
l=0

1
(2l + 3)l!

QkLN
L +

∞∑
l=1

(γ − 1)l + 2(β − 1)
l!

QLI
kL

+ 2(β − 1)
(
an

BI
kn +

1
3

ak
BN

)]
,

∆Si = −

∞∑
l=1

1
l!
IiLCL +

∞∑
l=0

l + 2
(2l + 3)(l + 1)!

NLCiL (6.36)

+

∞∑
l=0

1
(2l + 5)l!

εi jk

[
1
2
Ṅ jLQkL −

l + 2(2γ + 3)
2(l + 2)

N jLQ̇kL −
2(1 + γ)(2l + 3)

l + 2
R jLQkL

]
+

1 − γ
5

εi jk

[
3R jak

B +N jȧk
B

]
+

[
Q − Y + (γ − 1)Ū(xB)

]
Si ,

where

RL =

∫
VB

ρ∗νkw<kL>d3w , (6.37)

is additional set of multipole moments which has been used already in definition of
the multipole moments in section 4.4.

Gravitational torque T i depends on the multipole moments ZL, which define the
residual gauge freedom. The gauge multipoles ZL can be chosen to eliminate some
terms in the torqueT i depending on the external multipoles QL. The post-Newtonian
correction ∆T i = εi jka j

B

(
J i − Ii

)
, where Ii and J i are the active and conformal

dipole moments of the body B respectively. The difference between the two dipole
moments taken under condition that J i = 0 is given by equation (6.28), and re-
appears in equation (6.35). One has taken into account in equation (6.34) the external
monopole moments Q and Y defining the units of measurement of the local time and
spatial coordinates respectively in accordance with the IAU 2000 Resolutions [Soffel
et al., 2003]. Their contribution to the rotational equations of motion is extremely
small and can be omitted in practical calculations. One re-defines the spin of the
body as

Si
+ = Si + ε2∆Si , (6.38)

so that equations of rotational motion acquire their final form [Kopeikin and Vlasov,
2004]

dSi
+

du
= T i + ε2∆T i + O

(
ε4

)
. (6.39)
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Derivation of this equation reveals that the bare value of the spin of the body B
is not directly observable. Equations of the rotational motion of the body contain
additional terms, which should be interpreted as a part of the total spin of the body.
It is the total spin Si

+, which is conserved, not its bare value Si.
Equations of rotational motion (6.38) should be complemented by a relativistic

relationship giving connection between the total spin Si
+ of the body and its angular

velocity of rotation ωi. This relationship is well-known in the Newtonian theory and
given by equation

Si
+ = Ii jω j , (6.40)

where Ii j is tensor of the moment of inertia of the body [Landau and Lifshitz, 1969].
Extrapolation of equation (6.40) to the post-Newtonian approximation has not yet
been achieved. Some research towards solution of this problem has been undertaken
by Klioner [Klioner, 1996].

One has compared equations (6.39) with analogous equations derived by Klioner
and Soffel [Klioner and Soffel, 2000, equations (9.42)-(9.47)] in their own approach
to the parameterized post-Newtonian formalism with the local frames. First of all,
one notices that definition of the multipole moments CL differs by a numerical factor
(l + 1)/l from that, CKlioner−Soffel

L , used by Klioner and Soffel, that is

CL = −2(1 + γ)
l + 1

l
CKlioner−Soffel

L . (6.41)

Comparison of spin Si
+ with that S ′i given by Klioner and Soffel, shows that

they are equal if the sign minus in front of three last terms in equation (9.45) of
Klioner-Soffel’s paper [Klioner and Soffel, 2000], is replaced with sign plus. The
general-relativistic torque T i in equation (6.34) coincides naturally with that de-
rived in [Klioner and Soffel, 2000]. The biggest difference occurs between the
post-Newtonian correction ∆T i to the torque, equation (6.35), and a corresponding
quantity given in equations (9.43), (9.46) in paper [Klioner and Soffel, 2000]. First
three terms in equation (6.35) completely coincides with equation (9.43) derived by
Klioner and Soffel, thus, confirming the presence of the Nordtvedt effect for the ro-
tational motion of the bodies. However, we obtained different terms in the second
and third lines of equation (6.35) as contrasted with equation (9.46) by Klioner and
Soffel [2000]. It is likely that the difference originates from slightly different gauge
conditions used in this book and in [Klioner and Soffel, 2000]. Additional origin of
the difference is that the present book uses definition of the center of mass of the
body B, which is not reduced to that used by Klioner and Soffel.
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6.3
Motion of Spherically-Symmetric and Rigidly-Rotating Bodies

Major astronomical bodies in the solar system (planets, Sun) are almost spherically-
symmetric. Their rotation is also very close to that of a rigid body. Newtonian the-
ory of equilibrium of self-gravitating bodies [Moritz, 1989; Zharkov and Trubitsyn,
1978] describes the existing deviations from the spherically-symmetric shape and
the rigid rotation of the Earth and planets with a remarkable precision. These de-
viations are so small that their account in the post-Newtonian approximation yields
corrections that are comparable with the post-post Newtonian terms, which are con-
sidered as negligible in this book. For this reason, one will focus on derivation of
the post-Newtonian equations of motion of spherically-symmetric and rigidly rotat-
ing bodies. These equations have been discussed by many previous authors (see, for
example, books [Brumberg, 1991; Fock, 1964; Infeld and Plebanski, 1960; Soffel,
1989; Will, 1993] and references therein). Nevertheless, this section gives a new in-
sight to the old problem from the point of view of the matching technique, the global
and local coordinates, investigation of the effacing principle and the strong principle
of equivalence, which have not yet received an adequate treatment.

6.3.1
Definition of a spherically-symmetric and rigidly rotating body

First, one needs to give an exact definition of spherically-symmetric and rotating
body from N body system, which goes beyond the Newtonian theory. The main point
is that the concept of spherical symmetry and rigid rotation for an extended body is
not invariant but coordinate-dependent [Kopejkin, 1988b]. This is seen already in
special relativity, where the spatial coordinate grid of a moving inertial frame is lin-
early deformed with respect to that of inertial frame at rest and the magnitude of this
Lorentz deformation depends on velocity of the moving frame (see Section 2.3.5).
This observation assumes that if one considers a spherically-symmetric body in a
static frame it will be not spherically-symmetric in the moving frame. Deformation
of the body’s shape can be calculated by applying the Lorentz transformation to the
equation describing the shape of the body in the static frame [Batygin and Topty-
gin, 1978]. However, physics of this deformation is more involved. Moreover, the
Lorentz deformation of the moving, spherically-symmetric body is invisible [Baty-
gin and Toptygin, 1978, problem 583]. The reason is that the Lorentz deformation is
solely coordinate effect, which can not generate real physical stresses (tensions) in-
side the moving body. Nonetheless, the Lorentz deformation of the body’s shape has
to be taken into account for making correct calculation of observed physical effects
associated with the translational motion of the body. Poincaré and Lorentz were first,
who took into account the special relativistic deformation of a moving electron for
calculation of the electromagnetic radiation-reaction force exerted by the electron on
itself due to the emission of electromagnetic radiation [Jackson, 1998].

In general relativity, gravitational field causes the Einstein deformation of the co-
ordinate grid of a global static frame with respect to that of a local inertial frame of
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observer, where the gravitational field is absent as a consequence of the principle of
equivalence [Novikov and Frolov, 1989, §4.3]. This represents a pure mathemati-
cal comparison between the tetrad bases of the two frames [Misner et al., 1973]. It
should not be interpreted physically as shielding of gravitational field, which does
not exist either in the Newtonian theory or in general relativity 4). Hence, the Einstein
distortion of the coordinate grid causes neither physical deformation of the body nor
internal stresses in body’s matter. However, the Einstein deformation of the coor-
dinate’s grid must be taken into account in mathematical calculation of the orbital
equations of motion of the body with respect to the global coordinate frame. It is
worth mentioning that one has to distinguish the mathematical deformation of the
frame caused by the presence of gravitational field from real physical deformation
of the body caused by the tidal gravitational field [Xu et al., 2003]. Tidal deforma-
tions are due to the curvature of space (second derivatives of the metric tensor) while
the Einstein deformation is associated with the affine connection (first derivatives of
the metric tensor) [Novikov and Frolov, 1989]. Lorentz and Einstein deformations
of the frames can be calculated easily as soon as a precise relativistic theory of ref-
erence frames is employed. Alternative theories of gravity operates with additional
fields besides the metric tensor making the calculation of the frame deformations
more complicated.

Newtonian definition of the internal multipole moments of a body is unique and
unambiguous. It follows from the Taylor expansion of the Newtonian gravitational
potential in a series of spherical harmonics outside the body [Moritz, 1980; Moritz
and Mueller, 1987]. On the other hand, the post-Newtonian definition of the internal
multipole moments of the body is coordinate-dependent [Blanchet, 1998; Blanchet
and Damour, 1989; Thorne, 1980]. Therefore, the explicit structure of the multi-
polar expansion of the body’s gravitational field crucially depends on the choice of
coordinates. The post-Newtonian transformation from the local to global coordi-
nates will change the mathematical description of the multipole moments and the
number of multipoles in the expansion. One has to be careful in finding the most
adequate formulation of the spherical symmetry of the body to avoid introduction of
non-physical multipole moments, which are merely reflecting the gauge freedom of
the gravitational field. Any misunderstanding in this question will lead to erroneous
derivation of the orbital equations of motion of the bodies from N-body system in
the first and higher order post-Newtonian approximations [Futamase and Itoh, 2007;
Kopeikin, 1985] and appearance of spurious terms having no physical meaning.

When several bodies form a self-gravitating system they interact to each other
and disturb the interior distribution of matter via their tidal field. In the Newtonian
physics, this disturbance induces deviation from spherically-symmetric distribution
of matter, which leads to appearance of tide-induced multipole moments of the grav-
itational field of the body. This makes the equations of motion of the bodies different
from those of the point-like masses. One can postpone the appearance of the tide-
induced multipoles by making the characteristic distance between the bodies large

4) Experiments for detection of the effect of shielding of the gravitational field exclude it with convincing
evidence [Caputo, 2006].
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enough, thus, reducing the effect of these multipole moments to negligible order
[Kopeikin, 1985]. Indeed, the tide-induced quadrupole moment of the body inter-
acts with the tidal field and exerts on the body the orbital force [Alexander, 1973]

Ftide ' κtide

(
ve

vs

)2 ( L
R

)5

FN , (6.42)

where FN = GM2/R2 is the Newtonian gravity force for a point-like mass, M and
L are characteristic mass and size of the bodies, R is the average distance between
the bodies, G is the universal gravitational constant, ve is the body’s escape veloc-
ity, vs is the speed of sound inside the body’s interior, and κtide is a numerical factor
depending on the internal distribution of density (equivalent to the tide Love num-
ber [Moritz, 1989; Zharkov and Trubitsyn, 1978]). Decreasing the ratio L/R can
make the force Ftide much smaller than the post-Newtonian force [Damour, 1983;
Kopeikin and Vlasov, 2008; Kopeikin, 1985]. The rotational deformation leads to
the rotation-induced quadrupole moment of the body, which interacts with the tidal
field of external bodies and exerts on the body under consideration the orbital force
[Alexander, 1973]

Frot ' κrot

(
vr

vs

)2 ( L
R

)5

FN , (6.43)

where vr ' ΩBL is the characteristic linear velocity of the body’s rotation, ΩB is the
angular rotational frequency of the body, and κrot is a numerical factor depending on
the internal distribution of density (equivalent to the rotation Love number [Moritz,
1989; Zharkov and Trubitsyn, 1978]). Making L/R sufficiently small one can neglect
Frot [Damour, 1983; Kopeikin and Vlasov, 2008; Kopeikin, 1985].

One stipulates that for each body of N-body system the geometrical center of the
body’s spherical symmetry is located at the center of mass of the body that coincides
with the origin of the local coordinates associated with this body. One also assumes
that the Newtonian tides caused by external bodies and the rotational deformation
of the body are negligibly small so that all functions characterizing internal struc-
ture of the body have spherically-symmetric distribution in the local coordinates.
These functions are: the invariant density ρ∗, the internal energy Π, and the tensor of
stresses πi j. Spherical symmetry in the local coordinates means that these functions
depend only on the local radial coordinate r = |w|:

ρ∗(u,w) = ρ∗(r) , Π(u,w) = Π(r) , πi j(u,w) = δi j p(r) . (6.44)

Moreover, one assumes that the internal distribution of matter does not depend on
the local coordinate time u that excludes radial pulsations of the body from consid-
eration. Radial pulsations can be easily included in this scheme of calculation of the
equations of motion as well. Notice that the radial pulsations of matter do not af-
fect the gravitational field (the metric tensor) of a spherically-symmetric distribution
of the matter in general relativity due to Birkhoff’s theorem [Landau and Lifshitz,
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1975; Misner et al., 1973; Novikov and Frolov, 1989; Wald, 1984]. However, our
calculations are done in the framework of the scalar-tensor theory of gravity, where
the Birkhoff’s theorem holds only for time-independent scalar field [Dutta Choud-
hury and Bhattacharya, 1980; Krori and Nandy, 1977]. Radial pulsations of matter
density makes the scalar field time dependent as follows from the post-Newtonian
equation (4.58) for scalar field. This should bring extra terms to the post-Newtonian
equations of motion of extended, spherically-symmetric bodies.

Spherically-symmetric distribution of matter generates a spherically-symmetric
gravitational field both in general relativity and in the scalar-tensor theory of grav-
ity. Therefore, the multipolar expansion of the Newtonian gravitational potential of
a spherically-symmetric, extended body must have in the local coordinates only a
monopole term

ÛB(u,w) = G
∫

VB

ρ∗(u,w′)d3w′

|w − w′|
=

GM∗B

r
, (6.45)

where the baryon (Newtonian) massM∗B is defined in equation (6.1). Strictly speak-
ing, this monopole expansion will be violated at some order of approximation be-
cause the external tidal force of the background gravitational field acts on the body
and deforms its spherically-symmetric distribution of matter. However, equations
(6.42) demonstrates that the tidal deformation can be neglected in the first post-
Newtonian approximation for sufficiently small ratio of L/R.

One will consider the case of rigidly rotating bodies for which the internal velocity
of matter (as defined in the local coordinates) is a vector product of the angular
velocity Ωi

B, referred to the local frame, and the radius-vector wi, that is

νi = εi
jkΩ

j
Bwk (6.46)

ν2 =
2
3

Ω2
Br2 −Ω

j
BΩ

k
Bw< jk> , (6.47)

in the local frame of the body B. The rotation causes rotational deformation of the
body and distorts its spherical symmetry. However, the rotational deformation is
proportional to the Love number κrot, and by assuming that the body is rigid enough
and rotates sufficiently slow, one can make the impact of the rotational deformation
on the body’s motion negligibly small.

Spherical symmetry of each body assumes that one can use the following (pure
mathematical) properties in performing volume’s integration of any function f (r),
depending on radial coordinate r only [Thorne, 1980]:∫

VB

f (r)wi1i2 ...i2l d3w =
1

2l + 1
δ(a1a2 ...δa2l−1a2l)

∫
VB

f (r)r2ld3w , (6.48)

∫
VB

f (r)wi1i2 ...i2l+1 d3w = 0 , (6.49)

where the integral is taken over the volume of the body B, and δ(a1a2 ...δa2l−1a2l) is the
fully symmetric linear combination of the Kronecker delta symbols [Thorne, 1980].
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In particular, for any l ≥ 1 one has∫
VB

f (r)w<i1i2 ...il>d3w = 0 , (6.50)

where the angular brackets around indices denote symmetric and trace-free (STF)
part of the multi-index geometric object [Thorne, 1980]. One will also need sev-
eral other equations for performing integration over the body’s volume in the local
coordinates. They are as follows:

A<iL>B<N>

∫
VB

ρ∗w<L>w<N>d3w =


l!

(2l + 1)!!
A<iL>B<L>I

(2l)
B , (n = l)

0 , (n , l)
(6.51)

A<iL>

∫
VB

ρ∗ν2w<L>d3w =

 −
2
15

A<i jk>Ω
j
BΩ

k
BI

(4)
B , (l = 2)

0 , (l > 2)
(6.52)

where one has used equation (6.47), A<L> and B<L> are arbitrary STF tensors, and

I
(2l)
B =

∫
VB

ρ∗r2ld3w, (6.53)

is 2l-th order rotational moment of inertia of the body B 5). Equations (6.48)-(6.53)
will be used for calculation of multipolar expansions of various gravitational poten-
tials entering orbital equations of motion of the bodies.

6.3.2
Coordinate transformation of the multipole moments

Multipolar expansion of the Newtonian potential in the global coordinates, xα =

(ct, x), introduces barycentric multipole moments of a body defined as integrals over
the body’s volume taken on hypersurface of constant global coordinate time t, that is

ILB =

∫
VB

ρ∗(t, x)Ri1
B Ri2

B ...R
il
B d3x , (6.54)

where Ri
B = xi − xi

B, and xi
B is the origin of the local coordinates coinciding with the

center of mass of the body. One has postulated that the density and other structure-
dependent functions inside the body have a spherical-symmetric distribution in the
local coordinates wα = (cu,w), so that according to equation (6.50) the following
relationship holds for any l ≥ 1∫

VB

ρ∗(r′)w′<L>d3w′ = 0 , (l ≥ 1) (6.55)

5) Notice that all odd rotational moments I(2l+1) = 0 as follows from the angular integration over a
spherical volume of the body.
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where the integration across the volume of the body is over a hypersurface of con-
stant local coordinate time u.

Equation (6.55) does not assume that the multipole moments, ILB , of the body B
defined in the global coordinates are equal to zero, and indeed, ILB , 0 for l ≥ 1. One
can calculate ILB directly from equation (6.55) after making use of transformation
formula, equation (5.38), from the local to global coordinates written down for an
element of matter inside the body 6)

w′i = R′iB + ε2
[(

1
2

vi
Bv j

B + Fi j + Di j

)
R′ jB + Di jkR′ jB R′kB

]
(6.56)

+ε2
(
v′i − vi

B

) (
R′ jB − R j

B

)
vi

B + O
(
ε4

)
,

where R′iB = x′i − xi
B, Ri

B = xi − xi
B, v′i = dx′i/dt, vi = dxi/dt,

Fi j = −εi jkF
k , (6.57)

Di j = γδi jŪ(xB) − δi jY , (6.58)

Di jk =
1
2

(
a j

Bδ
ik + ak

Bδ
i j − ai

Bδ
jk
)
, (6.59)

and function F k is defined by an ordinary differential equation (5.75).
Equation (6.56) must be used for transforming integrals shown in equation (6.55)

from the local to global coordinates. It takes into account that the integration in equa-
tion (6.55) is performed over the hypersurface of constant (local) time coordinate u
while similar integrals in the multipolar decomposition of the Newtonian gravita-
tional potential in the global coordinates are defined on the hypersurface of constant
(global) time coordinate t. Transformation of space coordinates from the spacelike
hypersurface of constant time u to that of time t depends on space coordinates, x,
of the point, at which matching of the local and global coordinates is done so that
both coordinates: x′ - the point of integration and, x - the matching point, appear in
equation (6.56) together and belong to the same hypersurface of constant time t.

Substitution of equation (6.56) into equation (6.55) yields [Kopejkin, 1988b,
1991b]∫

VB

ρ∗(u,w′)w′<L>d3w′ = I<L>
B + ε2

(
l
2

v j
Bv<il

B I
L−1> j
B − lF j<il I

L−1> j
B (6.60)

+ lD j<il I
L−1> j
B + lI jk<L−1

B Dil> jk + v j
Bİ

j<L>
B

−
(
v j

BR j
B

)
İ<L>

B − v j
B

∫
VB

ρ∗(u,w′)ν′ jw′<L>d3w′
)

+ O
(
ε4

)
.

Taking into account equation (6.55) one concludes that only the dipole, IiB, and the
quadrupole, Ii j

B , barycentric moments differ from zero in the first post-Newtonian

6) Taking into account transformation of the multipole moments from the local to global coordinates is
vitally important for correct calculation of equations of motion of extended bodies in the third post-
Newtonian approximation as well [Futamase and Itoh, 2007].
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approximation. More specifically,

IiB =
ε2

3
I

(2)
B

(
εi jkv j

BΩ
k
B +

1
2

ai
B

)
+ O

(
ε4

)
, (6.61)

I
<i j>
B = −

ε2

3
I

(2)
B v<i

B v j>
B + O

(
ε4

)
, (6.62)

I<L>
B = O

(
ε4

)
, (l ≥ 3) (6.63)

The same expressions for the multipole moments can be obtained in a different
way by making use of multipolar expansions of the Newtonian potential of body B
in the local and global coordinates and their subsequent comparison with the help of
transformation formula shown in equation (5.82). One has checked that both deriva-
tions are self-consistent and yield identical expressions for the barycentric multipole
moments given in equations (6.61)-(6.63). Transformation of multipole moments of
body’s gravitational field from the global to local coordinates were used in papers
[Brumberg and Kopeikin, 1989; Brumberg and Kopejkin, 1989a] in order to derive
the post-Newtonian equations of motion of Earth’s artificial satellite in the geocentric
frame with taking into account relativistic corrections due to the presence of Earth’s
quadrupole field.

Earlier derivations of the post-Newtonian equations of motion of non-rotating ex-
tended bodies stipulated that the bodies have spherically-symmetric distribution of
mass in the global coordinates (see, for example, [Brumberg, 1972; Dallas, 1977;
Fock, 1964; Spyrou, 1975]). This assumption is non-physical because it leads to
non-spherical mass distribution inside the body in the local coordinates, which must
be maintained by some internal stresses depending on the characteristics of the or-
bital motion of the body. However, this effect is nothing else but the result of the
post-Newtonian coordinate transformation, which can not be associated with physics
of the interior structure of the bodies. That is why the earlier assumptions underlying
the post-Newtonian calculations of the equations of motion has been abandoned to
avoid the apperance of the spurious, coordinate-dependent effects.

Another important point is the center of mass of the body defined in the local
coordinates differs from that defined in the global frame as follows from equation
(6.61). Earlier works on the post-Newtonian approximations [Brumberg, 1972; Dal-
las, 1977; Fock, 1964; Spyrou, 1975] including the PPN formalism [Will, 1993]
defined the center of mass of each body in the global coordinates, that is equated the
dipole moment IiB to zero: IiB = 0. This is plausible but brings about in equations of
motion of extended bodies terms, which are proportional to the rotational moment
of inertia I(2)

B even if the bodies have spherically-symmetric form. Such terms vi-
olate the principle of effacing of the internal structure of the bodies. If they really
existed the motion of extended bodies would differ from that of point-like masses
(neutron stars or black holes). Definition of the center of mass of the body in terms
of its local coordinates allows us to eliminate all non-physical terms depending on
the rotational moments of inertia, from the orbital equations of motion [Kopeikin
and Vlasov, 2004] and to prove that the effacing principle is valid in the first post-
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Newtonian approximation of general relativity (see discussion after equation (6.88)).

6.3.3
Gravitational multipoles in the global coordinates

In order to derive the orbital equations of motion of spherically-symmetric bodies
of finite size one needs to know the multipolar decomposition of the gravitational
potentials U(B)(t, x), U i

(B)(t, x), Φ(B)(t, x), and χ(B)(t, x) in the global coordinates. The
potentials under discussion are defined in equations (4.75)-(4.81). Multipolar de-
composition of the potentials in the global coordinates xα will have all multipoles
different from zero because the spherical symmetry of the bodies is defined with
respect to the local coordinates wα, and the bodies have no spherically-symmetric
shape in the global coordinates.

For the Newtonian potential UB(t, x) one has

UB(t, x) =
GM∗B

RB

+

∞∑
l=1

(−1)l

l!
GI<L> ∂

L

∂xL

(
1
RB

)
(6.64)

=
GM∗

RB

−GIi
∂

∂xi

(
1
RB

)
+

1
2

GI<i j> ∂2

∂xi∂x j

(
1
RB

)
+ O

(
ε4

)
,

where dipole, Ii, and quadrupole, I<i j>, moments are given by equations (6.61) and
(6.62).

Vector-potential U i
(B)(t, x) is decomposed as follows

U i
(B)(t, x) =

GM∗Bvi
B

RB

−
1
3

GI(2)
B εi

jkΩ
j
B

∂

∂xk

(
1
RB

)
+ O

(
ε2

)
, (6.65)

where one has used the fact that inside the body velocity of matter is linearly decom-
posed in two terms: vi = vi

B + νi + O
(
ε2

)
with vi

B being velocity of the center of mass
of the body and the internal velocity, νi, is defined in equation (6.46).

Potential χ(B)(t, x) (sometimes called super-potential [Chandrasekhar, 1965; Chan-
drasekhar and Lebovitz, 1962; Will, 1993]) has the following multipolar decompo-
sition

χ(B)(t, x) = −GM∗BRB −
1
3

GI(2)
B

RB

+ O
(
ε2

)
. (6.66)

Post-Newtonian potential Φ(B)(t, x) consists of a linear combination of four func-
tions as shown in equation (4.73). Each of these functions is decomposed in multi-
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poles as follows

Φ(B)

1 (t, x) = G
∫

VB

ρ∗(t, x′)v′2d3x′

|x − x′|
=

GM∗Bv2
B

RB

+
G
RB

∫
VB

ρ∗(r)ν2d3w (6.67)

+
2G
3
εi jkRi

Bv j
BΩ

k
BI

(2)
B

R3
B

−
G
5

Ω<iΩ j>Ri
BR j

BI
(4)
B

R5
B

+ O
(
ε2

)
,

Φ(B)

2 (t, x) = G
∫

VB

ρ∗(t, x′)U(t, x′)d3x′

|x − x′|
=

G
RB

∫
VB

ρ∗(r)ÛB(r)d3w (6.68)

+G2
∑
A,B

∞∑
l=0

(−1)l

(2l + 1)l!
M∗AI

(2l)
B R<L>

BA

R2l+1
BA

∂L

∂xL

(
1
RB

)
+ O

(
ε2

)
,

Φ(B)

3 (t, x) = G
∫

VB

ρ∗(t, x′)Π(t, x′)d3x′

|x − x′|
=

G
RB

∫
VB

ρ∗(r)Π(r)d3w + O
(
ε2

)
,(6.69)

Φ(B)

4 (t, x) = G
∫

VB

πkk(t, x′)d3x′

|x − x′|
=

3G
RB

∫
VB

p(r)d3w + O
(
ε2

)
. (6.70)

This concludes the set of equations describing the multipolar decomposition of the
gravitational potentials in the global coordinates.

One noticess that the multipolar decomposition of all the potentials contain depen-
dence on the rotational moments of inertiaI(2)

B , I(4)
B , etc. Appearance of the moments

of inertia in the multipolar decompositions may indicate violation of the principle of
effacing of the internal structure of the bodies. However, the moments of inertia of
the second order I(2)

B vanish in the final form of the orbital equations of motion in
general relativity. The only contribution to these equations comes from the moments
of inertia of the forth order I(4)

B . Physically it happens because the Einstein field
equations are non-linear and in case of N-body system the non-linearity leads to the
coupling of the finite volume of the body with the external (tidal) gravitational field
of the other bodies of the N-body system [Kopeikin and Vlasov, 2004; Nordtvedt,
1994].

6.3.4
Orbital post-Newtonian equations of motion

Both conditions of the spherical symmetry and rigid rotation, equations (6.44) and
(6.46), allow us to simplify equation (6.29) of the orbital motion of the center of
mass of body B drastically. For example, equation (6.50) assumes that STF mass-
type multipole moments of the body IL = O

(
ε2

)
for any index l ≥ 1, and STF

current-type multipoles SL = O
(
ε2

)
for any index l ≥ 2. Therefore, calculation of
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the tidal Newtonian force Fi
N from equation (6.29), yields

Fi
N = ε2

2γ + 1
30

Qi jkΩ
j
BΩ

k
BI

(4)
B −

∞∑
l=1

2(1 − β)PL − QL

l!(2l + 1)!!
QiLI

(2l)
B

 , (6.71)

which has the post-Newtonian, (∼ ε2), order of magnitude.
The post-Newtonian gravitomagnetic tidal force Fi

pN from equation (6.29) is re-
duced to a simple expression

Fi
pN = −

3
4

Ci jS
j
B , (6.72)

where the external (gravitomagnetic-type) quadrupole

Ci j = −
20(1 + γ)G

3

∑
C,B

I
(2)
C

Ω
p
C R<i jp>

BC

R7
BC

(6.73)

+ 2(1 + γ)G
∑
C,B

MC(vp
C − vp

B )
R5

BC

(
εipqR< jq>

BC + ε jpqR<iq>
BC

)
,

MB is the mass, and

Si
B =

2
3
I

(2)
B Ωi

B , (6.74)

is the spin of the body B.
All other post-Newtonian terms in equation (6.29) depending explicitly on IL, are

equal to zero for spherically-symmetric and rigidly rotating bodies. Hence, equation
of motion (6.29) is drastically simplified and reduces to

M̃Bai
B = MBV̄,i(xB) − Fi

N (6.75)

+ε2 MB

{[
γδikv2

B − vi
Bvk

B − 2(γ + β)δikŪ(xB)
]
Ū,k(xB)

+2(1 + γ) ˙̄U i(xB) − 2(1 + γ)vk
BŪk,i(xB) − (1 + 2γ)vi

B
˙̄U(xB)

}
+ε2

[1
2

(1 − γ)εipkS
p ˙̄U,k(xB) +

3
4

Ci jS
j
]

+ O(ε4) ,

where the conformal, M̃B, and active,MB, masses od the body B are related to each
other via equation (6.11), that is

M̃B = MB + ε2

η2
∫

VB

ρ∗ÛBd3w + 2(β − 1)
∑
C,B

GMCMB

RCB

 , (6.76)

and the gravitational potential

V̄(x) = Ū(x) + ε2
[
Φ̄(x) −

1
2
χ̄,tt(x)

]
. (6.77)

The tidal force Fi
N is given by equation (6.71), and Ci j is shown in equation (6.73).
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Let us now calculate all terms in the right side of equation (6.75) explicitly in
terms of body’s mass, rotational moment of inertia, and spin. Among them, the most
complicated is the first one, that is gradient V̄,i(xB). By making use of equations
(6.64)-(6.70) one obtains

V̄(t, x) =
∑
C,B

GMC

RC

1 + ε2

(γ + 1)v2
C −

1
2

ak
CRk

C −

(
vk

CRk
C

)2

2R2
C

− γ
∑
D,C

GMD

RCD


 (6.78)

+ε2 G
∑
C,B

{
1
3
I

(2)
C

Rk
C

R3
C

[
2(1 + γ)εkpqvp

C Ω
q
C + ak

C

]
−

1 + 2γ
10

R j
CRk

C

R5
C

Ω
< j
C Ωk>

C I
(4)
C

+(1 − 2β)
∞∑

l=1

(2l − 1)!!
(2l + 1)l!

I
(2l)
C

R<L>
C

R2l+1
C

∑
D,C

GMD

R<L>
CD

R2l+1
CD

}
+ O(ε4),

where

MC = MC − ε
2

η2
∫

VC

ρ∗ÛCd3w + (2β − γ − 1)
∑
D,C

GMCMD

RCD

 , (6.79)

is the active mass of body C, MC is the general relativistic mass of the body C defined
by equation (6.8), where for the sake of simplicity one assumesd Y = 0, and η =

4β − γ − 3 is the Nordtvedt parameter.
After calculating derivatives from potentials V̄(t, x), Ū(t, x), and substituting them

into equation (6.75) one obtains the following expression for acceleration of the
center of mass of body B:

MBai
B = F i

N + ε2
{
F i

EIH + +F i
S

+ F i
IGR + F i

IS T

}
+ O(ε4) , (6.80)

where F i
N is the Newtonian force, and F i

EIH , F i
Ω
, F i

IGR, F i
IS T are the post-Newtonian

forces of gravity. They are given by the following expressions [Kopeikin and Vlasov,
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2004]

F i
N = −

∑
C,B

GMBMCRi
BC

R3
BC

, (6.81)

F i
EIH = −

∑
C,B

GMBMCRi
BC

R3
BC

{
γv2

B − 2(1 + γ)(vB · vC) + (1 + γ)v2
C (6.82)

−
3
2

(
RBC · vC

RBC

)2

− (1 + 2γ + 2β)
GMB

RBC

− 2(γ + β)
GMC

RBC

+
∑
D,B,C

[
(1 − 2β)

GMD

RCD

− 2(γ + β)
GMD

RBD

+
GMD(RBC · RCD)

2R3
CD

]}

+
∑
C,B

{
GMBMC(vi

B − vi
C)

R3
BC

[
2(1 + γ)(vB · RBC) − (1 + 2γ)(vC · RBC)

]
−

3 + 4γ
2

GMBMC

RBC

∑
D,B,C

GMDRi
CD

R3
CD

}
,

F i
S

= G
∑
C,B

{
MCS

p
B (vk

B − vk
C)

2R5
BC

+

[
3(1 + γ)

(
εkpqR<iq>

BC − εikqR<pq>
BC

)
(6.83)

+3(1 − γ)εipqR<kq>
BC

]
− 3(1 + γ)

MBS
p
C (vk

B − vk
C)

R5
BC

[
εipqR<kq>

BC − εkpqR<iq>
BC

]
+

15(1 + γ)
2

S
j
BS

k
CR<i jk>

BC

R7
BC

+

(
γ +

1
2

)
R<i jk>

BC

R7
BC

[
MBI

(4)
C Ω

j
CΩk

C + MCI
(4)
B Ω

j
BΩ

k
B

]}
,

F i
IGR = G2

∑
C,B

∞∑
l=2

(2l − 1)!!
l!

(−1)lMBI
(2l)
C

R<iL>
BC

R2l+3
BC

∑
D,C

MDR<L>
CD

R2l+1
CD

(6.84)

+MCI
(2l)
B

R<L>
BC

R2l+1
BC

∑
D,B

MDR<iL>
BD

R2l+3
BD

,

F i
IS T = 2(β − 1)G2

∑
C,B

MCI
(2)
B

Rk
BC

R3
BC

∑
D,B

MDR<ik>
BD

R5
BD

(6.85)

−MBI
(2)
C

R<ik>
BC

R5
BC

∑
D,C

MDRk
CD

R3
CD

+

∞∑
l=2

(2l − 1)!!
l!

[
(−1)lMBI

(2l)
C

R<iL>
BC

R2l+3
BC

∑
D,C

MDR<L>
CD

R2l+1
CD

+MCI
(2l)
B

R<L>
BC

R2l+1
BC

∑
D,B

MDR<iL>
BD

R2l+3
BD

] ,

where one has defined the coordinate distance between two bodies Ri
BC = xi

B − xi
C ,
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RBC = |xB − xC |, and spin Si
B of body B relates to the angular speed of its own rotation

Ωi
B by equation (6.74). Equation (6.80) elucidates that inertial mass MB of body B is

equal to its general-relativistic mass given by equation (6.8). This mass is conserved
(constant) for spherically-symmetric bodies as follows from equation (6.12) because
the internal multipole moments IL = O(ε2) so that the right side of the equation is
the post-post-Newtonian order of magnitude, which is neglected. The gravitational
massMB of the body B depends on the gravitational self-energy of the body coupled
with the Nordtvedt parameter η = 4γ − β − 3

MB = MB −
1
2
ε2η

∫
VB

ρ∗ÛBd3w . (6.86)

The Newtonian gravitational force F i
N given by equation (6.81), depends in the

scalar-tensor theory only on the gravitational masses of the bodies. Will [1993]
distinguishes the "active" and "passive" gravitational masses, which depend in the
PPN formalism on the whole bunch of the PPN parameters. The present book op-
erates only with two PPN parameters, β and γ but, unlike the PPN formalism, the
definitions adopted and derivations given here are fully covariant. In the case of
the two PPN parameters the "active" and "passive" gravitational masses are indis-
tinguishable and are given by one and the same expression (6.86). Nevertheless,
the inertial and gravitational masses of each body are not equal in the scalar-tensor
theory of gravity due to violation of the strong principle of equivalence for massive
bodies [Dicke, 1962a; Nordtvedt, 1968a,b]. This violation can be explained as due
to the interaction of the gravitational self-energy of the body under consideration
with the monopole moment of the scalar field generated by external bodies. This in-
teraction leads to a local gravitational force, which brings about a non-zero value of
the time derivative of the body’s linear momentum in the local coordinates. Indeed,
assuming that the body under consideration has finite size, does not rotate, and is
spherically-symmetric, one obtains from equation (6.18)

Ṗi = MQi

(
1 +

1
2M

ε2η

∫
VB

ρ∗Û(B)d3w
)
− (6.87)

1
2
ε2ηPi

∫
VB

ρ∗Û(B)d3w − Fi
N + O(ε4) ,

where Pi is the gradient of the scalar potential generated by the external bodies. If
one keeps the body’s center of mass at the origin of the local coordinate system
(Ṗi = 0), then, the local frame is not inertial and the body’s center of mass experi-
ences acceleration Qi , 0. This acceleration is due to the interaction of the gravita-
tional self-energy ("gravitational charge") of the body under consideration with the
gradient of the external scalar potential. The coupling constant characterizing this
scalar interaction is the dimensionless Nordtvedt parameter η. The post-Newtonian
gravity forces defined by equations (6.82)-(6.85), depend in this approximation only
on the Newtonian mass given by equation (6.1). In the higher post-Newtonian ap-
proximations the masses will definitely include relativistic corrections but their ex-
act structure in the scalar-tensor theory of gravity is not yet known. As for general
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relativity, the masses entering the post-Newtonian force of gravity are the general-
relativistic masses. This was proved in papers [Kopeikin, 1985; Kopejkin, 1988b]
where the two-body problem accounting for conservative post-Newtonian forces and
the gravitational radiation-reaction force was analyzed. An alternative proof was
proposed by Damour [1987].

The post-Newtonian force (6.82) is known as the Einstein-Infeld-Hoffmann (EIH)
force [Soffel, 1989; Will, 1993]. It is the main post-Newtonian force used for calcu-
lation of JPL ephemerides of the solar system bodies [Seidelmann and Urban, 2010].
It was derived in general relativity by Einstein et al. [1938] for the case of point-like
massive particles viewed as singularities of the metric tensor on the spacetime mani-
fold. Lorentz and Droste [1937] obtained almost the same result two decades earlier
by doing comprehensive calculations for homogeneous and spherically-symmetric
bodies of constant density. Petrova [1949] and Fock [1964] re-derived EIH equations
for extended bodies composed of a perfect fluid without making any restrictions on
their internal structure besides the assumptions of the slow-motion of matter and the
weak gravity field inside the bodies. Infeld and Plebanski [1960] and Landau and
Lifshitz [1975] derived EIH equations from the variational principle with the energy-
momentum tensor of matter in the form of delta functions. In scalar-tensor theory
of gravity the analogue of EIH force was derived by Estabrook [Estabrook, 1969] in
case of β = 1, γ , 1, and by Dallas [Dallas, 1977] in the case β , 1, γ , 1 (see also
[Vincent, 1986]). These derivations had stipulated that the bodies have negligible
ratio of their radii to the characteristic distance between them (a point-like approx-
imation) as well as that they are moving along geodesic worldlines in "effective"
spacetime manifold.

Various post-Newtonian corrections to the EIH force are given by equations (6.83)
-(6.85). The force F i

S
, given by equation (6.83), describes the force due to the cou-

pling of body’s spin with the orbital angular momentum and with spins of other
bodies. It depends on the PPN parameter γ only. If one takes γ = 1 in equation
(6.83), the force F i

S
is reduced exactly to its general relativistic expression obtained

earlier by other researchers [Barker and O’Connell, 1976; Brumberg, 1972; Damour
et al., 1992; Xu et al., 1997]. One notices that equation (6.83) for the PPN force F i

S

coincides with that derived by Klioner and Soffel [Klioner and Soffel, 2000].
The force (6.84) describes general-relativistic correction to the EIH force due to

the finite size of the bodies. It starts from the forth-order rotational moments of in-
ertia of the bodies, I(4), while all terms, which are proportional to the second-order
body’s rotational moments of inertia, I(2), canceled out and do not appear in the
equation. Nordtvedt [Nordtvedt, 1994] considered the problem of translational mo-
tion of extended bodies in the general class of scalar-tensor theories of gravity. He
argued that covariant formulation of the variational principle admits to have terms
in the gravitational Lagrangian being proportional to the second-order moment of
inertia of extended body coupled with the Ricci tensor Rαβ of the background grav-
itational field. However, such terms must disappear in general relativity by virtue
of the Einstein equations in vacuum: Rαβ = 0. Nonetheless, the body’s moments
of inertia of higher order must couple with the full Riemann tensor Rαβγδ and its
derivatives, which do not vanish in vacuum. For this reason they can be present in
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general-relativistic equations of motion of spherically-symmetric bodies as, indeed,
demonstrated in equation (6.84). One notices that vanishing of all terms depend-
ing on the second-order rotational moment of inertia in general relativity is in dis-
agreement with calculations by Brumberg [1972]; Dallas [1977]; Spyrou [1975] and
Vincent [1986], who came to the conclusion that the general relativistic Lagrangian
for the system of N spherically-symmetric bodies must depend on the second-order
moments of inertia of these bodies, I(2). Brumberg’s expression for the force due to
the finite size of the bodies is [Brumberg, 1972]

F i
Brumberg = ε2G

∑
C,B

5
(
MBI

(2)
C + MCI

(2)
B

)
v j

Cvk
CR<i jk>

BC

2R7
BC

(6.88)

+
G

(
MBMCI

(2)
B −M2

BI
(2)
C − 2M2

CI
(2)
B

)
Ri

BC

3R6
BC

−
G2

2

∑
D,B,C

MC

[
MBI

(2)
D Rk

CDR<ik>
BD

R3
CDR5

BD

+
MDI

(2)
B

R3
BC

(Rk
CDR<ik>

BC

R3
CDR2

BC

+
Rk

BDR<ik>
BC

R3
BDR2

BC

+
Rk

BCR<ik>
BD

R5
BD

)] ,

The result (6.84) apparently disagrees with Brumberg’s calculations. The reason is
that Brumberg [1972] followed Fock’s method [Fock, 1964] and used definitions of
the multipole moments of extended bodies given in the global (barycentric) coor-
dinates of N-body system. Spherical symmetry of the bodies was also defined by
Brumberg in the global coordinates. This definition of the spherical symmetry does
not take into account the Lorentz and Einstein contraction of the coordinate vol-
umes of the bodies that is introduced by the law of transformation between the local
and global coordinates. A moving body can maintain spherically-symmetric dis-
tribution of mass in the global coordinates, if and only if, there are internal stresses
inside the bodies that can compensate for the coordinate-dependent Lorentz and Ein-
stein contractions of body’s shape [Kopejkin, 1988b]. Existence of such coordinate-
dependent internal stresses inside the moving body is unnatural as they are governed
by the choice of coordinates which can be defined arbitrary. It indicates that the force
F i

Brumberg is spurious and should vanish after appropriate redefinition of the center of
mass and the quadrupole moment of the bodies.

In order to prove that the force F i
Brumberg has no physical origin, one has considered

translational equation of motion for body B defined in the global frame as follows
[Brumberg, 1972; Fock, 1964]∫

VB

ρ∗
dvi

dt
d3x =

∫
VB

(
∂πi j

∂x j − ρ
∗ ∂U
∂xi

)
d3x + ε2F i

EIH + ε2F i
Brumberg , (6.89)

where the post-Newtonian EIH and Brumberg forces were taken into account. Ve-
locity vi of the body’s matter in the global coordinates is obtained by differentiation
with respect to time of both sides of equation (6.56) with respect to time u. The
result can be decomposed in the orbital velocity of the body’s center of mass, vi

B, and
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the internal velocity of the matter in the local coordinates

vi = vi
B(t) + νi(u,w) + ε2∆νi(u,w) , (6.90)

where ∆νi is the post-Newtonian correction, which is a quadratic function of the lo-
cal coordinates wi of the body [Kopeikin and Vlasov, 2004]. Subsequent calculation
of the time derivative of vi and calculation of the integral in the left side of equation
(6.89) bring about terms, which depend on the moment of inertia of body B. This
moment of inertia is reduced to the rotational moment of inertia I(2)

B in case of a
spherically-symmetric body. Calculation of the integral from the Newtonian poten-
tial in the right side of equation (6.89) is done by splitting the potential in two parts -
internal and external (see equation (5.28)), and applying equations (6.64) and (6.61),
(6.62) for calculation of the integrals from the external potential Ū. This again gives
a number of terms depending on the rotational moment of inertia I(2)

B of the body
B. Summing up all those terms, one obtains exactly the same expression as in equa-
tion (6.88). It means that these terms cancel out with the force F i

Brumberg in equation
(6.89) so that the rotational moments of inertia of the second order do not enter the
post-newtonian equations of motion in general relativity.

This completely agrees with calculation of the force F i
IGR, which does not depend

on the body’s rotational moments of inertia of the second order either. One con-
cludes that the origin of the coordinate-dependent force F i

Brumberg is directly associated
with an inappropriate choice of the body’s center of mass and its spherical symmetry,
which must be defined not in the global but in local coordinates comoving with the
body. Brumberg attempted to make more physical calculation of the force F i

IGR in
[Brumberg, 1991] but he did not arrive to any definite conclusion regarding whether
the force F i

IGR depends on the body’s rotational moments of inertia of the second or-
der or not. Our calculation in this book resolves the problem and demonstrates that
the force F i

Brumberg is coordinate-dependent and has no physical impact on the orbital
motion of the bodies having finite size. General-relativistic correction due to the
finite size of the moving bodies is proportional to the forth- and higher-order rota-
tional moments of inertia of the bodies. These corrections are extremely small for
the bodies comprising the solar system and can be neglected for any kind gravita-
tional experiments. However, the finite-size effects can become important during the
final stage of coalescence of binary neutron stars so that they should be included in
the precise calculation of templates of gravitational waves.

The force F i
IS T describes relativistic correction due to the finite size of the bodies

in the scalar-tensor theory of gravity. This force is proportional to the parameter β−1
only and, in contrast to general relativity, depends on the second order rotational mo-
ments of inertia, I(2)

B . This dependence was noticed by Nordtvedt [Nordtvedt, 1971,
1994] who has found that in the case of weakly, self-gravitating bodies the finite-
size effects are proportional to η = 4β − γ − 3. This seems to be in disagreement
with our calculation of the force δF i

IGR but one can easily reconcile the two formula-
tions. The matter is that Nordtvedt [1971] worked in harmonic coordinates defined
by the condition ∂α(

√
−ggαβ) = 0 while this book employs the quasi-harmonic co-

ordinates defined by the Nutku condition ∂α(φ
√
−ggαβ) = 0 (see equation (4.45) in

the present book). This leads to two different forms of the transformation between
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the spatial global and local coordinates. In harmonic coordinates this transformation
reads [Klioner and Soffel, 2000; Nordtvedt, 1971]

wi
harmonic = Ri

B + ε2
[(1

2
vi

Bvk
B + γδikŪ(xB) + F ik

)
Rk

B (6.91)

+γak
BRi

BRk
B −

γ

2
ai

BR2
B

]
+ O(ε4) ,

while in the quasi-harmonic coordinates used in the present book, one has

wi = Ri
B + ε2

[(1
2

vi
Bvk

B + γδikŪ(xB) + F ik
)
Rk

B (6.92)

+ak
BRi

BRk
B −

1
2

ai
BR2

B

]
+ O(ε4) .

The two transformations have different dependence on γ in terms being proportional
to the acceleration so that the difference between the two types of coordinates is

wi
harmonic = wi + (γ − 1)ε2

(
ak

BRi
BRk

B −
1
2

ai
BR2

B

)
. (6.93)

It is due to this difference that PPN parameter γ had appeared in Nordtvedt’s cal-
culations and led to the appearance of parameter η in Nordtvedt’s final equation for
the finite-size effects. However, the dependence of the magnitude of the finite-size
effects on parameter γ in Nordtvedt’s calculations is a pure coordinate effect, which
has no physical meaning. Parameter γ can be eliminated from the force δF i

IGR if one
works in the quasi-harmonic coordinates defined by the Nutku condition (4.45) of
this paper. Only parameter β remains relevant.

6.3.5
Rotational equations of motion

Derivation of rotational equations of motion for spherically-symmetric bodies re-
quires calculation of the multipole moments RL (see equation (6.37)) of the body
under consideration. One has

RL = O
(
ε2

)
, (6.94)

which means that RL is of the post-Newtonian order of magnitude for spherically-
symmetric bodies. All other multipole moments have been calculated in the previous
section. Performing calculations of the torques and body’s spin, given by equations
(6.34)-(6.36), one obtains

T i = ε2
[
2γ + 1

15
εi jkQ jnΩk

(B)Ω
n
(B)I

(4)
(B) + εi jkS

jCk

]
, (6.95)

∆T i = 0 , (6.96)

∆Si =
2
3
I(2)

(B)Ci +
[
Q − Y + (γ − 1)Ū(xB)

]
Si . (6.97)
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Consequently, the rotational equation of motion for the body’s spin is

dSi
+

du
= ε2

(
2γ + 1

15
εi jkQ jnΩk

(B)Ω
n
(B)I

(4)
(B) + εi jkS

jCk

)
+ O(ε4) , (6.98)

where Ck is angular velocity of rotation of the local coordinate frame with respect to
that which axes are subject to the Fermi-Walker transport.

Equation (6.98) has one extra term comparatively with the corresponding equation
(9.75) from the paper [Klioner and Soffel, 2000] by Klioner and Soffel. This term
depends on the forth-order rotational moment of inertia, I(4)

B , of the body B and has
pure general-relativistic origin. This term was not taken into account by Klioner and
Soffel because they neglected finite size of the rotating body. Contribution of the
forth-order rotational moment of inertia, I(4)

B to the rotational torque is negligibly
small for the theory of Earth’s rotation. However, it may become significant during
last several orbits of a coalescing binary neutron star. It would be interesting to study
the impact of this term on the forms of gravitational waves emitted by such binaries.
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6.4
Post-Newtonian Two-Body Problem

6.4.1
Introduction

Post-Newtonian equations of motion (6.80)-(6.85) in N-body problem are too com-
plicated in general case for analytic integration and one has to resort to numer-
ical methods for their solution. This is especially important for construction of
ephemerides of the solar system bodies - planets and Sun. Numerical ephemerides
are discussed in Chapter 9. This section is dedicated to a two-body (Kepler) prob-
lem at the first post-Newtonian approximation under assumption that the bodies are
spherically-symmetric (tides are ignored). One will also ignore the finite-size effects
induced by the rotational moments of inertia and spin, which effectively reduce equa-
tions (6.80)-(6.85) to the EIH equations of motion of two point-like masses possess-
ing analytically-tractable solution. Spin and finite size of the post-Newtonian effects
in the orbital motion of two bodies can be included in the consideration by making
use of the Hamiltonian theory [Barker et al., 1981; Barker and O’Connell, 1976,
1987] and the method proposed by Gergely et al. [2006]. This, however, makes
analysis too complicated going beyond the scope of the present book.

In many practical situations one body is assumed to have a mass that is negligible
compared to the mass of the other body. This is a good approximation for the case
of a planet revolving around the Sun, or a photon passing by a star. In such cases,
one may assume that only the heavier body contributes to the curvature of spacetime
and that it is fixed in space. This curved spacetime is described in general relativity
by the Schwarzschild solution of the vacuum Einstein equations [Landau and Lif-
shitz, 1975; Misner et al., 1973; Wald, 1984]. The motion of the lighter body is
described by the spacetime geodesic of the Schwarzschild solution. These geodesic
solution accounts for the anomalous precession of the planet Mercury, which is a key
piece of experimental evidence supporting the theory of general relativity [Brum-
berg, 1972; Soffel, 1989; Will, 1993]. The null geodesic also describes the deflec-
tion of light in a gravitational field - another prediction, famously used as evidence
for general relativity. However, the orbital decay of a gravitationally-bound binary
system due to emission of gravitational radiation is not described by geodesics of
the Schwarzschild solution and the mass of each body should be taken into account
[Damour, 1987, 2000].

Solution of the post-Newtonian Kepler problem in case of two comparable masses
had become vitally important for relativistic astrophysics after discovery of a binary
pulsar B1913+16 [Hulse and Taylor, 1975] and, especially, a double pulsar J0737-
3039 [Possenti et al., 2004]. This is because the timing of binary and double pulsars
plays at present the crucial role in testing alternative theories of gravitation in the
strong-field limit of the gravitational field of compact relativistic objects - neutron
stars or black holes [Damour and Taylor, 1992; Kramer et al., 2006; Lorimer and
Kramer, 2004]. Four basic timing models have been used for processing the ob-
servational data [Taylor and Weisberg, 1989]. These models have been originally
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developed by Blandford and Teukolsky [1976]; Epstein [1977]; Haugan [1985], and
improved later on by Damour and Deruelle [1985, 1986]. Parametrization of binary
pulsar orbit considered by Blandford & Teukolsky (BT) is the Keplerian motion with
the only relativistic effect describing a linear (with respect to time) drift of pericen-
ter of the orbit. Parametrization of Epstein, as corrected by Haugan (EH), accounts
for all post-Newtonian orbital effects. The models of Epstein [1977] and Haugan
[1985] differ only by the representation of apsidal motion. Epstein (insufficiently)
used a linear function of time introduced by Blandford and Teukolsky [1976], while
Haugan used a more adequate linear function of true anomaly. Damour & Deruelle
(DD) suggested a new, original parametrization of a post-Newtonian orbit of a bi-
nary system which allows one to simplify considerably the analysis of pulsar timing
observations. The DD model was foreseen by Brumberg [1972, pages 167-168] but
it went unnoticed since the Brumberg book was never translated into English.

Some relations between parameterizations have been obtained in [Brumberg,
1991; Soffel, 1989]. Clear and exhaustive statement of relations between the dif-
ferent orbital parameterizations of the post-newtonian two-body problem has been
given by Klioner and Kopeikin [1994]. The present book reproduces these relations
in full detail and compare them with the post-Keplerian solution of two-body prob-
lem in osculating elements, which is the most frequently used in celestial mechanics.
This allows us to provide a link between all of the parameterizations and to give a
robust consistency check of the models used in binary pulsar timing [Lorimer and
Kramer, 2004]. One will analyze the two-body problem in the framework of a gen-
eral approach which admits a freedom of coordinate transformations and is valid
for a wide class of Lorenz-invariant alternative theories of gravity that includes the
case of the scalar-tensor theory. The Lorentz-invariant theories of gravity admits the
law of conservation of the linear momentum of the two-body system [Will, 1993].
Indeed, equations of motion (6.80)-(6.82) for two spherically-symmetric bodies are

M1v̇i
1 = −

GM1M2Ri
12

R3
12

(6.99)

−ε2

GM1M2Ri
12

R3
12

[
γv2

1 − 2(1 + γ)(v1 · v2) + (1 + γ)v2
2

−
3
2

(
R12 · v2

R12

)2

− (1 + 2γ + 2β)
GM1

R12
− 2(γ + β)

GM2

R12


−

GM1M2(vi
1 − vi

2)

R3
12

[
2(1 + γ)(v1 · R12) − (1 + 2γ)(v2 · R12)

] ,
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M2v̇i
2 =

GM1M2Ri
12

R3
12

(6.100)

+ε2

GM1M2Ri
12

R3
12

[
γv2

2 − 2(1 + γ)(v1 · v2) + (1 + γ)v2
1

−
3
2

(
R12 · v1

R12

)2

− (1 + 2γ + 2β)
GM2

R12
− 2(γ + β)

GM1

R12


+

GM1M2(vi
1 − vi

2)

R3
12

[
2(1 + γ)(v2 · R12) − (1 + 2γ)(v1 · R12)

] ,

where Ri
12 = xi

1 − xi
2 is the relative distance between the bodies, vi

1 = dxi
1/dt are

vi
1 = dxi

1/dt their velocities. Summing up these two equations and integrating with
respect to time, one yields the integral of the linear momentum Pi and the integral of
the center-of-mass Di

Pi =

[
1 + ε2

(
1
2

v2
1 −

GM2

2R12

)]
M1vi

1 (6.101)

+

[
1 + ε2

(
1
2

v2
2 −

GM1

2R12

)]
M2vi

2

− ε2 GM1M2Ri
12

2R3
12

(R12 · v1 + R12 · v2) ,

Di + Pit =

[
1 + ε2

(
1
2

v2
1 −

GM2

2R12

)]
M1xi

1 (6.102)

+

[
1 + ε2

(
1
2

v2
2 −

GM1

2R12

)]
M2xi

2 .

Hence, one can always chose the origin of the global coordinates at the center of mass
of the binary system [Barker and O’Connell, 1987] and analyze only the relative
motion of the bodies. This is what is assumed in the rest of this section by fixing the
integrals Pi = Di = 0.

6.4.2
Perturbing post-Newtonian force

Equation of relative motion in the two-body system are derived by subtracting equa-
tion (6.100) from equation (6.99) and making use of the replacements

xi
1 =

M2

M1 + M2
ri , xi

2 = −
M1

M1 + M2
ri , (6.103)

which are valid in the barycentric coordinate system of the two-body system, and the
relative distance ri ≡ Ri

12 - the notation will be used in the subsequent equations. One
will consider a more general case of the post-Newtonian equations of relative motion
following Brumberg [1972, 1991]. According to Brumberg’s work the perturbing
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force of the relative motion is given by equations

r̈i = −
GMri

r3 + F i , (6.104)

F i =
GM
c2

[(
2σ
GM

r
− 2εv2 + 3α

(r · v)2

r2

)
ri

r3 + 2µ
(r · v)

r3 v
]
, (6.105)

that was originally introduced as a tool to investigate the motion of a test body in
the Schwarzschild gravitational field. However, as has been already recognized by
Soffel [Soffel, 1989], this force is general enough to cover the case of the weak-field
two-body problem in the framework of the parameterized post-Newtonian (PPN)
formalism [Will, 1993, 2006]. This perturbing force covers also the case of two-
body problem in the strong-field regime of generic gravitational theories [Gergely
et al., 2006]. In equation (6.105) α, ε, µ and σ are arbitrary numerical parameters,
M = M1 + M2 is the total mass of the system, and G is the parameter which may
differ from the universal gravitational constant G by a constant factor G = AG. By
comparison of equations (6.104), (6.105) with equation (11.68) of [Will, 1993] one
can see that

α =
1
2
ν , (6.106)

ε =
3
2
ν +

1
4
E −

1
4
, (6.107)

µ = −ν +
1
2
E +

1
2
, (6.108)

σ = ν +
1
2
E +

1
2
ξ , (6.109)

where

E =
3B
A

, (6.110)

ν =
M1M2

M2 , (6.111)

ξ =
M1D211 + M2D122

A2M
, (6.112)

are the parameters defining the specific theory of gravitation and depending on the
masses and internal structure of the bodies [Will, 1993]. In particular, for general
relativity, E = 3 and ξ = 1, and, therefore,

α =
1
2
ν , (6.113)

ε =
3
2
ν +

1
2
, (6.114)

µ = −ν + 2 , (6.115)

σ = ν + 2 , (6.116)

which makes equations (6.104)-(6.105) the usual EIH equations of motion of the
two-body problem (see, e.g., [Brumberg, 1972, 1991; Soffel, 1989; Will, 1993]). In
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the weak-field limit of the scalar-tensor theory of gravity one gets [Will, 1993]

E = 2γ + 1 , (6.117)

ξ = 2β − 1 . (6.118)

Let us note that the equations of motion in the form of equations (6.104)-(6.105) are
form-invariant with respect to a certain class of coordinate transformations [Barker
et al., 1986; Brumberg, 1972]

ri = r′i
(
1 − α′

GM
c2r′

)
, (6.119)

where α′ is a numerical parameter. In this case the equations of motion in the two-
body problem in new coordinates have the same form (6.104), (6.105) with the pa-
rameters [Barker et al., 1986, equation (A.1)]

α =
1
2
ν + α′ , (6.120)

ε =
3
2
ν +

1
4
E −

1
4

+
1
2
α′ , (6.121)

µ = −ν +
1
2
E +

1
2
− α′ , (6.122)

σ = ν +
1
2
E +

1
2
ξ − α′ , (6.123)

Transformation (6.119) evidently does not cover all the freedom of possible coordi-
nate transformations of the relative equations of motion in the post-Newtonian two-
body problem. The effect of time transformation has been considered in papers by
Barker and O’Connell [1984] and Damour and Schäfer [1985] discussed the effect of
spacetime coordinate transformation on the Lagrangian and on the metric functional
of a system of N point masses. In what follows, when comparing different orbital
representations, one considers that the coordinate system for all representations is
the same.

6.4.3
Orbital solution in the two-body problem

6.4.3.1 Osculating elements parametrization
In astrodynamics the osculating orbit of a celestial body in space is the fictitious Ke-
plerian orbit corresponding to its actual position and velocity for that given moment
of time, which the body would have if gravitational perturbations were not present
(see Section 1.4). An osculating orbit and the body’s position upon it are fully de-
scribed by the six standard Keplerian orbital elements, which are easy to calculate
as long as one knows the body’s position and velocity relative to the companion.
Perturbations cause the osculating elements to evolve, sometimes very quickly. In
such cases, a more complex set of proper orbital elements may better describe the
most important aspects of the orbit.
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Brumberg [1972, 1991] described the parametrization of the relative orbit of the
two-body problem in the post-Newtonian approximation based on the solution of the
equations for osculating elements with the perturbing force expressed by equation
(6.105). The solution for elliptic motion of the two bodies has the following form:

r(t) = a(t) [1 − e(t) cos E] , (6.124)

n (t − T0) = E − e(t) sin E − ∆l(t) , (6.125)

θ = f + ω(t) , (6.126)

tan
f
2

=

[
1 + e(t)
1 − e(t)

]1/2

tan
E
2
, (6.127)

where the angles f , E, and θ are the true anomaly, eccentric anomaly, and the argu-
ment of latitude; n is the constant mean motion; r is the distance between bodies;
t is the barycentric coordinate time of the binary system; and T0 is the moment of
pericenter passage. The osculating semi-major axis a(t), eccentricity e(t), angular
distance of pericenter from ascending node ω(t), and the periodic part ∆l(t) of the
perturbed mean anomaly are expressed as follows:

a(t) = a0 − da0 +
me

(1 − e2)2 (6.128)

×

{[
4 (ε − µ − σ) −

(
9
2
α − 4ε + 4µ

)
e2

]
cos f + (2ε − 2µ − σ) e cos 2 f +

1
2
αe2 cos 3 f

}
,

da0 =
me

(1 − e2)2 (6.129)

×

{[
4 (ε − µ − σ) −

(
9
2
α − 4ε + 4µ

)
e2

]
cos f0 + (2ε − 2µ − σ) e cos 2 f0 +

1
2
αe2 cos 3 f0

}
= m

{[
2(σ − α) + (6α − 6ε + 6µ + σ)e2

] 1(
1 − e2)

+2(3α − 2ε + 2µ)
(

a
r0

)
− 2(3α − 2ε + 2µ + σ)

(
a
r0

)2

+ 2α
(
1 − e2

) ( a
r0

)3
 ,

e(t) = e0 − de0 +
m

a
(
1 − e2) (6.130)

×

{[
2 (ε − σ) −

(
9
4
α − 2ε + 4µ

)
e2

]
cos f +

(
ε − µ −

1
2
σ

)
e cos 2 f +

1
4
αe2 cos 3 f

}
,

de0 =
m

a
(
1 − e2) (6.131)

×

{[
2 (ε − σ) −

(
9
4
α − 2ε + 4µ

)
e2

]
cos f0 +

(
ε − µ −

1
2
σ

)
e cos 2 f0 +

1
4
αe2 cos 3 f0

}
=

m
ea

{[
−α − 2µ + σ + (3α − 3ε + 5µ +

1
2

)e2
]

1(
1 − e2)

+(3α − 2ε + 4µ)
(
1 − e2

) ( a
r0

)
− (3α − 2ε + 2µ + σ)

(
1 − e2

) ( a
r0

)2

+ α
(
1 − e2

)2
(

a
r0

)3
 ,
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ω(t) = ω0 − dω0 +
m

a
(
1 − e2) {(2ε + 2µ − σ) f (6.132)

+

[
2
ε − σ

e
−

(
3
4
α − 2ε

)
e
]

sin f +

(
ε − µ −

1
2
σ

)
sin 2 f +

1
4
αe sin 3 f

}
,

dω0 =
m

a
(
1 − e2) {(2ε + 2µ − σ) f0 (6.133)

+

[
2
ε − σ

e
−

(
3
4
α − 2ε

)
e
]

sin f0 +

(
ε − µ −

1
2
σ

)
sin 2 f0 +

1
4
αe sin 3 f0

}
,

∆l(t) =
m

a
√

1 − e2

{
(−3α + 2ε − 2µ) e

√
1 − e2 sin E (6.134)

+

[
2
σ − ε

e
+

(
15
4
α + 4µ − 2ε

)
e
]

sin f −
(
ε − µ −

1
2
σ

)
sin 2 f −

1
4
αe sin 3 f

}
,

Here m = GM/c2; a0, e0, and ω0 are the osculating numerical values of the elements
at the same arbitrary moment of time t0 (which generally speaking may differ from
T0); the constant relativistic corrections da0, de0, and dω0 have been chosen so that
a(t0) = a0, e(t0) = e0, and ω(t0) = ω0, and, therefore, are equal to the periodic parts
of a(t), e(t), and ω(t) evaluated at t = t0; f0 is the value of true anomaly at t = t0.
In equations (6.128)-(6.134) and hereafter in relativistic terms, the letters a and e
denote the constant values of the semi-major axis and the eccentricity of the relative
orbit, so that(

a
r0

)
=

1 + e0 cos f0(
1 − e2

0

) . (6.135)

The constant value of the orbital frequency n entering the left side of equation (6.125)
is

n = n0

{
1 +

m
a

[
−3α + 2ε − 2µ + 3(3α − 2ε + 2µ)

(
a
r0

)
(6.136)

−3(3α − 2ε + 2µ + σ)
(

a
r0

)2

+ 3α
(
1 − e2

) ( a
r0

)3
 ,

where n0 is defined in terms of the following equation

a3
0n2

0 = GM , (6.137)

which is the (unperturbed) third Kepler’s law.

6.4.3.2 The Damour-Deruelle parametrization
Damour and Deruelle [1985, 1986] have invented a new (DD) parametrization of
the post-Keplerian relativistic orbit of the two-body problem. Being originally
proved for general relativity, the Damour-Deruelle approach has been generalized
by Damour and Taylor [1992] to the case of generic gravitational theories. Accord-
ing to the DD parametrization, the position of a body on the relative orbit can be
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found as

r(t) = aR (1 − eR cos U) , (6.138)

n (t − T0) = U − et sin U , (6.139)

θ = θ0 + (1 + k)Aeθ , (6.140)

tan
Aeθ

2
=

(
1 + eθ
1 − eθ

)1/2

tan
U
2
, (6.141)

where the angles Aeθ , U are analogies of the true anomaly f and the eccentric
anomaly E, but differ from them by relativistic terms. The functions r(t) and
θ(t), being polar coordinates of one body with respect to other, do not depend on
the parametrization used and, therefore, are exactly the same as in the osculat-
ing elements parametrization. The coordinate time t also does not depend on the
parametrization. Taking these circumstances into account, it is easy to check by com-
paring the functions r(t) and θ(t) defined by equations (6.124)-(6.127) and (6.138)-
(6.141) that the constants n and T0 are exactly the same as in the osculating elements
parametrization, θ0 = ω0 − dω0, and

k =
m

a
(
1 − e2) (2ε + 2µ − σ) . (6.142)

Our aim is to find the relation between the integration constants of the osculating
element solution and the DD parametrization of the orbit. At the first step, one
equates equation (6.125) and (6.139) to get relations between U and E as a function
of difference et − e0 between eccentricities. Then, by equating equation (6.124) and
(6.138) one gets the differences aR − a0, eR − e0, and et − e0. At the second step,
equating equations (6.126) and (6.140) gives the relation between f and Aeθ . Finally,
comparing equations (6.127) and (6.141) one gets another difference eθ−e0 between
eccentricities. One can see that although the system of equations to be solved in
order to determine the relations between constants, is an over-determined system
of linear equations, it has a single solution, and the constants maps to each other
uniquely. The relations read

aR = a0 − da0 +
m

a(1 − e2)

[
−2ε + 2σ + (2α − 2ε + 6µ + σ)e2 + 2(α − ε)e4

]
,(6.143)

eR = e0 − de0 +
em

2a(1 − e2)

[
−2ε + 6µ + 3σ + 4(α − ε)e2

]
, (6.144)

et = e0 − de0 +
em

2a(1 − e2)

[
−2α − 2ε + 2µ + 3σ + 2(3α − 2ε + 2µ)e2

]
,(6.145)

eθ = e0 − de0 +
em

2a(1 − e2)

[
2α − 2ε + 6µ + 3σ + 2(α − 2ε)e2

]
. (6.146)

Besides that, one can check that

aR =

(
GM
n2

)1/3 [
1 −

2
3

(ε + 2µ)
m
a

]
, (6.147)
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and relations between corresponding anomalies are

Aeθ = (1 − k) f + ω(t) − ω0 + dω0 (6.148)

=
m

a
(
1 − e2) {[

2
ε − σ

e
−

(
3
4
α − 2ε

)
e
]

sin f +

(
ε − µ −

1
2
σ

)
sin 2 f +

1
4
αe sin 3 f

}
,

U = E −
∆l + [e(t) − et] sin E

1 − e cos E
(6.149)

= E −
m

a
(
1 − e2)3/2

{[
2
σ − ε

e
+

(
7
4
α + 2µ − σ

)
e
]

sin f

+

(
µ − ε +

1
2
σ +

1
2
αe2

)
sin 2 f −

1
4
αe sin 3 f

}
.

The relation (6.143) between aR and a0 has been already derived with a different
technique in [Brumberg, 1991, see page 95], who used notation a′ instead of aR (see
section 6.4.3.4 below). According to Damour and Deruelle [1985, 1986] it is useful
to introduce a new eccentricity eT = et(1 + δ) + eθ − eR, where a new parameter

δ =
GM2 (M1 + 2M2)

c2aRM
, (6.150)

describes a periodic difference between the proper time of the first body and the
barycentric coordinate time. Then,

δR =
eR − eT

eT
=

m
a

2µ − δ , (6.151)

δθ =
eθ − eT

eT
=

m
a

(α + 2µ) − δ , (6.152)

are parameters, which describe purely periodic relativistic corrections to the Keple-
rian motion. Their measurement would provide a stringent test on relativistic the-
ories of gravity. Unfortunately, it is almost impossible to observe these parameters
with the current pulsar timing technique because they are highly correlated with stan-
dard astrometric observables of unperturbed Keplerian orbit [Damour and Deruelle,
1986].

One has analyzed the relative orbit. Transformation, for example, to the orbit of
the first body with respect to the barycenter of the binary system can be done by
accounting for the difference between the relative orbit and the orbit of the body
relative to the barycenter of the system, which can be written as

x1 = ar(1 − er cos U) , (6.153)

ar =
M2

M
aR , (6.154)

er = eR

[
1 +

m
a

M1(M2 −M1)
2M2

]
, (6.155)

and substituting the parameters from equations (6.106)-(6.112) one gets exactly the
same expressions for δr = (er − eT )/eT , δθ, k and the relation between aR and n as
in paper by Damour and Taylor [1992]. Note that for the orbit of the first body with
respect to the barycenter, eT = er(1 + δ) + e0 − er.
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Portilla and Villareal [2004] have generalized the DD parametrization for hyper-
bolic and parabolic orbits of the two-body problem in the first post-Newtonian ap-
proximation. The DD parametrization of the elliptic two-body orbit has been ex-
tended to the second post-Newtonian (2PN) approximation in papers [Damour and
Schäfer, 1988; Schäfer and Wex, 1993a,b], and even to the third post-Newtonian
(3PN) approximation in [Memmesheimer et al., 2004]. These PN extensions are
required for predicting templates of gravitational wave forms from the events of co-
alescence of compact binary systems comprised of neutron stars and/or black holes.
This is one of the most important theoretical problems of modern relativistic astro-
physics but it goes far beyond the scope of the relativistic celestial mechanics in the
solar system. For this reason, one skips the interesting but otherwise cumbersome,
details of the 2PN and 3PN parameterizations of the relativistic two-body problem.

6.4.3.3 The Epstein-Haugan parametrization
Epstein [1977] and Haugan [1985] proposed another (EH) parametrization of the
post-Keplerian orbit of two bodies in the framework of general relativity. The
parametrization is based on the results obtained earlier by Wagoner and Will [1976],
and can be written down in the following generalized form:

r(t) = a′
(
1 − e′ cos Z − h′ cos 2Z

)
, (6.156)

n (t − T0) = Z − g sin Z − h sin 2Z , (6.157)

θ = θ0 + (1 + k)η , (6.158)

tan
η

2
=

(
1 + e′′

1 − e′′

)1/2

tan
Z
2
, (6.159)

where a′, e′, e′′, g, h′ = O
(
ε2

)
, h = O

(
ε2

)
, θ0, n, T0, and k are the constants of

integration. Three eccentricities e′, e′′, and g differ from each other by the post-
Newtonian terms of the order of O(ε2). Let us note that Haugan [1985] denotes by
the letter e the quantity that one has designated by e”. Again, it is easy to check that
constants θ0, n, T0, and k from the EH parametrization coincide with those from the
previous section 6.4.3.2. Comparison of equations (6.156)-(6.159) with equations
(6.138)-(6.141) gives the set of relations between the orbital constants

g = et −
2
e

h , (6.160)

e′ = eR − eh , (6.161)

e′′ = eθ +
2(1 − e2)

e
h , (6.162)

a′ = aR + ah , (6.163)

h′ = h , (6.164)

η = Aeθ , (6.165)

Z = U −
2h
e

sin U . (6.166)

One can see, and it was first realized by Klioner and Kopeikin [1994], that the EH
parametrization in the form of equations (6.156)-(6.159) contains in fact one free
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post-Newtonian parameter h = O
(
ε2

)
, which can be chosen arbitrary. This means

that the semi-major axis and the eccentricity obtained from fitting of binary pulsar
timing data in the framework of the EH timing model depend on the specific value of
h in accordance with equations (6.162), (6.163). For example, for h = 0 the Epstein-
Haugan parametrization coincides with that of Damour and Deruelle. If one chooses
h in the same way as Epstein and Haugan did,

h =
me2

4a(1 − e2)2

[(
−13 + 2e2

)
+

(
3 + 5e2

) M1M2

(M1 + M2)2

]
, (6.167)

one gets the same expressions for the general-relativistic relations between g, e′, e′′

as described in Haugan [1985].
Soffel [1989] has proved already that the EH parametrization remains valid in

more general case of the PPN formalism [Will, 1993]. Our results demonstrates
that it is also valid in generic gravitational theories in the strong-field limit. The
values of the EH parameters for generic gravitation theories can be calculated from
equations (6.160)-(6.164), the values of constants of the DD parameterizations, and
the expression

h =
me2

a
(
1 − e2)2

[
1
2
ε −

3
4
σ −

1
2
α − µ −

(
1
2
α − ε

)
e2

]
, (6.168)

which has been derived in [Klioner and Kopeikin, 1994] for the perturbing force
(6.105) according to the original Wagoner & Will [Wagoner and Will, 1976] method.

Since the DD representation can be considered as a special case of the EH rep-
resentation with h = 0, and the original EH model corresponds to h defined by
equation (6.167), one can compare the derived theoretical relations between relevant
constants with numerical values obtained in paper by Taylor and Weisberg [1989]
for PSR 1913+16. In the original representation of Damour and Deruelle the letters
"a" and "e" designate aR ≡ aDD and eT ≡ eDD, respectively, while in the original rep-
resentation of Epstein and Haugan, ”a” and ”e” designate a′ ≡ aEH and e′′ ≡ eEH .
Therefore, in the case of general relativity for PSR 1913+16 our theoretical rela-
tions between constants give eEH − eDD = −8.2 × 10−6 and (aEH − aDD)/aDD =

(xEH − xDD)/xDD = −6.1 × 10−6 , where x = a sin i/c is the observable parameter.
These values are to be compared with the observational data presented in [Taylor
and Weisberg, 1989, Table 4]. The latter gives eEH − eDD = (−4.4 ± 5.1) × 10−6 and
(xEH − xDD)/xDD = (−2.1± 6.4)× 10−5. One can see a good agreement of the results
that provides a practical consistency check of different pulsar timing models.

6.4.3.4 The Brumberg parametrization
Brumberg [1972, 1991] has proposed independent parametrization of the relativis-
tic two-body problem, which can be written as (see [Brumberg, 1991, equations
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(3.1.60)-(3.1.69)])

r(t) = a∗ (1 − e∗ cos U) , (6.169)

n (t − T0) = U − e∗ sin U + F1(U) , (6.170)

θ = θ0 + (1 + k)A + F2(U) , (6.171)

tan
A
2

=

(
1 + e∗

1 − e∗

)1/2

tan
U
2
, (6.172)

where a∗ ≡ aR, e∗ ≡ eR, A ≡ AeR = Aeθ − F2(U), and

F1(U) = (eR − et) sin U = e (δ + δθ) sin U , (6.173)

F2(U) =
eθ − eR

1 − e2 sin A(U) =
e

1 − e2 (δθ − δR) sin A(U) . (6.174)

This exact parametrization of the post-Keplerian relative orbit is useful to check
how far from the reality is the modified parametrization of Blandford and Teukol-
sky (BT+) having being used for binary pulsar data analysis by Damour and Taylor
[1992]. The latter is defined, in fact, by Brumberg’s equations (6.169)-(6.172) with
F1(U) = F2(U) = 0. Neglecting F1 and F2 in the orbital parametrization produces
a rather large effect in theoretical arrival times of pulsar’s pulses. For PSR 1913+16
the effect may amount to 9 µs. However, by adjusting the Keplerian elements of
the orbit, one can reduce the post-fit residual difference between the DD and BT+

models to 2 µs as it happened in [Damour and Taylor, 1992]. It explains why the
BT+ parametrization can be fitted (at least, in some cases) so well to the actual ob-
servational data.

One sees that the Brumberg parametrization is very close to the Damour-Deruelle
parametrization. The major semi-axes a∗ and the eccentricity e∗ of the Brumberg
parametrization are exactly equal to aR and eR of the DD parametrization. This fact
has been recognized by Soffel [1989]. The only transformation needed to get the DD
parametrization from the Brumberg’s one is to introduce Aeθ instead of AeR , which
allows us to get rid of F2(U) as in the DD model.
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7
Relativistic Astrometry
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7.1
Introduction

Until now it are electromagnetic signals coming from various astronomical objects
which deliver the most exhaustive and accurate physical information about numer-
ous intriguing phenomena going on in the surrounding universe. Astrometry is the
branch of astronomy that relates to precise measurements and explanations of the
positions and movements of stars and other celestial bodies. The information ob-
tained by astrometric measurements is very important in contemporary research on
the kinematics and physical origin of the solar system, the Milky Way, and the whole
universe. The principal function of astrometry is to provide astronomers with an in-
ertial reference frame in the sky that is used to record their observations. Astrometry
is also fundamental for fields of celestial mechanics, stellar dynamics and galactic
astronomy [Kovalevsky and Seidelmann, 2004].

Astronomers use astrometric techniques for the tracking of near-Earth objects and
to identify distant celestial objects by observing their proper motions. Many record-
breaking solar system objects were detected by observing their movements relative to
the background stars, which remain fixed during the observational session. Examples
are - Quaoar and Sedna - two Trans-Neptunian object and potential dwarf planets
orbiting the Sun in the Kuiper belt. They were discovered by C. A. Trujillo and
M. E. Brown, and other astronomers at Caltech using the Palomar Observatory’s
Samuel Oschin telescope and the Palomar-Quest large-area CCD camera [Trujillo
and Brown, 2003; Williams et al., 2002]. The ability of astronomers to track the
positions and movements of such celestial bodies is crucial to the understanding of
the origin of the solar system and its past, present, and future.

Astrometry is also instrumental for keeping time as the universal coordinated time
(UTC) is basically the atomic time synchronized to Earth’s rotation by means of
exact observations. Astrometric time-keepers like pulsars may supersede the atomic
clocks on long intervals of time. Astrometry is a powerful tool to detect extra-solar
planets orbiting other stars by measuring the periodic displacement the planets cause
in their parent star’s apparent position on the sky, due to their mutual orbit around
the center of mass of the planetary system. NASA’s planned Space Interferometry
Mission (SIM) was designed to utilize astrometric techniques to detect terrestrial
planets orbiting around several hundred of the nearest solar-type stars.

Astrometric measurements are used by astrophysicists to constrain certain models
of physical processes. By measuring the velocities of pulsars, it is possible to put a
limit on the asymmetry of supernova explosions. Also, astrometric results are used
to determine the distribution of dark matter in the galaxy. Astrometry is involved in
creating the cosmic distance ladder because it is used to establish parallax distance
estimates for stars in the Milky Way [Weinberg, 1972]. Furthermore, astrometry al-
ways served as an experimental technique for testing fundamental theories of gravity
devised by Newton and notably by Einstein [Will, 1993].

Relativistic astrometry can be viewed as a part of relativistic celestial mechanics
dealing with motion of relativistic particles of light - photons - in a gravitational field
of massive bodies. In astrometry photons are considered as test particles having no
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influence on the metric tensor generated by the massive bodies. For this reason, their
motion is described by the equations of light (null) geodesics. Photons are particles
of vector electromagnetic field having two independent degrees of freedom (polar-
izations) [Landau and Lifshitz, 1975; Weinberg, 1972]. Polarization plays major role
in optical and radio observations of celestial objects. However, relativistic effects as-
sociated with the polarization of light are negligibly small [Barbieri and Guadagnini,
2005; Mashhoon, 1974] so that they can be ignored in subsequent discussion.

In vacuum and in the absence of gravitational field photons move along straight
lines with constant speed c, which is equal to the fundamental speed of the
Minkowski spacetime. For this reason, the convention is to call the fundamental
speed c as the “speed of light" irrespectively of the nature of equations where it ap-
pears. This linguistic tradition brings sometimes misunderstanding and confusion
among researchers [Ellis and Uzan, 2005]. For example, the theoretical value of the
speed of gravity in general relativity is the same as the speed of light in Maxwell’s
theory but the two speeds must be carefully distinguished in experimental gravita-
tional physics [Kopeikin, 2004]. Astrometric study of how gravitational perturbation
of a moving massive body affects motion of photons from their rectilinear and uni-
form motion allows us to understand deeper the dynamic properties of gravitational
field. Because photons move with the same speed as gravity, they are much more
sensitive to gravitational perturbations caused by space-space, gi j, and spacetime,
g0i, components of the metric tensor, than massive test particles which are affected
mainly by the time-time component, g00, of the metric. This can be easily seen from
the equations of geodesic for massive particles and photons.

Relativistic effects in propagation of light through static gravitational field played a
key role in experimental confirmation of general relativity until recently [Will, 1993,
2006]. However, rapidly growing accuracy of astrometric measurements demands
more exact solution of the problem of propagation of electromagnetic waves includ-
ing prediction of relativistic deflection of light and time delay in non-stationary grav-
itational fields. Present day technology has achieved a level of precision of optical
and radio interferometric observations approaching 1 µas [Fomalont and Reid, 2004;
Johnston et al., 2000]. Nano-arcsecond astrometric measurements may be available
in next few decades [Johnston et al., 2000; Perryman, 2005]. Adequate interpretation
of the astrometric data having this precision requires corresponding theoretical treat-
ment of periodic relativistic effects in the propagation of electromagnetic signals
in variable gravitational fields of oscillating and precessing stars, steady-state and
coalescing binary systems, and colliding galaxies [Kopeikin and Korobkov, 2005;
Kopeikin et al., 2006, 1999; Schluessel, 2008]. Furthermore, space astrometric mis-
sions like Gaia [Lindegren and Perryman, 1996] and SIM [Peterson and Shao, 1997]
will also have precision of about 1-10 µas in measuring positions and parallaxes of
stars, and about 1-10 µas per year in measuring their proper motion. At this level
of accuracy the gravitational field of the solar system can not be treated as static
and spherically symmetric. Rotation and oblateness of the Sun and large planets as
well as time variability of the gravitational field caused their orbital motion should
be undoubtedly taken into account [Klioner, 2003a; Klioner and Kopeikin, 1992;
Kopeikin and Mashhoon, 2002; Kopeikin and Makarov, 2007; Kopeikin et al., 2007;
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Kopeikin and Schäfer, 1999; Kopeikin, 2009].
Most of the practical approaches having been developed for integrating equations

of propagation of electromagnetic signals in gravitational field of the solar system
and other massive celestial bodies were based on the post-Newtonian presentation of
the metric tensor. It is well-known [Fock, 1964; Misner et al., 1973] that the post-
Newtonian approximation for the metric tensor is valid only within the so-called near
zone of an isolated astronomical N-body system that is the region of space around the
system with the characteristic size of a wavelength of gravitational radiation emitted
by the system. For example, Jupiter orbiting the Sun emits gravitational waves with
a wavelength of about 1.7 parsecs, and the binary pulsar PSR B1913+16 radiates
gravitational waves with a wavelength of about 28 astronomical units. It is clear
that the post-Newtonian metric can be used for calculation of light propagation only
from the sources lying inside the near zone of the gravitating system of the massive
bodies. However, most of the stars, quasars, and other sources of electromagnetic
radiation are lying far beyond the boundary of the near zone of the solar system and
other massive bodies and another method of solving the problem of propagation of
light from these sources to observer on the Earth should be applied.

In the absence of such advanced mathematical technique researches relied upon
the post-Newtonian approximation of the metric tensor assuming implicitly that the
perturbations from the time-dependent part of the metric tensor are sufficiently small
and may be neglected in the existed data processing algorithms [Brumberg, 1991;
Moyer, 2003; Soffel, 1989; Will, 1993]. An attempt to scrutinize this assumption has
been undertaken by Brumberg et al. [1990]; Klioner and Kopeikin [1992]; Kopeikin
[1990] who employed the technique of matching of two asymptotic solutions of the
light ray geodesics - in the near zone of the solar system and far away from it, where
its gravitational field can be approximated by the static Schwarzschild solution. Nev-
ertheless, a rigorous solution of the equations of light propagation being simultane-
ously valid both far outside and inside the solar system was not found at that time
1).

One additional problem to be enlightened relates to the approximation of motion
of the light-ray deflecting bodies during the time of propagation of light from the
point of emission to the point of observation. The post-Newtonian metric of a grav-
itating N-body system is not static and the bodies move around a common center of
mass while light is propagating. It was presupposed that the body a exerts the biggest
force on the propagating photon at the time ta of the closest approach of the light ray
to the body. For this reason, most of the papers on the light propagation fix coordi-
nates of each gravitating body a = 1, 2, 3, ...,N in the post-Newtonian metric at the
corresponding times ta (see, for instance, [Brumberg, 1991; Hellings, 1986a,b; Will,

1) Will [2003] used similar technique in order to identify relativistic terms associated with the speed of
propagation of gravitational waves in the expression for gravitational time delay of light. Will’s analysis
has subtle pitfalls caused by the limited power of his parametrization of equations of general relativity
with the speed of gravity parameter cg. General relativistic parametrization of the speed of gravity is
achieved after replacement of the fundamental speed c → cg in all terms containing time derivatives,
while Will [2003] parameterized a limited number of terms with the second-order time derivatives.
Detailed discussion of this issue is given in [Kopeikin, 2003b, 2004; Kopeikin and Fomalont, 2006].
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1993] and interesting discussion of this issue in [Sovers et al., 1998, page 1406]).
Nonetheless, until recently it was not fully clear why should one uses precisely the
moment ta for fixing positions of the massive bodies in the solution of the light-ray
equations and what magnitude of residual terms will be in the calculation of relativis-
tic time delay and light deflection angle if one chooses a slightly different moment
of time. Various researches came up with a conceivable explanation for choosing the
moment ta as the time of the closest approach [Hellings, 1986a,b; Klioner, 2003a;
Klioner and Kopeikin, 1992] arguing that such a choice minimizes the residual terms
in the solution of the equation of propagation of light rays obtained by the asymp-
totic matching technique. One notes, however, that the proof of this statement was
never completed with sufficient mathematical rigor and can not be actually achieved
for the reasons clarified below.

Recently, astronomers have started reconsidering the problem of propagation of
light rays in variable gravitational fields of gravitating system of bodies to find
out new, promising applications of relativistic astrometry. First of all, a profound,
systematic approach to integration of light geodesic equations in arbitrary, time-
dependent gravitational field of a localized self-gravitating system possessing a
multipolar decomposition [Blanchet, 1998; Blanchet and Damour, 1986; Thorne,
1980] has been worked out [Kopeikin and Korobkov, 2005; Kopeikin et al., 2006;
Kopeikin, 1997c; Kopeikin and Makarov, 2007; Kopeikin et al., 1999]. One has
used a special technique of integration of the equations of light propagation based
on the retarded time argument, which allowed to discover a rigorous solution of the
equations everywhere outside the localized system including both the near and ra-
diative zones. This research was oriented towards development of a theoretical tool
for detection of gravitational waves by means of astrometric techniques - the topic of
active discussion in literature [Dubath et al., 2007; Jenet et al., 2004; Kopeikin and
Korobkov, 2005; Kopeikin et al., 1999; Lesovik et al., 2005; Schluessel, 2008].

Theoretical algorithms of a micro-arcsecond relativistic astrometry in the solar
system should take into account relativistic effects in propagation of light in the field
of point-like massive bodies having arbitrary translational motion in space and ro-
tating. This model of the N-body system closely resembles the solar system and,
thus, is practically important for astrometric missions. Solution of this problem was
pioneered by Brumberg [Brumberg, 1972, 1991] and further developed in [Brum-
berg et al., 1990; Klioner, 2003a; Klioner and Kopeikin, 1994]. However, the most
powerful approach has been developed in papers [Kopeikin and Mashhoon, 2002;
Kopeikin, 2009; Kopeikin and Schäfer, 1999]. It is based on the mathematical tech-
nique of the retarded Liénard-Wiechert potentials of the gravitational field of the
moving masses [Landau and Lifshitz, 1975] which drastically simplifies the integra-
tion of the light-ray geodesics and allows us to formulate the final result for the grav-
itational deflection angle, time delay, and frequency change in terms of the Lorentz-
invariant expressions.

The present chapter summarizes results of the previous studies and describes the
integration technique for constructing a Lorentz covariant solution of equations of
propagation of light rays both outside and inside of a gravitating system of massive
point-like particles moving along arbitrary worldlines. In finding the solution one
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uses the Liénard-Wiechert presentation for the metric tensor, which accounts for all
possible effects in the description of the gravitational field and is valid everywhere
outside the worldlines of the moving bodies. The solution shows that the time ta
of the closest approach of light ray to body a is actually irrelevant and must be re-
placed by the retarded time, which originates from the fact that the gravitational field
propagates on the null cone of the background Minkowski spacetime. The time of
the closest approach is a good approximation of the retarded time but it does not
enter the final result for observable astrometric quantities. Straightforward calcula-
tion yields the complete expressions for the angle of light deflection, relativistic time
delay, and gravitational shift of observed electromagnetic frequency of the emitted
photons. These expressions are exact at the linear approximation with respect to the
universal gravitational constant, G, and at arbitrary order of magnitude with respect
to the parameter va/c, where va is a characteristic velocity of the a-th light-deflecting
body, and c is the fundamental speed. One discusses practical applications of the re-
tarded solution of the equations of light propagation including moving gravitational
lenses, timing of binary pulsars, the consensus model of very long baseline interfer-
ometry, and the relativistic reduction of astrometric observations in the solar system.

The mathematical formalism of the present chapter can be also used in astromet-
ric experiments for testing alternative scalar-tensor theories of gravity after formal
replacing in all subsequent formulas the universal gravitational constant G by the
product G(γ∗ + 1)/2, where γ∗ is the effective light-ray deflection parameter, which
is slightly different from its weak-field limiting value γ of the standard parameterized
post-Newtonian (PPN) formalism [Will, 1993]. In the weak-field limit the numerical
value of γ∗ coincides with that of γ as discussed in [Damour and Esposito-Farèse,
1996; Nordtvedt, 1985]. The difference between the parameters γ∗ and γ reveals only
in static terms of the second post-Newtonian order of magnitude depending on the
internal structure of the bodies. This statement is a direct consequence of a confor-
mal invariance of the equations of light rays [Damour and Esposito-Farèse, 1998b].
In what follows, this difference is ignored because the solar system experiments are
not sensitive enough to detect the difference between the two parameters. However,
it may play a role in the binary pulsars analysis [Nordtvedt, 1985].

The chapter is organized as follows. Section 7.2 presents a short description of
the energy-momentum tensor of the light-deflecting bodies and the metric tensor
given in the form of the Liénard-Wiechert potential. Section 7.3 is devoted to the
development of a mathematical technique for integrating equations of propagation
of electromagnetic waves in the geometric optics approximation. Formal solution
of these equations and relativistic perturbations of a photon trajectory are given in
section 7.4. Section 7.5 deals with a general treatment of observable relativistic
effects - the integrated time delay, the deflection angle, and gravitational shift of
frequency. Particular cases of application astrometry in astrophysics are presented
in section 7.6. They include the Shapiro time delay in binary pulsars and moving
gravitational lenses. General relativistic astrometry in the solar system is presented
in section 7.7. Finally, section 7.8 discusses relativistic description of the Doppler
tracking of interplanetary spacecrafts.
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7.2
Gravitational Liénard-Wiechert Potentials

Our interpretation of observable quantities in relativistic astrometry is based solely
on general relativity and the physical meaning of the retarded Liénard-Wiechert po-
tentials used to solve the Einstein equations [Bel et al., 1981; Kopeikin and Schäfer,
1999]. Built directly from Einstein’s equations, these potentials describe the com-
plete, relativistically invariant, time-varying gravitational field for a point masses
in arbitrary motion. Gravitational radiation in the form of waves can be obtained
from these potentials as well. Remarkable property of the Liénard-Wiechert poten-
tials is that they describe the propagation of the gravity field even if the mass moves
uniformly with constant speed. One emphasizes that although gravitational waves
are not generated by a uniformly moving body the null characteristics of the gravita-
tional field are still precisely defined by the Liénard-Wiechert potentials through their
property of the Lorentz invariance and the principle of physical causality [Kopeikin
and Fomalont, 2006]. In the near-field zone of a gravitating N-body system the
null characteristics of gravity reveal themselves through the Lorentz invariance of
the gravitational force (the aberration of gravity) when one compares observations
done in one inertial frame with another, while in the far-field radiative zone the null
characteristics of gravity can be traced as freely propagating gravitational waves.

In general relativity light and gravity null rays form bi-characteristic hypersurfaces
[Frolov, 1979], that is they propagate in space with the same fundamental speed c.
At the first glance it may look that the relativistic astrometry can not discriminate
the propagational effects of gravity from those associated with light. However, this
point of view is short-sighted. Although light and gravity propagate with the same
speed on the hypersurface of one and the same null cone, they generally propagate
in different directions in space in each particular gravitational experiment and are
associated with different physical effects. Our point of view is that the most natural
interpretation of astrometric observations of relativistic effects should rest solidly on
general relativity which has passed all other experimental tests in strong compliance
with the current theoretical understanding of gravitational physics. In other words,
in order to interpret the astrometric observation properly, the spacetime properties,
which general relativity postulates, must not be violated. Specifically, spacetime is
a differentiable manifold endowed with an affine connection (Christoffel symbols)
whose geodesics form a privileged set of worldlines in spacetime, and their knowl-
edge (observation) allows us to extract information about the curvature tensor (tidal
gravitational force) without ambiguity. The Christoffel symbols define the gravita-
tional law of motion of test particles and extended bodies and, hence, generalize the
concept of the Newtonian gravitational force in general relativity. They are formed
from partial derivatives of the metric tensor that defines geometric properties of the
spacetime and the causal structure of the null cone. At the same time the metric ten-
sor is associated with the gravitational potentials whose properties are determined
by Einstein’s equations.

The solution of the Einstein equations, using the Liénard-Wiechert potentials has
been essentially understood and developed by previous researchers. This iterative
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procedure is called post-Minkowskian approximations [Damour, 1987]. For the pur-
pose of this chapter the first (linearized gravity) post-Minkowskian approximation is
sufficient since the gravitational light-ray deflection experiments are not yet sensitive
enough to measure non-linearities of the Einstein equations. The metric tensor in the
linearized approximation reads

gαβ(t, x) = ηαβ + hαβ(t, x) , (7.1)

where t is coordinate time, x = xi = (x1, x2, x3) denotes spatial coordinates of a
field point in space, ηαβ = diag(−1,+1,+1,+1) is the Minkowski metric of the back-
ground flat spacetime and the metric perturbation hαβ(t, x) is a function of time and
spatial coordinates 2). It can be found by solving the Einstein field equations in har-
monic gauge. One reminds that the harmonic gauge [Fock, 1964; Weinberg, 1972] is
fixed in the first post-Minkowskian approximation by the four differential conditions

ηµν
(
∂µhαν −

1
2
∂αhµν

)
= 0 , (7.2)

where ∂µ = ∂/∂xµ denotes a partial derivative with respect to a corresponding co-
ordinate. Taking into account the harmonic condition (7.2) reduces the Einstein
equations in the first post-Minkowskian approximation to the wave equation for the
metric tensor perturbations ([Weinberg, 1972, chapter 10]

hαβ(t, x) = −
16πG

c4 S αβ(t, x) , (7.3)

where the D’Alambertian (wave) operator

= −
1
c2 ∂

2
t + ∇2 , (7.4)

∂t = ∂/∂t, the Laplace differential operator ∇2 = δi j∂i∂ j,

S αβ(t, x) = Tαβ(t, x) −
1
2
ηαβ T λ

λ(t, x) , (7.5)

and Tαβ(t, x) is the tensor of energy-momentum of the system of massive bodies.
This tensor for the case of a point-like bodies in a covariant form is given, for exam-
ple, by Landau & Lifshitz [Landau and Lifshitz, 1975]

Tαβ(t, x) =

N∑
a=1

Tαβ
a (t)δ (x − xa(t)) , (7.6)

Tαβ
a (t) = mac2γ−1

a (t)uαa (t)uβa(t) , (7.7)

2) It is worthwhile to remind that the spacetime indices α, β, ..., etc. runs from 0 to 3 and are raised and
lowered by means of ηαβ. Spatial indices i, j, k, ..., etc. run from 1 to 3 and are raised and lowered
by means of the Kronecker symbol δi j, so that, actually, the upper and lower case spatial indices are
not distinguished. Repeated Greek and Latin indices denote summation from 0 to 3 and from 1 to 3
respectively.
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where ma is the constant (relativistic) rest mass of the a-th particle, xa(t) are spatial
coordinates of the a-th massive particle which depend on time t, va(t) = dxa(t)/dt
is velocity of the a-th particle, γa(t) = 1/

√
1 − β2

a(t) is the (time-dependent) Lorentz
factor, βa = va/c, uαa (t) = {γa(t), γa(t)βa(t)} is the four-velocity of the a-th particle
normalized to −1, δ(x) is the usual 3-dimensional Dirac delta-function. In particular,
one has for components of the tensor of energy-momentum

T 00
a (t) =

mac2√
1 − v2

a(t)
, T 0i

a (t) =
mac2βi

a(t)√
1 − β2

a(t)
, T i j

a (t) =
mac2βi

a(t)β j
a(t)√

1 − β2
a(t)

.

(7.8)

Solution of equations (7.3)-(7.8) has the form of the Liénard-Wiechert potential
[Jackson, 1975]. In order to see how it looks like, the tensor of energy-momentum
is represented in a form where the whole time-dependence history of the moving
particle is formally included in a one-dimensional delta-function

Tαβ(t, x) =

∫ +∞

−∞

dt′δ(t′ − t) Tαβ(t′, x) . (7.9)

Here t′ is an independent parameter along the worldlines of the particles which does
not depend on time t. The solution of equation (7.3) can be found by making use of
the Green function’s technique [Barton, 1989]. One takes only the retarded Green
function and abandons the time-advanced solution as the N-body system under con-
sideration is isolated from possible external gravitational environment. It is equiv-
alent to the assumption that there is no gravitational radiation impinging onto the
system in the first post-Minkowskian approximation. It is interesting to emphasize
that in higher post-Minkowskian approximations existence of the tail gravitational
radiation effects [Blanchet and Damour, 1988; Blanchet and Schäfer, 1993; Schäfer,
1990] brings about a small fraction of incoming radiation as being backscattered on
the static part of the curvature generated by the monopole component in multipole
expansion of the metric tensor. However, although the backscattered radiation is in-
coming, it does not come in from past null infinity called sometimes "scri minus" in
relativity [Misner et al., 1973, page 917]. Therefore, it has nothing to do with the
advanced Green function and represents a purely outgoing radiation at future null in-
finity ("scri plus") [Misner et al., 1973, page 917]. One omits such backscatter terms
in what follows, for they appear only in the higher orders of the post-Minkowskian
approximation scheme.

Choosing the retarded Green function of the wave equation and integrating with
respect to spatial coordinates by making use of the properties of the 3-dimensional
delta-function, one gets the metric tensor perturbation in the form of an one-
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dimensional, retarded-time integral

hαβ(t, x) =

N∑
a=1

∫ +∞

−∞

hαβa (t′, t, x)dt′ , (7.10)

hαβa (t′, t, x) =
4G
c4

[
Tαβ

a (t′) −
1
2
ηαβT λ

aλ(t′)
]
δ
[
t′ − t + 1

c ra(t′)
]

ra(t′)
, (7.11)

where ra(t′) = x − xa(t′), and ra(t′) = |ra(t′)| is the usual Euclidean length of the
vector. The integral (7.10) can be performed explicitly as described in, e.g., [Jackson,
1975, section 14]). The result is the retarded Liénard-Wiechert tensor potential

hαβ(t, x) =
4G
c4

N∑
a=1

Tαβ
a (s) − 1

2η
αβT λ

aλ(s)
ra(s) − βa(s) · ra(s)

, (7.12)

where the retarded time s = s(t, x) for the a-th body is a solution of the gravity
null-cone equation

s = t −
1
c
|x − xa(s)| , (7.13)

describing propagation of gravity from the moving body a to the field point, xα =

(t, x), with the fundamental speed c. Here, it is assumed that the gravity field is
measured at time t and at the point x.

Equation (7.13) is a complicated non-linear equation, which can not be solved
analytically for arbitrary worldlines of the massive bodies. Nevertheless, analytic
solution is possible if the bodies move along straight lines with constant velocities

xa(t) = xa(ta) + va(t − ta) , (7.14)

where ta is an arbitrary instant of time,and va is constant. Substituting equation (7.14)
to the retarded time equation (7.13) brings about a quadratic algebraic equation for s

c2(s − t)2 = |x − xa(ta) + va(s − ta)|2 , (7.15)

which can be solved exactly. The solution is [Kopeikin, 2009, equation 25]

s = t −
R · βa +

√
R2 − (R · βa)2

c(1 − β2
a)

, (7.16)

and R = x − xa(t) with xa(t) defined in equation (7.14).
One points out that it would be more appropriate to denote the retarded time for

the a-th body as sa, which would have reflected the dependence of the retarded time
on the number of the body. However, it would make notations and the presentation
of subsequent formulas more cumbersome. For this reason the notation s is used
instead of sa keeping in mind that if it is not stated otherwise, coordinates, velocity,
and acceleration of the a-th body are taken at the corresponding retarded time sa.
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This remark is crucial, e.g., in the discussion regarding the definition of the center of
mass of the N body system 3).

Equations (7.12) and (7.13) of the metric perturbation hαβ(t, x) are used for inte-
gration of the equations of light geodesics in the next section. It is worth emphasizing
that the expression for the metric tensor (7.12) is Lorentz-covariant and is valid in
any harmonic coordinate system admitting a smooth transition to the asymptotically
flat spacetime at infinity and relating to each other by the Lorentz transformations of
the theory of special relativity [Fock, 1964]. A treatment of post-linear corrections
to the Liénard-Wiechert potentials (7.12) is given, for example, in a series of papers
by Kip Thorne and collaborators [Crowley and Thorne, 1977; Kovacs and Thorne,
1977, 1978; Thorne and Kovacs, 1975].

It is also interesting to notice that if the condition of the weak metric tensor per-
turbation is imposed, that is |hαβ| � 1, it will lead to a stronger upper limit on the
velocity of the moving bodies than the simple βa < 1 [Kovacs and Thorne, 1978;
Mashhoon, 1992; Westpfahl, 1985]. This limitation follows from equation (7.12)
for the Liénard-Wiechert potentials. For example, if velocity va is perpendicular
to a radius-vector ra (circular orbit of a coalescing binary system), the weak-field
approximation imposed on the Liénard-Wiechert potentials demands

Gma

c2ra
� (1 − β2

a)1/2 −→ βa �

√
1 −

(
Gma

c2ra

)2

. (7.17)

In another particular case, where velocity va of the body is almost parallel to ra one
gets a stronger restriction:

Gma

c2ra
� (1 − βa)3/2 −→ βa � 1 −

(
Gma

c2ra

)2/3

. (7.18)

These limitations are always satisfied in the solar system, because of its weak grav-
itational field (Gma)/(c2ra) � 1, but may be violated, for example, in coalescing
binary systems, where gravitational field is not weak just before the coalescence.

3) For more detail see explanation after equation (7.209).
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Unperturbed path of light ray

Point of observation of light ray, x

Point of emission of light ray, 

k

- K

Perturbed path of light ray
x 0

Figure 7.1 A light ray is emitted at the instant of time t0 at the point x0 and arrives at the point
of observation x at the instant of time t. Light-ray deflecting bodies move along accelerated
worldlines during the time of propagation of the light ray; their velocities at some intermediate
instant of time are shown by black arrows. In the absence of the light-ray deflecting bodies the
light ray would propagate along an unperturbed path (the dashed line) which is a straight line
passing through the points of emission, x0, and observation, x. Unperturbed direction from
observer to the source of light is determined by the unit vector K = −(x − x0)/|x − x0 |. In the
presence of the light-ray-deflecting bodies the light ray propagates along the perturbed path
(the solid line). The perturbed trajectory of the light ray is bent and twisted due to the effects of
gravitoelectric (mass-induced) and gravitomagnetic (velocity-induced) fields of the bodies
[Kopeikin and Fomalont, 2007]. The initial condition (7.19) for the equation of light propagation
is determined by the unit vector k defined by the backward-in-time extension of the solution of
the light-ray equation to past null infinity passing through the point of emission, x0, of light.
Relationship between the unit vectors k and K includes relativistic bending of light and is given
by equation (7.67).

7.3
Mathematical Technique for Integrating Equations of Propagation of Photons

One considers the motion of a light particle (photon) in the background gravitational
field described by the metric (7.12). No back action of the photon on the gravi-
tational field is assumed. Moreover, one will assume that there is no medium and
photons propagate in vacuum. It allows to use equations of light geodesics directly
applying the metric tensor (7.12) for calculation of the gravitational perturbation of
the photon’s trajectory. In real practice one can not ignore the presence of medium,
and should take into account its effect on propagation of light. Astronomers have
developed powerful methods for dealing with this problem and the reader is referred
to a corresponding literature (see, for example, [Ginzburg, 1970; Yakovlev, 2002])
as discussion of this topic would take us too far beyond the scope of this book.

Let the motion of the photon be defined by fixing the initial-boundary conditions
(see Figure 7.1)

x(t0) = x0 ,
dx(−∞)

dt
= ck , (7.19)

where k2 = 1 and, henceforth, the spatial components of vectors are denoted by bold
letters. These conditions define the coordinates x0 of the photon at the moment of
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emission of light, t0, and its velocity at the infinite past and infinite distance from the
origin of the spatial coordinates (that is, at the so-called, past null infinity [Misner
et al., 1973, page 917]).

The original equation of propagation of light rays in vacuum on a curved spacetime
manifold is just a light-ray geodesic

d2xα

dλ2 + Γαµν
dxµ

dλ
dxν

dλ
= 0 , (7.20)

where λ is the affine parameter along the worldline of the light particle (photon),
and the Christoffel symbols should be calculated in the linearized approximation as
follows

Γαµν =
1
2
ηαβ

(
∂νhβµ + ∂µhβν − ∂βhµν

)
. (7.21)

The affine parameter is related to coordinate time t by equation

c
d2t
dλ2 + Γ0

µν

dxµ

dλ
dxν

dλ
= 0 , (7.22)

which is just a time component of equation (7.20). After replacing the affine param-
eter λ with coordinate time t in equation (7.20), it can be reduced to equation for
only spatial components of the photon

d2xi

dt2 + Γi
µν

dxµ

dt
dxν

dt
−

1
c

Γ0
µν

dxµ

dt
dxν

dt
dxi

dt
= 0 . (7.23)

Making use of equation (7.21) yields components of the Christoffel symbols

Γ0
00 = −

1
2c
∂th00 , (7.24)

Γ0
0k = −

1
2
∂kh00 , (7.25)

Γ0
kp = −

1
2

(
∂ph0k + ∂kh0p −

1
c
∂thkp

)
, (7.26)

Γi
00 = −

1
2
∂ih00 +

1
c
∂th0i , (7.27)

Γi
0k = −

1
2

(
∂ih0k − ∂kh0l −

1
c
∂thik

)
, (7.28)

Γi
kp = −

1
2

(
∂ihkp − ∂phik − ∂khip

)
, (7.29)

where ∂t = ∂/∂t and ∂i = ∂/∂xi. Substituting them to the light ray equation (7.23)
yields

ẍi =
c2

2
∂ih00 − c∂th0i − c

(
∂kh0i − ∂ih0k +

1
c
∂thik

)
ẋk −

1
2
∂th00 ẋi (7.30)

− ∂kh00 ẋk ẋi −

(
∂phik −

1
2
∂ihkp

)
ẋk ẋp −

(
1
c
∂ph0k −

1
2c2 ∂thkp

)
ẋp ẋk ẋi ,
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where ẋi = dxi/dt, and ẍi = d2xi/dt2, and one has put all terms depending on the
metric tensor perturbations hαβ to the right side so that they can be interpreted as a
gravity force acting on the propagating photon by moving massive bodies.

The propagation equation (7.30) looks rather complicated and difficult for solu-
tion. However, it can be simplified and reduced to much simpler form that admits
direct integration along the null cone with a method of successive approximations
[Kopeikin and Schäfer, 1999; Kopeikin et al., 1999]. In the first approximation the
propagation of light ray is not affected by gravity force, and equation (7.30) is re-
duced to a rather trivial one

ẍi = 0 . (7.31)

Solution of this equation is the unperturbed trajectory of the light ray in a flat space-
time with the Minkowski metric ηαβ that is a straight line

xi(t) = xi
N(t) = xi

0 + cki (t − t0) , (7.32)

where t0, xi
0, and the unit vector ki = k have been defined in equation (7.19). In this

approximation, the coordinate speed of the photon is ẋi = cki and is considered as a
constant in the expression for the light-ray-perturbing force. In order to solve equa-
tion (7.30) in the second approximation one needs to understand better the properties
of the unperturbed solution (7.32).

It is convenient to introduce a new independent parameter τ along the photon’s
trajectory according to the rule [Kopeikin et al., 1999], [Kopeikin, 1997c]

τ =
1
c

k · xN(t) = t − t0 +
1
c

k · x0, (7.33)

where here and everywhere else the dot between two spatial vectors denotes their
Euclidean dot product. The time t = t0 of the light signal’s emission corresponds to
the numerical value of the parameter τ0 = c−1 k · x0, and the numerical value of the
parameter τ = 0 corresponds to the time

t∗ = t0 −
1
c

k · x0 , (7.34)

which is the time of the closest approach of the unperturbed trajectory of the pho-
ton to the origin of the coordinate system used for calculation of the metric tensor
perturbations. One emphasizes that the numerical value of the moment t∗ is con-
stant for a chosen trajectory of light ray (that is, for another light ray it will have
a different numerical value) and depends only on the spacetime coordinates of the
point of emission of the photon and the point of its observation. Thus, one finds the
relationships

τ ≡ t − t∗, τ0 = t0 − t∗ , (7.35)

which reveal that the new variable τ is negative from the point of emission up to the
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point of the closest approach xi(t∗) ≡ ξi, and is positive otherwise 4). The differential
identity dt = dτ is valid and, for this reason, the integration along the light ray’s
path with respect to time t can be always replaced by the integration with respect to
variable τ.

Making use of the parameter τ, the equation (7.32) of the unperturbed trajectory
of the light ray can be represented as

xi(τ) = xi
N(τ) = ckiτ + ξi , (7.36)

and the distance, r(τ) = |xN(t)|, of the photon from the origin of the coordinate
system obeys to the Pythagorean relationship

r(τ) =
√

c2τ2 + d2 . (7.37)

The constant vector ξi = ξ = k × (x0 × k) = k × (xN(t) × k) is called the impact
parameter of the unperturbed trajectory of the light ray, d = |ξ| is the length of
the impact parameter, and the symbol ” × ” between two vectors denotes the usual
Euclidean cross product of two vectors. One notes that vector ξ is transverse to
vector k and directed from the origin of the coordinate system towards the point of
the closest approach of the light ray to the origin. One emphasizes that this vector
plays just an auxiliary role in the discussion and, in general, has no essential physical
meaning as it can be easily changed by the shift of the origin of the coordinates. At
the given stage the freedom in choosing the origin of the coordinate system is not
fixed by assuming, for example, that the origin coincides with the center of mass of
the N-body system. Specific choices of the coordinate origin will be done later on.

Let us consider a set (bundle) of unperturbed light rays xi
N(τ) = ckiτ + ξi with

different values of vectors ki and ξi. The unit vector field ki, defined along an each
line xi

N(τ), describes the direction of a bundle of light rays and introduces a natural
(2 + 1) splitting of 3-dimensional space. The vector ξi defines a point of intersection
of any of those rays with the plane being orthogonal to the bundle of the light rays.
This vector does not depend on τ and can be given in the form of the following
relationship

ξi = Pi
jx

j , (7.38)

where

Pi j = δi j − kik j , (7.39)

is the operator of projection onto the plane being orthogonal to vector ki. The opera-
tor has only two algebraically independent components and satisfies the relationship

PikPk j = Pi
j . (7.40)

4) It is worth noting that this statement is true only if the origin of the coordinate system is between the
source of light and observer. Under other circumstances the variable τ may be always either positive or
negative.
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Because of this property one can recast equation (7.38) into the form

ξi = Pi
jξ

j , (7.41)

which shows explicitly that the vector ξi is constrained to lie in the 2-dimensional
plane. Thus, the operation of partial differentiation in this plane is

∂ξi

∂ξ j = Pi
j . (7.42)

It is worth noting that the projection operator can be used to raise and lower indices
of any geometrical object lying in the plane orthogonal to vector ki.

Implementing the two new parameters τ, ξ and introducing the four-dimensional
light-ray vector kα = (1, ki) allows us to derive the principal differential identity of
the bundle of the light geodesics. Specifically, for any smooth function F(t, x) taken
on the bundle of the light rays one has[

∂F(t, x)
∂xi +

ki

c
∂F(t, x)
∂t

]
x=ck (t−t0)+x0

= (7.43)

∂F(τ + t∗, ckτ + ξ)
∂ξi +

ki

c
∂F(τ + t∗, ckτ + ξ)

∂τ
,

where the equation for the light-ray trajectory is substituted to the left side of this
equation after calculating the partial derivatives from F(t, x) while in the right side
we, first, substitute the light-ray trajectory to F(t, x) = F(τ + t∗, ckτ + ξ) and, then,
differentiate. Equation (7.43) demonstrates that one can always switch the order of
mathematical operations between the taking the partial derivative and the substitu-
tion for the unperturbed light ray trajectory to function F(t, x). This identity helps
us to significantly simply the original equation (7.30 for light geodesics to continue
its integration in the second approximation. One also notices two other, useful rela-
tionships for integrals from function F(τ, ξ), which decays to zero value at past null
infinity sufficiently fast. Namely, one has∫ τ

−∞

dF(σ, ξ)
dσ

dσ = F(τ, ξ) , (7.44)∫ τ

−∞

∂̂iF(σ, ξ)dσ = ∂̂i

∫ τ

−∞

F(σ, ξ)dσ , (7.45)

where the first equation is almost self-evident, and the second one is fulfilled because
the variables σ and ξ are independent for the bundle of the light rays.

Substituting the unperturbed velocity of the light ray, ẋi = cki, to the right side of
equation (7.30) and applying equation (7.43) to the metric tensor perturbation hαβ,
one can re-write equation (7.30) of light geodesics as follows [Kopeikin and Schäfer,
1999; Kopeikin et al., 1999]

d2xi(τ)
dτ2 =

1
2

c2kαkβ∂̂ihαβ(τ, ξ) (7.46)

− c
d
dτ

[
kαhαi(τ, ξ) +

1
2

kih00(τ, ξ) −
1
2

kikpkqhpq(τ, ξ)
]
,
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where one has introduced a new notation for a partial derivative with respect to vec-
tor ξi of the impact parameter: ∂̂i ≡ Pi j∂/∂ξ

j, and all quantities on the right side
of equation (7.46) are taken along the light-ray trajectory at the point corresponding
to a numerical value of the running parameter τ while the parameter ξ is assumed
as constant. In other words, equation (7.46) should be considered as an ordinary,
second-order differential equation in time variable τ. More precisely, this kind of
equation is known in the literature as "retarded-functional differential system" be-
cause of the dependence of the gravitational potentials on the retarded time argument
s (see equation (7.12)). Such equations belong to the framework of "predictive rel-
ativistic mechanics" [Bel, 1970; Bel et al., 1981; Bel and Fustero, 1976; Bel et al.,
1973; Currie, 1966; Damour, 1983; Hill, 1967].

The given form of equation (7.46) already shows that only the first term on the
right hand side of it can contribute to the deflection of light if observer and source
of light are at spatial infinity. Indeed, integration of the right side of equation (7.46)
with respect to time from −∞ to +∞ brings all terms showing time derivative, to
zero due to the asymptotic flatness of the metric tensor.

However, if the observer and the source of light are located at finite distances
from the origin of the coordinate system, one needs to know how to perform the
integrals from the metric perturbations (7.10) with respect to the parameter τ along
the unperturbed trajectory of light ray. Let us denote those integrals as

Bαβ(τ, ξ) = c
∫ τ

−∞

hαβ[σ, x(σ)]dσ , (7.47)

Dαβ(τ, ξ) = c
∫ τ

−∞

Bαβ(σ, ξ)dσ , (7.48)

where the metric perturbation hαβ[σ, x(σ)] is defined by the Liénard-Wiechert po-
tential (7.10) and σ is a parameter of integration along the light ray having the same
meaning as the parameter τ in equation (7.33). In order to calculate the integrals
(7.47), (7.48) it is useful to change in the integrands the time argument, σ, to the
new one, ζ, defined by the gravity null-cone equation (7.13) which, after substitution
for x the unperturbed light-ray trajectory (7.36), reads as follows 5)

σ + t∗ = ζ +
1
c
|ξ + ckσ − xa(ζ)| . (7.49)

Total differential of this equation yields a relationship between differentials of the
time variables σ and ζ, and parameters t∗, ξi, ki. More specifically,

dζ
(
ra − βa · ra

)
= dσ (ra − k · ra) + radt∗ −

1
c

ra · dξ − σra · dk , (7.50)

where the coordinates, xa = xa(ζ), and the velocity, va = va(ζ), of the a-th body are
taken at the retarded time ζ, and coordinates of the photon, x = x(σ), are taken at the

5) One again emphasizes that the new parameter ζ depends on the index of each body. For this reason it
would be reasonable to denote it as ζa. One does not use this notation to avoid the appearance of a large
number of sub-indices.
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time σ = σ(ζ). From equation (7.50) one immediately obtains the partial derivatives
with respect to the parameters

∂ζ

∂t∗
=

ra

ra − βa · ra
,

∂ζ

∂ξi = −
1
c

Pi jr
j
a

ra − βa · ra
,

∂ζ

∂ki = −
σri

a

ra − βa · ra
.

(7.51)

Furthermore, equation (7.50) yields a unique relationship between the time differen-
tials of time σ on the worldline of the photon (light-ray cone) and the retarded time
ζ along the gravity null-cone (7.13), which reads as follows

dσ = dζ
ra − βa · ra

ra − k · ra
. (7.52)

If parameter σ runs from −∞ to +∞, the new parameter ζ runs from ζ−∞ = −∞ to
ζ+∞ = t∗ + c−1 k · xa(ζ+∞) provided the motion of each body is restricted inside a
bounded domain of space, like in the case of a binary system. In case the bodies
move along straight lines with constant velocities, the parameter σ runs from −∞
to +∞, and the parameter ζ runs from −∞ to +∞ as well. In addition, one notices
that when the numerical value of the parameter σ is equal to the time of observation
τ, the numerical value of the parameter ζ equals to s(τ), which is found from the
equation of the gravity null-cone cone (7.13) in which the point x denotes the spatial
coordinates of observer.

After transforming time arguments the integrals (7.47), (7.48) take the form

Bαβ(s) =

N∑
a=1

Bαβa (s) , (7.53)

Bαβa (s) =
4G
c3

∫ s

−∞

Tαβ
a (ζ) − 1

2η
αβT λ

aλ(ζ)
ra(σ, ζ) − k · ra(σ, ζ)

dζ , (7.54)

Dαβ(s) = c
N∑

a=1

∫ τ

−∞

Bαβa [ζ(σ)]dσ , (7.55)

where retarded time s in the upper limit of integration in equation (7.54) depends on
the index of each body as it has already been mentioned in the previous text (i.e.,
s = sa). Now one presents a remarkable, exact relationship

ra(σ, ζ) − k · ra(σ, ζ) = ct∗ + k · xa(ζ) − cζ , (7.56)

which can be proved by direct use of the gravity null-cone equation (7.13) and the
expression (7.36) for the unperturbed trajectory of light ray. It is important to note
that in the given relationship t∗ is a constant time corresponding to the moment of
the closest approach of the photon to the origin of coordinate system. The equation
(7.56) shows that the integrand on the right side of equations (7.54) does not actually
depend on time σ of the light ray at all, and the integration is performed only with
respect to the retarded time variable ζ of the gravity null-cone.
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Thus, as soon as the motion of the bodies xa(t) is known as a function of time,
the integral (7.54) can be calculated either analytically or numerically without solv-
ing the complicated gravity null-cone equation (7.13) to establish the relationship
between the light-ray time and the gravity retarded time arguments. This procedure
does not work for the integral (7.55) because the transformation to the new variable
(7.52) does not eliminate explicit dependence on the argument of time τ from the
integrand of this integral. Fortunately, as it is evident from the structure of equation
(7.46) that one does not need to calculate this integral for finding the perturbed light-
ray trajectory, but only its partial derivative with respect to ξi, which can be already
calculated on the hypersurface of the null cone in the same way as the integral (7.54).

In order to find ∂̂iDαβ one uses equation (7.45) and note that the integrand of Bαβ(s)
does not depend on the variable ξi. This dependence manifests itself only indirectly
through the upper limit of the integral (7.54), which depends on the retarded time
s = s(τ, ξ) taken at the point of observation of the light ray. At this point the structure
of the gravity null-cone equation has the following form

τ + t∗ = s +
1
c
|ξ + ckτ − xa(s)| , (7.57)

which assumes that the retarded time s is an implicit function of τ, ξ, and t∗. For this
reason, a straightforward differentiation of Bαβ(s) with respect to the retarded time s
and the implementation of formula (7.51) for the calculation of the derivative ∂s/∂ξi

at the point of observation yields 6)

∂̂iBαβ(s) =
∂Bαβ(s)
∂s

∂s
∂ξi (7.58)

= −
4G
c4

N∑
a=1

Tαβ
a (s) − 1

2η
αβT λ

aλ(s)
ra(s) − k · ra(s)

Pi
j r j

a(s)
ra(s) − βa(s) · ra(s)

.

This result elucidates a remarkable fact that ∂̂iBαβ(s) is actually not an integral but the
instantaneous function of time that can be calculated directly for arbitrary trajectory
of the gravitating bodies. While calculating ∂̂iDαβ(s) one uses, first, formula (7.58)
and, then, the replacement of variables (7.52). Proceeding in this way one arrives at
the result

∂̂iDαβ(s) = c
N∑

a=1

∫ τ

−∞

∂̂iB
αβ
a [ζ(σ)]dσ (7.59)

= −
4G
c4

N∑
a=1

∫ s

−∞

Tαβ
a (ζ) − 1

2η
αβT λ

aλ(ζ)[
ra(σ, ζ) − k · ra(σ, ζ)

]2 Pi
j r j

a(σ, ζ)dζ .

It is worthwhile to emphasize that denominator of the integrand in right side of equa-
tion (7.59) can be represented as a function of the only variable ζ in accordance with

6) Calculation of the derivative ∂̂iBαβ(s0) at the point of light emission is obtained from the formula (7.58)
where all quantities involved are to be taken at the retarded time s0.
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equation (7.56), which is a consequence of the gravity null-cone equation (7.13).
One also notices that

Pi
j r j

a(σ, ζ) = ξi − Pi
jx

j
a(ζ) , (7.60)

is function of the variable ζ only. Going back to the equation (7.56) one finds that
the integrand of the integral (7.59) depends only on the retarded time argument ζ, so
that it can be re-cast to the next form

∂̂iDαβ(s) = −
4G
c4

N∑
a=1

ξi
∫ s

−∞

Tαβ
a (ζ) − 1

2η
αβT λ

aλ(ζ)[
ct∗ + k · xa(ζ) − cζ

]2 dζ (7.61)

+
4G
c4

N∑
a=1

Pi
j

∫ s

−∞

Tαβ
a (ζ) − 1

2η
αβT λ

aλ(ζ)[
ct∗ + k · xa(ζ) − cζ

]2 x j
a(ζ) dζ ,

where the numerical value of the parameter s in the upper limit of the integral is
calculated by solving the gravity null-cone equation (7.13). Hence, again, as it has
been proven for Bαβ(s), the integral (7.59) admits a direct calculation as soon as the
motion of the gravitating bodies is prescribed.
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7.4
Gravitational Perturbations of Photon’s Trajectory

Gravitational perturbations of trajectory of the photon are found by straightforward
integration of the equation of light-ray geodesics (7.46) with using definitions (7.47),
(7.48) and the rules of integration (7.44), (7.45). After performing the calculation
one fins,

ẋi(τ) = cki + Ξ̇i(τ) , (7.62)

xi(τ) = xi
N(τ) + Ξi(τ) − Ξi(τ0) , (7.63)

where τ and τ0 correspond, respectively, to the moment of observation and emis-
sion of the photon. Functions Ξ̇i(τ) and Ξi(τ) are relativistic perturbations given as
follows

Ξ̇i(τ) =
1
2

ckαkβ∂̂iBαβ(τ) − kαhαi(τ) −
1
2

kih00(τ) +
1
2

kikpkqhpq(τ) , (7.64)

Ξi(τ) =
1
2

kαkβ∂̂iDαβ(τ) − kαBαi(τ) −
1
2

kiB00(τ) +
1
2

kikpkqBpq(τ) , (7.65)

where functions hαβ(τ), Bαβ(τ), ∂̂iBαβ(τ), and ∂̂iDαβ(τ) are defined by relationships
(7.12), (7.54), (7.58), and (7.59) respectively.

Equations (7.64), (7.65) represent solution of the light-ray equation (7.46) with the
initial-boundary condition (7.19). It means that the unit vector k defines a reference
position of the source of light on the celestial sphere taken at the null past infin-
ity. However, realistic sources of light are located at finite distances from observer,
which assumes that the boundary value problem for equation (7.19) of the light-ray
geodesics is to be solved. In this case the initial position, x0 = x(t0), and the final
position, x = x(t), of a photon are given instead of its initial position x0 and the
direction of light propagation k given at the past null infinity. All what is needed for
the formulation of the boundary value problem is the relationship between the unit
vector k and the unit vector

K = −
x − x0

|x − x0|
, (7.66)

which defines a geometric direction of the light propagation from observer to the
source of light in flat spacetime. Formulas (7.63) and (7.65) yield

ki = −Ki − ii(τ, ξ) + ii(τ0, ξ) , (7.67)

where the relativistic corrections ii describing the difference between vectors k and
Ki, are defined as follows

ii(τ, ξ) =

1
2 kαkβ∂̂iDαβ(τ) − kαPi

jBα j(τ)
|x − x0|

, (7.68)

ii(τ0, ξ) =

1
2 kαkβ∂̂iDαβ(τ0) − kαPi

jBα j(τ0)
|x − x0|

. (7.69)
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One emphasizes that the vectors ii(τ, ξ) ≡ i and ii(τ0, ξ) ≡ i0 are orthogonal to the
unit vector k and are taken at the points of observation and emission of the photon
respectively. These vectors vanish if the distance |x − x0| between observer and the
source of light goes to infinity. The relationships obtained in this section are used for
the discussion of observable relativistic effects in the following sections, where the
appropriate integrals will be calculated explicitly.

One emphasizes that the formalism under discussion admits to work with world-
lines of arbitrary moving bodies without restricting them to straight lines as in the
Lorentz-transformation technique of calculation of the gravitational light-ray per-
turbations proposed by Klioner [Klioner, 2003b]. More precisely, in the harmonic
gauge (7.2) the equations of motion of the bodies result from the harmonic coordi-
nate conditions (7.2). In the first post-Minkowskian approximation these conditions
allow motion of the bodies only along straight lines with constant speeds. However,
if in finding the metric tensor the non-linear terms in the Einstein equations are taken
into account, the bodies may show accelerated motion without structurally changing
the linearized form of the Liénard-Wiechert solution for the metric tensor, which
is used for integration of equations of motion of a photon. Hence, the mathemati-
cal technique based on the Liénard-Wichert potentials supersedes the technique of
the Lorentz transformations. Mathematical technique of the Synge’s world function
[Synge, 1964] proposed by French theory group [Teyssandier et al., 2008] for calcu-
lating gravitational deflection and time delay of light in the program of space mission
Gaia [Lindegren, 2009; Lindegren et al., 1995; Lindegren and Perryman, 1996], is
limited to the case of light propagating in the field of a static gravitational mass and
requires further elaboration to include relativistic effects caused by motion of planets
and the Sun [Malkin et al., 2009].

The knowledge of trajectory of motion of photons in the gravitational field formed
by a N-body system of arbitrary-moving massive bodies is necessary but not suf-
ficient for the unambiguous physical interpretation of observational astrometric ef-
fects. In the most general case it also requires to know how observer and source
of light move in the gravitational field of this system. This is because coordinate
x of the observer and that x0 of the source of light enter the solution of the light-
ray geodesics. Hence, as time passes and the observer receives photons from the
source of light the observed direction K to the source of light and the magnitude and
direction of relativistic perturbations change.

Let us stipulate that observer and the source of light are point-like test particles
which move along timelike geodesic worldlines. Then, in the post-Minkowskian
approximation, equation of motion of the particles, assuming no restriction on their
velocities except for that ẋ < c, is exactly the same as equation (7.30). However,the
most realistic situation is when observer and the source of light move with the speed
much less than the speed of light: ẋ � c.

In the given coordinate system for velocities of the particles much smaller than the
speed of light, equation (7.30) can be simplified to a more pragmatic form depending
on the accuracy to which the velocity of the observer and/or the source of light must
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be taken into account. For example, in the Newtonian limit

ẍi(t) =
1
2

c2h00,i . (7.70)

Regarding specific physical conditions either the post-Minkowski equation (7.30) or
the Newtonian equation (7.70) should be integrated with respect to time to give the
worldline of observer, x(t), and the source of light, x0(t0), as a function of time of
observation, t, and of time of emission of light, t0, respectively. This problem is not
extensively treated in the present book as its solution has been developed with neces-
sary accuracy by a number of previous authors. In particular, the post-Minkowskian
approach for solving equations of motion of massive particles is thoroughly treated
in [Bel et al., 1981; Damour, 1983; Ibañez et al., 1984], which also give a number of
other, useful references. The post-Newtonian approach to the problem of motion is
outlined in Chapters 4–6. In what follows, one assumes the motion of observer, x(t),
and that of the source of light, x0(t0), are known with a required precision. In as-
trometry, these motions are connected through the solution of the light-ray geodesic
equations (7.62)-(7.65).

It is also instructive to review propagation of photon through the gravitational field
of N-body system on the Minkowski spacetime diagram as shown in Fig 7.2. A pho-
ton propagates from a source of light towards observer along light cone. Its motion
is perturbed by the retarded gravitational field of the bodies expressed in terms of the
indexLiénard-Wiechert potentialsLiénard-Wiechert potentials. Also shown in Figure
7.2 are positions of the bodies (marked by the unfilled circles) taken on the space-
like hypersurfaces (dashed lines) of fixed times ti (i = 0, 1, ..., 6). As the photon
approaches the system (events 0,1) it moves through a variable gravitational field of
the two bodies. However, after crossing the system (events 5,6) the gravitational field
at the photon’s position gets "frozen" as it moves on the same null cone along which
the gravitational field of the system propagates. Gravitational field is getting "frozen"
during propagation of the photon inside the system (events 2,3,4). Spatial position
xa(s) of the gravitating bodies taken at any retarded instant of time s = t − ra/cis
very close to that when photon is crossing the system. The retarded, xa(s), and in-
stantaneous, xa(t), spatial positions of the gravitating bodies are drastically different
when the photon is very far outside the near zone of the system.
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Figure 7.2 Minkowski diagram showing relationship between positions of a photon taken at
times ti (events i = 0, 1, ..., 6 on the photon’s worldline) and positions of the light-ray-deflecting
bodies (marked by the black circles) taken at the retarded times si = ti − ra(si)/c corresponding
to instants ti (i = 0, 1, ..., 6). For simplicity only gravitationally bounded two-body system (for
example, a binary pulsar) is shown.
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7.5
Observable Relativistic Effects

7.5.1
Gravitational time delay

Relativistic time delay in propagation of electromagnetic signals passing through the
static, spherically-symmetric gravitational field of the Sun was predicted by Irwin
Shapiro [Shapiro, 1964] who also made its first measurement by using radar obser-
vations of planets [Shapiro, 1966]. The basic idea involved estimating the unknown
parameters of the planetary orbits from time-delay measurements made, when the
target planet was far away from the direction to the Sun, and using the measure-
ments made, when the path of the radar wave passes near the Sun to distinguish the
effect of solar gravity on the delay. Detailed mathematical description of the Shapiro
time delay can be found in any introductory textbook on relativity (see, for exam-
ple, [Misner et al., 1973; Weinberg, 1972]). Here, Shapiro’s equation is generalized
for the case of the propagation of light through time-dependent gravitational field
formed by an ensemble of N arbitrary-moving massive bodies. The result, is valid
not only when the light ray propagates outside the system of the bodies but also when
light goes through the system.

The total time of propagation of an electromagnetic signal from the point x0 to the
point x is derived from equations (7.63), (7.65). First, use equation (7.63) to express
the difference x − x0 between the point of emission and that of observation through
the other terms of the equation. Then, square this difference using the properties of
the Euclidean dot product. Finally, find the total coordinate time of propagation of
light, t− t0, extracting the square root from the product, and using the expansion with
respect to the relativistic parameter (Gma)/(c2ra) which is assumed to be small. It
results in

c(t − t0) = |x − x0| − k · Ξ(τ) + k · Ξ(τ0) , (7.71)

or

t − t0 =
1
c
|x − x0| + ∆(t, t0) , (7.72)

where |x − x0| is the usual Euclidean distance between the points of emission, x0,
and observation, x, of the electromagnetic signal (photon), and ∆(t, t0) is the gener-
alization of the Shapiro time delay produced by the gravitational field of the moving
bodies [Kopeikin and Schäfer, 1999]

∆(t, t0) =
1
2c

kαkβBαβ(τ) −
1
2c

kαkβBαβ(τ0) =
2G
c3

N∑
a=1

maBa(s, s0) . (7.73)

Here, in the integral

Ba(s, s0) =

∫ s

s0

[1 − k · βa(ζ)]2√
1 − β2

a(ζ)

dζ
t∗ + c−1 k · xa(ζ) − ζ

, (7.74)
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the retarded time s is obtained by solving equation (7.13) for the time t of observation
of the photon, and the retarded time s0 is found by solving the same equation written
down for the time t0 of emission of the photon 7)

s0 = t0 −
1
c
|x0 − xa(s0)| . (7.75)

Relationships (7.72), (7.73) for the time delay have been derived with respect to the
coordinate time t. Transformation from the coordinate time to the proper time T of
observer moving with velocity v, is made by integrating the infinitesimal increment
of the proper time along the worldline x(t) of the observer as defined in equation
(3.274) which takes the following form in the first post-Minkowskian approximation

T =

∫ t

ti

{
1 − β2(t) − h00[t, x(t)] − 2h0i[t, x(t)]βi(t)

− hi j[t, x(t)]βi(t)β j(t)
}1/2

dt , (7.76)

where β = v/c, ti is the initial epoch of observation, and t is the current time of
observation.

Calculation of the integral (7.74) is performed by means of using a new variable

y = t∗ +
1
c

k · xa(ζ) − ζ , (7.77)

dy = −[1 − k · βa(ζ)]dζ , (7.78)

so that the above integral (7.74) reads

Ba(s, s0) = −

∫ s

s0

1 − k · βa[ζ(y)]√
1 − β2

a[ζ(y)]
d ln y; . (7.79)

Integrating by parts and applying equation (7.56) to return from the time variable
presentation of the gravity null cone to its coordinate presentation, results in

Ba(s, s0) = −
1 − k · βa(s)√

1 − β2
a(s)

ln[ra(s) − k · ra(s)] (7.80)

+
1 − k · βa(s0)√

1 − β2
a(s0)

ln[ra(s0) − k · ra(s0)]

−

∫ s

s0

ln(ra − k · ra)(
1 − β2

a
)3/2

[
k − βa − βa × (k × βa)

]
· β̇a dζ ,

where the notations are: ra(s) = x − xa(s), ra(s0) = x0 − xa(s0), ra(s) = |ra(s)|,
ra(s0) = |ra(s0)|, x = x(t), x0 = x(t0), βa = βa(ζ) = va(ζ)/c, va(s) = dxa(s)/ds,
va(s0) = dxa(s0)/ds0, and the retarded times s and s0 should be calculated from the
gravity null-cone equations (7.13) and (7.75) respectively. The first and second terms

7) Again it would be better to denote the retarded time as s0a emphasizing its dependence on the index a
of the body under consideration. It was not used to avoid confusion of indices.
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in the right side of this equation describe the generalized Lorentz-invariant form of
the gravitational time delay for the case of the bodies moving with arbitrary velocities
limited from above by the conditions (7.17), (7.18). The last term in the right side
of equation (7.80) depends on the body’s acceleration and may be comparable, in
general case, to the first two terms in this equation. If motion of the bodies is bounded
by gravitational interaction the acceleration-dependent terms are rather small and
should be proportional to the relativistic corrections to the static Shapiro delay of the
order of β2

a. The acceleration-dependent term in equation (7.80) is identically zero
if one can work in the approximation of the bodies moving along straight lines with
constant velocities. Otherwise, one has to know the law of motion of the bodies for
its precise calculation.

Neglecting all terms of order β2
a for the gravitational time delay one obtains its

simplified expression

∆(t, t0) = −
2G
c3

N∑
a=1

ma

{
ln

(
ra − k · ra

r0a − k · r0a

)
(7.81)

−(k · βa) ln(ra − k · ra) + (k · βa0) ln(r0a − k · r0a)

+

∫ s

s0

ln
[
t∗ + k · xa(ζ) − ζ

] [
k · β̇a(ζ)

]
dζ

}
,

where βa = βa(s), βa0 = βa(s0), ra = ra(s), r0a = ra(s0). The first term on the
right side of the expression (7.81) looks identical with the static Shapiro time delay
[Brumberg, 1991; Soffel, 1989; Will, 1993]. However, the reader should keep in
mind that the argument of the logarithmic function depends on the worldlines of the
moving bodies, which positions are not fixed in space but changes as time goes on.
Moreover, the positions of the massive bodies are tightly connected to the position
of observer, x, at the time of observation t and that of the source of light, x0, at the
time of emission t0 of the observed light by equations (7.13), (7.75) of the gravity
null cone, which are null characteristics of the linearized Einstein equations. This
theoretical prediction of general relativity can be tested in precise astrometric exper-
iments dealing with the gravitational time delay of light passing through the field
of a moving, massive planet (Jupiter, Saturn) [Fomalont and Kopeikin, 2008, 2003;
Kopeikin, 2001; Malkin et al., 2009]. This kind of astrometric experiments allow us
to measure whether the fundamental speed in general relativity has the same numer-
ical value as the speed of light. Because the fundamental speed in general relativity
defines the speed of propagation of gravity, the astrometric experiment measuring
the gravitational time delay of light by a moving planet became known as "the speed
of gravity" experiment [Kopeikin and Fomalont, 2002], which is discussed later in
this section in more detail. Velocity-dependent corrections to the static Shapiro de-
lay, which appear in the second line of equation (7.81) have been also obtained in
the post-Newtonian approximate analysis with a different mathematical techniques
under the assumption that gravitating bodies move uniformly along straight lines
[Bertotti et al., 2008; Klioner and Kopeikin, 1992; Wex, 1995; Wex and Kopeikin,
1999]. It should be emphasized once again that this assumption works well enough
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only if the light travel time does not exceed the characteristic Keplerian period of the
gravitating system. Previous mathematical techniques were insufficient to prove that
the assumption of uniform motion of bodies can be applied, e.g., for treatment of the
Shapiro time delay in binary pulsars. This problem is discussed more deeply in the
next sections of this book.

Expressions (7.80), (7.81) for gravitational time delay of light vastly extends pre-
viously known results, for they are applicable to the case of bodies moving along
arbitrary worldlines whereas the calculations of all previous authors were severely
restricted by the assumption that either the gravitating bodies are fixed in space or
move uniformly with constant velocities. In addition, there was no reasonable the-
oretical understanding of how light interacts with gravitational field of a moving
body. The rigorous theoretical derivation of formulas (7.80) and (7.81) has made
a significant progress in clarifying this question and proved for the first time that
in calculating the gravitational time delay of an electromagnetic wave the positions
of the gravitating masses must be taken at the retarded times defined by the gravity
null cone equations (7.13), (7.75) which correspond to the instants of emission and
observation of the electromagnetic signal.

In the case of a uniformly moving bodies their velocity is constant and equation
for the gravitational time delay can be represented in an explicitly Lorentz-invariant
form

∆(t, t0) =
2G
c3

N∑
a=1

ma
(
kαuαa

)
ln

[
kαrαa (s)
kαrαa (s0)

]
, (7.82)

where the four-velocity uαa = γa(1,βa), γa = (1 − β2
a)−1/2, kα = (1, k), rαa (s) =

(ra(s), ra(s)), rαa (s0) = (ra(s0), ra(s0)). One notices that the four-vector kα is directed
along the propagation of light ray, which is a null characteristic of the Maxwell equa-
tions, while the four-vectors ra(s) and ra(s0) are directed along the null characteris-
tics of the linearized Einstein equations. The explicit dependence of the argument of
the logarithmic function on the dot product kαrαa of two null vectors kα and rαa makes
it evident that the gravitational time delay is sensitive to the null-cone effect because
of the finite speed of propagation of gravity [Kopeikin, 2001; Kopeikin and Foma-
lont, 2006]. Equation (7.82) can be recast to another covariant form, which is very
similar to that used in practical calculation of the time delay in Orbit Determination
Program of NASA JPL [Moyer, 2003].

One starts from the following exact relationships

ra − k · ra =
|ra0 − xa + xa0|

2 − (r − ra)2

2r
, (7.83)

ra0 − k · ra0 = −
|ra + xa − xa0|

2 − (r + ra0)2

2r
, (7.84)

where r = |r|, r = x − x0, so that

rα = rkα = (r, r) , (7.85)

is a null vector in the flat spacetime connecting coordinates of the point of emission
and reception of the electromagnetic wave: ηαβrαrβ = 0. Because the gravitating
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body moves uniformly with constant speed va, its retarded coordinate x(s) is not
constant and can be expanded as follows

xa(s) = xa0 + va (s − s0) , (7.86)

where the time interval s− s0 can be expressed in terms of the null-cone distances by
making use of the retarded time equations (7.13), (7.75), and the unperturbed part of
equation (7.71). One has,

s − s0 ≡ (s − t) + (t − t0) + (t0 − s0) =
1
c

(r + ra0 − ra) . (7.87)

Plugging equation (7.87) to (7.86), and substituting it into equations (7.83), (7.84)
allow us to transform the ranging time delay logarithm to the following form

ln
[

ra − k · ra

ra0 − k · ra0

]
= − ln

[
ra + ra0 + r − 2(ra · βa) − β2

a (r + ra0 − ra)
ra + ra0 − r − 2(ra0 · βa) + β2

a (r + ra0 − ra)

]
. (7.88)

Let us now introduce definitions of the Lorentz-invariant distances

ρR = −uaαrαa =
ra − βa · ra√

1 − β2
a

, (7.89)

ρ0R = −uaαrαa0 =
ra0 − βa · ra0√

1 − β2
a

. (7.90)

Tedious but straightforward calculations reveal that

ra + ra0 + r − 2(ra · βa) − β2
a (r + ra0 − ra) =

√
1 − β2

a
(
ρR + ρ0R − rkαuαa

)
, (7.91)

ra + ra0 − r − 2(ra0 · βa) + β2
a (r + ra0 − ra) =

√
1 − β2

a
(
ρR + ρ0R + rkαuαa

)
. (7.92)

These equations taken along with equation (7.85) allows us to reduce the time
delay logarithm in equation (7.88) to another Lorentz-invariant form

ln
(

ra − k · ra

ra0 − k · ra0

)
= − ln

(
ρR + ρ0R − ρ12

ρR + ρ0R + ρ12

)
, (7.93)

where the ranging distance ρ12 = rkαuαa = uaαrα is invariant with respect to the
Lorentz transformation. It represents transvection of the null vector rα defined in
equation (7.85) with four-velocity uαa of the gravitating body. The null vector rα

determines propagation of the electromagnetic signal. Distances ρ0R, ρR are defined
in equations (7.89), (7.90), and they also represent transvection of the null vectors
rαa0, rαa with four-velocity uαa of the gravitating body. However, contrary to vector rα,
vectors rαa0, rαa describe the null characteristics of the gravitational field.

Accounting for equation (7.93) the Lorentz-invariant expression for the time delay
assumes the following form

∆(t, t0) =
2G
c3

N∑
a=1

ma
1 − k · βa√

1 − β2
a

ln
(
ρR + ρ0R − ρ12

ρR + ρ0R + ρ12

)
. (7.94)
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This equation is apparently Lorentz-invariant, valid for any value of the velocity
va of the light-ray deflecting body. This equation has been derived in [Kopeikin,
2009] and represent Lorentz-invariant generalization of the gravitational time delay
equation used in NASA Orbit Determination Program [Moyer, 2003].

7.5.2
Gravitational bending and deflection angle of light

A photon arriving at time t from a source of light to observer, located at the point of
observation x, has a coordinate direction defined in spacetime by a null four-vector
pα = (1, pi), where

pi = −
1
c

ẋi = −ki −
1
c

Ξ̇i(τ, ξ) , (7.95)

and the minus sign makes the space vector pi directed from the observer to the source
of light. However, the coordinate direction pi to the source of light is not a directly
observable quantity. A real observable direction towards the source of light is de-
fined with respect to the local inertial frame of the observer by another null vector
that is denoted sα = (1, si). In this frame si = −c−1dXi/dT , where T is the ob-
server’s proper time and Xi are spatial coordinates of the local inertial frame. One
will assume for simplicity that the observer is at rest with respect to the global har-
monic coordinate system (t, xi). If observer is moving with respect to the global
coordinates with velocity vi the additional Lorentz transformation must be applied.
It is described by the matrix Lαβ with components given earlier in equation (2.82)

L0
0 = γ ≡

1√
1 − β2

, L0
i = Li

0 = −βγni , Li
j = δi j+(γ−1)nin j ,

(7.96)

where β = v/c, and ni = vi/v is the unit vector in the direction of motion of the
observer.

In case, when observer is at rest, the infinitesimal transformation from the global
coordinates, (t, xi), to the local inertial ones, (T ,Xi), is given by

cdT = cΛ0
0 dt + Λ0

j dx j , dXi = cΛi
0 dt + Λi

j dx j , (7.97)

where the matrix of transformation Λα
β depends on the spacetime coordinates of the

point of observation and is defined by the requirement of orthonormalization

gαβ = ηµνΛ
µ
αΛν

β . (7.98)

The matrix Λα
β represents components of the four basis vectors (tetrad) of the local

inertial frame of the observer, expressed in terms of the global coordinates. In par-
ticular, the orthonormalization condition (7.98) pre-assumes that spatial angles and
lengths at the point of observation are measured with the help of the Euclidean met-
ric δi j. For this reason, as the four-vector sα is null, one concludes that the Euclidean
length |s| of vector si is equal to 1. Indeed, one has

ηαβsαsβ = −1 + s2 = 0 . (7.99)
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Hence, |s| = 1, and the unit vector s defines the astrometric position of the source
of light on the unit celestial sphere attached to the point of observation. This is
a, so-called, topocentric celestial sphere in the local coordinates Xα = (T , X. The
positions of celestial objects will differ from one observer to another, and may vary
periodically at one site due to the rotation and orbital revolution of the Earth or if the
observer is doing observations from an orbiting satellite.

In the linearized post-Minkowskian approximation the matrix of the tetrad trans-
formation is as follows [Kopeikin et al., 1999]

Λ0
0 = 1 −

1
2

h00(t, x) , (7.100)

Λ0
i = −h0i(t, x) ,

Λi
0 = 0 ,

Λi
j = δi j +

1
2

hi j(t, x) .

Using transformation (7.97) one obtains a relationship between the observable unit
vector si and the coordinate direction pi

si =
Λi

j p j − Λi
0

Λ0
0 − Λ0

j p j . (7.101)

In the linearized approximation it takes the form

si =

(
1 +

1
2

h00 − h0 j p j
)

pi +
1
2

hi j p j . (7.102)

Remembering that |s| = 1, one obtains for the Euclidean norm of vector pi

|p| = 1 −
1
2

h00 + h0 j p j −
1
2

hi j pi p j , (7.103)

which brings equation (7.102) to the form 8)

si = mi +
1
2

Pi jmqh jq(t, x) , (7.104)

with the Euclidean unit vector mi = pi/|p|. One notices that a set of the unit vectors
mi also defines a topocentric celestial sphere in the global coordinates xα = (t, x).
Equation (7.104) makes it evident that gravitational field at the point of observation
makes the components of a topocentric vector directed towards one and the same
source of light different in the local and global coordinates. This is a specific feature
of general relativistic astrometry, which is not present in classic astrometry where
gravitational field does not invoke any difference between the coordinates because
space and time are absolute.

Let now denote by αi a dimensionless vector describing the angle of a total deflec-
tion of the light ray caused by the gravitational field from the point of emission of

8) Note that one is allowed to use the substitution δi j − pi p j = δi j − kik j = Pi j in the relativistic terms of
any formula of the present chapter.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 538

538

light to the point of observation, measured at the point of observation and calculated
with respect to vector ki of the light ray given by the boundary condition imposed on
the light ray at the past null infinity. It is defined according to relationship [Kopeikin
et al., 1999]

cαi(τ, ξ) = −Pi
j Ξ̇ j(τ, ξ) = ki

[
k · Ξ̇(τ, ξ)

]
− Ξ̇i(τ, ξ) . (7.105)

Now one notices that definition (7.95) yields for the norm of the vector pi

|p| = 1 +
1
c

k · Ξ̇ . (7.106)

Comparing it with equation (7.103) allows us to calculate

1
c

k · Ξ̇ = −
1
2

h00 + h0 jk j −
1
2

hi jkik j . (7.107)

As a consequence of definitions (7.95) and equations (7.105), (7.106) one can estab-
lish a relationship between the unit vectors ki and mi that

mi = −ki + αi(τ, ξ) . (7.108)

The boundary value of the light vector ki relates to the geometric direction Ki of the
light ray by equation (7.67). Hence, taking into account this equation and expres-
sions (7.101), (7.103), (7.105), one obtains the observed astrometric direction to the
source of light

si(τ, ξ) = Ki + αi(τ, ξ) + ii(τ, ξ) − ii(τ0, ξ) + κi(τ, ξ) , (7.109)

where all terms following vector Ki have various relativistic origin due to the pres-
ence of the gravitational field, relativistic corrections ii are defined by the equation
(7.68) and the local frame relativistic correction

κi(τ, ξ) = −
1
2

Pi jkqh jq(t, x) (7.110)

describes the light deflection caused by the deformation of space at the point of
observations due to the presence of the gravitational field.

If two sources of light are observed along the directions si
1 and si

2, correspondingly,
the measured angle ψ between them is defined in the local inertial frame as follows

cosψ = s1 · s2 , (7.111)

where the dot denotes the usual Euclidean scalar product. It is worth emphasizing
that the observed direction to the source of light (7.109) includes the relativistic de-
flection of the light ray which depends not only on quantities taken at the point of
observation but also on those ii(τ0, ξ) taken at the point of emission of light. Usu-
ally this term is rather small and can be neglected. However, it becomes important
in the problem of propagation of light in the field of gravitational waves [Kopeikin
and Korobkov, 2005; Kopeikin et al., 2006, 1999] or for a proper treatment of high-
precision astrometric observations of objects being within the boundary of the so-
lar system (for example, tracking motion of interplanetary spacecrafts with VLBI
[Ichikawa et al., 2004; Lanyi et al., 2007]).
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Without going into specific technical details of the observational procedure one
gives an explicit expression for the angle αi(τ) that follows from its definition (7.105)
and expression (7.64) for the relativistic perturbation of the coordinate velocity of the
light ray

αi(τ) = −
1
2

kαkβ∂̂iBαβ(τ) + kα Pi
j hα j(τ) . (7.112)

Relationships (7.12), (7.58) taken along with the definition of the tensor of energy-
momentum (7.6)-(7.8) allow us to recast the previous expression into the following
explicit form

αi(τ) =
2G
c2

N∑
a=1

ma√
1 − β2

a

(
1 − k · βa

)2

ra − k · ra

Pi
j r j

a

ra − βa · ra
(7.113)

−
4G
c2

N∑
a=1

ma√
1 − β2

a

1 − k · βa

ra − βa · ra
Pi

j β
j
a ,

where coordinates and velocity of the massive a-th body have to be taken at the re-
tarded time s, which relates to the time of observation t by the gravity null-cone
equation (7.13). Equation (7.113) gives Lorentz-invariant expression for the gravi-
tational deflection angle αi, which consists of two terms. The first term in the right
side of equation (7.113) reduces, in case of βa = 0, to the textbook’s expression for
the deflection angle of light in gravitational field of a static, spherically-symmetric
mass predicted by Einstein and, first, measured by Eddington in case of starlight
grazing limb of the Sun [Weinberg, 1972, section 8.5]. Relativistic corrections of
the order of βa to the value of the static-case deflection angle are small (less than
one microarcsecond [Brumberg et al., 1990]) for the solar system bodies and can be
currently neglected. However, relativistic corrections associated with the retardation
in the positions of the light-ray deflecting bodies due to the finite speed of gravity are
important, can be measured [Fomalont and Kopeikin, 2003], and should be taken se-
riously in relativity-testing astrometric experiments [Kopeikin and Fomalont, 2007;
Kopeikin and Makarov, 2007].

Neglecting all terms of the order of βa one obtains a simplified form of the previous
expression

αi(τ) =
2G
c2

N∑
a=1

ma

ra

Pi
j r j

a

(ra − k · ra)
, (7.114)

which may be compared to the analogous expression for the deflection angle ob-
tained previously by many other authors in the framework of the post-Newtonian
approximation (see, for example, [Brumberg, 1991], and references therein). One
notes that all previous authors fixed the moment of time, at which coordinates xa

of the gravitating bodies were to be calculated rather arbitrary, without having a
rigorous justification for their choice. Our approach based on the retarded Liénard-
Wiechert potentials, gives a unique answer to this question and makes it obvious that
the coordinates xa of the bodies must be taken at the moment of retarded time s
relating to the time of observation t by the gravity null-cone equation (7.13).
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The next step in finding the explicit expression for the observed coordinate di-
rection si is the computation of the quantity ii(τ) given in (7.68). One has from
formulas (7.53), (7.59) the following result for the numerator of ii(τ)

1
2

kαkβ∂̂iDαβ(τ) − kαPi
jBα j(τ) = −

2G
c2

N∑
a=1

ma

[
ξiCa(s) − Pi

jD
j
a(s)

]
(7.115)

+
4G
c2

N∑
a=1

ma Pi
jE

j
a(s) ,

where the integrals Ca(s), D j
a(s) and E j

a(s) read as follows

Ca(s) = c
∫ s

−∞

[
1 − k · βa(ζ)

ct∗ + k · xa(ζ) − cζ

]2 dζ√
1 − β2

a(ζ)
, (7.116)

D j
a(s) = c

∫ s

−∞

[
1 − k · βa(ζ)

ct∗ + k · xa(ζ) − cζ

]2 x j
a(ζ)√

1 − β2
a(ζ)

dζ , (7.117)

E j
a(s) =

∫ s

−∞

1 − k · βa(ζ)
ct∗ + k · xa(ζ) − cζ

β
j
a(ζ)√

1 − β2
a(ζ)

dζ . (7.118)

Making use of the new variable y introduced in (7.77) and integrating by parts yields

Ca(s) =
1√

1 − β2
a

1 − k · βa

ra − k · ra
+

∫ s

−∞

[
k − βa − βa × (k × βa)

]
· β̇a

ra − k · ra

dζ(
1 − β2

a
)3/2 , (7.119)

D j
a(s) =

1 − k · βa√
1 − β2

a

x j
a

ra − k · ra
+

∫ s

−∞

[
k − βa − βa × (k × βa)

]
· β̇a

ra − k · ra

x j
a dζ(

1 − β2
a
)3/2 − E j

a(s) ,

(7.120)

E j
a(s) = −

β
j
a√

1 − β2
a

ln(ra − k · ra) +

∫ s

−∞

ln(ra − k · ra) Π
j
k β̇

k
a

dζ(
1 − β2

a
)1/2 , (7.121)

where Π
j
k(ζ) = δ

j
k + u j(ζ)uk(ζ) is the spatial part of the operator of projection onto

the plane being perpendicular to the worldline of the a-th body, and the bodies’
coordinates and velocities in all terms, being outside the signs of the integrals, are
taken at the moment of the retarded time s = t − ra/c. Equations (7.119)-(7.121)
will be used in section 7.6.2 for the discussion of the gravitational lens equation with
taking into account velocity-dependent relativistic corrections of the body deflecting
light rays.

Finally, the quantity κi(τ) can be explicitly given by the following expression

κi(τ) = −
2G
c2

N∑
a=1

ma√
1 − β2

a

(k · βa)
ra − βa · ra

(Pi
j β

j
a) , (7.122)
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where coordinates and velocities of the bodies must be taken at the retarded time s
according to equation (7.13). Notice that the angle κi is a very small quantity being
proportional to the product (Gma/c2ra)β2

a and can be neglected in all practical cases
of the astrometric observations inside the solar system.

7.5.3
Gravitational shift of electromagnetic-wave frequency

Exact calculation of gravitational shift of frequency between the emitted and ob-
served electromagnetic wave is crucial for adequate interpretation of high-precision
measurements of radial velocities [Lindegren and Dravins, 2003], the inhomogeneity
induced anisotropy of cosmic microwave background (CMB) radiation also known
as the Sachs-Wolfe effect [Linder, 1997; White and Hu, 1997], Doppler track-
ing gravitational experiments in the solar system [Cowsik, 2000; Estabrook and
Wahlquist, 1975; Iess et al., 1999; Mashhoon and Grishchuk, 1980] and other spec-
troscopic astronomical investigations. In the last decade, for instance, radial velocity
measuring technique has reached unprecedented precision 1 m/s [Cochran, 1996;
Lovis et al., 2005; Valenti et al., 1995]. In the future, much better precision can be
hoped for, on instruments designed for the “extremely large telescopes" [Pasquini
et al., 2006] when measurement of the post-Newtonian relativistic effects in optical
binary and/or multiple star systems will be possible [Kopeikin and Ozernoy, 1999;
Zucker and Alexander, 2007].

Let a source of light move with respect to the coordinate system xα = (t, xi) with
velocity v0 = v0(t0) = dx0(t0)/dt0, which is a function of the time of emission t0, and
emit electromagnetic wave (photon) with frequency ν0 = 1/(δT0), where δT0 is the
period of the wave expressed in the proper timeT0 of the source of light. One denotes
by ν = 1/(δT ) the observed frequency of the electromagnetic wave measured at the
point of observation by an observer moving with velocity v = v(t) = dx/dt with
respect to the coordinate system xα = (t, xi). One stipulates that the time periods
δT0 and δT are so small (high-frequency approximation) that one can treat them as
infinitesimal differentials. Therefore, the observed gravitational shift of frequency
1 + z = ν/ν0 can be defined through the consecutive differentiation of the proper
time of the source of light, T0, with respect to the proper time of the observer, T ,
[Brumberg, 1972; Synge, 1964]. In other words,

1 + z =
dT0

dT
=

dT0

dt0

dt0
dt

dt
dT

, (7.123)

where the derivative dt0/dt is calculated by making use of the time delay equation
(7.72), the derivative

dT0

dt0
=

[
1 − β2

0(t0) − h00(t0, x0) − 2h0i(t0, x0) βi
0(t0) − hi j(t0, x0) βi

0(t0) β j
0(t0)

]1/2
,

(7.124)
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is taken at the point of emission of light, and the derivative

dt
dT

=
[
1 − β2(t) − h00(t, x) − 2h0i(t, x) βi(t) − hi j(t, x) βi(t) β j(t)

]−1/2
, (7.125)

is calculated at the point of observation, v = v/c and v0 = v0/c.
Synge calls relationship (7.123) the Doppler effect in terms of frequency [Synge,

1964, page 122]. It is fully consistent with a definition of the Doppler shift in terms
of energy [Synge, 1964, page 231], when one compares the energy of photon at the
point of emission against that at the point of observation of light. The Doppler shift
in terms of energy is given by equation

1 + z =
ν

ν0
=

uαKα

uα0K0 α
, (7.126)

where uα0 , uα are four-velocities of the source of light and observer, and K0 α, Kα

are four-momenta of the photon at the points of emission and observation respec-
tively. It is quite easy to see that equation (7.126) is equivalent to its counterpart
(7.123). Indeed, taking into account that uα = dxα/dT and Kα = ∂ϕ/∂xα, where
ϕ is the phase of the electromagnetic wave [Misner et al., 1973, equation (22.26a)],
one obtains uαKα = dϕ/dT . Thus,

1 + z =
dϕ
dϕ0

dT0

dT
. (7.127)

However, the phase ϕ of electromagnetic wave remains constant along the corre-
sponding light ray trajectory [Misner et al., 1973, Box 22.3] because of the null
character of electromagnetic field. Indeed,

dϕ
dλ

=
∂ϕ

∂xα
dxα

dλ
= KαK

α = 0 , (7.128)

where λ is the affine parameter along the light ray. For this reason, dϕ/dϕ0 = 1, and
equation (7.127) coincides with equation (7.123).

The time derivative dt0/dt along the light-ray trajectory is calculated from equation
(7.72) where one has to take into account that the function Ba(s, s0) depends on times
t0 and t not only through the retarded times s0 = s0(t0, x0(t0)) and s = s(t, x(t))
standing in the upper and lower limits of the integral (7.74) but also through the time
of the closest approach, t∗, and the unit vector k that must be considered as time-
dependent parameters. Indeed, parameters t∗ and k are defined by equations (7.34)
and (7.67) which demonstrate clearly that they depend on time in case of moving
source of light and/or observer. Hence, the derivative along the light ray must be
written down as follows

dt0
dt

=

1 + K · β − 2G
c3

N∑
a=1

ma

[
∂s
∂t

∂

∂s
+
∂s0

∂t
∂

∂s0
+
∂t∗

∂t
∂

∂t∗
+
∂ki

∂t
∂

∂ki

]
Ba(s, s0, t∗, k)

1 + K · β0 + 2G
c3

N∑
a=1

ma

[
∂s
∂t0

∂

∂s
+
∂s0

∂t0

∂

∂s0
+
∂t∗

∂t0

∂

∂t∗
+
∂ki

∂t0

∂

∂ki

]
Ba(s, s0, t∗, k)

,
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(7.129)

where the unit vector K is defined in (7.66) and one shows the explicit dependence
of function Ba on all parameters which implicitly depend on time. Notice that taking
times τ and τ0 as primary quantities instead of t and t0 brings in the retarded times
s and s0 dependence on the time of the closest approach t∗. Thus, one has to chose
these functions either as s = s(t, t0), s0 = s0(t0) or s = s(τ, τ0, t∗), s0 = s0(τ0, t∗). The
latter choice introduces partial derivatives of s and s0 with respect to t∗ and modifies
formula (7.129). One prefers to operate with functions s = s(t, t0), s0 = s0(t0) and
equation (7.129) because the time of the closest approach t∗ is an auxiliary quantity
that does not enter any final result. Hence, it is more preferable to avoid dealing with
it in the intermediate calculations any time as it is possible.

Partial time derivatives of vector k are calculated by using the approximation
k = −K and formula (7.66), where the coordinates of the source of light, x0(t0),
and of the observer, x(t), are functions of the corresponding time. Straightforward
differentiation yields

1
c
∂ki

∂t
=

(k × (β × k))i

R
,

1
c
∂ki

∂t0
= −

(k × (β0 × k))i

R
, (7.130)

where R = |x − x0| is the coordinate distance between the observer and the source of
light.

Partial derivative of the retarded times s with respect to t and that of s0 with re-
spect to t0 are calculated from the gravity null-cone equations (7.13) and (7.75) re-
spectively, where one has to take into account that the spatial position of the point
of observation is not taken arbitrary but always connected to the point of emission
of light by the unperturbed trajectory of light, x(t) = x0(t0) + ck(t − t0). More ex-
plicitly, one has to use for the calculations of the partial derivatives the following
relationships

s = t −
1
c
|x0(t0) + ck(t, t0) (t − t0) − xa(s)| , (7.131)

s0 = t0 −
1
c
|x0(t0) − xa(s0)| , (7.132)

where the unit light vector k must be considered as a two-point function of times t,
t0 with the partial time derivatives taken from equation (7.130). Physical meaning of
relationship (7.131) is explained in Figure 7.3 demonstrating that in general relativity
gravity and light propagate on one and the same bi-characteristic hypersurface of the
null cone [Frolov, 1979]. A photon is emitted at time t0 at the point x0 and arrives to
observer located at point x at time t. Light propagates along a null characteristic of
the Maxwell equations connecting the point of emission and the point of observation.
As light propagates, the light-ray deflecting body a moves along its own worldline.
Gravitational interaction of the body with the photon is not instantaneous because
its obey the retarded Liénard-Wiechert solution of the Einstein equations. The null
characteristic of the linearized Einstein equations connect the body’s position xa(s)
taken at the retarded instant of time s = t− ra/c. In fact, equation (7.131) and Figure
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Observer at time t

Source of light at time 

World line of a

massive body 

( )
a
sx

0t

The null characteristic 

of Maxwell’s equations

The null characteristic 

of Einstein’s equations

Figure 7.3 Null-cone is a hypersurface made of characteristics of the Maxwell and Einstein
equations. Gravitational field of a moving massive body affects propagation of light on the
null-cone hypersurface so that the light that has been received by observer at time t,
experiences the pull of gravity of the massive body located at the retarded position xa(s) on the
null-cone.

7.3 say that the observed photon is affected by the gravitational field of the moving
body from its retarded position. Calculation of infinitesimal variation of equations
(7.131), (7.132) immediately gives for the partial derivatives

∂s
∂t

=
ra − k · ra

ra − βa · ra
−

(k × β) · (k × ra)
ra − βa · ra

, (7.133)

∂s
∂t0

=
1 − k · β0

ra − βa · ra
(k · ra) , (7.134)

∂s0

∂t0
=

r0a − β0 · r0a

r0a − βa0 · r0a
, (7.135)

∂s0

∂t
= 0 . (7.136)

Partial time derivatives of the parameter t∗ are calculated from its original defini-
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tion, t∗ = t0 − c−1 k · x0(t0), and are given by

∂t∗

∂t0
= 1 − k · β0 +

β0 · ξ

R
,

∂t∗

∂t
= −

β · ξ

R
, (7.137)

where ξ is vector of the impact parameter of the light ray, and terms of the order of
ξ/R in both formulas originate from the time derivatives of vector k

Partial derivatives of the function Ba(s, s0, t∗, k) defined by the integral (7.74) read
as follows

1
c
∂Ba

∂s
=

1√
1 − β2

a

(1 − k · βa)2

ra − k · ra
, (7.138)

1
c
∂Ba

∂s0
= −

1√
1 − v2

a0

(1 − k · βa0)2

r0a − k · r0a
, (7.139)

1
c
∂Ba

∂t∗
= Ca(s0) −Ca(s) , (7.140)

∂Ba

∂ki = Di
a(s0) − Di

a(s) + 2
[
Ei

a(s0) − Ei
a(s)

]
, (7.141)

where the partial derivative ∂Ba/∂t∗ is expressed in terms of relationships (7.116),
(7.119), while calculation of the partial derivative ∂Ba/∂ki yields the results in terms
of functions (7.117), (7.118) and (7.120), (7.121) respectively. One notices that the
integral functions Ca, Da, Ea defined by equations (7.119)-(7.121) may be not cal-
culable analytically in general case of arbitrary worldlines of the massive bodies.
However, if accelerations of gravitating bodies are small enough, velocity of each
body can be considered as constant, thus, making derivatives (7.140), (7.141) ap-
proximated by simpler expressions

1
c
∂Ba

∂t∗
= −

1√
1 − β2

a

1 − k · βa

ra − k · ra
+

1√
1 − β2

a0

1 − k · βa0

r0a − k · r0a
, (7.142)

∂Ba

∂ki = −
1 − k · βa√

1 − β2
a

x j
a(s)

ra − k · ra
+

1 − k · βa0√
1 − β2

a0

x j
a(s0)

r0a − k · r0a
(7.143)

+
2β j

a√
1 − β2

a

ln(ra − k · ra) −
2β j

a0√
1 − β2

a0

ln(r0a − k · r0a) .

Residual terms to these equations can be always calculated from the integrals in
(7.119)-(7.121) whenever it is necessary. They are unimportant for interpretation of
current astrometric measurements.
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Careful inspection of previous equations given in this section, reveals that

1 + K · β −
2G
c3

N∑
a=1

ma

[
∂t∗

∂t
∂Ba

∂t∗
+
∂ki

∂t
∂Ba

∂ki

]
= 1 − k · β , (7.144)

1 + K · β0 +
2G
c3

N∑
a=1

ma

[
∂t∗

∂t0

∂Ba

∂t∗
+
∂ki

∂t0

∂Ba

∂ki

]
= (1 − k · β0) (7.145)

×

1 +
2G
c3

N∑
a=1

ma [Ca(s0) −Ca(s)]

 ,

where one has used equation (7.140) and equations (7.67)-(7.69) connecting the unit
vectors K and k. Hence, equation (7.129) can be recast in

dt0
dt

= (7.146)

1 − k · β −
2G
c3

N∑
a=1

ma
∂s
∂t
∂Ba

∂s

(1 − k · β0)

1 +
2G
c3

N∑
a=1

ma [Ca(s0) −Ca(s)]

 +
2G
c3

N∑
a=1

ma

[
∂s
∂t0

∂Ba

∂s
+
∂s0

∂t0

∂Ba

∂s0

] ,
where the partial derivatives of the function Ba are calculated from equations (7.138),
(7.139).
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7.6
Applications to Relativistic Astrophysics and Astrometry

7.6.1
Gravitational time delay in binary pulsars

7.6.1.1 Pulsars - Rotating Radio Beacons
Radio astronomical measurements of pulsars allow the study of a variety of questions
in fundamental physics. A pulsar is a neutron star which emits a beam of electro-
magnetic radiation towards observer on the Earth. The radiation is not continuous
but arrives in the form of pulses due to a misalignment of the neutron star’s rotation
axis and its magnetic axis. In other words, pulsars pulse because the radiation gen-
erated within the magnetic field sweeps in and out of the line of sight of the observer
with a regular period of the pulsar’s revolution around its own axis. The observed
periods of pulsars range from 1.4 milliseconds to 8.5 seconds [Lorimer and Kramer,
2004].

Binary pulsar consists of a pulsar and its companion star both being in orbit around
their mutual center of gravity (barycenter). The pulsar’s companion can be either an
ordinary star of a main sequence, or a white dwarf, or a neutron star, or even a black
hole. When companion of the pulsar is a neutron star which is also observed as a
pulsar, the binary system is called a double pulsar [Kramer and Wex, 2009].

Timing of binary pulsars is one of the most important methods of testing gen-
eral relativity in the strong gravitational field regime [Damour, 1984; Damour and
Esposito-Farèse, 1992, 1998a; Damour and Schäfer, 1991; Damour and Taylor,
1992; Kramer et al., 2006; Lorimer and Kramer, 2004; Stairs, 2005; van Straten
et al., 2001; Zaglauer, 1992]. Relativistic effects in binary pulsars are parameterized
by a set of the post-Keplerian (PK) parameters introduced by Damour and Deru-
elle [1986]. Some of the parameters characterize the orbital motion of the stars
(see section 6.4.3.2 of this book for more detail) and the others propagation of ra-
dio signals through the gravitational field of the pulsar and its companion. The ba-
sic PK parameters quantify different relativistic effects and can be analyzed using a
theory-independent procedure in which masses of the two stars are the only dynamic
unknowns [Damour and Taylor, 1992; Edwards et al., 2006; Hobbs et al., 2006].
Each of the basic PK parameters depends on the masses of two orbiting stars in a
different functional way. Consequently, if three or more PK parameters can be mea-
sured, the number of equations connecting the masses with observations becomes
overdetermined that can be used to test the consistency of the gravitational theory.
Besides masses, other PK parameters depend on the angles characterizing orientation
of pulsar’s rotational axis and their measurement can tell us how strong the pulsar’s
spin couples with the orbital momentum of the binary system (geodetic precession)
[Kramer, 1998; Stairs et al., 2004; Weisberg and Taylor, 2002].

Especially important for this test are the binary pulsars with relativistic orbits being
visible nearly edge-on. In such systems pulsar astronomers can determine masses of
orbiting stars by measuring two propagation-related PK parameters - the range and
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shape of the gravitational time delay in propagation of radio pulses from pulsar to
observer - independently of other relativistic effects. Perhaps, the most famous ex-
amples of the nearly edge-on binary pulsars are PSR B1855+09 and PSR B1534+12
[Lorimer and Kramer, 2004]. The sine of inclination angle, i, of the orbit of PSR
B1855+09 to the line of sight makes up a value of about 0.9992 and the range PK
parameter reaches 1.27 µs (microseconds) [Kaspi et al., 1994]. The corresponding
quantities for PSR B1534+12 are sin i = 0.982 and 6.7 µs [Stairs et al., 1998]. Few
years ago a double pulsar PSR J0737-3039 which is a member of a highly relativis-
tic double-neutron-star binary with an orbital period of 2.4 hours, was discovered
[Burgay et al., 2003; Possenti et al., 2004]. For this system, the shape PK parameter
sin i = 0.99974 and the range is 6.21 µs are giving an unprecedented opportunity to
test the gravitational time delay in the strong gravity-field regime [Kramer and Wex,
2009].

All binary pulsars emit gravitational waves which take the orbital energy and angu-
lar momentum of the binary pulsar away from the system. The process of generation
and emission of the gravitational waves leads to the appearance in equations of mo-
tion of the binary system the gravitational radiation-reaction force that causes a sec-
ular decrease in the binary’s orbital period [Damour, 1983; Grishchuk and Kopeikin,
1986; Schäfer, 1985]. This general-relativistic prediction was confirmed in binary
pulsar PSR B1913+16 with the precision of about 0.3% by Taylor and collaborators
[Taylor, 1994]. The orbital period decay of the double pulsar PSR J0737-3039 agrees
with general relativity at the level of 1.4% [Kramer et al., 2006] but can be further
improved down to 0.01 % uncertainty level [Deller et al., 2009]. New achievements
in technological development, building and continuous upgrading the largest radio
telescopes extend the potential of experimentalists to measure with a higher pre-
cision relativistic effects associated with propagation of a radio pulse from pulsar
through the time-dependent gravitational field of binary pulsars towards observer on
the Earth. The temporal variability of the gravitational field during propagation of a
pulsar’s pulse produces additional effects in pulsar timing observations which reveal
themselves in the form of small corrections to the static Shapiro time delay mak-
ing its interpretation a more challenging problem. This is not a goal of the present
book to discuss all details of the binary pulsar timing observations. The discus-
sion will be focused on relativistic effects in propagation of radio pulses and present
the exact Lorentz covariant theory of the gravitational time delay in binary pulsars
which includes, besides of the well known static Shapiro delay, all relativistic cor-
rections for the velocities of pulsar and its companion. The general formula will be
restricted to terms which are linear with respect to the velocities. The reason is that
the terms being quadratic with respect to velocities are proportional to gravitational
energy of the system due to the virial theorem. Hence, the proper treatment of the
quadratic with respect to velocity terms can be achieved only within the second post-
Minkowskian approximation, which is much more complicated and is not considered
in the present book. Gravitational time delay in propagation of radio pulses from the
pulsar to observer has been computed by Blandford & Teukolsky [Blandford and
Teukolsky, 1976] and reproduced later in many other works under assumption that
gravitational field of the binary pulsar is static and weak everywhere. This assump-
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Figure 7.4 Propagation of radio pulse from a binary pulsar to observer. The pulsar emits radio
signal at time t0 which reaches observer at time t. Gravitational time delay in propagation of the
pulse depends on the retarded positions of the pulsar and its companion taken at the retarded
instants of time s0 = t0 − r0a/c and s = t − ra/c corresponding to times t0 and t.

tion significantly simplifies calculations but does not take into account higher-order
effects caused by time-dependent part of the gravitational field of the binary system.
Indeed, as the electromagnetic pulse moves toward observer the time-dependent part
of the gravitational field of the binary system (gravitational wave) propagates to the
observer as well. As gravity and light wave move with the same fundamental speed
c in general relativity, this could potentially lead to a secular accumulation of the
impact of the gravitational wave on the radio pulse leading to subsequent amplifi-
cation of the amplitude (range) of the gravitational time delay and to the change in
its detected profile (shape). Some improvement in calculation of the gravitational
time delay was achieved in papers by Klioner [1991a]; Wex [1995] where the prop-
agation of a radio wave through gravitational field of a uniformly moving masses
was considered. Integration of the pulse’s propagation equation in the field of the
Liénard-Wiechert gravitational potentials allows us to remove any restrictions on the
worldlines of the pulsar and its companion. This retarded-time approach to solving
the problem of calculation of gravitational time delay in binary pulsars was proposed
by Kopeikin and Schäfer [1999] and is discussed in the rest of this section.

7.6.1.2 The approximation scheme
Figure 7.4 illustrates geometry of a pulsar’s radio pulse propagation and the mutual
positions of the binary pulsar and observer. Let us stipulate that the origin of the
coordinate system is at the barycenter of the binary pulsar. Radio pulses are emitted
rather close to the surface of the pulsar and the coordinates of the point of emission,
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x0, can be approximated by equation

x0 = xp(t0) + X(t0) , (7.147)

where xp are the barycentric coordinates of the pulsar’s center-of -mass, and X is
the barycentric radius-vector of the point of emission both taken at the moment of
emission of the radio pulse, t0. At the moment of emission the spatial orientation
of the pulsar’s radio beam is almost the same with respect to observer at the Earth
otherwise the pulse will not reach the observer. Hence, one is allowed to assume
with a good approximation that vector X is constant at every instant of time when an
emission of a radio pulse takes place. More precisely, the coordinates of the point
of emission are constant in the pulsar proper reference frame, which construction
is similar to the geocentric frame in the solar system (see section 4.5 of this book).
Relativistic post-Newtonian transformation from the proper reference frame of the
pulsar to the binary pulsar barycentric coordinate system is also similar to the trans-
formation between the geocentric and barycentric coordinates of the solar system
given in section 5.1 of the present book. The transformation reveals that if the pulsar
moves along elliptic orbit the barycentric vector X actually depends on time because
of the relativistic contractions induced by the orbital velocity and gravitational field
of the companion. However, this periodic relativistic perturbation of the vector is of
the order of (|X|/c)(v2

p/c
2) where vp is a characteristic velocity of the pulsar with re-

spect to the barycenter of the binary system. For a typical distance |X| ' 50÷100 km
and the orbital velocity vp/c ' 10−3 [Lorimer and Kramer, 2004] this is too small for
being measurable. Another reason for temporal variations of the barycentric vector
X arises due to the effects of aberration of the pulsar’s beam [Smarr and Blandford,
1976], the orbital pulsar parallax [Kopeikin, 1995], and the gravitational bending
delay [Doroshenko and Kopeikin, 1995]. These effects can be directly measured but
they are small and can be neglected in calculation of the gravitational time delay.

In what follows, the calculation of the gravitational time delay is performed in the
approximation which is linear with respect to velocities of the pulsar and its com-
panion. Hence, formula (7.81) plays a key role where one has to evaluate the integral
depending on the acceleration of the massive bodies. However, before performing
the integral in this formula it is instructive to derive a relationship between the re-
tarded times s and s0 given by expressions (7.13) and (7.75) respectively. Subtracting
equation (7.75) from (7.13) and taking into account relationship (7.72), one obtains

s − s0 =
1
c

(R − ra + r0a) + ∆(t, t0) , (7.148)

where R = |R|, R = x−x0, ra = |x−xa(s)|, and r0a = |x0−xa(s0)|, x is the coordinates
of observer, and the index a numerates the pulsar and its companion9). Notice that the
point of observation, x, is separated from the binary system by a very large distance
typically equal to several hundred parsec [Lorimer and Kramer, 2004], and it can be
approximated as |x| ' R. On the other hand, the size of the binary system can not
exceed the distance denoted as r0a. Thus, the Taylor expansion of ra with respect to

9) It may be worth to remind again that the retarded time s is calculated for each body separately.
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the small parameter r0a/R is admissible. The first two terms of the expansion are

ra = |R + x0 − xa(s)| = R − K · [x0 − xa(s)] , (7.149)

where the unit vector K = −R/R as defined in (7.66), and the residual terms are
negligibly small. Using the approximation K = −k + O(G), where O(G) indicates
the gravitational perturbation from equation (7.67), formula (7.148) is reduced to the
form

s − s0 =
1
c
{(r0a − k · r0a) + k · [xa(s) − xa(s0)]} + O(G) , (7.150)

which explicitly shows that the difference between the retarded times s and s0 is
of the order of time interval being required for both gravity and light to cross the
binary system (light-crossing time). It is this interval which is characteristic in the
problem of propagation of radio pulses from the binary system to observer on the
Earth. Therefore, the retarded time s taken along the light ray trajectory changes
only a little (few seconds) during the entire process of propagation of light from
pulsar to observer while the coordinate time t changes enormously (hundred of light
years). This remarkable fact is important for understanding how the time-dependent
gravity field of the binary system affects propagation of electromagnetic signals from
distant astronomical systems to observer on the Earth.

In addition to the expression (7.150) , one can show that time differences, s0 − t0,
and, s − t0, are also of the same order of magnitude as s − s0. Indeed, assuming that
the velocities of pulsar and its companion are small compared to the fundamental
speed c, one gets from (7.75) and (7.150) for these intervals

s0 − t0 = −
1
c
|x0 − xa(s0)| = −

1
c

(
ρ0a − ρ0a · βa

)
+ O

(
β2

a

)
+ O(G) , (7.151)

s − t0 = −
1
c

(k · ρ0a)(1 − k · βa) + O
(
β2

a

)
+ O(G) , (7.152)

where ρ0a = x0 − xa(t0), ρ0a = |ρ0a|, and βa ≡ va(t0)/c. The relationships (7.151),
(7.152) prove that the time intervals under discussion are really small and compara-
ble with the time taken by light to cross the binary system (few seconds or less). It
means that the coordinates and their time derivatives of the pulsar and its companion
can be expanded in the integrands of all integrals taken over the null cone in a rapidly
converging Taylor series around the time of emission, t0, of a radio signal in powers
of s − t0 and/or s0 − t0. Figure 7.2 explains the relationships between positions of
photon on the light-ray trajectory and the retarded positions of pulsar (index p) and
its companion (index c).

In what follows, the efforts are focused on the derivation of the linear with respect
to velocity of moving bodies, corrections to the static-field Shapiro delay. Calcu-
lations are done by using expression (7.81) for the time delay which is already ex-
plicitly contains some terms being proportional to the ratio va/c. Equation (7.81)
also contains time-dependent integral from the orbital acceleration, β̇a = v̇a/c, of
the bodies. This is not a table integral even in the simplest case of a circular orbit.
Therefore, one should use an approximation method. The integral is taken from the



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 552

552

retarder time s0 to the retarded time s and, according to equations (7.148), (7.152)
the time difference s − s0 is about the same as s − t0, and is about the time taken by
light to cross the binary system that is much smaller than the orbital period Pb. For
this reason, one is allowed to expand the coordinates and acceleration of the massive
body in the Taylor series

xa(ζ) = xa(t0) + va(t0)(ζ − t0) + ... (7.153)

β̇(ζ) = β̇(t0) + β̈(t0)(ζ − t0) + ... , (7.154)

where the ellipsis denote terms of higher order. In fact, the second term in the right
side of equations (7.153), (7.154) is smaller than the first one by a factor of βa = va/c,
which is neglected. Hence, in order to perform the integration in equation (7.81) it
is sufficient to take into account only the first terms in expansions (7.153), (7.154).
Then, the integral under consideration is approximated as follows∫ s

s0

ln(ra − k · ra)(k · v̇a) dζ = k · v̇a(t0)
∫ s

s0

ln
[
t∗ + k · xa(t0) − ζ

]
dζ , (7.155)

and is reduced to the table form. Accounting for (7.150)-(7.152), the result of inte-
gration yields∫ s

s0

ln
[
t∗ + k · xa(t0) − ζ

]
dζ =

1
c

(r0a − k · r0a) [ln(r0a − k · r0a) − 1] (7.156)

−
1
c

(ra − k · ra) ln (ra − k · ra) + O(βa) ,

where ra and r0a have the same meaning as in equation (7.148). The result (7.156)
is multiplied by the radial acceleration of the gravitating body according to equation
(7.155). Simple numerical estimate of the integral (7.155) tells us that it can reach
in a binary system the maximal magnitude of the order of (Gma/c3)(x/Pb)βa ln(1 −
sin i), where x is the projected semi-major axis of the binary system expressed in
light seconds, Pb is its orbital period, and i is the angle of inclination of the orbital
plane of the binary system to the line of sight. For a typical edge-on binary pulsar
like PSR B1534+12 the terms under discussion are about 10−4 ÷ 10−5 µs which is
too small to be measured. For this reason, all terms depending on the acceleration of
the pulsar and its companion will be omitted from the following considerations.

Let us expand coordinates of the a-th body taken at the retarded time s in Taylor
series in the neighborhood of time s0

xa(s) = xa(s0) + va(s0)(s − s0) + O[(s − s0)2] (7.157)

Accounting for equation (7.150) and approximating r0a = ρ0a in all velocity-
dependent terms, allows us to recast previous equation to

xa(s) = xa(s0) + βa (ρ0a − k · ρ0a) + O(β2
a) . (7.158)

Making use of this expansion, one can prove that a very large distance, ra, between
the binary system and observer, relates to the small one, r0a, by important relation-
ship

r2
a− (k · ra)2 = r2

0a− (k · r0a)2
−2(ρ0a− k ·ρ0a)

[
βa · ρ0a − (k · ρ0a)(k · βa)

]
+O(β2

a) .
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(7.159)

Moreover,

r0a + k · r0a = ρ0a + k · ρ0a + βa · ρ0a + (k · βa)ρ0a + O(β2
a) . (7.160)

As a consequence of simple algebra, one obtains

ra − k · ra

r0a − k · r0a
=

r2
a − (k · ra)2

r2
0a − (k · r0a)2

r0a + k · r0a

ra + k · ra
, (7.161)

and after making use of equations (7.159), (7.160) it yields the following result

ra − k · ra

r0a − k · r0a
=

1 + k · βa

ra + k · ra

[
ρ0a + k · ρ0a − βa · ρ0a + (k · ρ0a)(k · βa)

]
+ O

(
β2

a

)
.

(7.162)

It is straightforward to prove that

ra + k · ra = 2 (R + k · r0a) + O
 r2

0a

R

 , (7.163)

where R = |R| is the distance from the point of emission to the point of observation.
This distance is expanded as follows

R = R + xE + w − xp − X , (7.164)

where R is the distance between the barycenter of the binary pulsar and that of the
solar system, xE is the distance from the barycenter of the solar system to the center
of mass of the Earth (geocenter), w is the geocentric position of the radio telescope,
xp are coordinates of the center of mass of the pulsar with respect to the barycenter of
the binary system, and X are coordinates of the point of emission of the radio pulse
with respect to the pulsar proper reference frame. The distance R is very large and
gradually changing because of the proper (tangential) motion of the binary system
in the sky or its radial motion with respect to the solar system. Proper motion of
any star is small and can be neglected in calculation of the gravitational time delay
of light. Hence, the distance R can be taken as a constant in the gravitational time
delay. All other distances in formula (7.164) are of order of either diurnal, or annual,
or pulsar’s orbital parallax [Kopeikin, 1995] with respect to the very large distance
R. Such a relationship between the distances is more than sufficient to approximate

ln(ra + k · ra) = ln(2R) + O
( r0a

R

)
∝ const. , (7.165)

where R = |R|. Constant terms and polynomials of time are not directly observable
in pulsar timing because they are absorbed in the parameters of the rotational phase
of the pulsar [Lorimer and Kramer, 2004]. For this reason, the term ln(ra + k · ra)
will be omitted from the final expression for the gravitational time delay in the binary
pulsar.
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Accounting for all approximations having been developed in this section, equation
(7.81) is simplified and reduced to the form

∆(t, t0) = −
2G
c3

2∑
a=1

ma

{
(1 − k · βa) ln

[
ρ0a + k · ρ0a − βa · ρ0a + (k · ρ0a)(k · βa)

]
+ k · βa

}

+O
(
Gma

c3

v2
a

c2

)
+ O

(
Gma

c3

va

c
x

Pb

)
+ O

(Gma

c3

x
R

)
. (7.166)

This post-Newtonian formula was derived by Kopeikin and Schäfer [1999] and it
completes the analytic derivation of the velocity-dependent corrections to the static
Shapiro time delay in binary systems. One has included to this equation estimates
of the residual terms, which help to vizualize the relativistic effects omitted from
consideration.

7.6.1.3
Post-Newtonian versus post-Minkowski calculations of time delay in binary systems

Until recently the post-Newtonian approximations were a basic tool used by re-
searchers in order to calculate relativistic effects in the light time delay, the light
deflection angle, electromagnetic frequency change, etc. It works very well in case
of static gravitational field because in this case gravity interacts with photon instan-
taneously. However, if the gravitational field is not static one has to take into account
that gravity propagates with finite speed and its interaction with photon takes place
on the hypersurface of the null cone. It looks like the problem gets enormously com-
plicated from the mathematical point of view. This motivated development of other
approximated techniques. In particular, in order to take into account gravitomag-
netic effects of moving bodies on light propagation, the bodies were assumed to be
moving along straight lines with constant velocities [Klioner, 1991a, 2003b; Klioner
and Kopeikin, 1992; Wex, 1995; Wex and Kopeikin, 1999]. It is obvious that this
assumption is valid for binary systems only for a short interval of time and can not
be used for calculation of propagation of radio pulses from pulsar to observer if one
wants to account for more subtle relativistic effects like the effects caused by gravita-
tional waves emitted by the binary system. The Lorentz-invariant post-Minkowskian
approach, adopted in this book, is superior with respect to the post-Newtonian ap-
proximations as it takes into account all possible effects of time-dependent gravi-
tational field on the light propagation. It also helps to understand the limits of the
post-Newtonian calculations of the light propagation made by previous authors and
to recognize that it gives correct results if only the linear velocity-dependent terms
in formula (7.166) for the gravitational time delay in binary systems is taken into
account .

Let us recall that the post-Newtonian theory operates with the instantaneous val-
ues of the gravitational potentials (the metric tensor) calculated in the near zone of
the gravitating system, that is in the region of space around the binary system with
a characteristic size being equal to a length of gravitational waves emitted by the
system. Coordinates xa(t) of gravitating bodies are arguments of the metric ten-
sor depending in the post-Newtonian scheme on the current value of the coordinate
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time t. Thus, the metric tensor taken on the light-ray trajectory is a function of time
gαβ[x, xa(t)], where x ≡ x(t) is coordinate of the photon. If the body’s coordinates
are expanded around the time of emission, t0, of a radio pulse one gets for the com-
ponents of the metric tensor a Taylor expansion, which reads as follows

gαβ[x, xa(t)] = gαβ(x, xa) +
∂gαβ(x, xa)

∂xi
a

vi
a(t − t0) +

∂2gαβ(x, xa)

∂xi
a∂x j

a

vi
av j

a(t − t0)2 + ... ,

(7.167)

where xa0 ≡ xa(t0), va ≡ va(t0), and the ellipsis denotes cubic and higher-order
terms with respect to time difference t − t0. In the post-Newtonian scheme, this
Taylor expansion is used in the equations of light propagation to find the photon’s
trajectory. It is easy to observe that the expansion is divergent if the time interval
t − t0 exceeds the orbital period Pb of the binary system. This is the reason why the
assumption of the uniform and rectilinear motion of the bodies in the binary system
does not work if the time of integration of the equations of light propagation is longer
than the orbital period. In particular, it explains why the post-Newtonian scheme can
not be used alone for calculation of the effect of gravitational waves on propagation
of light rays.

On the other hand, the post-Minkowski scheme gives components of the metric
tensor in terms of the Liénard-Wiechert potentials that are functions of the retarded
time s = s(t, x) given in (7.13). On the light-ray trajectory the metric tensor is
now a function gαβ[x(t), xa(s)]. One has shown that in terms of the retarded time
argument the characteristic time for the interaction of gravity with a radio pulse
while it moves from the pulsar to observer corresponds to the interval of time being
required for light to cross the system. During this time the gravitational potentials
can not change their numerical values too much because of the slow motion of the
gravitating bodies. Hence, if coordinates of the bodies are expanded around t0 one
gets for the metric tensor expressed in terms of the Liénard-Wiechert potentials the
following Taylor expansion

gαβ[x, xa(s)] = gαβ(x, xa) +
∂gαβ(x, xa)

∂xi
a

vi
a(s− t0) +

∂2gαβ(x, xa)

∂xi
a∂x j

a

vi
av j

a(s− t0)2 + ... ,

(7.168)

where x ≡ x(t), xa ≡ xa(t0), va ≡ va(t0), and the ellipsis denotes cubic and higher-
order terms with respect to time difference s − t0. This type of the Taylor expansion
always converges because the time difference s − t0 is much smaller than the orbital
period of the binary system (see equation (7.152)).

It can be easily seen that the first terms in the Taylor expansions (7.167) and
(7.168) coincide exactly. Furthermore, the retarded time s is a linear function of
time t if quadratic with respect to velocity terms, are omitted from the retarded time
equation (7.16), which implies that solutions of the equations of light propagation
depending only on the first and second terms in the Taylor expansions (7.167) and
(7.168) should be formally identical independently on what kind of approximation
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scheme is used for finding the metric tensor. Differences in the solution of the light-
ray equation will arise only if one employs the terms which are quadratic with respect
to velocities in the Taylor expansions (7.167) and (7.168).

Thus, the post-Newtonian approximation works fairly well for finding the part of
the solution of the equations of light geodesics, which depends linearly on veloci-
ties of the bodies. However, it can not be used for calculation of perturbations of
the light-ray trajectory caused by the accelerations of massive bodies. The post-
Newtonian scheme can be applied without restriction only if the length of the light
ray trajectory is small compared with the size of the gravitating system. This situa-
tion is realized in the observations of the solar system objects which will be analyzed
later in more detail. One also notices that calculations of the light-ray propagation
based on the post-Newtonian approximations are more cumbersome than those based
on the post-Minkowskian approximation scheme which properly accounts for all re-
tardation effects in the light propagation caused by motion of bodies by means of the
Liénard-Wiechert potentials [Kopeikin and Fomalont, 2006].

7.6.1.4 Time Delay in the Parameterized Post-Keplerian Formalism
The parameterized post-Keplerian (PPK) formalism was introduced by Damour and
Deruelle [1985, 1986] and further improved by Damour and Taylor [1992]. PPK
formalism utilizes the orbital solution for a binary system in the form of the Damour-
Deruelle parametrization that has been discussed in section 6.4.3.2 of this book. A
standard timing model in PPK formalism consists of the five Keplerian parameters
(Pb,T0, e0, ω0, x0), and 8 post-Keplerian parameters (k, γ, Ṗb, r, s; δθ, ė, ẋ). There is
a set of supplementary parameters caused by aberration of light, bending of light,
Lorentz transformation between various reference frames, geodetic precession of
pulsar’s spin, and others [Damour and Taylor, 1992; Doroshenko and Kopeikin,
1995; Edwards et al., 2006; Kopeikin, 1994; Kramer and Wex, 2009]. For any par-
ticular theory of gravitation, the values of a post-Keplerian parameter are a function
of the measured Keplerian parameters and the two masses in the system (m1,m2).
Thus, measuring any of the post-Keplerian parameters defines an allowed line in the
m1 − m2 plane. First and second post-Keplerian parameters, k and γ 10), provides a
measurement of m1 and m2. Each further parameter tests the theory of gravity by
requiring that all the lines in the m1 − m2 plane meet at a point, allowing up to 6
different tests from the 8 PPK parameters. Currently, the original binary pulsar (PSR
B1913+16) has yielded good measurements of three PK parameters (k, γ, Ṗb). This
yields one test of relativistic gravity, and shows that general relativistic prediction of
the orbital period decay due to emission of gravitational waves is correct. Two more
strong-field tests of gravity have come from the more recently discovered pulsar PSR
B1534+12. Measurements of k, γ, r and s have yielded two more confirmations of
general relativity. These results have ruled out large classes of other gravitational
theories which, without these binary pulsar systems, would be extremely difficult

10) Historically, this parameter has been denoted by the same letter as the parameter of the parameterized
post-Newtonian formalism measuring the deflection of light [Will, 1993]. It may be a little confusing
so that the reader should stay on alert to avoid the confusion.
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to test. Other, more impressive tests of general relativity are expected from timing
of the double pulsar PSR J0737-3039 which admits four independent confirmations
[Kramer and Wex, 2009].

Measurement of the "range" and "shape" PPK parameters r and s is particularly
important for testing general relativity in the binary pulsars being visible nearly edge-
wise [Doroshenko and Kopeikin, 1995; van Straten et al., 2001]. Taking into account
the particular nature of the double pulsar PSR J0737-3039, which orbital plane co-
incides with observer’s line of sight, it looks reasonable to analyze the influence of
the orbital motion of pulsar and its companion on the r and s PPK parameters. Such
analysis will be provided in this section by making use of expression (7.166). A
binary pulsar consists of two bodies - the pulsar (subindex "p") and its companion
(subindex "c"). The emission of a radio pulse takes place very near to the surface
of the pulsar and, according to equation (7.147) and the related discussion, one can
approximate X = Xk, where X is the distance from the center of mass of the pul-
sar to the pulse-emitting point. In this approximation one gets ρ0p = Xk, and, as a
consequence,

ln
[
ρ0p + k · ρ0p − βp · ρ0p + (k · ρ0p)(k · βp)

]
= ln(2X) . (7.169)

The distance X is practically constant. Possible slow drift of the emission point in
vertical or horizontal directions can be absorbed by fitting to the pulsar’s rotational
phase. Hence, one can not observe this effect. Accounting for equation (7.169),
formula (7.166) for the gravitational time delay can be displayed in the form

∆(t, t0) = −
2Gmc

c3

{
(1 − k · βc) ln

[
ρ0c + k · ρ0c − βc · ρ0c + (k · ρ0c)(k · βc)

]
+ k · βc

}
−

2Gmp

c3

[
(1 − k · βp) ln(2X) + k · βp

]
, (7.170)

where one has omitted the residual terms because they are negligibly small. Kopeikin
[1994] have proved that any constant term multiplied by the dot product k ·βp and/or
k · βc is absorbed into the epoch of the first pulsar’s passage through the periastron.
Thus, the conclusion is that all terms relating to the pulsar along with the very last
term in the curl brackets in formula (7.170) are not directly observable. For this rea-
son, they are omitted in the following text since the logarithmic contribution caused
by the pulsar’s companion is dominant. According to formula (7.147) one has

ρ0c = r + Xk , ρ0c = r +
X
r

k · r + ... , (7.171)

where r = xp(t0) − xc(t0) is a vector of relative position of the pulsar with respect to
its companion, r = |r|, and ellipsis denote residual terms of higher order. Taking into
account these equations and omitting the unobservable terms allows us to reduce the
gravitational time delay to the form

∆(t, t0) = −
2Gmc

c3 (1 − k · βc) ln
[(

(1 +
X
r

)
(r + k · r) − βc · r + (k · r)(k · βc)

]
.(7.172)

The ratio X/r ' 10−3 ÷ 10−4 is usually small for most of binary pulsars and can be
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neglected. Then, the time delay (7.172) can be decomposed into three terms

∆(t, t0) = −
2Gmc

c3 ln (r + k · r) +
2Gmc

c3 (k · βc) ln (r + k · r) (7.173)

+
2Gmc

c3

βc · r − (k · r)(k · βc)
r + k · r

.

The first term on the right hand side of equation (7.173) is the standard expression
for the Shapiro time delay in binary pulsars [Damour and Deruelle, 1986]. The
second and the third terms on the right hand side of equation (7.173) were discovered
by Wex [1995] under the assumption of uniform and rectilinear motion of pulsar
and its companion in the expression for the post-Newtonian metric tensor of the
binary system. One understands now that this assumption was equivalent to taking
into account primary terms of retardation effects in propagation of gravitational field
from pulsar’s companion to the radio pulse [Kopeikin, 2003a]. This approximation
works fairly well only for terms being linear with respect to velocities of the stars.
Currently, this approximation is fully sufficient for experimental purposes.

In what follows only the case of the elliptic motion of the pulsar with respect to its
companion is of importance. We apply it to elaborate on equation (7.172) where, in
the case of the nearly edgewise orbits, the magnitude of r + k · r term can be pretty
small near the event of the superior conjunction of the pulsar and its companion,
thus, leading to significant amplification of the gravitational delay of pulsar’s signal.
The size and the shape of an elliptic orbit of the pulsar with respect to its companion
are characterized by the semi-major axis aR and the eccentricity e (0 ≤ e < 1). The
orientation in space of the plane of the pulsar’s orbit is defined with respect to the
plane of the sky by the inclination angle i and the longitude of the ascending node Ω.
For orientation of the pulsar’s position in the orbital plane one uses the argument of
the pericenter ω. More precisely, the orientation of the orbit is defined by three unit
vectors (l,m, n) having coordinates defined in equations (1.109)–(1.111) as follows

l = (cos Ω, sin Ω, 0) ,

m = (− cos i sin Ω, cos i cos Ω, sin i) , (7.174)

n = (sin i sin Ω,− sin i cos Ω, cos i) .

In this coordinate system one has the unit vector k defining direction of the propaga-
tion of light to be equal to k = −K = (0, 0,−1). One also neglects the proper motion
of the pulsar in the sky which brings about the small secular change in coordinates
of the vector k but the effect is negligible in practical observations. The error of the
approximation is about (Gmc/c3)(µTspan)/(1− sin i), where µ is the proper motion of
the pulsar and Tspan is the total time span of observation. This error is much smaller
than 100 nanoseconds - the current precision of pulsar timing.

The coordinates of the pulsar in the orbital plane are given by the radius-vector
r and the angle of the true anomaly f . In terms of r and f one has, according to
equation (1.143)

r = r (P cos f + Q sin f ) , (7.175)
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where the unit vectors P, Q are defined by

P = l cosω + m sinω , Q = −l sinω + mcosω . (7.176)

The coordinate velocity of the pulsar’s companion is given by

βc = −
mp

M
ṙ
c
, (7.177)

ṙ =

(
GM

p

)1/2 [
−P sin f + Q(cos f + e)

]
, (7.178)

where M = mp + mc; p = aR(1 − e2)1/2 is the focal parameter of the elliptic orbit,
and mp and mc are the masses of the pulsar and its companion. Accounting for
relationships

r = aR(1−e cos u) , r cos f = aR(cos u−e) , r sin f = aR(1−e2)1/2 sin u ,

(7.179)

where u is the eccentric anomaly relating to the time of emission, t0 ≡ T , and the
moment of the first passage of the pulsar through the periastron, T0, by the Kepler
transcendental equation

u − e sin u = nb(T − T0) , (7.180)

one obtains

k · r = −aR sin i
[
(cos u − e) sinω + (1 − e2)1/2 cosω sin u

]
, (7.181)

r · βc = −c−1ac aR nb e sin u , (7.182)

k · βc = c−1ac nb (1 − e2)−1/2 sin i
[
e cosω +

(cos u − e) cosω − (1 − e2)1/2 sinω sin u
1 − e cos u

]
.

(7.183)

Here ac = aRmp/M, and nb = (GM/a3
R)1/2 is the orbital frequency related to the

orbital period Pb by the equation nb = 2π/Pb.
Ignoring all constant factors, the set of equations given in this section allows us to

casts the gravitational time delay (7.172) in the form [Kopeikin, 2003a]

∆(t, t0) = −2r ln
{
1 − e cos(u + ε) − s

[
sinω(cos u − e) +

√
1 − e2 cosω sin u

]}
,

(7.184)

where e is the orbital eccentricity of the binary system, ω is the argument of the
periastron, and u is the eccentric anomaly relating to the time of emission, t0 = T , and
the instant of the first passage of the pulsar through the periastron, T0, by the Kepler
transcendental equation (7.180). The other parameters entering equation (7.184) are

ε =
2π

sin i
x

Pb

mp

mc
, (7.185)

r =
Gmc

c3

[
1 −

ε sin i
√

1 − e2
F(u)

]
, (7.186)

s = sin i
[
1 +

ε sin i
√

1 − e2
F(u)

]
, (7.187)
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where mp and mc are masses of the pulsar and its companion respectively, x =

a sin i/c is the orbital semimajor axis of pulsar’s orbit projected on the line of sight
and measured in seconds, and function

F(u) = e cosω +
(cos u − e) cosω −

√
1 − e2 sinω sin u

1 − e cos u
. (7.188)

In the case of a nearly circular orbit, when e ' 0, equation (7.184) is simplified

∆(t, t0) = −
2Gmc

c3 (1 − ε sin i cos φ) ln
(
1 − sin i sin φ −

1
2
ε sin2 i sin 2φ

)
, (7.189)

where φ = u+ω is the orbital phase. One notices that the argument of the logarithmic
function is modulated by the term having a double orbital frequency.

The magnitude of the velocity-dependent terms in the argument of the logarithm
in equation (7.184) is of the order 10−3 ÷ 10−4 as compared with the main term.
In equations (7.185)-(7.187) parameter ε is the new (constant) relativistic parameter
and r and s are the range and shape parameters of the gravitational time delay. It
is worth noting that both of these parameters are no longer constant but depend
of the orbital phase. This distorts the amplitude and shape of the logarithmic curve
especially near the time of the superior conjunction of pulsar with its companion - the
effect which may be measurable in future timing observations when better precision
and time resolution will be achieved [Hobbs et al., 2009]. Measurement of this
distortion allows to make a judgment about the strength of gravitomagnetic orbital
effects in general theory of relativity [Kopeikin and Fomalont, 2007]. It is worth
emphasizing that the magnitude of the new timing effects described in this section
can be large enough only in the binary systems where the mass and orbital velocity
of pulsar’s companion are reasonably large. The binary can be visible edge-on but
if pulsar’s companion is a low-mass star the detection of the gravitomagnetic effect
in the time delay is questionable. It is worth noting that existence of the, so-called,
bending time delay [Doroshenko and Kopeikin, 1995] affects the times of arrival of
radio pulsars in a similar way as predicted by formula (7.184) making observation
of the relativistic effect caused by the velocity-dependent terms in the gravitational
time delay, a more difficult problem [Kramer et al., 2006].

7.6.2
Moving gravitational lenses

Theoretical study of astrophysical phenomena caused by a moving gravitational lens
certainly deserves a special attention [Kopeikin and Schäfer, 1999]. Though the ef-
fects produced by the motion of the lens may be difficult to measure, they can give
us additional valuable information on the lensing parameters [Bonvin, 2008; Frittelli,
2003a,b; Sereno, 2008]. In particular, a lensing object moving across the line of sight
should cause a red-shift difference between the multiple images of a background ob-
ject like a quasar lensed by a galaxy, and a brightness anisotropy in the microwave
background radiation [Birkinshaw, 1989]. Moreover, velocity-dependent terms en-
tering equation of gravitational lens along with the proper motion of the deflector
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Figure 7.5 Relative configuration of observer, source of light and a moving gravitational lens
deflecting a light ray which is emitted at the moment t0 at the point x0, and is received at the
moment t at the point x, where the observer is located. The lens moves along a straight line
with constant velocity starting from the retarded position xa(s0) through that xa(s) and riches
the point xa(t) at the moment of observation. The process occupies the time of propagation of
the photon from the point of its emission up to the point of its observation.

can distort the shape and the amplitude of magnification curve observed in the mi-
crolensing event. Slowly moving gravitational lenses are conventional astrophysical
objects [Schneider et al., 1992] but the effects caused by their motion are small and
have not yet been detected. However, a hypothetical cosmic string, for example,
moves with the speed of light and may produce a noticeable observable effect if it
has sufficiently large mass per unit length. It is hopeful that gradually increasing pre-
cision of spectral and photometric astronomical observations will make it possible
to measure all these and other possible effects in a foreseeable future [Zakharov and
Sazhin, 1998].

7.6.2.1 Gravitational Lens Equation
This section derives the equation of a moving gravitational lens for the case of con-
stant velocity va of the a-th light-ray-deflecting mass but without any other restric-
tions on its magnitude besides va < c. This assumption simplifies calculations of all
required integrals allowing to bring them to a manageable form. Geometry of the
lens is shown in Figure 7.5.

In what follows, it is convenient to introduce two vectors ςa = x(s) − xa(s) and
ς0a = x(2t0 − s0)− xa(s0). One will also suppose that the length of vector ςa is small
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compared to any of the distances: R = |x− x0|, ra = |x− xa(s)|, or r0a = |x0 − xa(s0)|.
It is not difficult to prove by straightforward calculations with taking into account
the gravity null-cone equations (7.13), (7.75), that

ςa = ra − kra , ς0a = r0a + kr0a , (7.190)

where, as in the other parts of the present book, one has ra = x− xa(s) and r0a = x0−

xa(s0), and the unit vector k is directed along the unperturbed path of propagation of
the light ray. From these equalities it follows that approximately

k · ςa = −
d2

a

2ra
, k · ς0a =

d2
0a

2r0a
, (7.191)

and

r0a − k · r0a = 2r0a −
d2

0a

2r0a
, (7.192)

where distances da = |ςa| and d0a = |ς0a| are the Euclidean lengths of the corre-
sponding vectors, which are small due to the initial assumption. One can see that
making use of the relationships (7.190) yields

ra − βa · ra = ra(1 − k · βa) − ςa · βa = ra(1 − k · βa) + O (βada) , (7.193)

where βa ≡ va/c, and the residual terms can be neglected because of their smallness
compared to the leading one.

It is worth noting that vector ςa is approximately equal to the impact parameter of
the light ray trajectory measured with respect to the position of the deflector taken
at the retarded time s = t − ra/c. Indeed, let us introduce vectors ξi = Pi

jx j and
ξi

a = Pi
jx

j
a(s) which are lying in the plane that is orthogonal to the unperturbed

trajectory of the light ray, that is ξ · k = 0. Then, from definitions (7.190), (7.191)
one immediately derives an exact relationship

ξ − ξa = ςa + k
d2

a

2ra
, (7.194)

from which it follows that

ςa = ξ − ξa − k
d2

a

2ra
. (7.195)

Similar relationships can be derived for ς0a in the same way. It is worthwhile to note
that

Pi
jr

j
a = Pi

jς
j
a = ξi − ξi

a , (7.196)

and

ra − k · ra =
d2

a

2ra
=
|ξ − ξa|

2

2ra
+

d4
a

8r3
a

+ ... . (7.197)



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 563

563

Let us denote the total angle of light deflection caused by the a-th body as (com-
pare with the exact equation (7.113))

αi
a(τ) =

4Gma

c2

1 − k · βa√
1 − β2

a

ξi − ξi
a

|ξ − ξa|
2 . (7.198)

Thus, from the formulas (7.119)-(7.121) one obtains 11) for vectors αi, ii, κi intro-
duced earlier in equations (7.113), (7.68) and (7.122)

αi(τ) =

N∑
a=1

αi
a(τ) + O

(
Gma

c2ra
βa

)
+ O

(
Gma

c2ra

da

ra

)
, (7.199)

ii(τ) = −
1
R

N∑
a=1

raα
i
a(τ) −

2G
c2R

N∑
a=1

maβ
i
aT√

1 − β2
a

ln
(
|ξ − ξa|

2

2ra

)
(7.200)

+ O
(
Gma

c2ra
βa

)
+ O

(
Gma

c2ra

da

ra

)
,

ii(τ0) = −
2G
c2R

N∑
a=1

maβ
i
aT√

1 − v2
a

ln (2r0a) + O
(
Gma

c2ra
βa

)
+ O

(
Gma

c2ra

da

ra

)
, (7.201)

κi(τ) = O
(
Gma

c2ra
β2

a

)
, (7.202)

where by definition βi
aT ≡ vi

aT /c and the transverse velocity vi
aT = Pi

jv
j
a is a projec-

tion of the velocity of the a-th body onto the plane being orthogonal to the unper-
turbed light trajectory.

Let us assume that the lens consists of a gravitationally bounded system of N bod-
ies with mass ma of each body. In the most simple case one considers only one body.
The direction of the perturbed light trajectory at the point of observation is deter-
mined by the unit vector s according to equation (7.109). One usee that definition to
draw a straight line originating from the point of observation and directed along the
vector s up to the point of its intersection with the lens plane as shown in Figure 7.6.
The line is parameterized by a running parameter λ and its equation is given by

xi(λ) = xi(t) + csi(λ − t) , (7.203)

where t is the the moment of observation, and xi(t) are the spatial coordinates of the
point of observation. Geometrically, the coordinates of the point xi(λ) at the instant
of time λ∗ when the line (7.203) intersects the lens plane are determined by as a sum
of three vectors

xi(λ∗) = Xi(λ∗) + ηi − ξi
L , (7.204)

where ηi = Pi
j xi(λ∗) is the perturbed value of the impact parameter ξi caused by

the influence of the combined gravitational fields of the (micro) lenses ma, Xi(λ∗) =

11) Notice that the integrals in equations (7.119)-(7.121) are identically zero because of the assumption
that the velocities of the gravitating bodies are constant.
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Figure 7.6 The gravitational lens geometry for a moving lens with the overall mass
M =

∑N
a=1 ma being at the distance r from the point of observation O having coordinates xi(t).

A source of light S with coordinates x0(t0) is at the distance R from the point O. Vector ξ is the
impact parameter of the unperturbed path of photon in the observer plane with respect to the
origin of coordinates. Vector ξL denotes position of the center of mass of the lensing objects in
the lens plane. Vector η = BE is the observed position of the image of a background source of
light S shifted in the lens plane from its true position by the gravitational field of the lens to the
point E. Coordinates of the center of mass of the lens are Xi(λ∗) =M−1 ∑N

a=1 ma xi
a(λ∗), and

coordinates of the point E are xi(λ∗) = xi(t) + si(λ∗ − t).
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M−1 ∑N
a=1 maxi

a(λ∗) are coordinates of the center of mass of the lens at the moment
λ∗. When the line (7.203) intersects the lens plane the numerical value of λ up to
corrections of order O(d/r) is equal to that of the retarded time s defined by equation
like (7.13) in which ra is replaced by r - the distance from observer to the lens. It
means that at the lens plane λ∗ − t ' −r/c. Taking the value of the parameter λ = λ∗,
and applying the operator of projection Pi j to the equation (7.203), one obtains

ηi = ξi −
[
αi(τ) + ii(τ) − ii(τ0) + κi(τ)

]
r . (7.205)

Finally, making use of the relationships (7.199)-(7.201) and expanding distances ra,
r0a around the values r, r0 respectively (see Figure 7.6 for explanation of the meaning
of these distances), the equation of gravitational lens in vectorial notations reads as
follows

η = ξ −
r r0

R
α(ξ) +

r
R
κ(ξ) , (7.206)

where

α(ξ) =
4G
c2

N∑
a=1

ma
1 − k · βa√

1 − β2
a

ξi − ξi
a

|ξ − ξa|
2 , (7.207)

κ(ξ) =
2G
c2

N∑
a=1

maβ
i
aT√

1 − β2
a

ln
(
|ξ − ξa|

2

2ra r0a

)
. (7.208)

It is not difficult to realize that the third term on the right hand side of the equation
(7.206) is (da/r0)βa times smaller than the second one. For this reason, one is allowed
to neglect it and to represent the equation of gravitational lensing in its conventional
form [Schneider et al., 1992; Zakharov and Sazhin, 1998],

η = ξ −
rr0

R
α(ξ) , (7.209)

where the angle α(ξ) is given by (7.207). It is worthwhile emphasizing that the
assumption of constant velocities of particles va makes equation (7.209) valid un-
der condition that the accelerations of the bodies have negligible contribution to the
gravitational lens equation.

It is useful to compare the expression for the angle of deflection αi given in equa-
tion (7.207) with that derived by Kopeikin et al. [1999]. In that paper one has consid-
ered different aspects of astrometric and timing effects of gravitational waves from
localized sources. The gravitational field of the source was described in terms of
static monopole, spin dipole, and time-dependent quadrupole moments. Time delay
and the angle of light deflection αi in case of gravitational lensing were obtained in
the following form [Kopeikin et al., 1999]

t − t0 =
1
c
|x − x0| −

4
c
ψ +

2GM
c3 ln(4rr0/d2) , αi = 4 ∂̂iψ , (7.210)

where d is a constant impact parameter, the partial (‘projective’) derivative reads ∂̂i ≡

P j
i∂/∂ξ

j, and r and r0 are constant distances from the lens to observer and the source
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of light respectively. The quantity ψ is the, so-called, gravitational lens potential
[Schneider et al., 1992; Zakharov and Sazhin, 1998] having the form [Kopeikin et al.,
1999]

ψ =
G
c2

[
M +

1
c
ε jpqkpSq∂̂ j +

1
2
Ipq(t∗) ∂̂pq

]
ln |ξ| , (7.211)

and ε jpq is the fully antisymmetric Levi-Civita symbol. The expression (7.211) in-
cludes the explicit dependence on the static mass M, spin Si, and time-dependent
quadrupole moment Ii j of the deflector taken at the moment t∗ of the closest ap-
proach of the light ray to the origin of the coordinate system which was chosen at
the center of mass of the deflector so that the dipole moment Ii of the system equals
to zero identically. Equation (7.210) generalizes our result obtained independently
in [Kopeikin, 1997c] to the case of the gravitational lens potential which is a func-
tion of time. In case of an isolated astronomical system of N bodies, the multipole
moments are defined in the Newtonian approximation as follows

M =

N∑
a=1

ma , Ii =

N∑
a=1

maxi
a , Si =

N∑
a=1

ma(xa×va)i , Ii j =

N∑
a=1

ma

(
xi

ax j
a −

1
3

x2
a δ

i j
)
,

(7.212)

where the symbol ‘×’ denotes the usual Euclidean cross product between twovectors
and, what is more important, coordinates and velocities of all bodies are taken at one
and the same instant of time. The rest of this section stipulates that velocity of the
light-ray-deflecting bodies are small and the origin of the coordinate frame is chosen
at the barycenter of the gravitational lens. It means that

Ii(t) =

N∑
a=1

maxi
a(t) = 0 , and İi(t) =

N∑
a=1

mavi
a(t) = 0 . (7.213)

Now it is worthwhile to note that coordinates of gravitating bodies in equation
(7.207) are taken at different instants of the retarded time defined for each body a
by the equation (7.13). In the case of gravitational lensing all the retarded times are
close to the instant of the closest approach t∗ and one is allowed to use the Taylor
expansion of the quantity

N∑
a=1

maxi
a(s) =

N∑
a=1

maxi
a(t∗) +

N∑
a=1

mavi
a(t∗)(s − t∗) + O(s − t∗)2 . (7.214)

Remembering that the retarded time s is defined by equation (7.13) and the moment
of the closest approach is given by the relationship

t∗ = t −
1
c

k · x = t −
1
c

k · ra −
1
c

k · xa(s) , (7.215)

one obtains after accounting for equation (7.197),

c (s − t∗) = k · xa(s) −
d2

a

2ra
' k · xa(t∗) + O

(
d2

a

ra

)
+ O (βaxa) . (7.216)
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Finally, one concludes that

N∑
a=1

maxi
a(s) =

N∑
a=1

maβ
i
a(t∗)[k · xa(t∗)] + ... , (7.217)

where ellipses denote terms of higher order of magnitude, and where the equation
(7.213) has been used.

Let us assume that the impact parameter ξi is always larger than the distance ξi
a.

Then, making use of the Taylor expansion of the right hand side of equation (7.207)
with respect to ξi

a and βa = va/c one can prove that the deflection angle αi is repre-
sented in the form

αi = 4∂̂iΨ , (7.218)

where the potential Ψ is given as follows

Ψ =
G
c2

{ N∑
a=1

ma − k ·
N∑

a=1

maβa(s) −
N∑

a=1

max j
a(s)∂̂ j + (7.219)

k ·
N∑

a=1

maβa(s) x j
a(s) ∂̂ j +

1
2

N∑
a=1

maxp
a (s) xq

a(s) ∂̂pq

}
ln |ξ| + ... ,

and ellipsis denote residual terms of the higher order of magnitude. Expanding all
terms depending on the retarded time s in this formula with respect to the time t∗,
noting that the second ‘projective’ derivative ∂̂pq is traceless, and taking into account
the relationship (7.217), the center-of-mass conditions (7.213), the definitions of
multipole moments (7.212), and the vector equality

x j
a(k · va) − v j

a(k · xa) = (k × (xa × va)) j , (7.220)

one finds out that the gravitational lens potential is given by Ψ = ψ. Hence, under
adopted assumptions the gravitational lens formalism based on the null-cone tech-
nique, gives the same result for the angle of deflection of light as it is shown in
formulas (7.210), (7.211).

Notice that if one had supposed that the dipole moment of the lens Ii is not equal
to zero, then the expression for the gravitational lens potential ψ would assume the
form

ψ =
G
c2

[
M−

1
c

k · İ (t∗) − Ii(t∗) ∂̂i +
1
c

(k × S)i ∂̂i +
1
2
Ii j(t∗) ∂̂i j

]
ln |ξ| , (7.221)

where the impact parameter ξ is the distance from the origin of the coordinate sys-
tem to the point of the closest approach of the light ray to the lens. The scrutiny
examination of the multipole structure of the shape of the curves of constant value of
the potential ψ in cosmological gravitational lenses [Bartelmann, 1998; Kaiser and
Squires, 1993] may reveal the presence of dark matter in the lens and identify the po-
sition of its center of mass, velocity and density distribution which can be compared
with the analogous characteristics of luminous matter in the lens. In case of the trans-
parent gravitational lens the overall expression for the gravitational lens potential ψ
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given in terms of the expansion with respect to the transverse-traceless (TT) internal
and external multipole moments is given in the work [Kopeikin, 1997c]. Discussion
of observational effects produced by the spin of the lens is given in other articles
[Ciufolini et al., 2003; Dymnikova, 1986; Kopeikin and Mashhoon, 2002].

7.6.2.2 Gravitational Shift of Frequency by Moving Bodies
One stipulates that velocity va of each body comprising the lens is almost constant so
that one can neglect the bodies’ accelerations. One also assumes that the coordinate
velocity of the source of light is v0 = dx0/dt0, and that of observer is v = dx/dt.
Calculation of the gravitational shift of frequency by an ensemble of moving bodies
is performed by making use of a general equation (7.123). Let us further assume
that both the source of light and observer are located very far away from the moving
masses so that one can neglect the impact of the gravitational field on their motion.
Under these circumstances, derivative of the proper time of the source of light, T0,
with respect to the coordinate time t0 at the point of emission of light is

dT0

dt0
=

√
1 − β2

0 , (7.222)

where β0 = v0/c. Derivative of the proper time of the observer, T , with respect to
the coordinate time t at the point of observation

dt
dT

=
1√

1 − β2
, (7.223)

where β = v/c. Accounting for equation (7.136) in equation (7.129) one obtains that
a derivative of the time of emission with respect to the time of observation

dt0
dt

=

1 + K · β − 2G
c2

N∑
a=1

ma

[
∂s
∂t

∂

∂s
+
∂t∗

∂t
∂

∂t∗
+
∂ki

∂t
∂

∂ki

]
Ba(s, s0, t∗, k)

1 + K · β0 + 2G
c2

N∑
a=1

ma

[
∂s
∂t0

∂

∂s
+
∂s0

∂t0

∂

∂s0
+
∂t∗

∂t0

∂

∂t∗
+
∂ki

∂t0

∂

∂ki

]
Ba(s, s0, t∗, k)

.

(7.224)

After taking the partial derivatives with the help of relationships (7.133)-(7.143),
using expansions (7.192), (7.193), (7.197), neglecting small terms of the order of
da/ra, Gma/c2ra, Gma/c2r0a, and reducing similar terms, one gets

1+z =

1 − β2
0

1 − β2

1/2 1 + (K + i − i0) · β + 4G
c2

N∑
a=1

ma
1 − k · βa√

1 − β2
a

(k × β) · (k × ra)
|ξ − ξa|

2

1 + (K + i − i0) · β0 + 4G
c2

N∑
a=1

ma
1 − k · β0√

1 − β2
a

(k × βa) · (k × ra)
|ξ − ξa|

2

,

(7.225)

where the relativistic corrections i = i(τ, ξ), i0 = i(τ0, ξ) are given by means
of expressions (7.68), (7.69), (7.115) - (7.118). Making use of relationship (7.67)
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between the unit vectors K and k, the previous formula can be displayed as follows

1 + z =

1 − β2
0

1 − β2

1/2 1 + k · β +
4G
c2

N∑
a=1

ma
1 − k · βa√

1 − β2
a

(k × β) · (k × ra)
|ξ − ξa|

2

1 + k · β0 +
4G
c2

N∑
a=1

ma
1 − k · β0√

1 − β2
a

(k × βa) · (k × ra)
|ξ − ξa|

2

. (7.226)

This formula corresponds to the case when both the source of light and observer
are located at so large distance from the ensemble of the moving bodies that the
difference between directions of vectors K and k is negligible.

Formula (7.226) for the gravitational shift of frequency is gauge invariant with
respect to small coordinate transformations in the first post-Minkowskian approxi-
mation which leave the coordinates harmonic and asymptotically Minkowski. More-
over, formula (7.226) is invariant with respect to the Lorentz transformations and can
be applied for arbitrary large velocities of observer, source of light, and that of a mov-
ing body. In case of the slow motion of the source of light, observer, and the body
equation (7.226) can be further simplified by expanding it with respect to the powers
of small quantities v0/c, v/c, and va/c. Neglecting terms of the order of v4/c4, v4

0/c
4,

(Gma/c2da)(v2/c2), etc., yields for the frequency shift

δν

ν0
= k · (β0 − β)

1 + k · β0 + (k · β0)2 −
β2

0

2
+
β2

2

 − β2
0

2
+
β2

2
(7.227)

+ 4
N∑

a=1

Gma

c2

[
k × (β − βa)

]
· (k × ra)

|ξ − ξa|
2 ,

where δν = ν−ν0. The terms in the right side of this formula that depend only on the
velocities of the source of light and observer are the part of the special relativistic
Doppler shift of frequency caused by motion of the observer and the source of light.
The last term in the right side of equation (7.227) describes gravitational shift of
frequency caused by the relative motion of the body a with respect to observer. One
emphasizes that in the linear with respect to va/c approximation, gravitational shift
of frequency depends only on the transverse component of the relative motion of
the massive body and observer. Dependence of the gravitational shift of frequency
on the longitudinal motion of the body (its radial velocity) appears if and only if
one takes into account quadratic and higher order powers in va/c. Equation (7.227)
shows that the gravitational shift of frequency appears only if there is a relative
transverse velocity of the massive body with respect to observer which makes the
impact parameter of the light ray with respect to the body, ξ−ξa, dependent on time.

Let us drop for a while the special relativistic terms out of equation (7.227) and dis-
cuss the case of an ensemble of moving massive bodies comprising a non-stationary
gravitational lens. One will assume that the projective distance ξa of each body from
the center of mass of the lens is small compared with the impact parameter ξ of the
light ray. By expanding the last term in the expression (7.227) with respect to the
powers of the small quantity, ξ/ξa, the gravitational shift of frequency can be written



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 570

570

down in the following form(
δν

ν0

)
gr

=
4
c
∂ψ

∂s
+ β · α(ξ) , (7.228)

where the deflection angle α = 4∂̂iψ is displayed in (7.210), and

ψ =
G
c2

N∑
a=1

ma ln |ξ − ξa| , (7.229)

with ξa = ξa(s) and s = t − ra/c being the retarded time (7.13). It is straightforward
to prove that function ψ is exactly the gravitational lens potential given previously in
equation (7.221), and that the retarded time s = t∗ in a very good approximation. It
is also useful to notice that formula (7.228) can be derived as a direct consequence
of equation (7.210) for the time delay of light in gravitational lensing [Kopeikin and
Schäfer, 1999].

Simple relationship (7.228) can be compared with the result of previous calcu-
lations performed by Birkinshaw and Gull [1983] (see especially their equation 9).
One has checked that the derivation of the corresponding formula for the gravita-
tional shift of frequency given by these authors on the ground of a pure phenomeno-
logical approach and cited later on in paper [Birkinshaw, 1989], is consistent, at
least, in the first order approximation with respect to the velocity of gravitational
lens. Gurvits and Mitrofanov [1986] had derived similar formula but it is printed
with a typo in the overall numerical factor.

Formula (7.228) shows that a photon passing the front side of the lens with respect
to the direction of motion of the lens will see a weaker gravitational potential on its
way into the lens than on the way out, and, hence, receives a net red shift. Similarly
a photon on the other side will receive a net blue shift [Lewis and Challinor, 2006].
The moving lens, therefore, induces a dipole-like temperature anisotropy in the pho-
tons crossing the lens path. For a 1015 M� mass cluster moving transverse to the line
of sight at the speed 600 km/s the amplitude of the signal is 5 × 10−7, corresponding
to a temperature signal of 1 µK. Equation (7.228) also points out to a remarkable
fact that the annual motion of observer with respect to the solar system barycenter
should produce periodic changes in the observed spectra of images of the back-
ground sources (quasars) and in the measured anisotropy of CMBR. This is because
the relative velocity v − va of observer with respect to the lens experiences annual
periodic variation due to observer’s orbital motion. This effect produces small peri-
odic variations in the temperature of the CMBR radiation in the sky in the directions
being close to cosmological gravitational lenses. It will be technically challenging
to observe these temporal variations of the temperature because of their smallness.
For the above-given example of the cluster, they may reach value of δT/T ' 10−8 -
too small to be detectable by a space mission Planck [Heinämäki, 2006; Lawrence,
2009] but it may be considered for detection in future trans-Planckian missions. Nu-
merical simulations of the CMBR anisotropy by a moving gravitational lens carried
out in the paper [Aghanim et al., 1998] on the premise of formula (7.228) under as-
sumption v = 0, confirm significance of the effect for future space experiments being
designed for detection of the small scale temperature fluctuations of the CMBR.
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Now, let us consider the case when the distance r between the lens and observer
and that r0 between the lens and the source of light are not large so that one can not
neglect the difference between the unit vectors K and k as one did in derivation of
equation (7.227). Vector K relates to k by transformation equation (7.67). Let us
substitute this transformation to the right side of equation (7.227), thus, obtaining

δν

ν0
= K · (β − β0)

1 − K · β0 + (K · β0)2 −
β2

0

2
+
β2

2

 − β2
0

2
+
β2

2
(7.230)

+4
N∑

a=1

Gma

c2

[
K × (β − βa)

]
· (K × ra)

|ξ − ξa|
2 + (i − i0) · (β − β0) .

where the gravitational deflection angle i = −r/R α, and the angle i(τ0) is negligi-
bly small, as follows from equations (7.200), (7.201)). Making use of these expres-
sions for i and i0 in equation (7.230), one obtains for the observable gravitational
shift of frequency by a non-stationary gravitational lens (special-relativistic terms
are not shown)(

δν

ν0

)
gr

=
4
c
∂ψ

∂t∗
+

r0

R
(β · α) +

r
R

(
β0 · α

)
, (7.231)

where r and r0 are distances from observer to the lens and from the lens to the source
of light respectively, R = |x− x0| ' r + r0, and the retarded time s was approximated
by the time of the light-ray closest approach t∗. It is easy to see that in the limit
r0 → +∞, r = const., the equation (7.231) goes back to equation (7.228).

The last two terms in the right side of equation (7.231) have been derived by
Bertotti & Giampieri [Bertotti and Giampieri, 1992] who used a different mathemat-
ical technique assuming that the lens is static. This assumption did not allow them to
derive the first term in the right side of equation (7.231) discovered by Birkinshaw
& Gull [Birkinshaw and Gull, 1983] who, in their own turn, neglected the important
contributions due to the motion of the source of light and observer. It is also useful
to note that equation (22) in Bertotti & Giampieri’s paper [Bertotti and Giampieri,
1992] for the Doppler shift by a gravitational lens contains a misprint of algebraic
sign in front of the term depending on the velocity of observer. The error has been
corrected in paper [Iess et al., 1999, equation 8] so that their final result coincides
precisely with the last two terms in the right side of equation (7.231).
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7.7
Relativistic Astrometry in the Solar System

7.7.1
Near-zone and far-zone astrometry

Basic theoretical principles of relativistic astrometry in the solar system were based
for a long time on the post-Newtoninan approximate solution of the Einstein field
equations in the barycentric reference frame of the solar system [Brumberg, 1972,
1991,?; Kaplan, 1998; Soffel, 1989; Will, 1993]. The metric tensor of the post-
Newtonian solution is given in section 4.3.2 of the present book and represents an
instantaneous function of coordinate time t because it is found from the Poisson-
type equations. The metric also depends on the field point, x, the coordinates, xa(t),
and velocities, va(t), of the gravitating bodies. The post-Newtonian solution of the
Einstein equations consists of an asymptotic series of terms expanded with respect to
a small parameter ε ∼ r/λgr, where λgr is a characteristic wavelength of gravitational
waves emitted by the solar system and r is a distance of the field point from the
center of mass of the solar system [Fock, 1964; Misner et al., 1973]. The wavelength
λgr ' cPb where c is the speed of gravity 12), Pb is a characteristic orbital period of
the solar system bodies that can be viewed as the period of one revolution of Jupiter
around the Sun.

The post-Newtonian series must be convergent which demands r ≤ λgr, making
the series valid only inside the near zone of the solar system bounded by radius
λgr ' 1.7 pc. Hence, the post-Newtonian solution of the Einstein equations can be
self-consistently applied for consideration of propagation of light rays only inside
the near zone of the solar system. This limitation can be completely removed for
astrometric observations having precision at the level of 1 millarcsecond (mas). In
this case the gravitational field of planets can be ignored and the Sun can be con-
sidered as static, spherically-symmetric body with a Schwarzschild metric [Misner
et al., 1973] extending up to infinity. However, current astrometric techniques have
already achieved precision in ten microarcsecond (µas) [Fomalont and Kopeikin,
2003; Hagiwara et al., 2009], and will be approaching towards 1 µas threshold in a
foreseeable future [Fomalont and Reid, 2004; Johnston et al., 2000]. For this reason,
one can not ignore non-stationarity of the gravitational field of the solar system and
should work out appropriate theoretical tools for adequate mathematical description
of propagation of light from any source of light both inside and outside of the near
zone of the solar system to an observer located somewhere inside the solar system..

Planets move slowly compared with the speed of light and gravity. Hence, if the
source of light is inside the near zone of the solar system one can find solution of
the relativistic equation of light propagation (7.46) by means of expanding posi-
tions and velocities of the solar system bodies entering the metric tensor, in a Taylor

12) The speed of gravity equals to the speed of light as postulated in general relativity. This postulate is a
matter of experimental testing by various techniques - the most notable are pulsar timing [Kramer and
Wex, 2009] and VLBI [Fomalont and Kopeikin, 2003; Kopeikin, 2004].
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series around some fixed instant of time, substituting this expansion into equation
(7.46), and integrating them with respect to time. Such approach can be dubbed as
a near-zone astrometry as it works only for description of astrometric measurements
done within the solar system like radar ranging [Pitjeva, 1993; Reasenberg et al.,
1979; Shapiro, 1964] and lunar laser ranging [Battat et al., 2007; Dickey et al., 1994;
Kopeikin et al., 2008; Nordtvedt, 1999; Williams et al., 1996] experiments as well
as for interpretation of the Doppler tracking of satellites and interplanetary space-
crafts [Anderson et al., 2004; Bertotti and Giampieri, 1992; Bertotti and Iess, 1985;
Bertotti et al., 2003, 1999; Iess et al., 1999; Krisher et al., 1993a,b]. Theoretical
problem which is characteristic for the near-zone astrometry is how to determine the
fiducial instant of time around which coordinates and velocities of the moving grav-
itating bodies should be expanded, in order to get the correct astrometric predictions
for gravitational time delay of light, its deflection angle, and the frequency shift.

The origin of this difficulty is that the post-Newtonian approximations deal with
the instantaneous gravitational potentials while light propagates along the character-
istics of the null cone. However, gravity in general relativity propagates with the
same speed as light and it must interact with light not instantaneously but with a fi-
nite speed irrespectively of the approximation scheme. The instantaneous potentials
does not allow us to make full use of the true hyperbolic character of the Einstein
field equations which necessitates making some further assumptions about the ini-
tial values of positions and velocities of the massive bodies in order to integrate the
equations of light propagation (see Figure 7.3 for more details). One of the most
reasonable choices is to fix the coordinates and velocities of the body at the mo-
ment of the closest approach of light ray to it as it was implemented in papers by
Hellings [Hellings, 1986a,b] and Will [Will, 2003]. Klioner & Kopeikin [Klioner
and Kopeikin, 1992] and Klioner [Klioner, 2003a] had argued that taking the bod-
ies at the instant of the closest approach minimizes the magnitude of the residual
terms of the post-Newtonian solution of the equations of light propagation. The
same assumption is used in the standards of the International Earth Rotation Ser-
vice (IERS) [McCarthy and Petit, 2004]. Actual progress in solution of this problem
can be achieved only with making use of the post-Minkowskian approximations as
described in previous sections. Its application is discussed in more detail later.

So far, one has been discussing the near-zone astrometry where the post-
Newtonian approximations could be used as a reasonable theoretical tool for cal-
culating relativistic perturbations in the propagation of light rays. However, many
sources of light are lying at much larger distances from the solar system far outside
of its near zone (r > λgr). Calculation of relativistic perturbations of a light ray com-
ing from such a source to the solar system is a subject of afar zone astrometry. There
are many interesting theoretical aspects of this calculation because it deals with the
perturbation of the light ray by propagating gravitational waves [Kopeikin and Ko-
robkov, 2005; Kopeikin et al., 2006]. The perturbation is rather weak, definitely less
than 1 µas, but it may be feasible for observation in some future by powerful radio
and/or optical telescopes (see, for example [Dewdney et al., 2009]). For this reason,
astronomers are making observational proposals to detect these effects already now
[Jenet et al., 2005; Kopeikin and Gwinn, 2000; Kopeikin et al., 1999; Manchester,
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2008; Pyne et al., 1996]. The post-Newtonian approach has apparent inconsisten-
cies when one tries to apply it to integration of equations of light propagation in
time-dependent gravitational field of the far zone. In this case the point of emission,
x0, of the light ray and that of observation, x, are separated by distance r which is
much larger than the characteristic wavelength of gravitational waves emitted by the
solar system. The first breakdown of the post-Newtonian approach comes from the
fact that the post-Newtonian expansion of the metric tensor diverges as the distance
r of the field point from the system increases [Anderson and Decanio, 1975; Chan-
drasekhar and Esposito, 1970; Damour and Schäfer, 1985; Ehlers et al., 1976; Ohta
et al., 1973]. This divergency has been basically ignored by previous researches who
used for the integration of the equations of light rays the truncated post-Newtonian
form of the metric tensor

g00(t, x) = −1 +
2U(t, x)

c2 + O(c−4) , (7.232)

g0i(t, x) = −
4U i(t, x)

c3 + O(c−5) , (7.233)

gi j(t, x) = δi j

[
1 +

2U(t, x)
c2

]
+ O(c−4) , (7.234)

where the instantaneous, Newtonian-like potentials are given by the expressions

U(t, x) =

N∑
a=1

ma

|x − xa(t)|
, (7.235)

U i(t, x) =

N∑
a=1

mavi
a(t)

|x − xa(t)|
, (7.236)

and all higher order terms have been omitted. From a formal point of view the
expressions (7.232)-(7.234) are not divergent when the distance r goes to infinity but
the omitted residual terms in the metric tensor diverge. The divergent residual terms
in the metric tensor affect propagation of the light ray and limit the applicability of
equations (7.232)-(7.234). The divergency means that the perturbation of the light
ray will become arbitrary large as it goes from the source of light to observer in the
solar system. This makes a certain interpretational difficulty for astronomers who are
going to measure relativistic effects of time-dependent gravitational field produced
by the planets of the solar system and/or similar gravitational systems in the sky like
a binary star

Another problem with the application of the near-zone expansion of the metric
tensor to far-zone relativistic astrometry relates to the retarded nature of the propa-
gation of the gravitational interaction as predicted by general relativity. Expressions
(7.232)-(7.234) are instantaneous functions of time and do not show this property of
the retardation at all. One can naively ignore the wave nature of gravity and con-
tinue to operate with the post-Newtonian metric (7.232)-(7.234) for integration of
equations of light rays, at least formally, because the integration will give a conver-
gent result. However, one may expect that the trajectory of light ray, obtained by
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solving the equations of propagation of light with the instantaneous potentials, will
deviate from that obtained by making use of the metric perturbations expressed as
the retarded Liénard-Wiechert potentials 7.12. The deviation can get, in principle,
comparable with the main term of the relativistic deflection of light and time de-
lay, thus, making interpretation of precise astrometric observations of the relativistic
effects insensible.

One more, purely technical problem relates to the method of performing the time
integration of the instantaneous potentials along the light ray trajectory from the time
of emission of light, t0, to the time of observation, t. It emerges because coordinates
and velocities of bodies are not linear functions of time in the most general case of
a gravitationally bounded system. Even in the case of the body being on a circular
orbit one has a problem of solving integrals of the type∫ t

t0
U(t, x)dt =

N∑
a=1

ma

∫ t

t0

dt
|x0 + k (t − t0) − Aa

[
e1 sin(ωat + ϕa) + e2 cos(ωat + ϕa)

]
|
,

(7.237)

where Aa, ωa, and ϕa are the radius, the angular frequency, and the initial phase
of the orbit of the a-th body respectively, and e1, e2 are the orthogonal unit vec-
tors lying in the orbital plane. It is easy to check that the given integral can not be
performed analytically so that one has to resort to numerical methods. In case of
elliptical motion of the bodies calculations will be even more complicated. It was
usually assumed that the main contribution to the integral (7.237) comes from that
part of the trajectory of the light ray which passes near the body deflecting the light
ray so that one is allowed to fix position and velocity of the body at some instant of
time, ta, which is close to the moment t∗ of the closest approach of the light ray to the
body. Analytic errors of such approximation were discussed by Klioner & Kopeikin
[Klioner and Kopeikin, 1992], Klioner [Klioner, 2003a] and Will [Will, 2003] for
the case of ta = t∗. They proved that such an approximation is good enough for
most practical cases. However, more precise evaluation shows [Kopeikin and Mash-
hoon, 2002; Kopeikin and Schäfer, 1999] that the time ta must be identified with the
retarded time s = t − ra/c taken by gravity to propagate from the massive body to
the observer (see section 7.9 for more detail). In any case, time series expansion of
the body’s coordinate and velocity works for calculation of the integral (7.237) only
when photon moves inside the near zone of the gravitating system. Far outside of the
system another method of solving integral (7.237) is required as shown by Klioner
and Kopeikin [1992] and further elaborated on by Will [2003].

Indeed, if one tries to perform a global integration of integral (7.237) using the
Taylor time-series expansion of the body’ coordinates, the correct logarithmic be-
havior of the integral can be reproduced only if the first two terms in the expansion
are taken into account which is physically equivalent to the case of the bodies mov-
ing uniformly along straight lines. Accounting for the third term in the expansion of
the coordinates (accelerated motion of the body) changes the logarithmic behavior
of the integral for large time intervals of integration exceeding the characteristic Ke-
plerian period of the system, thus, making prediction for the gravitational time delay
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Boundary of the near zone

Source of light in far zone

Velocity vector of the 

light!ray deflecting body

Observer 

Figure 7.7 Source of light is lying in a far zone beyond the boundary of the near zone of the
solar system. Light-ray trajectory is split in two asymptotic parts. Each part is found differently
by integrating the static Schwarzschild metric in the far zone (blue line) and the post-Newtonian
metric in the near zone (green line) under assumption that the bodies move along straight lines
with constant velocities. Real trajectory of the light ray is shown in red color. It is obtained by
integrating the post-Minkowski metric in the near and far zones without splitting the light-ray
path in two pieces.

and the total angle of deflection of light erroneous. This is one more reason why
the Taylor time-series expansion is invalid for finding numerical value of the integral
(7.237) in the case when the source of light is beyond the limit of the near zone of
the solar system.

Recognizing these difficulties one has proposed [Kopeikin, 1990] to use matching
asymptotic technique for finding the gravitationally perturbed trajectory of the light
ray going from a remote source of light like a pulsar or a quasar to the solar system.
This technique was further developed by Klioner & Kopeikin [Klioner and Kopeikin,
1992] and by Will [Will, 2003]. Graphical presentation of this technique is shown in
Figure 7.7. Technically, the whole spacetime was separated in two domains - the near
and far zones lying correspondingly inside and outside of the distance r ' λgr being
approximately equal to the characteristic length of the gravitational waves emitted
by the solar system. The internal solution of the equations of light rays (the blue line
in Figure 7.7) within the near zone have been obtained by expanding coordinates
and velocities of the bodies in the Taylor time series, and then integrating the light
geodesic equations. The external solution of the equations (the green line in Figure
7.7) has been found by decomposing the metric tensor in gravitational multipoles
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and accounting only for the first monopole term (mass) which corresponds the case
of static, spherically symmetric field of the Sun. A global solution was obtained by
matching of the internal and external solutions at the buffer region in order to reach
the required astrometric accuracy of 1 µas.

Unfortunately, the matching asymptotic technique is rather cumbersome to imple-
ment in analytic calculations. Moreover, it does not help very much for clarification
of the question concerning the fiducial instant of time used in the Taylor expan-
sion of positions and velocities of the massive bodies when integrating equations
of light propagation inside the near zone. In addition, the matching technique does
not give any recipe how to integrate equations of light propagation in the far zone if
the higher, time-dependent gravitational multipoles should be taken into account and
what magnitude of the perturbations and/or residual terms one should expect. In any
case, the global solution obtained by the matching of the two asymptotics consists of
two pieces making visualization of the light ray trajectory difficult and astrometric
implementation of the method impractical.

For these reasons, the present book does not rely upon the matching technique
but resort to the method of integration of light-ray equations based on the retarded
Liénard-Wiechert potentials as advocated in papers [Kopeikin et al., 2006; Kopeikin
and Mashhoon, 2002; Kopeikin and Schäfer, 1999]. This method allows us to con-
struct a smooth and unique global solution (red curve in Figure 7.7) of the light
propagation equations from arbitrary distant source of light to observer located in-
side the solar system. One is able to handle the integration of the equations more
easily and can estimate the magnitude of all residual terms. Proceeding in this way
one also gets a unique prediction for that moment of time at which coordinates and
positions of gravitating bodies should be fixed for correct and adequate calculation
of the light deflection angle and other astrometric effects. Three kinds of observa-
tions will be considered - pulsar timing, very long baseline interferometry (VLBI) of
quasars, and optical astrometric observations of stars. Astrometric experiments with
massive planets will be considered as well.

7.7.2
Pulsar timing

Pulsar timing is the regular monitoring of the rotation of the neutron star by tracking
the times of arrival (TOA) of the radio pulses. Pulsar timing unambiguously accounts
for every single rotation of the neutron star over long periods (from years to decades)
of time. This unambiguous and very precise tracking of rotational phase allows
pulsar astronomers to probe the interior physics of neutron stars, make extremely
accurate astrometric measurements, and test gravitational theories in the strong-field
regime in unique ways. In the proper inertial frame of a pulsar, the intrinsic rotational
period of the pulsar is nearly constant, so the time-dependent phase φ(T ) of a pulsar
can be approximated by a Taylor expansion with respect to the pulsar proper time T

φ(T ) = φ0 + f T +
1
2

ḟ T 2 + O(T 3) , (7.238)
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where φ0 is arbitrary reference phase for each pulsar, f and ḟ are the pulsar’s ro-
tational frequency and its derivative (caused by emission of the electromagnetic en-
ergy), and the residual term ∼ T 3 describes instability of the pulsar’s rotation (timing
noise) [Kopeikin, 1997b; Lorimer and Kramer, 2004] In order to measure φ(T ) many
transformations have to be applied to the observed TOAs first. The proper time T of
the pulsar should be converted to the barycentric time of the solar system, the time
of emission must be related to the time of observation by the time delay equation
(7.72), and the barycentric TOAs must be converted to the proper time of observer
τ correspondingly [Lorimer and Kramer, 2004]. It is out of the scope of this sec-
tion to describe all corrections to the timing formula - it has been already done in a
handbook on pulsar astronomy [Lorimer and Kramer, 2004] to which the reader is
referred. One will focus on the discussion of a particular gravitational effect - time
delay in the gravitational field of moving solar system bodies - the massive planets
and Sun.

Mathematical description of the time delay is based on equations (7.72)–(7.74).
Taking in the post-Minkowski equation (7.74) only the terms up to the order va/c
inclusively, one obtains

Ba(s, s0) = − ln
[

ra(s) − k · ra(s)
ra(s0) − k · ra(s0)

]
−

∫ s

s0

k · βa(ζ) dζ

t∗ + 1
c k · xa(ζ) − ζ

+ O
(
β2

a

)
, (7.239)

where the retarded times s and s0 should be calculated from equations (7.13) and
(7.75) respectively, ra(s) = x − xa(s), ra(s0) = x0 − xa(s0), and one assumes that
the observation is made at the point with the spatial barycentric coordinates x at the
instant of time t, and the pulsar’s pulse is emitted at the moment t0 from the point x0.
The distance of pulsar from the solar system is, typically, more than 100 pc. One em-
phasizes how simple is the integration of the retarded Liénard-Wiechert gravitational
potentials along the null cone instead of that of the instantaneous post-Newtonian po-
tentials, which bring about integrals like those in equation (7.237) having no simple
solution.

In principle, the first (logarithmic) term in this formula is enough to treat timing
data for any pulsar with an accuracy being sufficient for practical purposes. The
denominator in the argument of the logarithmic function is ra(s0) − k · ra(s0) ' 2R,
where R is the distance between the barycenter of the solar system and the pulsar.
The logarithm of 2R is a function which is nearly constant but can have a secular
change because of the slow relative (proper) motion of the pulsar with respect to
the solar system. All slowly-changing terms can be written down as a polynomial
of time that is absorbed to the pulsar’s rotational phase, φ, by re-definition of the
pulsar’s rotational parameters. Thus, such terms can not be observed directly. For
this reason, the denominator in the logarithmic term of equation (7.239) will be
omitted. One emphasizes that positions of the solar system bodies in the numerator
of the logarithmic term are to be taken at the moment of the retarded time which is
found by iterations of the gravity null-cone equation s = t − c−1|x − xa(s)|. It makes
calculation of the gravitational time delay in the solar system theoretically consistent
and practically more precise.
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There is a small difference between the logarithmic term in (7.239) and the cor-
responding logarithmic term in timing formulas suggested by Hellings [Hellings,
1986a,b] and Doroshenko & Kopeikin [Doroshenko and Kopeikin, 1990, 1995]
where the position of the a-th body is taken at the moment of the closest approach of
the radio pulse to the body instead of the retarded time. It is, however, not so impor-
tant in current practice of timing observations as they are not yet precise enough to
distinguish the retarded time from that of the closest approach. Indeed, the maximal
time difference is expected to be of order of (4GMa/c3)(da/ra)(va/c), where Ma and
va are mass of the body a and its barycentric velocity respectively, and da is the im-
pact parameter of the light ray from the pulsar with respect to the body. For the Sun
v� is less than 15 m/s and da ≤ R�. This difference has maximal value for the light
ray grazing the solar limb and is many orders of magnitude less than 10 nanosecond
- the current accuracy of the most precise timing observations [Edwards et al., 2006;
Hobbs et al., 2006]. Similar estimates hold for major planets of the solar system -
Jupiter and Saturn.

The integral in equation (7.239) can not be calculated analytically if the trajectory
of motion of the bodies is not simple. Similar integral were calculated in section
7.6.1.1 which was devoted to discussion of timing formula of binary pulsars. How-
ever, in case of a binary pulsar the electromagnetic pulse passes by the pulsar’s com-
panion almost immediately after it was emitted by the pulsar. It makes the difference
s − s0 between the retarded times s and s0 corresponding to the times of observa-
tion, t, and emission, t0, of the pulse, very small - of the order of the time the light
and/or gravity needs to cross the binary system as evident from equation (7.148) and
caption to Figure 7.2. More exact, light propagates from the binary system in the
same direction as the gravitational waves emitted by it, so that the gravitational field
of the binary system is almost "frozen in-time" for the outgoing photon. Conversely,
when light propagates from distant source towards the solar system, it moves op-
posite to the direction of propagation of gravitational waves emitted by the moving
bodies of the solar system. For this reason, the difference s − s0 becomes very large,
effectively almost equal to ' 2R/c - a double distance between the source of light
and the solar system. Thus, one is not allowed, as it was in the case of derivation of
timing formula for binary pulsars, to use expansion of coordinates and velocities of
the solar system bodies in a Taylor series with respect to time for calculation of the
integral. Nevertheless, the integral still can be evaluated analytically. Let us describe
the main idea of this calculation as it clarifies how variable gravitational fields affect
propagation of light on its long travel from the source of light to observer.

First of all, notice that the orbital plane of any of the solar system bodies lies very
close to ecliptic and can be approximated fairly well by a circular motion up to the
first order correction with respect to the orbital eccentricity, which is usually small.
Orbital motion of the Sun with respect to the barycenter of the solar system may be
described as a sum of harmonics corresponding to gravitational perturbations from
Jupiter, Saturn, and other large planets [Hardorp, 1985]. Thus, one assumes that xa

is given in the ecliptic plane as follows

xa(t) = a [cos(nt) e1 + sin(nt) e2] , (7.240)
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where a is the radius of the cicular orbit of the massive body, n = 2π/P is the orbital
frequency with P - the orbital period, e1 is a unit vector directed to the point of the
vernal equinox, e2 is a unit vector being orthogonal to e1 and lying in the ecliptic
plane. The unit vector k is defined in ecliptic coordinates as

k = − cos b cos l e1 − cos b sin l e2 − sin b e3 , (7.241)

where b and l are the ecliptic spherical coordinates of the pulsar. Now, one solves
equation (7.77) for y = t∗ + 1

c k · xa(ζ) − ζ, by iterations with respect to ζ. One can
do it because each body in the solar system moves slowly with respect to the speed
of light and gravity, and the difference between xa(ζ) and xa(y) is of the order of
va/c � 1. Thus, the approximate solution of equation (7.77) is ζ = t∗ − y + k · xa(y).
Making use of this variable and equation (7.240) in the integral of equation (7.239)
reduces it to the following form∫ s

s0

k · βa(ζ) dζ

t∗ +
1
c

k · xa(ζ) − ζ
=

2πa
cP

∫ y

y0

k · e1 sin(ny − nt∗) + k · e2 cos(ny − nt∗)
y

dy .

(7.242)

The integral is reduced to the integral sine and cosine special functions. Remember-
ing that for a circular orbit βa = 2πa/cP, one obtains

(7.243)∫ s

s0

k · va(ζ)dζ

t∗ +
1
c

k · xa(ζ) − ζ
= βa k · xa(t∗)

{
Si

[
2π
cP

(ra − k · ra)
]
− Si

[
2π
cP

(r0a − k · r0a)
]}

+ k · βa(t∗)
{

Ci
[

2π
cP

(ra − k · ra)
]
− Ci

[
2π
cP

(r0a − k · r0a)
]}
,

where

Si(z) =

∫ z

0

sin x
x

dx , (7.244)

Ci(z) = −

∫ ∞

z

cos x
x

dx , (7.245)

are sine and cosine integrals [Arfken and Weber, 2001].
Taking into account the asymptotic behavior of sine and cosine integrals for large

and small values of their arguments in relationship (7.243) one obtains the final for-
mula for the gravitational time delay in the solar system

∆(t) = −
2G
c3

N∑
a=1

ma
[
1 − k · βa(t∗)

]
ln [ra(s) − k · ra(s)] + O

(Gma

c3 β2
a

)
, (7.246)

where the time t∗ must be understood as the time of the closest approach of light ray
to the body a. If one takes numerical values of masses and velocities of the solar
system bodies one finds that such residual terms are much smaller than the precision
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of timing measurements. One concludes that these residual terms can not be detected
by the present day pulsar timing techniques. Nonetheless, terms, which are linear
with respect to velocities of the solar system bodies, are shown for completeness of
equation (7.246).

7.7.3
Very long baseline interferometry

Very long baseline interferometry (VLBI) measures the time difference in the arrival
of a microwave signal from a radio source received at two or more radio observa-
tories making up an array of radio telescopes. [Sovers et al., 1998]. Data received
at each antenna in the array is paired with timing information, usually from a local
atomic clock, and then stored for later analysis on magnetic tape or hard disk. At that
later time, the data are correlated with data from other antennas similarly recorded,
to produce the resulting image. The resolution achievable using interferometry is
proportional to the observing frequency and the distance between the antennas far-
thest apart in the array. VLBI is most well-known for imaging distant cosmic radio
sources, spacecraft tracking, and for various applications in astrometry [Mantovani
and Kus, 2004]. However, since the VLBI technique measures the time differences
between the arrival of radio waves at separate antennas, it can also be used to perform
the Earth rotation studies, map movements of tectonic plates within the accuracy of
a millimeter, and conduct other types of geodesy [McCarthy and Petit, 2004]. Using
VLBI in this manner requires large numbers of time difference measurements from
distant extragalactic sources (such as quasars) observed with a global network of
antennas over a period of time.

Generally, geodetic observing sessions run for 24 hours and observe a number of
different radio sources distributed across the sky. The observatories can be widely
separated; the sensitivity of the observations to variations in the orientation of the
Earth increases with the size of the VLBI network. VLBI is the only technique ca-
pable of measuring all components of the Earth’s orientation accurately and simul-
taneously. Currently, VLBI determinations of Earth-rotation variations, and of the
coordinates of terrestrial sites and celestial objects are made routinely and regularly
with estimated angular accuracies of about ±0.1 milliarcsecond or better [Schlüter
and Behrend, 2007; Schlüter and Vandenberg, 2003]. Such a high precision of ob-
servations requires an extremely accurate accounting for different physical effects
in propagation of light from radio sources to observer including relativistic gravita-
tional time delay, which is the main concern in this section.

There have been many papers dealing with relativistic effects which must be ac-
counted for in VLBI data processing software (see, e.g., [Kaplan, 1998; Klioner,
1991a; Kopeikin and Schäfer, 1999; Kopeikin et al., 1999], and references therein).
The common efforts of many researchers in this area have resulted in the creation of
a standard algorithm of VLBI data processing called a consensus model [McCarthy
and Petit, 2004; Petit and McCarthy, 2005] that emerged from a workshop on rel-
ativistic models for use in space geodesy held at USNO in 1990. The consensus
model is based on a combination of several relativistic algorithms developed by var-
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ious groups around the world. The accuracy limit chosen for the consensus VLBI
relativistic time delay model is fixed at the level 10−12 seconds (one picosecond) of
differential VLBI delay for baselines less than two Earth radii in length. As it is
stated, all terms in the model of the order of 10−13 seconds or larger were included
to ensure that the final result is accurate at the picosecond level [McCarthy and Pe-
tit, 2004]. By definition, astrometric coordinates of an extragalactic source derived
from the consensus model should have no apparent motions due to the solar sys-
tem relativistic effects at the picosecond level. Though the picosecond accuracy is
still quite satisfactory for many scientific purposes, a great improvement in observa-
tional VLBI technologies [Fomalont and Reid, 2004; Middelberg and Bach, 2008]
accompanied by invention of a powerful phase referencing technique whose goal is
a 10 microarcsecond accuracy for astrometric measurements [Fomalont, 2005; Fo-
malont and Kopeikin, 2002], make it clear that one should develop much better un-
derstanding of the relativistic effects that must be included to VLBI data processing
algorithm.

In what follows one considers propagation of radio signal through the solar grav-
itational field in the barycentric coordinates xα = (t, x). Precise definition of the
measuring procedure applied in VLBI data processing software requires, however,
derivation of relativistic relationship between the proper (atomic) time of observer
and the barycentric coordinate time, t. It is given in the IERS manual [McCarthy
and Petit, 2004] and can be added to the formalism of the present section for adapt-
ing it to practical applications. A complete description of the VLBI data processing
formalism is too complicated and goes beyond the scope of the present book.

The differential VLBI time delay is explained graphically in Figure 7.8. It is cal-
culated as the time, t2, of arrival of the front of a radio wave at station 2 minus the
time of arrival, t1, of the same front at station 1. The time of arrival at station 1 serves
as the time reference for the measurement. In what follows, unless explicitly stated
otherwise, all vectors and scalar quantities are assumed to be calculated at the time
t1 except for position of the source of light, x0, which is always calculated at the of
time of the light emission, t0. Calculation of the VLBI time delay relies upon equa-
tions (7.72), (7.73) referred to the barycentric coordinate frame of the solar system.
The equations give us

t2 − t1 =
1
c
|x2(t2) − x0| −

1
c
|x1 − x0| + ∆(t2, t0) − ∆(t1, t0) , (7.247)

where x0 are coordinates of the source of light, x2(t2) are coordinates of the station
2 at time t2, x1 are coordinates of the station 1 at time t1. The differential relativistic
time delay is given by

∆(t2, t0) − ∆(t1, t0) =
2G
c3

N∑
a=1

[Ba(s2, s0) − Ba(s1, s0)] , (7.248)

where the difference of the Ba’s up to the linear with respect to velocities of the solar
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Figure 7.8 Very long baseline interferometry measures the delay τ between times of arrival of
the front of a radio wave from a radio source (quasar) at the first and second radio antennas,
τ = τ2 − τ1, located on the Earth. This is equivalent to measuring the light travel time between
points 2 and 3. Diurnal rotation and orbital motion of the Earth makes the delay dependent on
time. This allows us to determine the baseline vector b between the two antennas, astrometric
coordinates of the quasar, position and motion of the Earth’s rotational axis (pole) including its
precession, nutations, wobble, and many others. Modern data processing of VLBI observations
is fully based on general-relativistic conceptions.
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system bodies reads (see equation (7.81))

Ba(s2, s0) − Ba(s1, s0) = ln
r1a − k1 · r1a

r2a − k2 · r2a
− ln

r0a − k1 · r0a

r0a − k2 · r0a
(7.249)

+ k2 · βa(s2) ln (r2a − k2 · r2a) − k1 · βa(s1) ln (r1a − k1 · r1a)

+

∫ s1

s0

ln
[
t∗1 + k1 · xa(ζ) − ζ

]
k1 · β̇a(ζ) dζ

−

∫ s2

s0

ln
[
t∗2 + k2 · xa(ζ) − ζ

]
k2 · β̇a(ζ) dζ .

Here, s1 and s2, are retarded times determined iteratively by solving the null-cone
equations

s1 = t1 −
1
c
|x1 − xa(s1)| , (7.250)

s2 = t2 −
1
c
|x2(t2) − xa(s2)| , (7.251)

the quantity r1a = x1 − xa(s1) is a vector from the a-th body to the station 1, r2a =

x2(t2) − xa(s2) is a vector from the a-th body to the station 2, r1a = |r1a|, r2a = |r2a|

and

t∗1 = t1 −
1
c

k1 · x1 , (7.252)

t∗2 = t2 −
1
c

k2 · x2(t2) , (7.253)

are times of the closest approach of the light rays 1 and 2 to the barycenter of the
solar system.

It will be also helpful in comparing the approach under discussion with the con-
sensus model of IERS [McCarthy and Petit, 2004] to use the moments of the closest
approach, t∗1a and t∗2a, of the light rays 1 and 2 to the a-th body. These moments are
determined from the condition of minimum of the invariant distance rR = −uαa rα be-
tween the propagating photon and the body, where uαa is a four-velocity of the body
and rα = (ra, ra) is a four-vector connecting position of the photon with the body
along the null cone of the body’s gravity field. One has x = x1 + k(t − t1) (t < t1)
for the first light ray, and x = x2 + k(t − t2) (t < t2) for the second ray. Finding the
minimum of the invariance distance rR with respect to time t yields

t∗1a = t1 − k1 · r1a , (7.254)

t∗2a = t2 − k2 · r2a , (7.255)

where one has omitted all terms of the higher order with respect to the velocity of
the body. It is worth emphasizing that the definition of times t∗1a and t∗2a is slightly
different from the definition of similar quantities given in the consensus model. It
relates to the positions of bodies in vectors r1a and r2a that are taken at the retarded
times, s1 and s2, respectively, while in the consensus model they are taken at the
times of arrival to the radio telescopes, t1 and t2. This difference yields the terms
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of the higher order, which were omitted because they go beyond the approximation
adopted in the consensus model.

The unit vectors k1 and k2 are defined as

k1 =
x1 − x0

|x1 − x0|
, k2 =

x2(t2) − x0

|x2(t2) − x0|
, (7.256)

which shows that they have slightly different orientations in space. Let us introduce
the barycentric baseline vector at the time of arrival t1 through the definition B =

x2(t1) − x1(t1). Let us emphasize that the baseline vector lies on the hypersurface of
constant time t1. The barycentric baseline vector must be converted to the geocentric
one, b. This transformation was derived in [Kopeikin, 1990] and confirmed in later
publications [Kaplan, 1998; McCarthy and Petit, 2004; Petit and McCarthy, 2005].
The difference between the barycentric and geocentric baselines in the expression for
the gravitational time delay, caused by relativistic effects, will be neglected because
it leads to terms of the higher (post-post-Newtonian) order of magnitude. Thus, one
assumes B = b in all subsequent equations. The difference between vectors k1 and
k2 can be found using an expansion with respect to the powers of a small parameter
b/R, where R is the distance between the barycenter of the solar system and the
source of light. One has

x2 − x0 = x1 − x0 + b + v2 (t2 − t1) + O
(

v2

c2 b
)
, (7.257)

|x2 − x0| = |x1 − x0| + b · k1 + v2 · k1 (t2 − t1) + O
(

v2

c2 b
)

+ O
(

b2

R

)
,

where v2 is the velocity of station 2 with respect to the barycenter of the solar system.
These expansions yield

k2 = k1 +
k1 × (b × k1)

R
+ O

(
v
c

b
R

)
+ O

(
b2

R2

)
, (7.258)

and for the time delay (7.247)

t2 − t1 =
1
c

k1 · b
[
1 + β2 · k1 + ...

]
+ ∆(t2, t0) − ∆(t1, t0) , (7.259)

where the ellipsis denote a large number of relativistic corrections which are not
considered here, but they can be found in the IERS manual [McCarthy and Petit,
2004]. As a consequence of the previous expansions the following equalities are
hold:

t∗2 − t∗1 =
(b × k1)(k1 × x2)

cR
+ O

(
b v2

c3

)
+ O

(
b2

cR

)
, (7.260)

t∗2a − t∗1a =
1
c

(k1 · b + r1a − r2a)(k1 · βa) +
(b × k1)(k1 × r2a)

cR
(7.261)

+ O
(

b v2

c3

)
+ O

(
b2

cR

)
,
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which evidently shows that, e.g. for the Jupiter (index J) and for the source of light at
infinity (R→ ∞), the time difference t∗2J − t∗1J is of the order (R⊕/c)(RJ/r1J)(vJ/c) '
7 picoseconds, that is, rather small but still may be important in the analysis of
observational errors. The time difference t∗2 − t∗1 can be considered for extra-solar
radio sources as negligibly small since it is of the order (R⊕/c) = 23 millisecond
times the annual parallax of the source of light (pulsar, quasar), which makes it
smaller than 1 picosecond. In case of VLBI observations of the solar system radio
sources (spacecraft) the time difference t∗2− t∗1 can not be ignored and should be taken
into account everywhere in appropriate equations.

Now one can simplify formula (7.249). First of all, taking into account the rela-
tionship (7.258), one obtains

ln
r0a − k1 · r0a

r0a − k2 · r0a
= −

(b × k1)(k1 × r0a)
R(r0a − k1 · r0a)

' O
(

b
R

)
, (7.262)

which is of the order of the annual parallax of the source of light. This term can
be neglected in the delay formula (7.249) since it produces the delay for extra-solar
system objects much less than 1 picosecond. However, for VLBI observations of
spacecrafts in the solar system the term under discussion is important and must be
taken into account. Note that in taking the difference of the two integrals in (7.249)
one can equate k2 = k1 and t∗2 = t∗1 in their integrands in correspondence with (7.260)
and (7.261). This allows us to perform the integration and reduce the difference to
the form∫ s1

s2

ln
[
t∗1 +

1
c

k1 · xa(ζ) − ζ
]

k1 · β̇a(ζ)dζ =
1
c

k1 · β̇a(s1)
{
(r2a − k1 · r2a) ln(r2a − k1 · r2a) (7.263)

− (r1a − k1 · r1a) ln(r1a − k1 · r1a) + r1a − r2a − k1(·r1a − r2a)
}
,

that is, after multiplication by the factor 2Gma/c3, much less than 1 picosecond even
in observation of the solar system objects. Hence, one can drop the two integrals
from the expression (7.249) for VLBI delay ∆(t1, t2) = ∆(t2, t0) − ∆(t1, t0).

Finally, taking into account equation (7.258) and denoting k1 ≡ −K one gets for
the time delay

∆(t1, t2) =
2G
c3

N∑
a=1

ma
(
1 + K · βa

) [
ln

r1a + K · r1a

r2a + K · r2a
−

b · r2a − (K · r2a)(b · K)
R (r2a + K · r2a)

]
,

(7.264)

where βa = va(s1)/c, r1a = |r1a|, r2a = |r2a|, and the null-cone distances

r1a = x1(t1) − xa(s1) , r2a = x2(t2) − xa(s2) . (7.265)

The second term in square barckets of equation (7.264) is a correction for the an-
nual parallax of the radio source. It is inessential if the radio source is lying outside
of the solar system farther than a few parsec. However, precise deep-space naviga-
tion of spacecrafts demands to take these finite-distance correction into account in
calculating the time delay due to the gravitational field of the Sun.
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Let us emphasize that formula (7.264) includes the first-order correction for the
velocity of the massive bodies deflecting the light ray. Moreover, there is a differ-
ence between the definition of vectors r1a, r2a in equation (7.264) and that adopted
in the consensus model as defined in [McCarthy and Petit, 2004, Chapter 12]. In
the model proposed here, coordinates of stations x1, x2 are taken at the instants t1,
t2 respectively, and coordinates of the light-ray deflecting bodies are calculated at
the retarded times s1, s2 defined in equations (7.250), (7.251) which are null-cone
equations of the linearized theory of general relativity. The consensus model accepts
that coordinates of stations are taken also at the instants t1, t2 but coordinates of the
a-th body are calculated at the time of the closest approach, t∗1a, defined in equation
(7.254). This postulate was introduced in [Hellings, 1986a,b; Treuhaft and Lowe,
1991] on the basis of intuitive guess. Such a guess gives a rather good approxi-
mation for practical purposes but can not be adopted as a self-consistent theoretical
recommendation as it obscures the causal nature of gravity associated with its null-
cone characteristics. This null-cone structure of the gravitational field is currently a
matter of experimental testing by making use of precise VLBI astrometry [Fomalont
and Kopeikin, 2008, 2003; Kopeikin, 2001].

Let us omit the parallactic term in the right side of equation (7.264) and denote
by ∆tgrav the VLBI delay in the consensus model described in the IERS conven-
tions [McCarthy and Petit, 2004, Chapter 12] and [Kaplan, 1998, equation 5], where
one takes the PPN parameter γ = 1. Then, one gets a general-relativistic differ-
ence between the Lorentz-covariant expression for the time delay in the model under
discussion and the expression ∆tgrav in the consensus model:

∆(t1, t2) = ∆tgrav +
2G
c3

N∑
a=1

ma
(
K · βa

)
ln

r1a + K · r1a

r2a + K · r2a
(7.266)

−
2G
c3

N∑
a=1

ma
(βa × r1a)(b × r1a)

r3
1a

+ ... ,

where ellipsis denote the residual terms. One can easily evaluate that the third term
in the right side of equation (7.266) is so small that can be neglected for any obser-
vational configuration of the source of light and the deflecting body including the
Earth. Expansion of the second term in the right side of equation (7.266) with re-
spect to powers b/da, where da is the impact parameter of the light ray with respect
to the a-th light-deflecting body, yields

2
Gma

c3

(
K · βa

)
ln

r1a + K · r1a

r2a + K · r2a
= −2

Gma

c3

(
K · βa

) b · (n1a + K)
r1a + K · r1a

(7.267)

= −4
Gma

c3

(
K · βa

) b · (n1a + K)
da

r1a

da
,

where the unit vector n1a = r1a/r1a. This term is approximated as
(Gma/c3)(va/c)(b/r1a) and is much smaller than 1 picosecond for any possible con-
figuration of the radio source and the gravitating body inside the solar system in-
cluding the Sun. Hence, the conclusion is that the relativistic model of VLBI data
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processing adopted in the IERS conventions [McCarthy and Petit, 2004] is practi-
cally good enough for applications at the level of accuracy about one picosecond for
astronomical objects with negligibly small parallaxes.

7.7.4
Relativistic space astrometry

Space astrometry is a new branch of fundamental astrometry. Ground-based optical
telescopes working in the interferometric regime may reach the angular resolution
not better than 0.001 arcseconds. This limits one’s ability to create a fundamental in-
ertial system on the sky [Lieske and Abalakin, 1990] with the accuracy required for
better understanding of the laws of orbital and rotational motions of celestial bodies
both inside and outside of the solar system. The epoch of the space astrometry began
in 1989 when the Hipparcos satellite was successfully launched by Ariane 4 rocket
of the European Space Agency on 8 August 1989. Despite the unexpected failure
to put the satellite on the intended geostationary orbit at 36,000 km from Earth the
astrometric program has been completely fulfilled [Kovalevsky, 1998]. As a result,
the new astrometric catalog of all stars up to 13-th stellar magnitude was obtained
[Mignard, 1997]. It includes about 120,000 stars and has a precision of around 0.002
arcseconds. Unfortunately, such high precision can not be retained longer than 10
years because of statistical errors in determination of the proper motions of stars. For
this reason the second analogous mission having the same or better astrometric ac-
curacy should be launched in a near future to maintain the accuracy of the Hipparcos
catalogu.

Rapid industrial development of space technologies allows us to hope that in the
next several years the precision of astrometric satellites in the determination of posi-
tions, proper motions, and parallaxes of celestial objects will reach a few microarc-
seconds or even better. Besides, the photometric sensitivity of measuring devices
will be substantially improved. The most advanced project of this type is a mis-
sion of the European Space Agency dubbed Gaia from an original abbreviation for
Galactic Astrometric Interferometer for Astrophysics [Lindegren, 2009; Lindegren
and Perryman, 1996]. In the framework of this project positions, proper motion, and
parallaxes of about 1000 million stars up to 20 stellar magnitude are to be measured
with accuracy better than 100 microarcsecond. It means that practically almost all
stars in the Milky Way will be observed and registered. It will give us an essential
clue to understanding dynamics of the Milky Way, its origin and evolution. Similar
project is under development in the US Naval Observatory [Johnston et al., 2006].

NASA astrometric satellite the SIM Lite Astrometric Observatory was a planned
space astrometry telescope [Edberg et al., 2007] which was canceled by NASA in
2010. It would have determined the positions and distances of stars several hun-
dred times more accurately than any previous program. This accuracy would have
allowed SIM to determine the distances to stars throughout the galaxy and to probe
nearby stars for Earth-sized planets. This breakthrough in capabilities would be pos-
sible because SIM would use optical interferometry. Pioneered by Albert Michelson,
optical interferometry can fulfill its full potential only outside the distorting effects
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of Earth’s atmosphere. There, it can combine light from two or more telescopes
as if they were pieces of a single, gigantic telescope mirror. Developed for use in
space with SIM, this technique will eventually lead to the development of telescopes
powerful enough to take images of Earth-like planets orbiting distant stars.

Such extremely difficult optical observations can not be processed adequately
without taking into account numerous relativistic corrections as explained in paper
[Kaplan, 1998]. Indeed, the gravitational deflection of light caused by the Sun is
not less than 1 milliarcsecond at any direction in the sky. Major planets yield grav-
itational deflection of light about 1 microarcsecond at the angular distances from
1 to 90 degrees outside the planet [Brumberg et al., 1990; Turyshev, 2009b]. It
is worth emphasizing that the relativistic deflection of light produced by the Earth
reaches a maximal value of about 550 microarcseconds and should be accounted
for any position of a star with respect to the Earth [Gould, 1993]. In addition, the
reduction of astrometric observations made on the moving platform will require an
extremely careful consideration of relativistic aberration and classic parallax terms
[Klioner, 2003a; Krivov, 1994] in order to reduce the measurements to the solar sys-
tem barycenter - the point to which the origin of the fundamental inertial reference
system is attached. This brief consideration makes it evident that the data process-
ing of astrometric observations from modern space satellites should be fully based
on general relativistic conceptions rather than on a classical approach in which the
relativistic corrections are considered as additive and are taken into account at the
very last stage of the reduction procedure.

Brumberg [Brumberg, 1981] was perhaps, the first who recognized the importance
of development of such, self-consistent relativistic approach to the data processing of
astrometric observations. It required a new approach to the theory of the reference
frames in the solar system that was formulated in paper [Brumberg and Kopejkin,
1989b] and further explored in [Brumberg and Kopejkin, 1989a; Klioner, 2003a;
Klioner and Kopeikin, 1992; Kopeikin, 1989a,b, 1990; Kopejkin, 1988a]. A supple-
mentary approach was presented in papers [Damour et al., 1991, 1992, 1993]. One
global and several local reference frames around major planets of the solar system
have been constructed by solving the Einstein equations for gravitational field. The
global frame is the barycentric reference frame of the solar system with the origin
at the center of mass of the solar system. As for the local frames, the most impor-
tant for practical applications is the geocentric frame with the origin at the center of
mass of the Earth (geocenter) and the proper reference frame of an observer on the
Earth [Kopejkin, 1991a] or at the satellite in case of a space mission [Klioner, 2004].
All reference frames are harmonic that is specified by four differential conditions
(7.2). They have been build on the spacetime manifold in such a way that minimizes
spurious perturbations of gravitational field caused by inappropriate use of coordi-
nate freedom in general relativity. Proceeding in this way a significant progress was
achieved in describing relativistic aberration, parallax, and proper motion correc-
tions [Klioner, 2003a; Klioner and Kopeikin, 1992]. Subsequent work solved the
problem of propagation of light rays from distant sources of light to an observer
in the non-stationary gravitational field of any isolated astronomical system includ-
ing emission of gravitational waves [Kopeikin and Korobkov, 2005; Kopeikin et al.,
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2006; Kopeikin and Mashhoon, 2002; Kopeikin and Schäfer, 1999; Kopeikin et al.,
1999].

The astrometric quantity which are a matter of concern in this section, is the direc-
tion, s, towards the source of light (star, quasar) as measured by observer at the point
having coordinates (t, x). For simplicity, one supposes that the observer is at rest.
This eliminates a multitude of relativistic terms accounting for aberration of light.
They can be treated separately and the algorithm for this treatment is well-known
[Klioner, 2003a; Klioner and Kopeikin, 1992]. This direction is given by equation
(7.109) and can be explicitly written as follows

si(τ, ξ) = Ki +
2G
c2

N∑
a=1

ma√
1 − β2

a

(
1 − k · βa

)2

ra − k · ra

Pi
j r j

a

ra − βa · ra
(7.268)

−
2G
c2

N∑
a=1

ma√
1 − β2

a

2 − k · βa

ra − βa · ra
Pi

j β
j
a

−
2G
c2R

N∑
a=1

ma√
1 − β2

a

1 − k · βa

ra − k · ra
Pi

jr
j
a

−
4G
c2R

N∑
a=1

ma√
1 − β2

a

ln
(

ra − k · ra

2R

)
Pi

jβ
j
a + ... ,

where positions and velocities of the solar system bodies that deflect the light ray, are
calculated at the retarded time s = t−ra/c, R = |x−x0| is the distance from the source
of light to observer, βi

a = vi
a/c, and ellipsis denote residual terms depending on ac-

celerations of the bodies which have been neglected because of their insignificant
numerical value in practical observations inside the solar system. Further simplifi-
cation of equation (7.268) is possible if one remembers that the velocities of bodies,
va, comprising the solar system are small in comparison with the fundamental speed
c, and the distance R to to the source of light (star, quasar) is very large compared to
the size of the solar system. For this reason, the terms being quadratic with respect to
velocity va and the last term in the right side of equation (7.268) that is proportional
to logarithm, are omitted. It yields

si(τ, ξ) = Ki +
2G
c2

N∑
a=1

ma

(
1 − 2k · βa + na · βa −

ra

R

) k × (na × k)
ra − k · ra

(7.269)

−
4G
c2

N∑
a=1

ma
k × (βa × k)

ra
,

where the unit vector na = ra/ra, symbol × denotes the usual Euclidean vector prod-
uct between two vectors. Equation (7.269) was derived in [Kopeikin and Schäfer,
1999] and independently confirmed by Klioner [Klioner, 2003b] who obtained it by
the technique of the Lorentz transformation.

The leading order term in equation (7.269) gives us the well-known expression for
the angle of gravitational deflection of light ray in the field of a static, spherically
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symmetric body. The velocity dependent terms in (7.269) describe small relativistic
corrections, which can be important in the data analysis of the high-precision astro-
metric space missions like SIM. The very last term in the large round brackets in
equation (7.269) depends on the distance R between the observer and the source of
light. It changes the magnitude of the angle of the gravitational deflection for the
celestial objects which are lying close to or within the solar system, and must be
taken into account in reducing astrometric observations of such objects.

After the gravitational deflection of light is taken into account in the data reduction
procedure, the classic astrometric effects - parallax and aberration of light - must be
removed from the observed direction si. Parallactic corrections to the observed di-
rection si are extracted from the unit vector K by its expansion in powers of the ratio
(barycentric distance to observer)/(barycentric distance to a star). Accounting for the
aberrational corrections is made by means of the Lorentz transformation of the vec-
tor si, from the static frame to the new direction observed by a moving observer. It
is worth emphasizing that correcting for the aberration of light must be done before
correcting for the parallax. In other words, the parallactic and aberrational correc-
tions are not commutative. Other particular details of the parallactic and aberrational
calculations can be found in [Klioner, 2003a; Klioner and Kopeikin, 1992].
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7.8
Doppler Tracking of Interplanetary Spacecrafts

Doppler tracking of deep space probes is central to spacecraft navigation and many
radio science investigations. The most sensitive Doppler observations to date were
taken when tracking the Cassini spacecraft using the NASA/JPL Deep Space Net-
work antenna DSS 25, which is a 34 m diameter beam-waveguide dish instrumented
with simultaneous X- and K-band uplink and tropospheric scintillation calibration
equipment [Armstrong et al., 2008]. Those observations achieved Doppler frac-
tional frequency stability (Doppler frequency fluctuation, δν, divided by center fre-
quency, ν0) δν/ν0 ' 10−15 at 1000 s integration time. Examples of the scien-
tific studies done with the Doppler tracking include determinations of planetary
masses and mass moments [Rappaport et al., 1997], measurements of planetary at-
mospheres/ionospheres/rings [Kliore et al., 2004, 2008], studies of the solar wind
[Noci et al., 1987], and solar system tests of relativistic gravity [Anderson et al.,
2004; Bertotti and Giampieri, 1992; Bertotti et al., 2003; Iess et al., 1999; Shang
et al., 2009].

The Doppler tracking of interplanetary spacecrafts is the only method presently
available to search for gravitational waves in the milliHertz frequency range (10−5

- 0.01 Hz) [Armstrong et al., 1997; Bertotti and Iess, 1985; Bertotti et al., 1999;
Estabrook and Wahlquist, 1975; Kopeikin et al., 2007; Smarr et al., 1983]. Sev-
eral experiments to search for gravitational waves have been carried out so far, for
instance, VOYAGER, PIONEER, ULYSSES, GALILEO and MARS-OBSERVER
[Armstrong, 2006]. The space-probe CASSINI represents the next step in such
gravitational Doppler experiments [Iess and Asmar, 2007]. The CASSINI was
launched in October 15, 1997 with a primary goal to study Saturn’s atmosphere,
magnetic fields, rings and icy moons. The spacecraft carries on board advanced
radio-transponders and performed three long (40 days each) dedicated data acquisi-
tion runs in 2002, 2003 and 2004 searching for gravitational waves with sensitivity
about twenty times better than that having been achieved so far [Armstrong, 2006;
Armstrong et al., 2003]. Adequate interpretation of gravitational experiments and
detection of gravitational waves require precise knowledge of the Doppler frequency
shift caused by the solar system bodies lying near an observer’s line of sight to space-
craft as shown in Figure 7.9.

Practically important implementation of the Doppler tracking is the Global Posi-
tioning System (GPS) which provides reliable positioning, navigation, and timing
services to civilian users on a continuous worldwide basis [U.S. Navigation Center,
2010]. The GPS is made up of three parts: satellites orbiting the Earth; control and
monitoring stations on Earth; and the GPS receivers owned by users.

• The space segment consists of a nominal constellation of 24 operating satellites
that transmit one-way signals that give the current GPS satellite position and time.

• The control segment consists of worldwide monitor and control stations that main-
tain the satellites in their proper orbits through occasional command maneuvers,
and adjust the satellite clocks. It tracks the GPS satellites, uploads updated navi-



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 593

593
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Figure 7.9 Spacecraft Doppler tracking experiment in deep space. Radio signal is transmitted
at the time t0 and at the point x0 on the Earth along a direction defined by the unit vector k1.
The radio signal reaches spacecraft at the moment t1 and at the point x1 and is instantaneously
re-emitted back to the Earth along the unit vector k2 which, in general, is not anti-parallel to k1.
The signal from spacecraft arrives to a receiver on the Earth located at point x2 at the time t2.
During the time of the round-trip of the radio signal the Earth rotates around its own axis and
moves along its orbit. Hence, the barycentric position and velocity of the transmitter is different
from the barycentric position and velocity of the receiver but their topocentric positions on the
Earth can coincide depending on the Doppler system design. When the impact parameter of
the signal’s trajectory is small the gravitational Doppler shift of the transmitted frequency with
respect to the reference frequency, ν, is roughly estimated as δν/ν = 2α(v⊕/c) cosϕ, where α is
the gravitational deflection angle of the corresponding light ray, v⊕ is the orbital velocity of the
Earth, and ϕ is the angle between v⊕ and the impact parameter of the light ray.
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gational data, and maintains health and status of the satellite constellation.
• The user segment consists of the GPS receiver equipment, which receives the sig-

nals from the GPS satellites and uses the transmitted information to calculate the
user’s three-dimensional position and time.

GPS satellites broadcast signals from space that are picked up and identified by GPS
receivers. Each GPS receiver then provides three-dimensional location (latitude,
longitude, and altitude) plus the time. The GPS uses accurate, stable atomic clocks
in satellites and on the ground These clocks have relativistic frequency shifts which
are so large that, without accounting for numerous relativistic effects, the system
would not function [Ashby, 2002, 2003].

Quite recently, the Europeian Space Agency (ESA) has adopted a new program
aimed at achieving an even better precision in measuring time and frequency in
spacetime observations. The program is called the Atomic Clock Ensemble in Space
(ACES) and will be carried out on board of the International Space Station (ISS). The
principal idea is to use a cold atom clock in weightless condition which will outper-
form the fountains clock on the ground with the potential accuracy of 5 × 10−16 in
space [Laurent et al., 2007, 1998]. The European Union and ESA have also de-
cided to build a global navigation satellite system called GALILEO. The project is
an alternative and complementary to the GPS and the Russian GLONASS. Current
agreement is that it should be operational by 2013. GLONASS is a Russian system
that is very similar to GPS. The satellites are at slightly lower altitudes, and orbit the
Earth 17 times while the GPS satellites orbit 16 times [Ashby, 2003]. BEIDOU is a
satellite navigation system being developed and deployed by the People’s Republic
of China.

Adequate treatment and further development of the satellite navigation systems,
deep space navigation of satellites, and gravitational experiments require advanced
analytic algorithm which will properly account for all relativistic terms of the or-
der of 10−16 and smaller in the classic and gravitational Doppler shifts between the
transmitted and received electromagnetic frequencies caused by the relative motion
of the spacecraft with respect to observer and time-dependent gravitational field of
the solar system bodies. This section discusses the basic principles of the Doppler
tracking observations and gives the most important relationships for calculation of
various relativistic effects. However, complete theory of the whole operation of the
navigational systems goes beyond the scope of the present book as it includes too
many particular details. Hence, the discussion will be focused mainly on the Doppler
tracking of spacecrafts in deep space in application to precise gravitational experi-
ments in the field of major planets and the Sun.

7.8.1
Definition and calculation of the Doppler shift

Let us assume (see Figure 7.9) that an electromagnetic signal has been transmitted
with frequency ν0 at the barycentric time t0 from the point with barycentric coordi-
nates x0 located on the Earth. The signal travels to the interplanetary spacecraft and
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is received on its board with frequency ν1 at the barycentric time t1 at the point with
the barycentric coordinates x1. Spacecraft’s transponder instantaneously transmits
the signal back to the Earth at exactly the same frequency ν1 where one observes this
signal with frequency ν2 at the barycentric time t2 at the point with the barycentric
coordinates x2. One notices that because of the orbital and rotational motion of the
Earth during the light travel time of the signal, the frequency ν2 will be different from
the emitted frequency ν0 even if the transmitter and receiver are located at the same
point on the Earth’s surface.

The reading of the clock measuring the proper time of transmitter at the point of
emission of a radio signal will be denoted by T0, and the reading of the same clock
at the point of reception of the radio signal will be denoted by T2. Proper time of
spacecraft’s transponder will be denoted by T1. Barycentric coordinate time t at the
emission point will be denoted t0, at the point of reception - t2, and at the spacecraft’s
position - t1. Further calculations are similar to those presented in section 7.5.3. The
emitted electromagnetic frequency of the radio signal is ν0, the frequency received
by the spacecraft - ν1, and the frequency received back on the ground - ν2. The
spectral shift of frequency ν0 with respect to ν1 is given by equation

1 + z1 ≡
ν0

ν1
=

dT1

dt1

dt1
dt0

dt0
dT0

, (7.270)

and the shift of frequency, ν1, with respect to ν2 is described by a similar relationship

1 + z2 ≡
ν1

ν2
=

dt1
dT1

dt2
dt1

dT2

dt2
. (7.271)

Here the time derivatives dT1/dt1 and dt1/dT1 are calculated at the spacecraft’s po-
sition, dt0/dT0 is calculated at the point of emission, and calculation of dT2/dt2
is done at the point of reception of the radio signal. Time derivatives dt1/dt0 and
dt2/dt1 are two-point functions, which are calculated by differentiation of the solu-
tion of equation of propagation of the electromagnetic signal in a time-dependent
gravitational field of the solar system (7.72). This equation establishes theoretical
description of the transmitter-to-spacecraft uplink, and spacecraft-to-receiver down-
link.

In practice, when Doppler tracking observations are made, the frequency ν2 of
the receiver is kept fixed. It relates to the fact that the frequency band of the re-
ceiver is made rather narrow to supress the level of environmental radio interference
and to increase the sensitivity of receiver to detection of a very weak radio signal
transmitted back to the Earth from the spacecraft. On the other hand, technical lim-
itations on the range of the transmitted frequency ν0 are not so restrictive and it
can be changed smoothly in a very broad band according to a prescribed frequency-
modulation law. This law of the frequency modulation is chosen to ensure the re-
ceiving of the transmitted signal from the spacecraft exactly at the pre-calculated
frequency ν2. It requires to know the precise ephemerides of the transmitter, the ob-
server, and the spacecraft as well as the law of propagation of electromagnetic signal
on its round-trip journey. Hence, one needs to calculate the frequency fluctuation
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δν/ν2, where δν = ν0 − ν2. From equations (7.270), (7.271) one has

δν

ν2
=

ν0

ν2
− 1 =

dt0
dT0

dt1
dt0

dt2
dt1

dT2

dt2
− 1 . (7.272)

As one can see from this equation there is no need to know explicitly the transfor-
mation between the proper time of the spacecraft, T1, and the barycentric coordinate
time of the solar system, t1, if the spacecraft’s transponder has no intrinsic time delay
13).

Accounting for relationship (7.125) and expression (7.12) for the metric tensor
yields at the point of emission

dt0
dT0

=

(1 − β2
0

) 1 +
2G
c2

N∑
a=1

ma

√
1 − β2

a0

r0a − βa0 · r0a

 − 4G
c2

N∑
a=1

ma√
1 − β2

a0

(1 − β0 · βa0)2

r0a − βa0 · r0a


−1/2

,

(7.273)

where β0 = β0(t0) is the (normalized to c) barycentric velocity of emitter, βa0 =

βa(s0) is the (normalized to c) barycentric velocity of the a-th gravitating body taken
at a retarded time s0, r0a = |r0a|, r0a = x0(t0) − xa(s0), and s0 = t0 − r0a/c is the
retarded time corresponding to the time of emission, t0, of the radio signal.

Similar arguments give us at the point of reception of the radio signal the next
relationship

dT2

dt2
=

(1 − β2
2

) 1 +
2G
c2

N∑
a=1

ma

√
1 − β2

a2

r2a − βa2 · r2a

 − 4G
c2

N∑
a=1

ma√
1 − β2

a2

(1 − β2 · βa2)2

r2a − βa2 · r2a


1/2

,

(7.274)

where β2 = β2(t2) is the (normalized to c) barycentric velocity of emitter, βa2 =

βa(s2) is the (normalized to c) barycentric velocity of the a-th gravitating body taken
at a retarded time s2, r2a = |r2a|, r2a = x2(t2) − xa(s2), and s2 = t2 − r2a/c is the
retarded time corresponding to the time, t2, of the signal’s reception.

For up- and down- radio links the time delay relationship (7.129) yields respec-
tively

dt1
dt0

=

1 + K1 · β0 +
2G
c2

N∑
a=1

ma

∂s1

∂t0

∂

∂s1
+
∂s0

∂t0

∂

∂s0
+
∂t∗1
∂t0

∂

∂t∗1
+
∂ki

1

∂t0

∂

∂ki
1

 Ba(s1, s0, t∗1, k1)

1 + K1 · β1 −
2G
c2

N∑
a=1

ma

∂s1

∂t1

∂

∂s1
+
∂s0

∂t1

∂

∂s0
+
∂t∗1
∂t1

∂

∂t∗1
+
∂ki

1

∂t1

∂

∂ki
1

 Ba(s1, s0, t∗1, k1)

,

(7.275)

13) The intrinsic time delay of the transponder can be introduced for technical purposes but it is not con-
sidered here to keep calculations simple,
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and

dt2
dt1

=

1 + K2 · β1 +
2G
c2

N∑
a=1

ma

∂s2

∂t1

∂

∂s2
+
∂s1

∂t1

∂

∂s1
+
∂t∗2
∂t1

∂

∂t∗2
+
∂ki

2

∂t1

∂

∂ki
2

 Ba(s2, s1, t∗2, k2)

1 + K2 · β2 −
2G
c2

N∑
a=1

ma

∂s2

∂t2

∂

∂s2
+
∂s1

∂t2

∂

∂s1
+
∂t∗2
∂t2

∂

∂t∗2
+
∂ki

2

∂t2

∂

∂ki
2

 Ba(s2, s1, t∗2, k2)

.

(7.276)

Here the retarded time s1 comes out from the relation s1 = t1 − r1a/c, where r1a =

|x1(t1) − xa(s1)|,

k1 = −K1 =
x1(t1) − x0(t0)
|x1(t1) − x0(t0)|

, (7.277)

k2 = −K2 =
x2(t2) − x1(t1)
|x2(t2) − x1(t1)|

, (7.278)

are the unit vectors which define the direction of propagation of the radio signal in
uplink and downlink respectively, and

t∗1 = t0 −
1
c

k1 · x0 , t∗2 = t1 −
1
c

k2 · x1 . (7.279)

are the times of the closest approach of the radio signal to the origin of the barycentric
coordinates of the solar system from uplink and downlink.

7.8.2
The null-cone partial derivatives

The relationships (7.133)-(7.136) allow us to write down the partial time derivatives
for the retarded times s0, s1, and s2. One has to carefully distinguish between the
derivatives for the up- and down- radio links. For the transmitter-spacecraft uplink
one has

∂s1

∂t1
=

r1a − k1 · r1a

r1a − βa1 · r1a
−

(k1 × β1) · (k1 × r1a)
r1a − βa1 · r1a

, (7.280)

∂s1

∂t0
=

(1 − k1 · β0)(k1 · r1a)
r1a − βa1 · r1a

, (7.281)

∂s0

∂t0
=

r0a − β0 · r0a

r0a − βa0 · r0a
, (7.282)

∂s0

∂t1
= 0 . (7.283)
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These formulas are to be used in equation (7.275). For the spacecraft-receiver down-
link one obtains

∂s2

∂t2
=

r2a − k2 · r2a

r2a − βa2 · r2a
−

(k2 × β2) · (k2 × r2a)
r2a − βa2 · r2a

, (7.284)

∂s2

∂t0
=

(1 − k2 · β1)(k2 · r2a)
r2a − βa2 · r2a

, (7.285)

∂s1

∂t1
=

r1a − β1 · r1a

r1a − βa1 · r1a
, (7.286)

∂s1

∂t2
= 0 . (7.287)

These formulas are to be used in equation (7.276). One points out that the time
derivative (7.280) is different from that given by equation (7.286) although the both
derivatives are calculated at one and the same point of space (spacecraft’s location).
At the first sight it may look surprising. However, if one remembers that the deriva-
tive (7.280) is calculated along the transmitter-spacecraft light path and that (7.286)
along the spacecraft-receiver light path, which have opposite and slightly different
directions, the difference becomes making more sense.

The other set of time derivatives required in the subsequent calculations is as fol-
lows,

1
c
∂ki

1

∂t1
=

(k1 × (β1 × k1))i

R01
,

1
c
∂ki

1

∂t0
= −

(k1 × (β0 × k1))i

R01
, (7.288)

1
c
∂ki

2

∂t2
=

(k2 × (β2 × k2))i

R21
,

1
c
∂ki

2

∂t1
= −

(k2 × (β1 × k2))i

R21
, (7.289)

∂t∗1
∂t0

= 1 − k1 · β0 +
β0 · ξ1

R01
,

∂t∗1
∂t1

= −
β1 · ξ1

R01
, (7.290)

∂t∗2
∂t1

= 1 − k2 · β1 +
β1 · ξ2

R21
,

∂t∗2
∂t2

= −
β2 · ξ2

R21
, (7.291)

where R01 = |x0 − x1| is the radial distance between the emitter on the Earth and the
spacecraft, R21 = |x2 − x1| is the radial distance between the receiver on the Earth
and the spacecraft, and the impact parameters of the uplink and downlink are defined
by equations ξ1 = k1 × (x1 × k1), and ξ2 = k2 × (x1 × k2) respectively.

Partial derivatives of functions Ba(s1, s0, t∗1, k
i
1) and Ba(s2, s1, t∗2, k

i
2) can be found
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by making use of relationships (7.138)-(7.143). This yields

∂Ba(s1, s0, t∗1, k
i
1)

∂s1
=

c√
1 − β2

a1

(1 − k1 · βa1)2

r1a − k1 · r1a
, (7.292)

∂Ba(s1, s0, t∗1, k
i
1)

∂s0
= −

c√
1 − β2

a0

(1 − k1 · βa0)2

r0a − k1 · r0a
, (7.293)

∂Ba(s1, s0, t∗1, k
i
1)

∂t∗1
= −

c√
1 − β2

a1

1 − k1 · βa1

r1a − k1 · r1a
+

c√
1 − β2

a0

1 − k1 · βa0

r0a − k1 · r0a
,(7.294)

∂Ba(s1, s0, t∗1, k
i
1)

∂ki
1

= −
1 − k1 · βa1√

1 − β2
a1

x j
a(s1)

r1a − k1 · r1a
+

1 − k1 · βa0√
1 − β2

a0

x j
a(s0)

r0a − k1 · r0a
(7.295)

+
2v j

a1√
1 − β2

a1

ln(r1a − k1 · r1a) −
2v j

a0√
1 − β2

a0

ln(r0a − k1 · r0a) ,

and
∂Ba(s2, s1, t∗2, k

i
2)

∂s2
=

c√
1 − β2

a2

(1 − k2 · βa2)2

r2a − k2 · r2a
, (7.296)

∂Ba(s2, s1, t∗2, k
i
2)

∂s1
= −

c√
1 − β2

a1

(1 − k2 · βa1)2

r1a − k2 · r1a
, (7.297)

∂Ba(s2, s1, t∗2, k
i
2)

∂t∗2
= −

c√
1 − β2

a2

1 − k2 · βa2

r2a − k2 · r2a
+

c√
1 − β2

a1

1 − k2 · βa1

r1a − k2 · r1a
,(7.298)

∂Ba(s2, s1, t∗2, k
i
2)

∂ki
2

= −
1 − k2 · βa2√

1 − β2
a2

x j
a(s2)

r2a − k2 · r2a
+

1 − k2 · βa1√
1 − β2

a1

x j
a(s1)

r1a − k2 · r1a
(7.299)

+
2v j

a2√
1 − β2

a2

ln(r2a − k2 · r2a) −
2v j

a1√
1 − β2

a1

ln(r1a − k2 · r1a) .

One has neglected in formulas (7.294),(7.295) and (7.298), (7.299) all terms de-
pending explicitly on the orbital accelerations of the solar system bodies. If the body
moved with constant velocities these equations would be exact.

7.8.3
Doppler effect in spacecraft-planetary conjunctions

The relationships (7.272) - (7.299) constitute the basic elements of the Lorentz-
invariant algorithm for the Doppler tracking of spacecrafts in the deep space of the
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solar system. They are sufficient to calculate the Doppler response for any conceiv-
able relative configuration of transmitter, spacecraft, and the solar system bodies
including the effects of special relativity and gravity in the weak field approxima-
tion. One is going to consider in this section only the case when spacecraft is behind
a massive body (Sun, Jupiter or Saturn) and the impact parameters of up- and down-
radio links are small compared with distances from the body to transmitter, receiver,
and the spacecraft. Calculation of gravitational shift of frequency will be the primary
goal. This approximation is similar to that used in section 7.6.2.2 for calculation of
the frequency shift in gravitational lens. Making use of this approximation, one
can neglect all terms of the order of Gma/c2r0a, Gma/c2r1a, Gma/c2r2a, Gma/c2R01,
ma/R21 as well as the terms that are quadratic with respect to the velocity va of the
massive body. It is worthwhile to point out that the travel time for a round trip of a
radio signal from emitter to spacecraft and back to receiver, is much shorter than the
orbital period of any of the solar system body. For this reason, all functions with the
retarded time argument entering the equations for calculation of the Doppler shift
of frequency can be expanded around the time of transmission of the radio signal
from the Earth, which is precisely determined by atomic clocks at the point of the
emission. Taking into account these remarks and making use of relationship (7.231)
one obtains(

δν

ν2

)
gr

= 2(βa −
r1

R
β0 −

r0

R
β1) · α(ξa) , αi(ξa) =

4Gma

c2d2
a
ξi

a , (7.300)

where β0 = v0/c is the barycentric velocity of the transmitter, β1 = v1/c is the
barycentric velocity of the spacecraft, βa = va/c is velocity of the a-th gravi-
tating body deflecting trajectory of the emitted radio signal at the total angle αi,
da = |ξa| is the length of the impact parameter of the light ray with respect to the
a-th body, r1 is the distance between the transmitter and the light-ray deflecting
body, r0 is the distance between the spacecraft and the light-ray deflecting body,
and R = |x0 − x1| ' r0 + r1 due to the fact that outgoing and ingoing light rays
move along almost the same direction. Formula (7.300) for the Doppler shift by a
moving gravitational lens depends on velocities of the transmitter, the spacecraft,
and the light-ray deflecting body. It was derived by Kopeikin and Schäfer [1999].
They generalized the result obtained previously by Bertotti and Giampieri [1992]
who considered the gravitational shift of frequency only for a static gravitational
lens. The effect of motion of a massive body on the gravitational shift of frequency
is detectable in the solar system [Kopeikin et al., 2007].

The approximate value of the gravitational shift of frequency of the radio signal
on its round trip is determined by the expression δν/ν2 = 2αa(v⊕/c) cosϕ, where αa

is the total deflection angle of the light ray by a-th massive body, v⊕ is the magnitude
of the orbital velocity of the Earth, and ϕ is the angle between the Earth’s velocity,
v⊕, and the direction of the impact parameter. For the Sun the minimal value of the
deflection angle α� is not less than 1 milliarcsecond or ' 5 · 10−9 radians. The ratio
of v⊕/c ' 10−4. These numbers demonstrate that the gravitational shift of frequency
in the Doppler tracking of interplanetary spacecraft caused by the Sun is not less
than ' 5 · 10−13 for any location of the spacecraft in the sky. If the path of the radio
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link grazes the solar limb, the Doppler shift can reach the value of 10−9. The same
kind of evaluation applied to the radio waves grazing the limbs of Jupiter and Saturn
yields for the gravitational shift of frequency by Jupiter 8 · 10−12, and that by Saturn
3 · 10−12, which can be measured in practice.

Our Lorentz-invariant formalism for derivation of the gravitational shift of fre-
quency in the Doppler tracking of interplanetary spacecrafts can be compared with
other approaches based on application of the post-Newtonian approximation scheme
[Bertotti and Giampieri, 1992; Kopeikin, 1990]. The advantage of the Lorentz-
invariant formalism is that it accounts for all relativistic effects related to velocities
of the gravitating bodies through the compact expression for the Liénard-Wiechert
gravitational potentials. The post-Newtonian scheme is also quite successful but
makes calculation longer and presents the result of the calculation in the form of a
post-Newtonian expansion [Blanchet et al., 2001b].

7.8.4
The Doppler Effect Revisited

It is instructive from the methodological point of view to compare calculation of
the Doppler effect in terms of frequency used in the present book, with that done in
terms of energy (see section 7.5.3 for definition) used, e.g., by Bertotti and Giampieri
[1992]. Let us introduce definitions of the four-velocity of observer uα = u0(1, βi),
the four-velocity of source of light uα0 = u0

0(1, βi
0), the four-momentum of pho-

ton at the point of emission Kα
0 = K0

0 (1, pi
0) and that at the point of observation

Kα = K0(1, pi), where u0 = dt/dT , u0
0 = dt0/dT0, pi

0 = c−1 ẋi(t0), pi = c−1 ẋi(t),
K0

0 = dt0/dλ0 and K0 = dt/dλ with λ and λ0 being values of the affine parameter
along the light geodesics at the points of emission and observation. Then, using def-
inition (7.126) of the Doppler effect in terms of energy, it is not difficult to show that
equation (7.126) can be recast in the form

ν

ν0
=

u0K0
{
g00(t, x) + g0i(t, x)

[
pi + βi

]
+ gi j(t, x)piβi

}
u0

0K
0
0

{
g00(t0, x0) + g0i(t0, x0)

[
pi

0 + βi
0

]
+ gi j(t0, x0)pi

0β
i
0

} . (7.301)

Calculation of the time component K0 of the four-momentum of photon in equation
(7.301) can be done if one knows the relationship of the affine parameter λ along
the light geodesic and the coordinate time t. This is found by solution of the time
component of the equation for the light geodesic

d2t
dλ2 = −c

(
Γ0

00 + 2Γ0
0i p

i + Γ0
i j p

i p j
) ( dt

dλ

)2

. (7.302)

Using decomposition (7.1) of the metric tensor and parametrization (7.36) of the
unperturbed light ray trajectory, equation (7.302) can be written as

d2t
dλ2 = −

(
1
2

kαkβ∂thαβ − kα∂τh0α

) (
dt
dλ

)2

, (7.303)
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where the constant vector kα = (1, ki) = (1, k), and the substitution for the unper-
turbed trajectory of the light ray in the metric perturbation hαβ is done after taking
the partial derivative with respect to coordinate time t. Solution of equation (7.303)
can be found by iterations using the following expansion

λ = E−1 [t + F (t)] , (7.304)

where E is the constant photon’s energy at past null infinity measured by a fictitious
observer being at rest, and function F (t) is of the order of hαβ. It is obtained by
solution of equation (parameter τ was defined in (7.33))

d2F

dτ2 =
1
2

kαkβ∂thαβ − kα∂τh0α , (7.305)

which is a direct consequence of equations (7.303), (7.304). Solving the ordinary
differential equation (7.305) one finds

K0 ≡ K0(τ) = E
[
1 − Ḟ (τ)

]
, (7.306)

K0
0 ≡ K

0(τ0) = E
[
1 − Ḟ (τ0)

]
, (7.307)

and

Ḟ (τ) =
1
2

kαkβ
∫ τ

−∞

[
∂hαβ(t, x)

∂t

]
t=σ+t∗

x=ckσ+ξ

dσ − kαh0α(τ) , (7.308)

Ḟ (τ0) =
1
2

kαkβ
∫ τ0

−∞

[
∂hαβ(t, x)

∂t

]
t=σ+t∗

x=ckσ+ξ

dσ − kαh0α(τ0) . (7.309)

Examination of structure of the integrands in expressions (7.308), (7.309) reveals
that[

∂hαβ(t, x)
∂t

]
t=σ+t∗

x=ckσ+ξ

=
∂hαβ(σ + t∗, kσ + ξ)

∂t∗
. (7.310)

A remarkable property of equality (7.310) is that the parameter t∗ is independent
from the argument σ of the integrand in (7.308), (7.309) and, for this reason, the
partial derivative with respect to t∗ is commutative with the integration along the
light-ray trajectory. This property allows us to take the partial time derivative in in-
tegrals (7.308), (7.309) out of the sign of the integrals. For example, integral (7.308)
becomes∫ τ

−∞

[
∂hαβ(t, x)

∂t

]
t=σ+t∗

x=ckσ+ξ

dσ =
∂

∂t∗

∫ τ

−∞

hαβ(σ + t∗, ckσ + ξ)dσ . (7.311)

Using the Liénard-Wiechert solution (7.12) for hαβ and relationship (7.52) relating
the total differentials of the coordinate time σ and the retarded time ζ, one obtains

∂

∂t∗

∫ τ

−∞

hαβ(σ + t∗, ckσ + ξ)dσ =
4G
c5

N∑
a=1

 ∂∂t∗

∫ s(τ,t∗)

−∞

T a
αβ(ζ) − 1

2ηαβT
λ
aλ(ζ)

t∗ + c−1 k · xa(ζ) − ζ
dζ

 ,
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(7.312)

where the upper limit s(τ, t∗) of the integral in the right side of this equation is calcu-
lated by means of solution of the gravity null-cone equation, s+c−1|ckσ+ξ−xa(s)| =
τ+ t∗, and depends on time τ and the instant of the closest approach t∗ considered as
a parameter. One again emphasizes that among the three variables t, τ, and t∗ only
two can be considered as independent because of the definition τ = t − t∗ introduced
in equation (7.35). The same assertion is valid for the set t0, τ0, and t∗.

Because the upper limit of the integral in the right side of equation (7.312) depends
on t∗, the derivative ∂/∂t∗ of the integral is taken both from the integrand of the
integral and from its upper limit. It yields

∂

∂t∗

∫ s(τ,t∗)

−∞

T a
αβ(ζ) − 1

2ηαβT
λ
aλ(ζ)

t∗ + c−1 k · xa(ζ) − ζ
dζ =

∂

∂t∗

∫ s

−∞

T a
αβ(ζ) − 1

2ηαβT
λ
aλ(ζ)

t∗ + c−1 k · xa(ζ) − ζ
dζ (7.313)

+
T a
αβ(s) − 1

2ηαβT
λ
aλ(s)

ra(s) − k · ra(s)
cra

ra(s) − βa(s) · ra(s)
,

where the second term in the right hand side is a partial derivative of the upper limit
of the integral in equation (7.312) with respect to t∗ 14), s is the retarded time defined
by the gravity null-cone equation (7.13) treated as independent from t∗. Finally, one
has

1
2

kαkβ
∫ τ

−∞

[
∂hαβ(t, x)

∂t

]
t=σ+t∗

x=ckσ+ξ

dσ =
1
2

kαkβhαβ(τ) −
2G
c2

N∑
a=1

maCa(s) (7.314)

+
2G
c2

N∑
a=1

ma√
1 − β2

a

(1 − k · βa)2

ra − k · ra

k · ra

ra − βa · ra
,

where function Ca(s) is defined in equation (7.116). Similar arguments give

1
2

kαkβ
∫ τ0

−∞

[
∂hαβ(t, x)

∂t

]
t=σ+t∗

x=ckσ+ξ

dσ =
1
2

kαkβhαβ(τ0) −
2G
c2

N∑
a=1

maCa(s0) (7.315)

+
2G
c2

N∑
a=1

ma√
1 − β2

a0

(1 − k · βa0)2

r0a − k · r0a

k · r0a

r0a − βa0 · r0a
.

Going back to formula (7.301) of the Doppler effect in terms of energy one can see
that it can be factorized in three terms
ν

ν0
= S1 · S2 · S3 , (7.316)

14) See formula (7.51) for calculation of the partial derivative of the retarded time s with respect to the
parameter t∗.
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where

S1 ≡
u0

u0
0

=
1 − β2

0 − h00(t0, x0) − 2h0i(t0, x0)βi
0 − hi j(t0, x0)βi

0β
j
0

1 − β2 − h00(t, x) − 2h0i(t, x)βi − hi j(t, x)βiβ j , (7.317)

S2 ≡
K0

K0
0

=
1 − Ḟ (τ)
1 − Ḟ (τ0)

, (7.318)

S3 =
1 − k · β − β · Ξ̇(τ) − kαh0α(t, x) − kαβ jhα j(t, x)

1 − k · β0 − β0 · Ξ̇(τ0) − kαh0α(t0, x0) − kαβ j
0hα j(t0, x0)

. (7.319)

Here, functions Ξ̇(τ) and Ξ̇(τ0) must be calculated from equation (7.64) taken at the
instants τ and τ0 respectively.

On the other hand, the above-given result for calculation of the Doppler shift in
terms of frequency obtained in section 7.5.3 had the following form

ν

ν0
= S1

dt0
dt

. (7.320)

Thus, in order to have an agreement with calculation of the Doppler shift in terms of
energy one must prove that

dt0
dt

= S2 · S3 . (7.321)

One can recast the right side of this equation in another form by accounting for
equations (7.308), (7.309), (7.314), (7.315). It yields

S2 · S3 =
A(τ)
A(τ0)

B(τ)
B(τ0)

, (7.322)

where

A(τ) = 1 − k · β −
1
2
βikαkβ∂̂iBαβ(τ) −

1
2

kαkβhαβ(τ) , (7.323)

A(τ0) = 1 − k · β0 −
1
2
βi

0kαkβ∂̂iBαβ(τ0) −
1
2

kαkβhαβ(τ0) , (7.324)

B(τ) = 1 +
2G
c2

N∑
a=1

maCa(s) −
ma√
1 − β2

a

(1 − k · βa)2

ra − k · ra

k · ra

ra − βa · ra

 , (7.325)

B(τ0) = 1 +
2G
c2

N∑
a=1

maCa(s0) −
ma√

1 − β2
a0

(1 − k · βa0)2

r0a − k · r0a

k · r0a

r0a − βa0 · r0a

 ,(7.326)

where the partial derivatives ∂̂iBαβ(τ) and ∂̂iBαβ(τ0) are calculated as defined in
equation (7.58). With equations (7.322) - (7.326) it is straightforward to confirm
that equation (7.321) is true, if one notes that up to the second order of the post-
Minkowskian approximation scheme

B−1(τ) = 1 −
2G
c2

N∑
a=1

maCa(s) −
ma√
1 − β2

a

(1 − k · βa)2

ra − k · ra

k · ra

ra − βa · ra

 , (7.327)
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so that equation (7.322) can be re-written as follows

S2 · S3 =
A(τ)

A(τ0)B−1(τ)B(τ0)
. (7.328)

Farther straightforward calculations confirm that the numerator and denominator in
equation (7.328) coincide precisely with those of equation (7.146) used for calcula-
tion of the Doppler shift in terms of frequency and, for this reason, equation (7.321) is
valid. This finalizes the proof of the equivalence of the two mathematical techniques
for calculation of the Doppler effect in gravitational field of moving bodies.

In conclusion of this section one would like to point out that the method of calcu-
lation of integrals in formulas (7.308), (7.309) explained in a sequence of equations
(7.310) - (7.315) can be successfully applied for calculation of the red shift of the
cosmic microwave background radiation (CMBR) caused by a cosmic string moving
with ultra-relativistic velocity [Stebbins, 1988].

7.8.5
The Explicit Doppler Tracking Formula

In view of practical applications it is useful to give the explicit formula that can be
used for the Doppler tracking navigation of satellites in deep space and for high-
precise gravitational experiments. It is derived in the present section for one-way
propagation of an electromagnetic signal emitted at point x0 at time t0, and received
at point x at time t. The Doppler shift of the observed frequency ν with respect to the
emitted frequency ν0 is given by equation (7.316) which is convenient to transformed
to another form to separate the effects of special and general relativity. Formula
(7.316) is factorized as follows

ν

ν0
=

1 − k · β
1 − k · β0

1 − β2
0

1 − β2

1/2 [
a(τ0)
a(τ)

]1/2 b(τ)
b(τ0)

, (7.329)

where the first two terms in the right side describe the special relativistic Doppler
effect, and the next two terms give the general relativistic contribution. The unit
vector k is given at past null infinity and relates to the unit vector K of the boundary
value problem through the relationship (7.67) which has the following explicit form

ki = −Ki +
2G
c2R

N∑
a=1

ma

1 − k · βa√
1 − β2

a

ri
a − ki(k · ra)
ra − k · ra

−
1 − k · βa0√

1 − β2
a0

ri
0a − ki(k · r0a)
r0a − k · r0a


+

4G
c2R

N∑
a=1

ma

 Pi
jβ

j
a√

1 − β2
a

ln(ra − k · ra) −
Pi

jβ
j
a0√

1 − β2
a0

ln(r0a − k · r0a)

 ,(7.330)

where R = |x − x0| is the distance between the point of emission and observation.
Explicit expressions for functions a(τ) and a(τ0) are derived using equation (7.273)
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which leads to

a(τ) = 1 +
2G
c2

N∑
a=1

ma
√

1 − β2
a

ra − βa · ra
(7.331)

−
4G
c2 (1 − β2)−1

N∑
a=1

ma√
1 − β2

a

(1 − β · βa)2

ra − βa · ra
,

a(τ0) = 1 +
2G
c2

N∑
a=1

ma

√
1 − β2

a0

r0a − βa0 · r0a
(7.332)

−
4G
c2 (1 − β2

0)−1
N∑

a=1

ma√
1 − β2

a0

(1 − β0 · βa0)2

r0a − βa0 · r0a
.

Let us recall that v0 = v(t0) is the barycentric velocity of emitter, va0 = va(s0) is
the barycentric velocity of a-th gravitating body at the retarded time s0 = t0 − r0a,
r0a = |r0a|, r0a = x0(t0) − xa(s0). Besides, v = v(t) is the barycentric velocity of
receiver, va = va(s) is the barycentric velocity of the a-th gravitating body at the
retarded time s = t − ra/c, ra = |ra|, ra = x(t) − xa(s).

Omitting all acceleration-dependent terms in equation (7.119) for the integral Ca,
and reducing similar terms, one obtains functions in the last factor of the basic rela-
tionship (7.329) the following explicit result

b(τ) = 1 +
2G
c2

N∑
a=1

ma√
1 − β2

a

1 − k · βa

ra − βa · ra
(7.333)

×

[
(1 − k · βa)(k × β) · (k × ra)

ra − k · ra
−

(k × βa) · (k × ra)
ra − k · ra

+ k · βa

]
,

b(τ0) = 1 +
2G
c2

N∑
a=1

ma√
1 − β2

a0

1 − k · βa0

r0a − βa0 · r0a
(7.334)

×

[
(1 − k · βa0)(k × β0) · (k × r0a)

r0a − k · r0a
−

(k × βa0) · (k × r0a)
r0a − k · r0a

+ k · βa0

]
.

Formulas (7.329) -(7.334) describe the Doppler shift of the radio signal transmit-
ted from observer to spacecraft. The Doppler shift of the radio signal transmitted
back to the observer is described by a similar set of equations with assignment to all
quantities instants of the signal’s reflection from the spacecraft and its reception cor-
respondingly. In case when the light ray grazes limb of a gravitating body, formula
(7.329) gives, of course, the result shown already in equation (7.300).
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7.9
Astrometric Experiments with the Solar System Planets

7.9.1
Motivations

Attaining the level of a microarcsecond (µas) positional accuracy and better will
completely revolutionize fundamental astrometry by merging it with relativistic
gravitational physics. Beyond the microarcsecond threshold, one will be able to
observe a new range of celestial physical phenomena caused by gravitational waves
from the early universe and various localized astronomical sources, spacetime topo-
logical defects, moving gravitational lenses, time variability of gravitational fields
of super-massive binary black holes located in quasars, and many others [Kopeikin
and Gwinn, 2000; Kopeikin and Makarov, 2006; Kopeikin et al., 1999]. Further-
more, this will allow us to test general theory of relativity in the solar system in
a dynamic regime, that is in case when velocity- and acceleration-dependent com-
ponents of gravitational field (the metric tensor) of the Sun and major planets give
rise to observable relativistic effects in the light deflection, time delay and frequency
shift. Some of these effects have been already observed [Fomalont and Kopeikin,
2008, 2003; Kopeikin and Fomalont, 2002; Kopeikin et al., 2007; Kopeikin, 2009]
and will be discussed later in more detail.

Early calculations [Brumberg et al., 1990; Schuh et al., 1988] revealed that major
planets of the solar system are sufficiently massive to make flybys of photon sensitive
to their gravitational pull. It was also noticed [Brumberg et al., 1990; French et al.,
1993; Hubbard et al., 1993; Klioner, 1991b; Klioner and Kopeikin, 1992; Turyshev,
2009b] that gravitational field of the planets have a complicated multipolar struc-
ture so that besides the monopole component of the field, the quadrupole, J2, and
higher-order multipoles can deflect light at the level of a few microarcseconds 15),
in contrast to the Sun whose quadrupole moment is only J2� ≤ 2.3 × 10−7 [Pijpers,
1998; Pireaux et al., 2007; Pitjeva, 2005b]. Moreover, in the case of photon propa-
gating near planet the interaction between the gravitational field and the photon can
no longer be considered as static, because the planet moves around the Sun as the
photon traverses across the solar system [Kopeikin and Mashhoon, 2002; Kopeikin
and Schäfer, 1999]. The optical interferometer designed for the space astrometric
mission SIM [Edberg et al., 2007; SIM, 2010] is capable of observing background
optical sources fairly close to planetary limbs with a microarcsecond accuracy. Sim-
ilar resolution can be achieved for radio sources (quasars) with the Square Kilometer
Array (SKA) [Carilli and Rawlings, 2004; Dewdney et al., 2009] if it is included to
the inter-continental baseline network of VLBI stations [Fomalont and Reid, 2004].
The European space astrometry mission Gaia [Lindegren, 2009; Lindegren et al.,
1995; Lindegren and Perryman, 1996] and the OBSS [Johnston et al., 2006] as-
trometric project represent another alternative path to microarcsecond astrometry

15) The most recent data on physical and geometric parameters of major planets of the solar system are
available at NASA JPL website http://ssd.jpl.nasa.gov/?gravity_fields_op
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[Klioner, 2003a; Vecchiato et al., 2003].
New generation of microarcsecond astrometry satellites: SIM and a cornerstone

mission of ESA - Gaia, requires a novel approach for an unambiguous interpretation
of astrometric data obtained from the on-board optical instruments. SIM and Gaia
complement one another. Both SIM and Gaia have a potential to approach the accu-
racy of 1 µas. Gaia will observe all stars (∼ 109) between magnitude 6 and 20. The
accuracy of Gaia is about 5 µas for the optimal stars (magnitude between 6 and 13).
SIM was planned to observe 10000 stars with magnitude up to 20. The accuracy of
SIM was expected to be a few µas for any object brighter than about 20 provided that
sufficient observing time would be allocated for that object. At this level the prob-
lem of propagation of light rays must be treated with taking into account relativistic
effects generated by non-static part of the gravitational field of the solar system and
binary stars [Kopeikin and Gwinn, 2000]. It is a challenge for the SIM and SKA
interferometers as well as for Gaia and OBSS to measure the gravitational bending
of light caused by various planetary multipoles and the orbital motion of the planets.
This measurement, if successful, will be a cornerstone step in further deployment of
theoretical principles of general relativity to fundamental astrometry and the solar
system navigation at a new, exciting technological level.

The first attempt to observe gravitational deflection of radio waves by a major
planet - Jupiter - was undertaken by H. Schuh et al. [Schuh et al., 1988; Yoshino
et al., 1989] when quasar P0201+113 passed within 200 arcsec of Jupiter on March
21, 1988. An expected apparent slight position change during the approach of
P0201+113 to Jupiter was not been clearly detected, perhaps due to insufficient
accuracy of the source position. The other team from NASA JPL was conducting
the same experiment with the technique of differential VLBI, over two Deep Space
Network (DSN) California-Australia baselines and it was more lucky [Treuhaft and
Lowe, 1991]. The deflection term associated with the monopole field of Jupiter was
approximately 300 µas and it was determined to an accuracy of ' 15% in agreement
with Einstein’s general relativity theory. Later on, the Hubble Space Telescope was
used to measure the gravitational deflection of light of the bright star HD 148898
as it passed within a few seconds of arc near Jupiter’s limb on 24 September 1995
[Whipple et al., 1996]. S. Kopeikin [Kopeikin, 2001] proposed to use Jupiter’s or-
bital motion in order to measure the retardation effect in the time of propagation of
gravitational force from Jupiter to observed photon. The retardation effect of gravity
appears in observations as a small excess to the static Shapiro time delay due to the
gravitomagnetic change in the direction of the gravitational force exerted on photon
by the planet as it moves along its orbit. The proposal was executed experimen-
tally with Very Long Baseline Array (VLBA) in 2002 September 8, and the speed of
propagation of gravity (as compared with the speed of light) was measured to ' 20%
accuracy [Fomalont and Kopeikin, 2003]. This measurement is in agreement with
general relativity. Physical interpretation of the gravity propagation in the light-ray
deflection experiments has several aspects emphasizing various parts of general rel-
ativity involved to the experiment that were summarized by Kopeikin and Fomalont
[2006]. There are also authors who believe that the gravitational light-ray deflection
experiments with moving massive planets the speed of light from the quasar [Will,
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2006]. This point of view reflects misunderstanding of the underlying principles of
general relativity and the way how it relates to special relativity 16). Section 7.9.4.3
comments on the "speed of light" interpretation.

The speed-of-gravity experiment conducted in the gravity field of moving Jupiter
stimulated researchers to take a next step in exploring gravitational bending of
light by the major planets. Most notably, Crosta & Mignard [Crosta and Mignard,
2006] proposed to measure the deflection of light associated with the axisymmetric
quadrupolar part of Jupiter’s gravitational field. Their work was aimed at converting
the earlier theoretical calculations [French et al., 1993; Hubbard et al., 1993; Klioner,
1991b; Kopeikin, 1997c; Le Poncin-Lafitte and Teyssandier, 2005] of light bend-
ing by gravitational multipoles into a practical algorithm for Gaia data processing,
thus, extending the relativistic techniques of astrometric data reduction having been
worked out in a number of previous papers [de Felice et al., 2004, 2006; Klioner,
2003a; Klioner and Kopeikin, 1992; Kopeikin and Mashhoon, 2002; Kopeikin and
Schäfer, 1999]. It is worth noting that the quadrupolar field of planets and their nat-
ural satellites can be independently measured by the Doppler tracking of spacecraft
orbiting the planet [Rappaport et al., 1997]. The quadrupolar field modulates a mi-
crowave beam transmitted from a spacecraft orbiting the planet, thus, making the
received frequency of the beam a complicated function of the planetary quadrupole
deformation that can be measured. This effect is related not to the process of propa-
gation of the radio signal but to the effect of gravitational red shift originating from
the transformation from the proper time of the spacecraft to the barycentric time of
the solar system that are described by equation (3.246). Detection and precise mea-
surement of the quadrupolar deflection of light by a planet of the solar system differs
from the Doppler tracking technique and is important for providing an independent
experimental support for the theory of cosmological gravitational lenses formed by
a galaxy or a cluster of galaxies. The cluster’s gravitational potential (that includes
the invisible dark matter) is reconstructed from the observed distortion of images of
background quasars under assumption that the multipolar field of the gravitational
lens deflects light exactly as predicted in general relativity [Courbin et al., 2002;
Schneider et al., 1992]. This is the best assumption for doing physically meaning-
ful interpretation of observational data but its experimental confirmation is highly
needed and will be crucial for getting an unbiased estimate of the amount of dark
matter in the universe.

The work [Crosta and Mignard, 2006] was substantially extended in several direc-
tions in paper by Kopeikin and Makarov [Kopeikin and Makarov, 2007]. Crosta &
Mignard [Crosta and Mignard, 2006] assumed that star light propagates in the static
field of Jupiter, thus, ignoring that the planet moves along its orbit as the light tra-
verses the solar system toward observer. A question arises about what position of
Jupiter is to be used for calculation of the gravitational light deflection in the data
processing algorithm. Another question is about the displacement of the center of

16) It is common to refer to the fundamental speed c in Einstein’s field equations as to the speed of light.
However, general relativity is a fundamental theory about the nature of gravity and has nothing to do
with the physical speed of light. The speed c in general relativity is the speed of gravity!
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mass of Jupiter with respect to the origin of the inertial coordinates in the sky used
for measuring the stellar positions that are affected by the gravitational deflection
of light by Jupiter. An assumption that the center of mass of the planet coincides
with the origin of the coordinates makes the dipole moment, Ii, of the gravitational
field of Jupiter vanish identically 17), which definitely simplifies theoretical calcula-
tion of the light bending. However, the position of Jupiter’s center of mass is not
known precisely but with some error due to the finite accuracy of the Jupiter’s celes-
tial ephemeris currently limited to a few hundred kilometers [Pireaux et al., 2007;
Pitjeva, 2005a,b]. This inaccuracy in the position of Jupiter should be taken into ac-
count in data processing of microarcsecond astrometric observations by including a
non-zero value of Jupiter’s dipole moment to the multipolar expansion of the gravi-
tational field of the planet. In other words, any realistic set of measurements can only
be adequately interpreted within a certain model of the relativistic deflection of light,
which includes all parameters accounting for a possible shift of the true position of
the planet’s center of mass from the origin of the local inertial frame used for theoret-
ical calculation of the light deflection. The dipole moment can introduce a spurious
deflection of light which must be understood and sorted out. The problem is that the
data processing algorithm can reduce the dipole moment of the gravitational field
to zero, if and only if, general relativity is compatible with special relativity, that is
the speed of gravity (the fundamental speed in general relativity) equals the speed of
the Minkowski spacetime [Kopeikin and Fomalont, 2007; Kopeikin and Makarov,
2007]. Thus, the problem of measuring the dipolar light deflection component ac-
quires a great significance of testing this fundamental principle.

If the effect of the gravitational dipole is not properly removed from observations
it will forge a quadrupolar deflection of light because of the change in the plane-
tary moments of inertia due to the effect known in physics as the parallel-axis or
Steiner’s theorem [Arnold, 1995] (see equation (7.350) below). This translation-
induced quadrupolar distortion of the light-ray deflection pattern of the background
stars should be clearly discerned from that caused by the intrinsic quadrupole mo-
ment of the planet J2. One is also going to discuss theoretical and observational as-
pects of monopolar, dipolar, and quadrupolar light-ray deflections and to investigate
how the spurious deflections can be separated from the physical ones caused by the
intrinsic quadrupole moment of planet and how to use the measurement of the dipo-
lar anisotropy to test the relativistic effects caused by the time-dependent component
of the gravitational field deflecting light rays. One will employ the mathematical
technique similar to that having been used for calculation of light propagation in the
field of the Liénard-Wiechert potentials of point-like masses. This technique will be
extended to the case of deflection of light by higher-order multipoles.

One further stipulates that general relativity is valid, which implies that, at least in
linearized approximation, gravity operates on the null cone and the force of gravita-
tional interaction propagates on the spacetime manifold with the fundamental speed
c [Low, 1999]. It is suggested that each photon incoming to the solar system from a
source of light propagates in vacuum, and its physical speed is equal to c. It simplifies

17) That is, Ii = 0 at any instant of time.
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calculations and avoids discussion of the dispersive effects in plasma. One adopts,
as in any other part of the book, that Latin indices take values 1,2,3, and the Greek
ones run from 0 to 3. The Kronecker symbol (a diagonal unit matrix) is denoted
δi j = diag(1, 1, 1), and the fully anti-symmetric symbol of Levi-Civita, εi jk, is de-
fined in such a way that ε123 = +1. The Minkowski metric is ηαβ = diag(−1, 1, 1, 1).
Greek indices are raised and lowered with the Minkowski metric ηαβ. By convention,
Latin indices are raised and lowered with the Kronecker symbol δi j which makes
no difference between super- and sub-script Latin indices. Repeated indices indi-
cate the Einstein summation rule. Bold letters denotes a spatial vector, for instance
x = xi = (x1, x2, x3). A dot or a cross between two spatial vectors denote the Eu-
clidean scalar or vector products respectively: A · B = AiBi = AiBi = AiBi, and
A× B = (A× B)i = εi jkA jBk. Angular brackets around a pair of the Latin indices of
a spatial tensor of rank two denote its symmetric and trace-free (STF) part [Thorne
and Hartle, 1985], for example,

I<i j> ≡
1
2

(
Ii j + I ji

)
−

1
3
δi jIkk , (7.335)

where Ikk = δkpIkp (see Section 1.2.2 for more detail). Partial derivatives with respect
to four-dimensional coordinates xα are denoted with ∂a so that for any differentiable
function F(t, x) one has ∂aF ≡ ∂F/∂xα. Partial derivatives of F(t, x) with respect
to spatial coordinates xi are denoted as ∂iF ≡ ∂F/∂xi ≡ ∇F. Partial derivative of
function F(t, x) with respect to time is denoted ∂tF ≡ ∂F/∂t. Total derivative of
F(t, x) with respect to time is denoted with an overdot appearing above function,
that is

Ḟ ≡
dF
dt

=
∂F
∂t

+
dx
dt
· ∇F . (7.336)

Notice that, in general, Ḟ , ∂F/∂t except when F is a function of time only.
One will repeat derivation of the solution of light-ray propagation equation for the

case of light propagating in the field of a moving massive planet with a quadrupole
component of its gravitational field taken into account. Mathematical technique will
be similar to that used in section 7.3 but significantly adapted to the particular situa-
tion of the astrometric experiment under discussion. For this reason, some details of
the technique are repeated here to make this section self-sufficient. One starts from
the discussion of the unperturbed trajectory of light ray.

7.9.2
The Unperturbed Light-ray Trajectory

Let us introduce a global coordinate system xα = (x0, xi) = (ct, xi) covering the en-
tire spacetime and coinciding with an inertial frame at infinity where gravitational
field is absent. One will assume that observer does not move with respect to the co-
ordinate system xα. Section 7.9.4 will prove that the results are gauge-independent
and Lorentz-invariant and, in fact, are valid in any other frame with observer moving
with arbitrary velocity. It is further assumed that the origin of the coordinate sys-
tem xα is close to the center of mass of the planet, which is the only source of the
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Figure 7.10 Light propagates from a star to observer in the direction of the unit vector k. The
planet is displaced from the origin of the coordinate system by a vector L = xP that is a
parameter of the data analysis algorithm. The planet’s rotation axis is specified by the unit
vector s. The impact parameter of the light ray is d. Two unit vectors, n and m, are orthogonal
to the vector k and form a "plane of the sky" that is perpendicular to the line of sight of the
observer. Vector s has arbitrary direction in space not associated with the plane of the sky.
Letter χ denotes the angle between the star and the planet.

gravitational field. This assumption can be relaxed in the linearized approximation
of general relativity where the gravitational field of masses is additive [Misner et al.,
1973]. One prefers to simplify the consideration and does not include other masses
because the main concern is the propagation of light in the field of a particular planet.
The light deflection by other bodies of the solar system is calculated on the basis of
the same equations and can be added later if necessary.

Let us consider a bundle of light-rays emitted by a source of light (star, quasar)
simultaneously and propagating as a narrow beam along parallel lines toward the
solar system. In the absence of gravitational field each light particle (photon) from
the bundle propagates in the coordinate system xα along a straight line

xi = xi
0 + cki(t − t0) , (7.337)

where t0 and xi
0 = xi(t0) are the time and space coordinates of the photon at the

time of emission, and ki is the unit vector along the unperturbed photon’s trajectory
as shown in Figure 7.10. One assumes that the photon hits detector (is observed) at
time t1 when its coordinate xi

1 = xi(t1). Let us denote the time of the closest approach
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of the photon to the origin of the coordinate system as 18)

t∗ = t0 − c−1 k · x0 . (7.338)

It is mathematically convenient to introduce parameter τ along the unperturbed light
ray

τ = t − t∗ , (7.339)

and a constant (impact-parameter) vector

ξi = Pi jx j = Pi jx j
0 , (7.340)

that points out from the origin of the coordinate system to the point of the closest
approach of the unperturbed light ray (see Figure 7.10). Here Pi j = δi j − kik j is the
operator of projection onto the plane of the sky which is orthogonal to the vector ki.
By definition, Pi jP jk = Pik. Notice that the impact parameter vector ξi has nothing
to do with the impact parameter of the light ray with respect to the planet, which is
not located, in general, at the origin of the coordinate system. The role of the impact
parameter ξi is supplementary as it will not enter any equation describing the observ-
able effects. This is natural as one has chosen the origin of the coordinate system
arbitrary and the result of physical observations can not depend on this choice.

Parametrization of the unperturbed light-ray trajectory given by equations (7.338)-
(7.340) converts equation (7.337) to

xi = ckiτ + ξi , (7.341)

where τ and ξi are independent of each other, and can be considered as coordinates
in the 2+1 manifold of the light-ray bundle because the projection (7.340) makes ξi

have only two independent spatial components lying in the plane of the sky. At each
instant of time t = τ + t∗, distance r = r(τ) of the photon from the origin of the
coordinate system is

r =
√

c2τ2 + d2 , (7.342)

where d = |ξ| is the absolute value of the impact parameter of the photon, that is
constant for each light ray from the parallel beam of the light-ray bundle moving in
the direction k. Notice that definition (7.339) implies that τ = 0 when t = t∗, τ < 0
when t < t∗, and positive otherwise (see Figure 7.10).

7.9.3
The Gravitational Field

7.9.3.1 The field equations
The solar system is considered as isolated and spacetime as asymptotically flat which
means there are no other masses outside of the solar system. The gravitational field

18) Notice that t∗ changes its value from one inertial frame to another in accordance with the law of the
Lorentz transformation. Equation (7.338) gives t∗ in a static, non-moving frame.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 614

614

of the solar system is produced by the Sun and the planets which curve spacetime
and deflect light by their gravitational fields. In what follows, one takes into account
the gravitational field of two bodies only - the Sun and a planet moving around the
barycenter of the solar system. Furthermore, one considers the solar gravitational
field as spherically-symmetric in its own, proper reference frame because in this
frame the dipole and quadrupole moments of the Sun are negligible. Gravitational
deflection of light by the Sun is well-known [Brumberg, 1991] and the discussion
will be focused of the light bending by a moving axisymmetric planet.

The planet moves around the barycenter of the solar system as a light ray propa-
gates from a star toward observer. Position of the planet with respect to the origin
of the coordinates xα at time t is defined by vector xP = xP(t), its velocity is de-
noted vP = dxP/dt, and acceleration aP = dvP/dt. One stipulates that the planet’s
distribution of mass is axisymmetric around the unit vector s = s(t) that defines the
rotational axis of the planet at time t. This vector can change its orientation in space
due to precession. Our calculation method is general enough, and it does not need
to assume that the parameters characterizing translational and rotational motion of
the planet are constant or equal to zero. In other words, one does not assume that
xP = 0, nor that vP = aP = 0 and s are constant vectors. One calculates gravitational
deflection of light by the axisymmetric gravitational field of the planet but ignores
the relativistic effects in light propagation caused by its gravitomagnetic field due to
the intrinsic rotation of planet [Kopeikin and Mashhoon, 2002], since these effects
are negligibly small and can not be detected with the microarcsecond astrometric
resolution [Brumberg et al., 1990; Turyshev, 2009b].

The gravitational field of the solar system is described by the metric tensor

gαβ = ηαβ + hαβ , (7.343)

where ηαβ is the constant Minkowski metric, and hαβ = hαβ(t, x) is its perturbation
which is associated in general relativity with gravitational potentials. Let us impose
the harmonic gauge condition 7.2 on the potentials which is convenient and mathe-
matically powerful choice for solving Einstein’s gravity field equations [Fock, 1957,
1964]. Outside the planet, in vacuum, and in the harmonic gauge (7.2), the linearized
Einstein equations for the field hαβ are homogeneous wave equations [Blanchet and
Damour, 1986, 1989; Thorne, 1980](
−

1
c2

∂2

∂t2 + ∇2
)

hαβ = 0 . (7.344)

A question can arise about the universality of the harmonic gauge and physical in-
terpretation of the solution of the wave equation (7.344). Indeed, Einstein’s theory
of general relativity is formulated in covariant tensor form while the wave equation
(7.344) is valid in a particular harmonic gauge only. First of all, one notices that the
harmonic gauge does not pick up a single coordinate system but admits a whole class
of both global and local harmonic coordinates related to each other by the coordinate
transformations which do not violate the harmonic gauge condition (7.2). The class
of the global harmonic coordinates consists of the reference frames which are mov-
ing with respect to each other with constant velocities. These asymptotically-inertial
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reference frames are connected to each other through the Lorentz transformation
as was shown by Fock [Fock, 1957] for a generic case including non-linearity of
Einstein’s equations. Local harmonic coordinates were introduced to gravitational
physics by Thorne and Hartle [Thorne and Hartle, 1985]. The law of transforma-
tion between the local harmonic coordinates extends the Lorentz transformation to
that making a class of harmonic polynomials that are solutions of the homogeneous
wave equation [Brumberg and Kopejkin, 1989a,b; Damour et al., 1991; Klioner and
Voinov, 1993; Kopeikin and Vlasov, 2004; Kopejkin, 1988a]. They have a great
practical value for modern fundamental astronomy [Kopeikin, 2007; Soffel et al.,
2003]. Second important observation is that the class of the harmonic coordinates
is actually much more general than physicists used to think. In particular, papers
[Kopeikin and Korobkov, 2005; Kopeikin et al., 2006, 1999] showed that the stan-
dard Arnowitt-Deser-Misner (ADM) gauge [Arnowitt et al., 1962, 2008] widely used
for dynamic formulation of general relativity, may be viewed as a sub-class of the
harmonic gauge in vacuum (see also Section 3.10.4 of the present book). Final re-
mark is that data processing algorithms always operates with observable quantities
- deflection angle of a light ray, time delay, frequency shift, etc. These quantities
are invariant with respect to gauge transformations and, hence, all results obtained in
this and other sections of the present book are valid in arbitrary gauge. The harmonic
gauge is simply a convenient mathematical tool facilitating calculations and physical
interpretation of the observed relativistic effects.

7.9.3.2 The planet’s gravitational multipoles
A general solution of equation (7.344) is given in the form of a multipolar expansion
(3.544), (3.545a) and (3.560) depending on spatial coordinates and time-dependent
parameters which are linear combinations of the intrinsic multipole moments of the
planet and displacement vector xP of its center of mass from the origin of the coordi-
nate system. This section omits the relativistic effects of the planet’s spin and focuses
primarily on the effects caused by its mass monopole, dipole, and quadrupole fields
in the multipolar expansion of the gravitational field of the planet. Relativistic ef-
fects caused by the spin and higher-order mass multipoles are discussed exhaustively
in [Kopeikin and Korobkov, 2005; Kopeikin et al., 2006; Kopeikin and Mashhoon,
2002; Kopeikin, 1997c].

Because equation (7.344) is linear, one can consider gravitational field of the solar
system as a linear superposition of the individual fields. For each massive body the
solution of equation (7.344) in the quadrupolar approximation is

h00(s, x) =
2GM
c2r

−
∂

∂xi

[
2GIi(s)

c2r

]
+

∂2

∂xi∂x j

[
GI<i j>(s)

c2r

]
, (7.345)

h0i(s, x) = −
4Gİi(s)

c3r
+

∂

∂x j

[
2Gİ<i j>(s)

c3r

]
, (7.346)

hi j(s, x) = δi jh00 +
2GÏ<i j>(s)

c4r
, (7.347)

where r = |x| is the distance from the origin of the coordinate system to the field
point xα = (ct, xi), and the angular brackets around two indices denote the STF
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tensor which structure has been explained in equation (1.49) and in appendix A.
Notice that the second time derivative of the dipole moment Ii is absent due to the
law of conservation of the linear momentum of the body [Blanchet and Damour,
1986, 1989; Thorne, 1980].

The gravitational field described by equations (7.345)-(7.347) should be inter-
preted as created by a massive planet placed at some distance xP from the origin
of the coordinate system and characterized by several parameters, of which M is a
constant mass of the planet, Ii(s) is the dipole, and I<i j>(s) is the quadrupole moment
- both taken at the retarded instant of time

s = t −
r
c
. (7.348)

The retardation in the solution (7.345)-(7.347) of the gravity wave equation (7.344) is
a direct consequence of the retarded (causal) nature of the gravitational field in gen-
eral relativity and its finite speed of propagation, which is equal to c. The null cone
corresponding to the causal domain of influence of the gravitational field of planet is
shown in Figure 7.11. The planet moves along its own worldline so that observer is
expected to see any effect of the planet’s gravitational field not instantaneously but
with the retardation that is due to the finite speed of propagation of gravity on the
future part of the null cone. Figure 7.11 gives a general-relativistic picture of the
process of propagation of gravity from the moving planet to observer but it is also
valid in a number of alternative theories of gravity [Kopeikin and Fomalont, 2006;
Kopeikin and Ni, 2008].

The dipole and quadrupole moments are fully taken into account because they
produce a relativistic deflection of light that can be significant for several planets
[Brumberg et al., 1990; Crosta and Mignard, 2006; Malkin et al., 2009; Turyshev,
2009b]. In general relativity, all relativistic effects due to the dipole moment of
the gravitational field are coordinate-dependent and, hence, can be eliminated if the
origin of the coordinate system is placed exactly at the center of mass of the real
planet. However, one retains the dipole moment Ii in the multipolar decomposition
of the planetary gravitational field (7.345)-(7.347) because in practice the center of
mass of the planet is a fitting parameter which is to be determined from observations.
Furthermore, even if one were able to make Ii = 0 at a particular instant of time, this
equality would be violated in later times because the uncertainties of astrometric
measurements will lead to the residual velocity of the planet with respect to the
coordinate frame and planet’s center of mass, xi

P, can not be kept fixed at the origin
of the frame. It is true that the effect of this residual velocity on the value of the
dipole may be rather small but it exists from a principal point of view. Therefore, it is
important to properly parameterize and evaluate the influence of the dipole moment
of the gravitational field on light deflection. More physical reason, for having Ii , 0
is that planet moves with acceleration around the barycenter of the solar system. If
one try to make Ii = 0 for any instant of time, it will violate the basic assumption
that the coordinate chart used for calculations is asymptotically flat as the accelerated
frame does not admit this property [Misner et al., 1973].

If the center of mass of the planet is shifted from the origin of the coordinate
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Figure 7.11 Gravitational field of a planet is a retarded solution of the gravity wave equation
(7.344). In general relativity, gravitational field propagates on the hypersurface of a null cone
from past to future. Directions of the propagation of the gravitational field are null
characteristics of the gravity field of the planet and they are shown by arrows. The picture
assumes for simplicity that the coordinate-dependent effects associated with the dipole
moment Ii are excluded (Ii = 0). Observer measures gravitational field at time t, when the
planet is located at the retarded position on its orbit at the retarded time s = t − r/c, that is
equation of a null characteristic of the gravitational field.
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system by a spatial vector Li = xi
P, the dipole and quadrupole moments of the grav-

itational field entering the metric tensor perturbations (7.345)-(7.347) are defined in
the linearized approximation of general relativity by the following equations

Ii = Mxi
P , (7.349)

I<i j> = J<i j> + Mx<i
P x j>

P , (7.350)

where J<i j> is the intrinsic quadrupole moment of the planet in its own proper refer-
ence frame whose origin coincides with the planet’s center of mass, and one has
used the parallel-axis theorem [Arnold, 1995] to split Ii j to Ji j and the transla-
tional quadrupole term Mx<i

P x j>
P . Equations (7.349), (7.350) approximate the post-

Newtonian definitions of the multipole moments used in the relativistic celestial
mechanics of N-body system as described in section 4.4 of this book. However,
the post-Newtonian corrections to equations (7.349), (7.350) yield terms which are
much less than 1 µas in light deflection, and hence, can be ignored.

Both the dipole, Mxi
P, and the translational quadrupole, Mx<i

P x j>
P , will affect the

post-fit results of the light-ray deflection measurement, and thus, they are directly
observable in the light-ray deflection pattern. However, if general relativity is valid,
these deflections are spurious, coordinate-dependent effects and the goal of the data
analysis system is to suppress their impact on the values of the fitting parame-
ters within the accuracy of astrometric observations. To this end, the dipolar and
quadrupolar deflections associated with the translation Li = xi

P must be incorporated
to the data analysis in order to assume a full control on their influence on the values
of the fitting physical parameters like the intrinsic oblateness J2, etc. If this is not
done, the coordinate-dependent effects can not be eliminated and the light deflection
due to the dipole, Mxi

P, and the translational quadrupole, Mx<i
P x j>

P , may exceed the
physical deflection of light caused by the intrinsic quadrupole moment, J2, of the
planet, thus, making its measurement in the gravitational light-ray deflection experi-
ments impossible.

In what follows, the planet is assumed to be axisymmetric around its rotational axis
defined at each instant of time by a unit vector si. The planet has equal equatorial
moments of inertia A = B, and the axial moment of inertia C , A. The dynamic
oblateness of the planet is denoted as J2 = (C − A)/A [Brumberg, 1991; Murray,
1983]. This definition yields the intrinsic quadrupole moment represented as an STF
tensor of the second rank [Murray, 1983]

J<i j> = MJ2R2
(
sis j −

1
3
δi j

)
, (7.351)

where R is the equatorial radius of the planet. It is immediately seen from equation
(7.351) that the intrinsic quadrupole moment is symmetric and trace-free, that is
J<ii> = 0, in accordance with its definition. One also notices that the first time
derivative of the dipole and quadrupole moments

İi = Mvi
P , (7.352)

İ<i j> = 2Mx<i
P v j>

P , (7.353)
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should be used in calculations of h0i in equation (7.346). The first time derivative
of J<i j> in h0i, and the second time derivative of the overall quadrupole moment
I<i j> in hi j will be neglected as they lead to higher-order relativistic effects in light
deflection. For example, as follows from the subsequent calculations, the light-ray
deflections caused by the second derivative of the quadrupole moment I<i j> have
magnitude of the order of αM(vP/c)2, where αM is the gravitational bending due to
the mass monopole of the planet. In case of Jupiter the maximal value of αM ∼

16300 µas [Brumberg et al., 1990; Crosta and Mignard, 2006; Turyshev, 2009b],
and vP/c ∼ 4.5×10−5 [Kopeikin, 2001], that makes the light deflection angle caused
by the second time derivatives αM(vP/c)2 � 1 µas.

7.9.4
The Light-ray Gravitational Perturbations

7.9.4.1 The light-ray propagation equation
The equation of motion of light in gravitational field is given by the light-ray
geodesic 7.20 which is

dKα

dλ
+ ΓαµνK

µKν = 0 , (7.354)

where Kα = dxα/dλ is the wave vector of the electromagnetic wave corresponding
to the light ray, λ is the affine parameter along the light ray, and

Γαµν =
1
2

gαβ
(
∂νgβµ + ∂µgβν − ∂βgµν

)
, (7.355)

is the Christoffel symbols (7.24)–(7.29).
When one substitutes the expansion of the metric tensor (7.343) to equation

(7.354), and transforms the affine parameter λ in this equation to the coordinate time
t, the light geodesic equation (7.354) is reduced to the following three-dimensional
form [Brumberg, 1991]

d2xi

dt2 = F i(t, x) , (7.356)

where the gravitational perturbation is given explicitly in equation 7.30 and depends
on the perturbation of the metric tensor hαβ and the coordinate velocity of photon ẋi.
One notices that making use of time t in place of the parameter λ does not change
direction of propagation of the light ray, and is merely a technical tool that allows us
to express coordinate of the photon as a function of the same time argument which
governs evolution of the multipole moments of the gravitational field.

Equation (7.356) has an unperturbed (F i = 0) solution described in section 7.9.2.
In a weak-gravitational field approximation the light-ray geodesic equation (7.356)
has a unique solution given by

xi = ckiτ + ξi + Ξi(τ, ξ) − Ξi(τ0, ξ) , (7.357)
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where Ξi(τ, ξ) is a small perturbation of the straight light ray trajectory. In terms
of the parameter τ and the projection coordinates ξi, equation (7.356) is signifi-
cantly simplified, so that the perturbation Ξi obeys the ordinary differential equation
[Kopeikin et al., 2006, 1999]

d2Ξi

dτ2 =
c2

2
kαkβ

∂hαβ
∂ξi − c

d
dτ

(
kαhiα +

1
2

kih00 −
1
2

kik jkph jp

)
, (7.358)

where kα = (1, ki) is a null vector along the unperturbed trajectory of the light
ray. Equation (7.358) describes two relativistic effects - gravitational bending and
time delay of light which are closely related to each other [Kopeikin and Korobkov,
2005]. This section discusses only the deflection of light as one of the most promi-
nent method of testing general theory of relativity in the solar system..

7.9.4.2 The null cone integration technique
One has already described in detail the integration technique of the null geodesics in
section 7.3. Nevertheless, since the metric tensor (7.345)-(7.347) has the structure
being different from the retarded Liénard-Wiechert potentials (7.12), it is instructive
to re-introduce this technique to see more clearly how the null cone structure of the
gravitational field is involved to the process of propagation of light.

Without imposing any restriction on the ratio of the impact parameter d of the
light-ray trajectory to the distance r1 from the origin of the coordinate system to
observer, the total angle of the gravitational deflection of light in the plane of the sky
is given by a vector

αi = −
1
c

Pi j dΞ j

dτ
+ ∆αi , (7.359)

that should be compared with equation (7.112). Function ∆αi in equation (7.359)
includes relativistic corrections due to both the finite distance r0 of the source of
light (star, quasar) from the planet, the finite distance r1 between the observer and
the planet, and the difference of the local inertial frame of observer [Klioner, 2004;
Ni and Zimmermann, 1978b] from the coordinate system xα = (t, xi) introduced for
the calculation of light-ray propagation. It is further stipulated that r0 → ∞, and the
observer is at rest at a sufficiently large distance from the light-ray deflecting body
which are realistic assumptions 19). Under these circumstances ∆αi is negligible,
and can be omitted. Indeed, the largest contribution to ∆αi associated with the finite
distance r0 of star from the planet, is smaller than the first term in the right side of
equation (7.359) by a factor of r1/r0 [Kopeikin and Schäfer, 1999; Kopeikin et al.,
1999] that, in case of Jupiter, is about 2 × 10−5 even for the closest star α Centauri,
thus, making ∆αi � 1 µas. Notice that the finite-distance effects in the light-ray de-
flection angle may be important in the solar gravitational bending of light for several
nearby stars as discussed in a paragraph following equation (7.269). Contribution

19) Real observer (SIM, Gaia, VLBI station, etc.) moves with respect to the coordinate system xα with
velocity vi. Relativistic effects of this motion on light are obtained later after calculation of the gravita-
tional deflection of light by making use of the Lorentz transformation.
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to ∆αi due to the difference between the local inertial and global coordinate frames
is smaller than the first term in the right side of equation (7.359) by a factor of
(d/r1)(vP/c)2 [Kopeikin and Schäfer, 1999; Kopeikin et al., 1999] that also makes
|∆αi| � 1 µas, and one can ignore it. In cases when ∆αi may be important, for exam-
ple, in studying refraction of light by gravitational waves [Kopeikin and Korobkov,
2005; Kopeikin et al., 1999] or in cosmological gravitational lensing where r0 , 0,
and r1 is comparable with r0, the term ∆αi is solved in papers [Kopeikin et al., 2006;
Kopeikin and Mashhoon, 2002; Kopeikin and Schäfer, 1999].

Integrating equation (7.358) along the unperturbed light ray trajectory and substi-
tuting the result to equation (7.359) yields

αi = −
c
2
∂

∂ξi

∫ τ1

τ0

kαkβhαβ(τ, ξ )dτ + kαPi j
[
h jα(s1, x1) − h jα(s0, x0)

]
, (7.360)

where the retarded times

s0 = t0 −
r0

c
, (7.361)

s1 = t1 −
r1

c
, (7.362)

the integrand is taken on the unperturbed light-ray trajectory and can be represented
as

c2

2
kαkβhαβ(τ, ξ) = 2G

{
M
r
−

∂

∂ξ j

[
I j(s)

r

]
−

d
dτ

[
k jI j(s)

cr

]
−

k j İ j(s)
cr

(7.363)

+
∂2

∂ξ j∂ξp

[
I< jp>(s)

2r

]
+

d2

dτ2

[
k jkpI< jp>(s)

c2r

]
+

∂

∂ξ j

d
dτ

[
kpI< jp>(s)

cr

]}
,

the limits of integration τ1 and τ0 are the values of the parameter τ taken at the time
of observation, t1, and emission, t0, respectively (notice that τ0 < 0 and τ1 > 0),
and s = t∗ + τ − r/c with r = r(τ, ξ ) given by equation (7.342). Integration in the
right side of equation (7.360) can be performed easily if one adopts that in general
relativity the speed of propagation of gravity and the speed of light are numerically
the same, making the light cone hypersurface coinciding with that of the gravity null
cone, so that in practical experiments gravity interacts with light in a way shown and
explained in Figure 7.12. In some alternative theories of gravity the hypersurfaces of
the light and gravity null cones do not coincide as the speed of propagation of gravity
and light are different [Bailey and Kostelecký, 2006; Kopeikin, 2004; Mattingly,
2005; Will, 1993, 2006]. One has discussed the gravitational deflection of light
caused by moving bodies, in such theories in papers [Kopeikin, 2004; Kopeikin and
Fomalont, 2006; Kopeikin and Ni, 2008] which can be used as references.

One has found [Kopeikin and Korobkov, 2005; Kopeikin et al., 2006, 1999] that
for any smooth function of the retarded time F(s)/r, where r =

√
c2τ2 + d2 and

s = t − r/c = t∗ + τ −
√
τ2 + (d/c)2, the integration can be performed explicitly, and
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r
1

Future gravity cone

Planet

Past light cone

Star

time

space

space

Observer

Figure 7.12 Gravitational field of a planet (the case of dipole Ii = 0 is shown) affects only the
particles lying on the hypersurface of the future gravity null cone. A photon emitted by a star at
time t0 arrives to observer at time t1 along a null direction of the past light cone with a vertex at
the observer. Therefore, the future gravity null cone of the planet and the past light cone of the
observer must coincide along the null direction that is a null characteristic of the retarded
solution of the gravity-field wave equation (7.344). The photon detected at time t1, is deflected
by planet’s gravity force from the planet’s retarded position taken at time s1 = t1 − r1/c. This
effect of the retardation of gravity can be observed by measuring the amount of gravitational
deflection of light by a moving planet, and used to measure the numerical value of the
fundamental speed in Einstein’s equations (the speed of gravity) as discussed at the end of
section 7.9.4 and papers [Fomalont and Kopeikin, 2003; Kopeikin and Fomalont, 2002;
Kopeikin, 2004; Kopeikin and Fomalont, 2006]. Note that the retardation of gravity would not be
measurable had the planet been at rest with respect to observer.
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it yields∫ τ1

τ0

∂

∂ξi

[
F(s)

r

]
dτ =

∂

∂ξi

∫ τ1

τ0

F(s)
r

dτ (7.364)

= −
[
(1 + cos χ)F(s1) − (1 − cos χ0)F(s0)

] ξi

cd2 ,∫ τ1

τ0

d
dτ

[
F(s)

r

]
dτ =

F(s1)
r1
−

F(s0)
r0

, (7.365)

where cosχ0 = |cτ0|/r0, cos χ = |cτ1|/r1 are normalized to distances r0 = |x(t0)|,
r1 = |x(t1)| of the photon from the origin of the coordinate system taken at the
times of emission and observation of light respectively. Signs in the right side of
equation (7.364) are valid in case shown in Figure 7.10 when the light-ray deflecting
body is located between the source of light and observer. If the observer is located
between the source of light and the light-ray deflecting body, equation (7.364) is
still applicable after replacing cos χ → − cos χ [Kopeikin et al., 1999]. Finally, if
d = r1, that is the light ray arrives from the direction perpendicular to the light-ray
deflecting body, one must take cos χ = 0 in equation (7.364). All these situations
are discussed in [Kopeikin et al., 1999] in more detail to which the reader is referred
for a comprehensive theoretical review. Here one will discuss only a configuration
shown in Figure 7.10 because only this case is practically important for observation
of the gravitational deflection of starlight by the solar system planets.

It should be noted that the retarded time equation (7.362) describes the null direc-
tion connecting the planet and the observer and lying on the future gravity null cone
with the planet at its vertex as shown in Figure 7.12. Light moves along a different
null direction connecting the star and the observer and lying on the past light cone of
the observer. Therefore, equation (7.362) describes the retardation effect in propa-
gation of gravity force from the moving planet to a photon as the photon propagates
toward the observer and is subsequently detected at time t1. This retarded component
in the interaction of gravity with light was measured within 20% in the VLBI exper-
iment on September 8, 2002, and led to a direct observational confirmation of the
general relativistic postulate that the speed of gravity and light are the same within
the observational error [Fomalont and Kopeikin, 2003; Kopeikin, 2001; Kopeikin
and Fomalont, 2006].

7.9.4.3 The speed of gravity, causality, and the principle of equivalence

Render unto Caesar the things which
are Caesar’s, and unto God the things
that are God’s
Matthew 22:21; Mark 12:17; Luke
20:25

One should say here a few words about the concept of the speed of gravity be-
cause there is a great deal of confusion on this subject in literature. Most notably,
Will [2006] argues that the speed of gravity is associated exclusively with the sec-
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ond time derivatives of the metric that appear only in the Riemann tensor and in the
field equations. This point of view stems from the assumption adopted in Nordtvedt-
Will’s PPN formalism [Will, 1993], according to which the first-order partial time
derivatives of the metric tensor entering the Christoffel symbols are “naturally" nor-
malized to the fundamental speed of the Maxwell equations (that is the speed of
light). Because the Christoffel symbols enter operationally the principle of equiv-
alence, the book [Will, 1993, section 10.1] states that the principle of equivalence
demands nothing about the speed of gravity. Hence, Will [2006] considers the speed
of propagation of gravity from a moving planet to photon as being totally irrelevant
in the astrometric light-ray deflection experiments and insists that the relativistic cor-
rections to the gravitational light bending caused by a moving planet can be predicted
correctly even if the speed of gravity were infinite.

This is an example of incomprehension of different facets of the fundamental speed
c in conceptually different theories of fundamental physics [Ellis and Uzan, 2005]
– general relativity and electrodynamics. Both theories operate with the same fun-
damental constant c, but c that normalizes time derivatives in general relativity is
the limiting speed of propagation of gravity while c normalizing time derivatives in
equations of electrodynamics is the limiting speed of light [Kopeikin, 2004]. One
must also distinguish c that appears in the coupling constant of matter with gravity
in the right side of Einstein’s equations. Measuring relativistic effects produced by
the time derivatives of the metric tensor in general relativistic equations is equivalent
to measuring the ultimate speed of gravity. It does not matter whether the measured
effect is produced by the first, or second, or third-order time derivative – they are all
normalized to one and the same fundamental speed c. Conceptually, such measure-
ment of c in time-dependent gravitational fields of general relativity is fundamentally
different from measuring the fundamental speed c in electrodynamics. The question
is whether one can work out a theoretical setting in which the effects associated with
the speed of gravity (that is the c in time derivatives of general-relativistic equations)
can be clearly distinguished from the c associated with the propagation of light. Con-
trary to what Will [1993, 2006] states, the answer to this question is positive, and the
appropriate speed-of-gravity parametrization is based on the Liénard-Wiechert solu-
tions of the linearized Einstein equations [Kopeikin and Fomalont, 2006, 2007]. The
speed of gravity appears everywhere in equations in the form of the retarded time
s = t − r/c of the Liénard-Wiechert potentials. hence, the retarded time s can be
considered as a parameter which helps to track down the gravity-propagation effects
from the effects associated with the speed of light. This amazing property of the
gravitational Liénard-Wiechert potentials was noticed by Kopeikin [2001] and led to
the first experimental measurement of the numerical value of the fundamental speed
c in general relativity [Fomalont and Kopeikin, 2003].

Light is just a test particle propagating in gravity field. Measuring how light is
deflected by gravity, how it changes light’s frequency, polarization, etc., allows us to
study various properties of gravitational field including the speed of its propagation.
Gravitational experiments with test particles are not measuring the properties of the
particles. These properties must be calibrated and well-known before the experi-
ment, so the test particle parameters are fixed and excluded from the data processing
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algorithm. The speed of light is a fundamental speed associated with Maxwell’s
equation for electromagnetic field in vacuum. This is the ultimate speed for propa-
gation of any matter field. Gravity is not matter and is governed by Einstein’s theory
of general relativity which is physically different from the Maxwell theory of elec-
tromagnetic field. Both theories share the same fundamental speed c but one can
trace its origin in any kind of gravitational experiments which make use of light as
a probe of the gravity field characteristics. It is crucial to realize that the ultimate
speed of gravity appears already in the first-order time derivative of the metric ten-
sor, ∂gαβ/∂x0 = (1/c)∂gαβ/∂t on spacetime manifold. The speed of gravitational
waves is calculated from the gravity field equations, which involve the second time
derivatives of the metric tensor. Since general relativity is a theory of massless grav-
itational field, the speed of gravitational waves coincide with the ultimate speed of
gravity entering the Christoffel symbols [Low, 1999]. The hypothetical difference of
the speed of gravitational waves from c could appear if graviton had mass [Babak and
Grishchuk, 2003]. At the same time, the ultimate speed of gravity in the Christoffel
symbols could be different from c because of non-zero value of nonmetricity Qαµν of
the manifold’s affine connection [Heinicke et al., 2005]. In this case the fundamen-
tal speed of gravity in general relativity could be different from the speed of light,
at least, in a some preferred frame [Kopeikin, 2004]. In any case, any experiment
confirming that the time derivatives of equations of general relativity are normal-
ized to c, indicates that the speed of gravity is finite. This is why the measurement
of the fundamental speed c in the affine connection is of a paramount importance
[Kopeikin, 2004; Kopeikin and Fomalont, 2006].

Einstein had no any experimental evidence for the finite speed of gravity. However,
he consistently believed in the universal character of the principle of relativity and in
the universality of the fundamental speed c. Einstein’s letter written to Carl Seelig
[Seelig, 1956] in 1955, expressed his point of view on the theory of relativity as
follows:

“Its novelty was to formulate that the Lorentz transformations are of importance
beyond the scope of the Maxwell equations and concerns the structure of the
space and time. Another new point was the conclusion that the Lorentz invari-
ance is the general demand for any physical theory."

Hence, he postulated that the speed of gravity in all equations of general relativity
must be equal to the speed of light in vacuum. However, this postulate is not a dogma
but a matter of experimental confirmation.

Going back to PPN formalism [Will, 1993] one notices that it conceptually dis-
entangles the meaning of the fundamental speed c normalizing the first and second
partial time derivatives of the metric tensor, and focuses on the parametrization of the
second time derivatives which are supposed to deal with the speed of gravitational
waves. Will [1993] stipulates that the fundamental speed c in the first partial time
derivatives is automatically equal to the speed of light. Hence, Will [2006] claims
that any gravitational experiment measuring the first time derivatives of the metric
tensor makes no sense because there must be no violation of general relativity associ-
ated with the principle of equivalence in time-dependent gravitational fields. In this
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respect PPN formalism is at fault and unable to test a large class of non-metric the-
ories of gravity predicting different violations of causality principle for gravitational
field. It is well-known [Hawking and Ellis, 1975] that the causal behavior of grav-
itational field is associated not so much with the field equations but with equations
of null geodesics in a given spacetime manifold. This behavior can be determined
in a close neighborhood of any event from the solution of the equation of geodesics
without imposing Einstein’s field equations [Wald, 1984]. The null geodesics play a
special role as they define: 1) the causal past of observer, that is the region bounded
by the past light cone in Figure 7.12, and 2) the causal future of the gravitational
field of a moving massive body, that is the region inside the future gravity cone in
Figure 7.12. General-relativistic gravitational interaction of photon with the light-
ray deflecting body implies that the causal past of the observer must coincide with
the causal future of the gravitational field along a null direction 20). This relationship
between the past and future null cones of the two fields would be violated had the
speed of gravity been not equal to the speed of light.

The equivalence principle tells us that in a local reference frame light moves along
a straight line [Landau and Lifshitz, 1975; Misner et al., 1973]. This implies that in
the global reference frame the light-ray trajectory is bent because of two reasons: 1)
the local reference frame falls in the gravitational field with acceleration, and 2) the
space is curved [Misner et al., 1973]. Gravitational light-ray deflection is not like
the Compton scattering of photons in particle physics. It does not occur in a single
local frame of reference but gradually accumulates to its integrated value as photon
propagates through a continuous sequence of such local frames. Photon’s classic
propagator is given by the integral from the affine connection, that is the gravity
force F i shown in the right side of equation (7.356), with the integration performed
along the null cone. This propagator, after it is projected onto the plane of the sky
with operator Pi j = δi j − kik j, yields the integrated value of the deflection angle
αi. The magnitude and direction of the deflection angle are functions not only the
wave vector ki of the observed starlight but the position of the light-ray deflecting
body xi

a(s) with respect to observer as well. If one is able to derive position of the
massive body from the precise measurement of the angle αi and to confirm that the
body and the observer are connected by a characteristic of the gravity null cone, it
gives a direct proof of the causal nature of the gravitational field and measures the
speed of gravity [Kopeikin, 2001, 2004; Kopeikin and Makarov, 2007]. It is clear
that this measurement of the speed of gravity is impossible if the light-ray deflecting
body does not move. Indeed, in case of a static planet the gravitational field does not
change as photon moves from star to observer, making the causal character of the
gravitational field hidden because the planet is always at a fixed distance from the
observer (see Figure 7.13a).

The experimental situation changes dramatically if the planet moves with respect
to observer because it makes the distance between the planet and the observer de-
pendent on time (see Figure 7.13b). In this case, photon traverses through the grav-
itational field that changes on the light-ray trajectory due to the planetary motion,

20) More generally, on a null hypersurface.
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Figure 7.13 Light-ray deflection by a static (a) and moving (b) planet. In case (a) the distance
between the planet and observer does not change as light propagates. Thus, measuring the
deflection of light does not allow us to determine experimentally whether the gravity force of the
planet acts on photon with retardation from position (1), or instantaneously from position (2). In
case (b) the distance between the planet and observer varies as photon travels toward the
observer. The retarded interaction of gravity with light becomes visible since measuring the
angle of the gravitational deflection of light allows us to distinguish between positions (1) and
(2) of the planet on its worldline making the causal structure of the gravity null cone
measurable.
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even if this motion is uniform. If the speed of gravity were different from the speed
of light the light cone would be different from the gravity null cone, and the mov-
ing planet could not deflect light from the retarded position as predicted by general
relativity 21). For example, the instantaneous propagation of gravity would imply
that one could determine current (as opposed to retarded) position of the planet on
its orbit from observation of the gravitational deflection of light. This means that
gravitational field would transmit information about the planet’s orbital position to
observer faster than light. This violates the principle of causality. Hence, one con-
cludes that the correct description of the gravitational physics of the light-ray de-
flection experiment with a moving planet requires taking into account both the light
and gravity null cones as demonstrated in Figures 7.11, 7.12, 7.13, and supported by
calculations in this book. Additional arguments supporting this interpretation of the
retardation-of-gravity experiments are discussed in paper [Kopeikin and Fomalont,
2006] both in the framework of general relativity and in a bi-metric theory of gravity
[Carlip, 2004]. One concludes that the principle of equivalence does imply the prin-
ciple of causality for gravitational field which can be, and has been, confirmed in the
solar system experiments of the gravitational deflection of radio waves for quasar by
moving planets [Fomalont and Kopeikin, 2008; Fomalont et al., 2009b; Fomalont
and Kopeikin, 2003].

7.9.5
Light-ray Deflection Patterns

7.9.5.1 The deflection angle
Let us assume for simplicity that the distance r0 from the solar system to the source
of light (star, quasar) is very large compared to the impact parameter d. It allows us to
omit all terms, related to the time of emission, from the equations for calculation of
the light-ray deflection angle because 1 − cos χ0 ' d2/(2r2

0) � 1. It will be assumed
that only the stars that are sufficiently close to the planetary limb in the plane of the
sky are observed during the time of the experiment. This makes the angle χ � 1,
and hence cosχ ' 1 − d2/2r1 and sin χ = d/r1 � 1. All terms being proportional
to sinχ will be neglected, and the approximation cos χ = 1 will be used everywhere
but in the calculation of the monopolar deflection, where more exact approximation
of cos χ is required.

Integrating equation (7.360) with the technique explained in equations (7.364),
(7.365), and keeping only the leading terms, one deduces

αi = α� + αi
M + αi

D + αi
Q , (7.366)

where αi
M , αi

D, αi
Q are the angles of the gravitational deflection of light caused by

the planetary mass monopole, dipole, and quadrupole moments respectively, and α�
stands for the Eddington’s deflection angle of light caused by Sun’s gravity [Ken-

21) This is because the Lorentz transformation must transform both the gravity and electromagnetic field,
simultaneously.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 7 — 2016/2/13 — 14:05 — page 629

629

nefick, 2009]

αi
� =

2GM�
c2 (1 + cos χ�)

ξi
�

d2
�

, (7.367)

where M� is mass of the Sun, ξi
� is the impact parameter of the light ray with re-

spect to the Sun, d� = |ξ�|, cos χ� =
√

1 − (d�/ρ)2,and ρ is the heliocentric distance
to the observer. The other deflection angles are defined with respect to the coordi-
nate system associated with the planet (see Figure 7.10) by the following equations
[Kopeikin and Makarov, 2007]

αi
M =

2GM
c2 (1 + cos χ)

ξi

d2 , (7.368)

αi
D = −

2G
c2

{
(1 + cos χ)k j İ j(s1)

ξi

cd2 +
∂

∂ξi

[
(1 + cos χ)

ξ jI j(s1)
d2

]}
, (7.369)

αi
Q =

G
c2

∂2

∂ξi∂ξ j

[
(1 + cos χ)

ξpI< jp>(s1)
d2

]
, (7.370)

of which equation (7.368) is exact, and in equations (7.369), (7.370) the terms pro-
portional to sin χ and higher, have been omitted because of their smallness. The
omitted residual terms are of the order of αDd/r1 and αQd/r1, that is negligible,
since max{αD, αQ} ' 2000 µas (see Figs. 7.14, 7.15), and d/r1 ' 10−4 for Jupiter,
and about 10−5 for Saturn. Taking all the partial derivatives with accounting for
strong inequality

∂ cos χ
∂ξi = −

ξi

d2 cos χ sin2 χ '
d
r2

1

�
1
d
, (7.371)

and approximating cos χ = 1, sinχ = 0 in the dipolar and the quadrupolar deflec-
tions, equations (7.368)-(7.370) are reduced to

αi
M =

2GM
c2d

(1 + cos χ)ni , (7.372)

αi
D =

4G
c2

[
I j(s1)

d2

(
nin j − mim j

)
−

k j İ j(s1)
cd

ni
]
, (7.373)

αi
Q =

4GI< jp>(s1)
c2d3

(
nin jnp − nim jmp − mim jnp − mimpn j

)
, (7.374)

where Ii and Ii j are determined by equations (7.349) and (7.350) respectively, the
unit vectors ni = ξi/d, mi = (k × n)i, and again all terms proportional to sin χ have
been neglected. On the other hand, the term with cos χ in equation (7.372) must be
retained as it reaches a magnitude of the order of 2 µas when χ = 90o for Jupiter,
and is about 1 µas when χ = 16o for Saturn, that is the small-angle approximation in
equation (7.372) is invalid for microarcsecond astrometric measurements.

Our calculation reveals that the deflection angles αi
D and αi

Q depend on the value
of the dipole and quadrupole moments of the planet taken at the retarded time
s1 = t1 − r1/c, where t1 is the time of observation. The deflections caused by the
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Figure 7.14 Gravitational deflection of light by the multipolar fields of Jupiter. The magnitude
of deflection is given by color in a logarithmic scale shown at the top, and the small arrows in
each plot indicate the direction of the deflection. The monopole deflection pattern is shown in
plot (a). The dipolar deflection patterns caused by the shifting L sinσ planet’s center of mass
from the origin of the coordinate frame as projected on the plane of the sky, are depicted in the
central row of the plots, for (L sinσ)1 = 350 (b), (L sinσ)2 = 3500 (c), and (L sinσ)3 = 35000 km
(d). The bottom row of the plots (e-g) shows the combined quadrupolar deflection patterns
generated by the intrinsic oblateness of the planet and by the translation. The direction of
rotation axis s projected on the plane of the sky, is indicated with a thin black line. Note that the
quadrupolar deflection at (L sinσ)1 = 350 km is dominated by that from the intrinsic quadrupole
J2, whereas for (L sinσ)3 = 35000 km, on the contrary, the translational quadrupolar deflection
exceeds the light deflection caused by J2.
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Figure 7.15 Deflection of light by Saturn caused by its mass (a), dipole (middle raw), and
quadrupole (bottom raw) moments. Magnitudes of the deflection are expressed by color in the
logarithmic grade shown in the upper right corner, and the direction of the deflection is shown
by small arrows. Projected component of the vector of displacement of the center of mass of
Saturn from the origin of the coordinate frame takes values (from left to right) of
(L sinσ)1 = 250 (b), (L sinσ)2 = 2500 (c), and (L sinσ)3 = 25000 km (d). The lines associated
with the unit vectors z and s indicate the directions of the displacement and rotational axis of
the planet as projected on the plane of the sky respectively.
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dipole translation xi
P are nonphysical in general relativity. Hence, if general relativity

is valid one can remove the dipolar deflection by choosing the origin of the coordi-
nate system, used for calculation of the deflection angles, at the center of mass of the
planet taken at the retarded instant of time s1 with respect to observer. This situation
is shown in Figs. 7.12, 7.13b where the past light cone is made of the null character-
istics of the light rays coming from all stars to observer, and the future gravity null
cone is made of the null characteristics of the gravity-field equation (7.344) that is
the region of the causal interaction of the gravity force of the moving planet with any
other particles including photons.

The deflection angle αi is an observable and gauge-invariant quantity measured
with respect to the unperturbed direction ki of incoming photon defined in the
asymptotically-flat spacetime at past null infinity 22). For this reason, the relativis-
tic effects associated with the gravitational deflection of light have direct physical
interpretation that is discussed in the rest of the present section.

7.9.5.2 Snapshot patterns
Snapshot pattern of the gravitational deflection of light by a massive body is pro-
duced as a result of instantaneous measurement of the deflections of the apparent
positions of all stars surrounding the light-ray deflecting body. It is a kind of instan-
taneous photographic picture of the stellar field with the light-ray deflecting body at
its foreground. In order to get the snapshot deflection pattern produced by a mas-
sive planet one substitutes equations (7.349)-(7.352) to equations (7.372)-(7.374). It
yields

αM = α
1 + cos χ

2
n , (7.375)

αD = α
L
d

[
(z · n)n− (z · m)m

]
, (7.376)

αQ = αJ2
R2

d2

{[
(s · n)2 − (s · m)2

]
n− 2(s · n)(s · m)m

}
(7.377)

+ α
L2

d2

{[
(z · n)2 − (z · m)2

]
n− 2(z · n)(z · m)m

}
,

where

α = αlimb
R
d
, (7.378)

is the light-ray deflection angle caused by the planetary mass M,

αlimb =
(
1 − k · βP

) 4GM
c2R

(7.379)

is the deflection angle of the light ray grazing the planetary limb (R is the mean radius
of the planet), L = |xP(s1)| is the displacement of the planetary center of mass from
the origin of the coordinate system, the unit vector z = xP(s1)/L points from the

22) This is a precise mathematical definition of the stellar positions in any astrometric catalog [Soffel, 1989]
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origin of the coordinate system toward the center of mass of the planet, βP = vP/c,
vP = dxP/dt is the planet’s velocity, and all time-dependent quantities like xP, vP, z,
and s, are computed at the retarded time s1 = t1 − r1/c corresponding to the time of
observation t1.

Making use of conformal transformation technique [Damour and Esposito-Farèse,
1998b] one can prove that equations (7.375)-(7.377) are still applicable in the class
of a generic scalar-tensor theory of gravity if a formal replacement: α → αγ ≡

(1 + γ)α/2 is made, where γ is the PPN parameter characterizing the impact of
the scalar field on the curvature of space [Will, 1993]. Notice that one has moved
the term depending on the first time derivative of the dipole moment from equation
(7.376) to equation (7.375). This velocity-dependent term is purely radial (that is, di-
rected along vector n) and corresponds to the relativistic correction to the planetary
mass M caused by the radial Doppler shift of light frequency. This gravitomag-
netic correction correlates with the PPN parameter γ setting a natural limit on the
precision of its measurement from a single-epoch experiment [Kopeikin, 2009]. In
general relativity, γ = 1, and the maximal general-relativistic deflection of light on
the planetary limbs are respectively: αlimb ' 16280 µas for Jupiter, and αlimb ' 5772
µas for Saturn [Brumberg et al., 1990; Crosta and Mignard, 2006]. Taking into ac-
count in equation (7.379) the gravitomagnetic correction to the total mass, makes
the radial deflection modulated up to a few µas, depending on the relative orbital
velocity of the planet and observer. This radial-velocity correction to the mass may
be a kind of interest in studying moving gravitational lenses [Wucknitz and Sper-
hake, 2004]. It is worthwhile to emphasize that some publications (see, for example,
[Capozziello et al., 1999; Gurvits and Mitrofanov, 1986; Sereno, 2002; Sereno and
Cardone, 2002]) have an erroneous pre-factor 1 − 2k · βP in equation (7.379). Equa-
tion (7.379) with correct pre-factor 1− k ·βP was first derived by Birkinshaw & Gull
[Birkinshaw and Gull, 1983], and re-confirmed later on by other authors [Frittelli,
2003b; Frittelli et al., 2002; Kopeikin and Schäfer, 1999; Wucknitz and Sperhake,
2004].

It is worthwhile to emphasize that the entire theory of the microarcsecond light-ray
deflection experiments with planets given in this section, is gauge-independent and
Lorentz-invariant which means that all equations are valid in any arbitrary reference
frame moving with respect to the original coordinate system xα = (t, xi) with a con-
stant velocity V i. Equations (7.375)-(7.377) of the light-ray deflection angles remain
invariant with the velocity vi

P replaced to vi
P − V i. Lorentz-invariance of equations

(7.375)-(7.377) can be easily understood if one remembers that all quantities enter-
ing these equations are referred to the events connected by the null cones shown in
Figure 7.11 and Figure 7.12 that represent the Minkowski diagram of the interaction
of light with gravity that is invariant with respect to the Lorentz transformations by
its own nature.

Equations (7.375)-(7.377) define the deflection patterns caused respectively by the
monopole, dipole, and quadrupole components of the planetary gravitational field
defined with respect to the coordinate system xα = (t, xi). Because velocity of motion
of planets in the solar system are much smaller than the speed of light and gravity
one can assume that during the time of propagation of photon across the solar system
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Figure 7.16 Local tangential coordinate system in the plane of the sky related to the global
ecliptic coordinate system is shown. The unit vectors eλ and eβ point in the directions of the
increasing ecliptic longitude and latitude, respectively. The unit vector k lies along the line of
propagation of light, is orthogonal to the plane of the sky and is directed toward observer (the
reader). The angular distance of the unaffected position of a star from the origin of the
coordinate frame is χ (c.f. Figure 7.10), which is at position angle ϕ from the north (direction
eβ). The total angle of the gravitational deflection of light of the star, α, has both radial, αn, and
ortho-radial, αm, components: α = αn n + αm m.

the maximal displacement xi
P of the center of mass of the planet that is allowed

by the ephemeris systematic error or some other unexpected violation in the data
processing computational approach, is smaller than the impact parameter, L/d < 1.
Let us consider the light-ray deflection patterns for a single epoch of observation, t1,
mapping the deflections in the plane of the sky around the planet like it will appear in
a photographic snapshot. To visualize the instantaneous two-dimensional deflection
patterns, it is instructive to project equations (7.375)-(7.377) on the directions that
are parallel and orthogonal to the ecliptic plane of the solar system as shown in Figure
7.16. The unit vectors ni and mi are expanded in such local tangential coordinates
into

n = eβ cosϕ + eλ sinϕ , (7.380)

m = −eβ sinϕ + eλ cosϕ , (7.381)

where ϕ is called the position angle [Murray, 1983], the unit vectors eλ and eβ are
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mutually orthogonal and directed along the increasing ecliptic longitude λ and lati-
tude β respectively. The unit vectors z and s are expanded in this tangential frame as
follows

z = eβ sinσ cosψ + eλ sinσ sinψ + k cosσ , (7.382)

s = eβ sin Θ cosω + eλ sin Θ sinω + k cos Θ , (7.383)

where ψ and ω are respectively the position angles of the unit vectors z and s in
the plane of the sky, and the angles σ and Θ characterize the degree of deviation of
vectors z and s out of the plane of the sky.

Substituting equations (7.380)-(7.383) to equations (7.375)-(7.377) yields

αM = α
1 + cos χ

2

(
eβ cosϕ + eλ sinϕ

)
, (7.384)

αD = α sinσ
L
d

[
eβ cos(ψ − 2ϕ) − eλ sin(ψ − 2ϕ)

]
, (7.385)

αQ = αJ2 sin2 Θ
R2

d2

[
eβ cos(2ψ − 3ϕ) − eλ sin(2ψ − 3ϕ)

]
(7.386)

+ α sin2 σ
L2

d2

[
eβ cos(2ω − 3ϕ) − eλ sin(2ω − 3ϕ)

]
.

In this form, the equations clearly show that the directions of the deflections αM ,
αD and αQ vary proportional to sinϕ, sin 2ϕ and sin 3ϕ, respectively, as one goes
from one star to another in the background stellar field around the planetary center.
The amplitudes of the deflections αM , αD, and αQ fall off as 1/χ, 1/χ2, and 1/χ3,
respectively, where χ is the impact angle in the plane of the sky between the star
and the coordinate system origin (see Figure 7.10). The reader should also notice
the presence of the angles σ and Θ in the deflection angles αD and αQ. The dipolar
and quadrupolar deflections of light are maximal when the displacement xP and the
rotational axis of the planet are lying in the plane of the sky where sinσ = sin Θ = 1.
The deflection angles αD and αQ are reduced to zero if the rotational axis of the
planet or its displacement from the origin of the coordinate system are along the line
of sight, that is along vector k. Let us point out that the term with J2 was first de-
rived by Klioner [1991b], re-discovered independently in papers [French et al., 1993;
Hubbard et al., 1993] and thoroughly analyzed in works [Crosta and Mignard, 2006;
Kopeikin and Makarov, 2007]. General formalism for deriving the quadrupole and
all higher-order multipolar light-ray deflections in stationary gravitational field was
published by Kopeikin [1997c]. It was extended later on to arbitrary time-dependent
multipoles [Kopeikin and Korobkov, 2005; Kopeikin et al., 2006].

Snapshot patterns of the deflections αM , αD, and αQ for a background field of stars
surrounding Jupiter and Saturn are shown in Figure 7.14 and Figure 7.15 respec-
tively, where one has used color grades to denote the magnitude of the deflection
as a function of the impact angle χ of the light ray from the planet, and small ar-
rows to specify the direction of the deflection, which depends on the position angle
ϕ in accordance with equations (7.384)-(7.386). The patterns are shown for three
different magnitudes L sinσ of the displacement vector xP: (L sinσ)1 = 350 km
(left), (L sinσ)2 = 3500 km (middle), (L sinσ)3 = 35000 km (right) for Jupiter, and
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(L sinσ)1 = 250 km (left), (L sinσ)2 = 2500 km (middle), and (L sinσ)3 = 25000
km (right) for Saturn.

The monopolar deflection of light αM is depicted in subplots (a) of Figure 7.14
and Figure 7.15. It is purely radial (that is , takes place along vector n), and does not
depend on the magnitude and direction of the displacement vector xP but depends
on the radial velocity k · vP of the planet in correspondence with equation (7.379).
The dipolar deflection of light, αD, is directly proportional to the magnitude L sinσ
of the displacement of the planet’s center of mass from the origin of the coordinate
frame as projected on the plane of the sky, and its orientation is determined by the
component of vector xP projected on the plane of the sky. The quadrupolar deflection
of light, αQ, is quadratically proportional to the magnitude of the projected displace-
ment L sinσ between the origin of the coordinate frame and the planet’s center of
mass as well as on the magnitude of the intrinsic quadrupole moment of the planet
projected on the plane of the sky J2 sin Θ. The orientation of the quadrupolar deflec-
tion pattern is determined by the projections of vectors z and s on the plane of the
sky. When the displacement L sinσ �

√
J2R sin Θ, the effect of the translational

quadrupole Mx<i
P x j>

P on the light deflection is relatively small, and the orientation
of the quadrupolar pattern is defined by the projection of s on the plane of the sky
as shown in subplots (e) in Figure 7.14 and Figure 7.15. If L sinσ '

√
J2R sin Θ,

the quadrupolar pattern may be complicated and hard to interpret as the deflection
of light by the translational quadrupole Mx<i

P x j>
P is comparable to that caused by the

planetary intrinsic quadrupole J2. If, for whatever reason,
√

J2R sin Θ � L sinσ,
the deflection of light by the intrinsic quadrupole moment of the planet is swamped
by the much stronger deflection caused by the translational quadrupole as shown in
subplots (g) in Figure 7.14 and Figure 7.15.

7.9.5.3 Dynamic patterns of the light deflection
Equations (7.384)-(7.386) can be also used to work out a dynamic visualization of
the light deflection patterns as a function of time reckoned at the point of observa-
tion. In other words, one will be interested in finding apparent trajectory of a visible
position of star as a function of the relative angular position of the star with respect
to the planet. Let us stipulate that planet is moving on the celestial sphere below a
star along a great circle with a minimal separation angle χm ≡ X0 between the star
and the planet. As the light-ray deflection angle is rather small compared with χm,
one can project this motion onto the plane of the sky so that it represents a straight
line in the local coordinates of Figure 7.16. One further assumes for simplicity that
this straight line is parallel and sufficiently close to the ecliptic, which is a rather
realistic approximation since the orbital inclinations of Jupiter and Saturn with re-
spect to ecliptic are small and do not exceed 2.5◦. Nevertheless, in real astrometric
experiments the inclination of the planetary orbits to the ecliptic must be taken into
account. Equations (7.384)-(7.386) can be viewed as a one-to-one mapping of the
planetary position specified by coordinates (X,Y) in the plane of the sky, to the locus
of the star image at coordinates (x, y) continuously shifted by the planetary gravi-
tational field. The geometry of the gravitational lens mapping is explained in more
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detail in Figure 7.17 and the book by Lawrence [1972] provides further insight to
the mathematical structure of the central mapping. The gravity-unaffected position
of the star, when the planet is at "infinity", is the center of the mapping which is also
the origin of both coordinate frames: (X,Y) and (x, y) (notice that one has shifted
Y axis along X axis for making better graphical visualization). In other words, the
gravity-unaffected position of the star is at the point x = 0, y = 0 where also X = 0,
Y = 0. The planet moves along a straight line parallel to Y axis at a constant sep-
aration X = X0 from the gravity-unaffected position of the star. When the planet is
at the position angle φ in the coordinates (X,Y), the deflected position of the star is
at the position angle θ in the coordinates (x, y). Notice that in general, θ , φ be-
cause the dipolar and quadrupolar light-ray deflections are not purely radial. Precise
correspondence between the two angles is established by the central mapping trans-
formation equations. The angle φ runs from −π/2 to +π/2 while the angle θ runs in
the most common case from 0 to 2π (see Figure 7.17 and the text below).

Two components of the deflection angle αM are identified with the coordinates x
and y: αM ≡ (x, y), and substitutions sin φ = Y/d, cos φ = X/d, d =

√
X2 + Y2 =√

X2
0 + Y2 are made in equation (7.384) where the approximation cos χ = 1 is used

for simplicity. It yields the monopolar light-deflection mapping equations in the
following form

x = 2r
X2

X2 + Y2 , y = 2r
XY

X2 + Y2 , (7.387)

where r ≡ 2GM/(c2X), so that 2r is the maximal deflection angle reached at the time
when the angular distance between the planet and the star is minimal (Y = 0). The
mapping given by equations (7.387) is purely radial, which means that the gravity-
deflected visible position of the star and the planet lie on a straight line passing
through the center of the mapping (origin of the coordinates), and θ = φ (see Figure
7.17). As the planet moves from φ = −π/2 to φ = +π/2 along Y axis, the deflected
position of the star outlines the circle

(x − r)2 + y2 = r2 , (7.388)

with the radius r and the origin located at the point (x = r, y = 0). In polar coordi-
nates x = ρ cos θ, y = ρ sin θ, the correspondence between θ and φ is simple: θ = φ,
and pure radial as one has pointed out earlier. The monopolar deflection curve in the
polar coordinates is

ρ = 2r cos φ , (7.389)

which yields the circle shown in the left graph of Figure 7.18, where x = ∆β, y = ∆λ.

The dynamic curve of the dipolar deflection can be easier represented in coordi-
nates (x′, y′) that are rotated clockwise with respect to the (x, y) coordinates through
angle ψ, where ψ defines direction of vector z in the plane of the sky by equation
(7.382),

x′ = x cosψ − y sinψ , y′ = x sinψ + y cosψ . (7.390)
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Figure 7.17 Plane geometry of the central mapping used for computation of the dynamic
pattern (curve) of the gravitational deflection of the apparent position of star by planet as a
function of time. The origins of the two coordinate charts (x, y) and X,Y coincide and are
placed at the gravity-unaffected (catalog) position of the star. For the sake of convenience, Y
axis is shown as displaced along the positive direction of X axis at the constant distance X0.
The available planetary ephemeris predicts that the planet moves continuously from left to right
along Y axis with its X coordinate being fixed. Two positions of the planet are shown to explain
the mapping geometry. The dashed line is parallel to Y axis and shows trajectory of the planet’s
center of mass which differ from the planetary ephemeris,thus, giving rise to the dipolar
component of the light deflection. The minimal distance between the planet and the unaffected
position of the star is X = X0. Apparent position of the star is deflected from its unperturbed
(catalog) position in both radial, αn, and ortho-radial, αm, directions respectively, with the total
deflection α = αn n + αm m. The mapping establishes a one-to-one correspondence F between
the coordinates (X,Y) of the planetary position and the coordinates (x, y) of the deflected

position of the star, that is F : (d → α, φ→ θ) where d =

√
X2

0 + Y2.
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Figure 7.18 Left, middle, and right graphs show respectively the monopolar (circle), dipolar
(cardioid), and quadrupolar (the Caley’s sextic) light-ray deflection curves. These curves are
obtained by the central mapping transform explained in Figure 7.17 and section 7.9.5.3. The
planet moves with a constant velocity and passes directly below the catalog position of the star
associated with the origin of the coordinates. One has chosen the impact parameter X0 = 40
arcsecond, and the orbital position’s error projected on the plane of the sky, is L sinσ = 250
km. The time step between the individual points is 0.02 days for the monopolar deflection
curve, and 0.002 days for the other two curves. Dynamic light-ray deflection curves for Saturn
have smaller amplitude for the same value of the impact parameter but similar shape. Red
lines on the middle and right graphs show direction of the coordinate axis x′ and x̂ rotated
clockwise with respect to x axis at the angles ψ and 2ω respectively (see text).

In the new coordinates, the dipolar mapping transformation is deduced from equation
(7.385) and is given by

x′ = 2p
X2(X2 − Y2)
(X2 + Y2)2 , y′ = 4p

X3Y
(X2 + Y2)2 , (7.391)

where p ≡ rL sinσ/X. Besides the radial deflection component, the dipolar mapping
generally contains an ortho-radial deflection component as follows from equation
(7.391) and demonstrated in Figure 7.17. As the planet moves along Y axis and the
angle φ changes from φ = −π/2 to φ = +π/2, the deflected position of the star
outlines the curve

(x′2 + y′2 − px′)2 = p2(x′2 + y′2) , (7.392)

that should be superimposed on the monopolar deflection curve (the circle). The
dipolar deflection curve alone is shown in the middle graph of Figure 7.18. This
curve, called cardioid [Lawrence, 1972], is symmetric around the axis x′ with a cusp
at the origin. In polar coordinates, x′ = ρ cos θ′, y = ρ sin θ′, θ′ = θ + ψ, the
correspondence between θ′ and φ is θ′ = 2φ, and in these coordinates the cardioid
curve takes the form

ρ = p (1 + cos 2φ) . (7.393)

Its orientation depends on the angle ψ, and the magnitude on the ratio L sinσ/X.
Notice that the vector xP was kept constant in one’s calculation. In reality, the planet
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can have a residual transverse velocity with respect to its pre-calculated ephemeris
trajectory because of the statistical errors in construction of the planetary epehemris.
In this case, the dipolar deflection curve will be slightly different from cardioid.

The dynamic trajectory of the stellar apparent position due to the quadrupolar
deflection of light becomes simple in the plane-of-the-sky coordinates (x̂, ŷ) rotated
clockwise with respect to the (x, y) coordinates through an angle 2ψ,

x̂ = x cos 2ψ − y sin 2ψ , ŷ = x sin 2ψ + y cos 2ψ . (7.394)

In these new coordinates, the quadrupolar mapping transformation may now be in-
ferred from equation (7.386)

x̂ = 4q
X4(X2 − 3Y2)

(X2 + Y2)3 , ŷ = 4q
X3Y(3X2 − Y2)

(X2 + Y2)3 , (7.395)

where the parameter q ≡ qL = (r/2)(L sinσ/X)2 for the deflection component caused
by the translational quadrupole Mx<i

P x j>
P , and q ≡ qJ = (r/2)J2(R sin Θ/X)2 for the

term generated by the projected value of the intrinsic quadrupolar oblateness J2 of
the planet. The quadrupolar mapping contains an ortho-radial deflection besides the
radial component. As the planet moves from φ = −π/2 to φ = +π/2 along Y axis,
the deflected position of the star describes the curve

4(x̂2 + ŷ2 − qx̂)3 = 27q2(x̂2 + ŷ2)2 , (7.396)

which must be superimposed on the monopolar and dipolar deflection curves. The
quadrupolar deflection alone is shown in the right graph of Figure 7.18. This plane
algebraic curve is known as the Caley sextic [Lawrence, 1972]. It is symmetric
around axis x̂ and has a small secondary loop near the origin of the coordinates.
The polar equation of the Caley sextic is obtained after substitution of the polar
coordinates x̂ = ρ cos θ̂, ŷ = ρ sin θ̂, θ̂ = θ+2ψ, into equation (7.396), and solving the
cubic equation with respect to ρ. The quadrupolar mapping correspondence between
the polar angles θ̂ and φ is θ̂ = 3φ, and the polar equation of the Caley sextic caused
by the translational quadrupole

ρ = qL (cos 3φ + 3 cos φ) . (7.397)

The sextic curve for the deflection caused by the oblateness J2, takes the same form
after replacing parameter qL → qJ and the angle ψ→ ω. The quadrupolar deflection
curve has a secondary loop passing through the origin of coordinate axes as shown
in Figure 7.18. The cross-over point of the secondary loop is 1/8 of the maximum
deflection ρ = 4qL in the mid-point of the primary loop. This means that the magni-
tude of the secondary loop is about few microarcsecond for Jupiter that is within the
range of near-future experimental measurement by SIM, Gaia, and SKA.

Figure 7.19 shows the combined deflection trajectory of the star’s position from
the dipole cardioid and the quadrupole sextic presented in Figure 7.18. The result-
ing curve looks rather similar to cardioid of a somewhat larger amplitude, and is
inclined at some intermediate angle with respect to the cardioid and sextic symmetry
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Figure 7.19 Combined dipolar and quadrupolar deflection of light by Jupiter for the same
parameters and configuration as in Figure 7.18. Details of the quadrupolar deflection (the
sextic curve) are hidden by the dipolar deflection (the cardioid). Separation of the two
deflection terms is a non-trivial experimental problem, and generally will require multiple
observations of a number of sources around the planet.
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axes. Obviously, this curve swamps the quadrupolar deflection and can be confused
with a pure dipolar one, because vector xP is not known precisely before obser-
vations. This demonstrates the crucial importance of accurate determination of the
spurious dipole component in any experiment designed to measure the intrinsic grav-
itational quadrupole J2 by making use of the gravitational deflection of light. Since
the ephemeris error is expected to be a smooth function of time, microarcsecond ob-
servations of multiple stars at different position angles to the direction of the dipole
axis should help to separate these two contributions to the total deflection pattern.

7.9.6
Testing Relativity and Reference Frames

Most papers calculating light deflection in the solar system stipulate that the massive
body deflecting the light, does not move. However, making use of this assumption
in microarcsecond astrometric experiments with planets is inadequate as the plant
moves as light propagates through the solar system, and it is important to know
precisely how light interacts with the changing gravitational field of the planet. Our
formalism is based on rigorous general-relativistic paradigm and takes into account
the effect of planet’s motion on the deflection angle through the retarded solution
(7.345)-(7.347) of the Einstein equations where the retardation is due to the finite
speed of gravity showing that gravity field is causal and operates on the null cone as
shown in Figure 7.12. The planetary motion affects the data of light-ray deflection
measurements in two ways [Kopeikin, 2009]:

• explicitly - in the form of terms depending on velocity, vP, acceleration, aP, etc.,
of the planet with respect to the coordinate frame;

• implicitly - in the form of the retarded time, s1 = t1 − r1/c, in the time argument of
coordinates, xP = xP(s1) of the planet as well as in its velocity and acceleration.

General relativity can be violated in higher-order approximations, which may be-
come detectable in the near future by astrometric facilities operating at the 1 µas
level of precision. This presumable violation of general relativity can be parameter-
ized and tested in light-ray deflection experiments. Verification of general relativity
and detection of beyond-Einstein phenomena is the main goal of experimental funda-
mental physics in space that includes the search for scalar fields, observation of grav-
itomagnetic and retardation-of-gravity effects associated with the time-dependence
of planet’s gravitational field, measurement light-deflection quadrupolar anisotropy,
and more [Turyshev, 2009a]. This kind of astrometric experiments will also lead to
essential improvement in accuracy of fundamental reference frames and planetary
ephemerides in the solar system [Malkin et al., 2009; Sovers et al., 1998; Walter and
Sovers, 2000]. In what follows, these experimental opportunities are discussed in
more detail by analyzing different modes of the gravitational light-ray deflection.

7.9.6.1 The monopolar deflection
The monopolar deflection of light is given by equations (7.375), (7.378), (7.379). It
is standard experimental practice [Fomalont et al., 2009a; Lambert and Le Poncin-
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Lafitte, 2009] to introduce the PPN parameter γ leading to the replacement [Will,
1993]

α→ αγ ≡
1 + γ

2
α (7.398)

in equation (7.375) as well as equations (7.376), (7.377). The parameter γ character-
izes deviation of gravity from a pure geometry and is associated with the presence
of hypothetical scalar fields remaining from the epoch of the Big Bang [Damour and
Nordtvedt, 1993a]. This parameter has been measured in the solar light-ray deflec-
tion experiments with a precision approaching to the level of 10−4 ÷ 10−5 [Bertotti
et al., 2003; Fomalont et al., 2009a; Kopeikin et al., 2007; Lambert and Le Poncin-
Lafitte, 2009].

Orbital motion of a planet generates h0i component of the gravitomagnetic field
which depends on the time derivative of the dipole moment as appears in equation
(7.346). This gravitomagnetic component leads to the explicit dependence of the
monopolar light-ray deflection on the line-of-sight component of the orbital veloc-
ity vP of the planet, effectively modulating the planetary mass as shown in equation
(7.379). The gravitomagnetic term was derived in [Kopeikin and Schäfer, 1999] and
analytically confirmed in [Frittelli, 2003a,b; Klioner, 2003b; Wucknitz and Sper-
hake, 2004]. It can reach about 1.6 µas for a star observed at the limb of Jupiter.

The gravitomagnetic term is the result of the asymmetric exchange of energy be-
tween the photon and the gravitational field of the moving body. It is well-known
[Brumberg, 1991] that in case of a static gravitational field the overall angle of light
deflection does not depend on the energy (frequency) of the photon. The photon
gains energy as it approaches the gravitating body, and loses it as it moves away. If
the body is at rest with respect to the chosen coordinate system, the gain and the loss
of energy cancel out, but this balance is violated if the body is moving radially. Ap-
pearance of the Doppler modulation of the deflection of light can be also understood
if one remembers that the deflection angle is associated with spatial components of
the null vector of photon. Lorentz transformation from a static frame of the planet to
the moving frame of observer transforms and mixes all four components of the wave
vector and its time component affects the spatial components in the moving frame.
This is clearly shown in the paper by Klioner [Klioner, 2003b].

The gravitomagnetic deflection of light can be measured in a single-epoch obser-
vation only if (1) mass of the planet is known sufficiently well; (2) the parameter
γ is excluded since it correlates linearly with the gravitomagnetic term [Kopeikin,
2009]. On the other hand, if one can conduct observations in different epoches, the
gravitomagnetic term in equation (7.379) will periodically modulate the radial de-
flection because of the relative motion of planet with respect to observer so that the
line-of-sight velocity changes. Hence, in this case it can be measured independently
of the parameter γ. In case of Jupiter the amplitude of this gravitomagnetic modula-
tion reaches 3.2 µas and has a main period of one year due to the orbital motion of
the Earth [Kopeikin and Makarov, 2007].
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7.9.6.2 The dipolar deflection
The dipolar deflection of light is given by equations (7.376), (7.378) where the coor-
dinates of the planetary center of mass xP = xP(s1) depend on the retarded instant of
time s1 = t1 − r1/c 23) which is a solution of the gravity null-cone equation (7.348).
These retarded coordinates of the planet define the dipole moment I(s1) = MxP(s1)
in the multipolar expansion of the gravitational field of the planet. In general relativ-
ity, the law of conservation of linear momentum allows us, at least theoretically, to
eliminate the dipole moment by placing the center of mass of the planet at the origin
of the coordinate frame.

If xP(s1) = 0, all coordinate-dependent effects in the gravitational deflection of
light vanish. It means that the planet deflects light from its retarded position defined
by the retarded solution of the gravity wave equation (7.344) as shown in Figure 7.12.
This retardation is due to the fact that light and gravity interact on the hypersurface of
intersection of two null cones - the past light cone of observer and the future gravity
cone of the moving planet. This important consequence of general relativity was
pointed out in [Kopeikin, 2001] and was experimentally confirmed in 2002 light-ray
deflection experiment with Jupiter [Fomalont and Kopeikin, 2003] with precision
∼ 20% 24). SIM, Gaia, and SKA can improve this measurement by, at least, a factor
of 10.

In a practical experimental setup, the retardation of gravity effect can be parameter-
ized by introducing a parameter ε to the retarded time, s→ sε = t − ε r/c [Kopeikin,
2004] in the dipolar light-ray deflection angle (??). If ε = 0 the gravity null cone
degenerates and the gravitational field of the planet deflects photons instantaneously.
General relativity postulates that ε = 1, which corresponds to the case of gravity
propagating with the same speed as light. This consideration makes it evident that
the position of Jupiter’s center of mass in data processing algorithm must be taken at
the retarded instant of time s1 = t1 − r1/c with respect to observer.

For arbitrary ε , 0 (that is when the speed of gravity and light differ) light is
deflected by the planet from its orbital position taken at the time sε . It leads to a
non-vanishing displacement vector L

L ≡ xP(s1) − xP(sε) = vP(ε − 1)
r1

c
−

1
2

aP(ε − 1)2 r2
1

c2 + O
[
(ε − 1)3

]
, (7.399)

where vP and aP are velocity and acceleration of the planet respectively. If gravity
null cone is different from the light cone, it brings about the dipolar anisotropy

αD = α(ε − 1)
r1

cd

[
(vP · n)n− (vP · m)m

]
(7.400)

− α(ε − 1)2 r2
1

2cd

[
(aP · n)n− (aP · m)m

]
,

23) One reminds that t = t1 is the time of observation and r = r1 is the distance between the observer and
the planet, and c is the speed of gravity.

24) Further discussion of the gravitational physics of the Jupiter’s experiment is given in review article by
Kopeikin and Fomalont [2006] that also analyzes a number of misconceptions in physical interpretation
of the experiment presented in [Will, 2006].
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which can be measured to evaluate the retardation of gravity parameter ε. For a
star observed on the limb of Jupiter d = R, where R is the radius of the planet,
the velocity-dependent term in equation (7.400) is ∼ αlimb(v/c)(r1/R) ' 8140 µas,
and the acceleration-dependent term is ∼ αlimb(v2/c2)(r1/2R) ' 0.2 µas. The reader
should notice that the dipolar deflection (7.400) depends on the transversal compo-
nent of the planetary velocity only. Since the velocity of the planet is almost lying in
the ecliptic plane, it makes the position angle ψ = −π/2 of the unit vector z = L/L
in equation (7.382) so that the symmetry axis of the cardioid in Figure 7.18 gets
aligned with Y axis. This also allows us to physically interpret the dipolar deflec-
tion associated with the retardation of gravity as caused by the dragging of light ray
by gravitomagnetic field of Jupiter originating from the first time derivatives of its
gravitational field as it travels along its orbit [Arakida, 2004; Kopeikin, 2003b, 2006;
Schäfer and Bartelmann, 2006; Sereno, 2005, 2008].

A VLBI experiment was conducted in 2002 [Fomalont and Kopeikin, 2003] to
measure the speed of gravity through the search for the residual dipolar deflection of
light of quasar J0842+1835 caused by the moving gravitational field of Jupiter that
could arise due to the presumable difference between the speed of gravity and light.
The experiment did not show any deviation from general relativistic model of light
deflection taking into account the retarded nature of gravitational field of moving
planet.

Assuming that general relativity is fully valid, the measurement of the dipolar
anisotropy of light deflection can be used to determine position of the center of mass
of the planet on its orbit more accurately than any other currently available astromet-
ric techniques [Kopeikin and Makarov, 2007; Malkin et al., 2009].

7.9.6.3 The quadrupolar deflection
It is evident from equation (7.377) that in order to measure the quadrupolar deflec-
tion of light caused by the planetary oblateness J2, the following condition on the
displacement vector xP must be satisfied

L sinσ ≤ ∆L <
√

J2R sin Θ , (7.401)

where ∆L is the measurement error of L sinσ. If condition (7.401) is fulfilled, all
terms in the second line of equation (7.377) depending on the ratio (L/d)2 can be
abolished. In fact, ∆L , 0 because the planetary ephemeris is known with a lim-
ited accuracy. Hence, one should consider vector xP as a fitting parameter that is
to be determined from the light-ray deflection observation by successive iterations.
JPL ephemerides provides the initial value of xP for such iterations, which can be
improved if the measurement accuracy on the deflected positions is high enough
[Kopeikin and Makarov, 2007]. For Jupiter

√
J2R ' 8500km, so that in order to

measure the intrinsic quadrupole moment J2 of the planet its orbital position must
be known to ∆L < 8500 km. Currently available JPL ephemerides for major so-
lar system bodies, determined from direct optical/radio observations and spacecraft
tracking, are believed to be more accurate [Pireaux et al., 2007; Standish, 2004].
However, one should be careful in taking correct value of time in the position of
the planet. A non-zero value of the dipole moment of gravitational field emerges
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if the time of observation t1 instead of the retarded time s1 = t1 − r1/c is used
in the light-ray deflection equations whenever position of the planet is computed,
which corresponds to ε = 0 in equation (7.399). In this case L sinσ ≈ 35000 km
for Jupiter, and condition (7.401) is violated, thus, making the intrinsic quadrupolar
deflection of light unmeasurable.

After the displacement xP is determined from the observed dipole anisotropy in the
light-ray deflection pattern, one can shift the origin of the coordinate system in the
sky to the center-of-mass of the light-ray deflecting planet to suppress the spurious
dipolar term as much as possible. If general relativity is a correct theory of gravity,
this will reduce both the dipolar and quadrupolar deflections caused by the transla-
tional displacement L of the planetary center of mass. On the other hand, if gen-
eral relativity were violated one would not be able to remove the dipole anisotropy
because the structure of the light-ray deflection equations in alternative theory of
gravity is different from general-relativistic equations (7.375)-(7.377). This would
make more difficult to measure J2 in the models of the light deflection based on an
alternative theory of gravity.
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8
Relativistic Geodesy
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8.1
Introduction

Geodesy is concerned with the precise determination of the area and physical sur-
face of the Earth, and in particular the definition of a reference Earth’s shape known
as the geoid [Hofmann-Wellenhof and Moritz, 2005; Moritz, 1980]. The geoid is
an equipotential surface of gravity, fairly close to ellipsoidal (oblate spheroid) in
shape because of the counter-gravity centrifugal forces generated by the rotation of
the Earth about its axis, and fairly irregular because of the variability in composi-
tion (matter’s density) of the Earth beneath each point on the geoid 1) (see figure-
geodesy1). The reference-ellipsoid model of the Earth attempts to define its shape
in terms of a smooth ellipsoid, and the use of satellite measurements have led to the
development of the World Geodetic System (WGS-84) ellipsoid as the best ellip-
soidal representation of the geoid. The maximum difference between the geoid and
the WGS-84 ellipsoid is 50-100 meters (δr/r⊕ ∼ 10−5). Ellipsoids have also been
constructed for individual continents and countries because different ellipsoids give
better fits to the geoid at different locations, for example, the Clarke 1866 ellipsoid
for the United States or the Krasovsky 1940 ellipsoid for the USSR.

The goal of this chapter is to introduce the reader to the problems related to man-
ifestation of relativistic effects in gravimetric and geodetic measurements, which
have recently reached a necessary level of precision. Relativistic geodesy on the
ground is a very promising method to bridge the gap between geometrical navi-
gation and gravity field determination in establishing homogeneous world height
system [Müller et al., 2008a; Schlüter and Behrend, 2007; Sovers et al., 1998]. Rel-
ativistic corrections to the Newtonian formulas of classical gravimetry and geodesy
are characterized by two small parameters: ε ∼ ω2R2

E/c
2 ' 2.3 × 10−12 and

η ∼ GME/c2RE ' 0.7 × 10−9, where G is the Newtonian gravitational constant, c
- the fundamental speed, ωE - the angular velocity of the Earth’s rotation, RE and ME

are the mean radius and mass of the Earth respectively. Registration of relativistic
effects can be possible, if and only if, a relative precision of measuring devices is
comparable with the magnitude of parameters ε and η.

Modern technology allows to build high-precision superconducting gravimeters
that are a spring type gravimeters in which the mechanical spring is replaced by
a magnetic levitation of a superconducting sphere in the field of superconducting,
persistent current coils. The superconducting gravimeters are the most sensitive to
various periodic variations of the Earth’s gravity acceleration g⊕ 2) with a magni-
tude of the order of ≤ 10−3 µgal from periods of a few thousand seconds to the
monthly and annual solid earth tides and the Chandler wobble [Goodkind, 1999]. It
exceeds precision of the best ballistic gravimeters that is about 1 µgal [Goodkind,
1999; Torge, 1990].

1) The geoid’s irregularities are described by differentiable functions and are not necessarily coincident
with those exhibited by the real Earth’s surface which is not differentiable in many places like moun-
tains.

2) g⊕ = 981 gal, where 1 gal = 1 cm/s2 ' 10−3 g⊕.
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Reference Ellipsoid

Sphere

Geoid

Physical Surface of the Earth

Rotational Axis of the Earth

Angular Momentum of the Earth

Figure 8.1 Physical surface of the Earth and its relationship to various reference surfaces of
the Earth: sphere, ellipsoid, and geoid - adopted in geodesy. The height differences between
the surfaces are exaggerated. A spherical model of the Earth offers a simple surface, which is
mathematically easy to deal with. While the sphere is a close approximation of the true figure
of the Earth and satisfactory for many purposes, to the geodesists interested in the
measurement of over-continental distances and oceans, a more exact Figures are necessary
[Moritz, 1989]. Directions of the rotational axis of the Earth and its angular momentum do not
coincide leading to the movement of Earth’s rotation axis across its surface - the polar motion -
with amplitude only a few meters.
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Another device used in gravimetry and geodesy to study gravitational field and its
variations, is gradiometer that measures gradients of the gravity acceleration. One
type of gradiometer consists of two gravimeters, which experience the same accel-
erations, Earth tides, latitude effects, etc. The gradient is simply the subtraction of
one gravimeter response from the other, divided by the baseline distance between
them. The most advanced gradiometer of this type is realized in the GRACE space
mission - a joint project between the National Aeronautics and Space Administra-
tion (NASA) and the Deutsches Zentrum für Luft-und Raumfahrt (DLR) which rep-
resents twin satellites connected over two-way microwave-ranging link instrument
that monitors the satellite-satellite separation and can detect changes as small as
10 microns. Accelerometers aboard each satellite help sort out the effects of non-
gravitational forces, and the Global Positioning System (GPS) tracks the position
of the GRACE spacecrafts above Earth. The GRACE satellites were launched on
March 17, 2002 into near polar orbits with an initial altitude of about 500 km and
flying nearly 220 km apart [Levi, 2003].

The European Space Agency launched another satellite to measure Earth’s
mass distribution: the Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE). Whereas GRACE gives high resolution for large-scale features, GOCE
provides high-resolution measurements of smaller-scale features. GOCE’s goal is to
measure the height of the geoid with 1 cm resolution at a spatial resolution of 100 km.
This is done with the three pairs of accelerometers aboard the single GOCE satellite
that measure simultaneously the gravity gradients in three different directions.

Measuring capability of gradiometers has dimension of acceleration/distance that
is expressed in terms of a special unit called Eötvös 3). For example, GOCE’s
gradiometer has precision of 10−3 E/

√
H in the measurement bandwidth between

5 × 10−3 and 0.1 Hz [Bernard and Touboul, 1987; Sneeuw, 2002]. Promising work
have been carried out on the design of electrostatic gradiometers for testing the
equivalence principle in space [Touboul and Bernard, 2003; Touboul et al., 1996]
and on the development of superconducting gradiometer [Chan et al., 1987; Chan
and Paik, 1987; Moody et al., 1986; Paik, 1981] that can be capable to detect gradi-
ents of the Earth’s gravitational field with precision 10−7 E. Other promising efforts
have beem aimed to build an atom interferometer-based gravity gradiometer [Fixler
et al., 2007; McGuirk et al., 2002; Snadden et al., 1998]. Meanwhile, the geode-
tic coordinates of the observer can be routinely determined now by VLBI, Doppler
or laser ranging techniques with an accuracy of 1 cm. In some exceptional cases
the accuracy of geodetic measurements approaches 1 mm [Kang et al., 2009]. It is
not difficult to see that the relative accuracy of gravimetric and geodetic measure-
ments is comparable with the magnitude of the weak-field parameter η, and in some
cases with ε. It motivates theorists to push forward a corresponding development
of theoretical methods for adequate interpretation of geodetic and gravimetric mea-
surements with the post-Newtonian corrections taken into account.

From the point of view of practical application of such advanced methods, the
most interesting is related to improving definition, establishment and realization of

3) l Eötvös ≡ 1 E = 10−9 s−2.
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the international terrestrial reference frame (ITRF) [Altamimi and Collilieux, 2008;
Lambert and Bizouard, 2002; Mueller and Rapp, 1989; Schlüter and Behrend, 2007]
and relativistic time scales in the vicinity of the Earth [Brumberg and Kopeikin,
1990; Guinot and Seidelmann, 1988; Huang et al., 1989; Irwin and Fukushima,
1999; Klioner et al., 2009a]. Currently, the instability of the International Atomic
Time (TAI), is estimated as 0.5 × 10−15 for averaging times of 20-40 days [Guinot
and Felicitas Arias, 2005]. However, in the near future it will be possible to improve
performance of atomic frequency standards to the stability 10−17 ÷ 10−18 [Gibble,
2007; Maleki et al., 2008; Mattison, 1989]. Employment of such standards for real-
ization of TAl will require an independent knowledge of the geoid heights with an
accuracy better than 1 cm. Definition of geoid’s surface with such accuracy has to
inevitably include relativistic corrections.

On the other hand, a world-wide network of the extremely precise atomic clocks
synchronized with respect to the Terrestrial Time (TT) 4) by means of a high-
precision communication channel can be used in order to solve the inverse prob-
lem that is determination of geoid heights from a reference ellipsoid by means of
comparison of the clock’ rates [Bjerhammar, 1985,?; Kopejkin, 1991a]. The basic
principle of this method is drastically different from the classical procedures of de-
termination of geoid heights [Brovar et al., 2001; Hofmann-Wellenhof and Moritz,
2005; Pellinen et al., 1980]. Moreover, it does not require a preliminary knowledge
of the distribution of the Earth’s density and, therefore, can be applied directly for
measuring the geoid’ heights with respect to a chosen equipotential surface.

Of course, development of relativistic gravimetry and geodesy is impossible with-
out reliable high-precision classical theory of gravimetric and geodetic measure-
ments. The basic elements of such theory were worked out in 1849 by Stokes who
derived the formula for computing the geoid 5) from surface gravity measurements.
This formula became immortalized as "Stokes’s integral" [Heiskanen and Moritz,
1967]. Stokes’s theory faced a serious difficulty in practical applications in the mid-
dle of 20-th century as it required the gravimetric data measured on the geoid itself
which is unrealistic. Crucial progress in resolving this difficulty was achieved in
the theory of physical geodesy by M. S. Molodensky in his Doctor of Science the-
sis defended in Moscow in 1945 [Molodensky, 1945; Moritz and Yurkina, 2000].
M. S. Molodensky published most of his works in Russian journals, which were
translated into English much later, so that Molodensky’s theory propagated to west-
ern scientists with enormous delay. Clear and elegant introduction to the theory of
Molodensky and results, which were obtained on its base up to 1980, is contained
in books [Moritz, 1980; Moritz and Molodensky, 1971]. Subsequent developments
can be tracked through publications [Brovar et al., 2001; Hofmann-Wellenhof and
Moritz, 2005; Pellinen, 1987; Sanso’, 1981] and references therein. Original Molo-
densky’s theory made an emphasis on the basic importance of the physical Earth’s

4) The definition of TT is given by IAU 2000 Resolution B1.9 [Rickman, 2001] and IAU 1991 Resolution
A4 [Bergeron, 1992].

5) Stokes used another word for the equipotential reference surface. The term "geoid" was introduced
later by J.B. Listing in 1873 [Torge, 1991].
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surface. Today, the gravimetric data are continuously determined by the geodetic
satellites and the physical surface of the Earth is measured using GPS and Satellite
Laser Ranging (SLR) techniques. This drastically extends various applications of
the Molodensky’s theory to physical geodesy and to the theory of the Earth’s figure.
Molodensky’s theory has an elegant solution in terms of a perturbation approach
given in the form of the Molodensky’s series where the first term in the series takes
us back to the Stokes theory.

Will [1971] was, perhaps, the first, who began theoretical investigation of rela-
tivistic effects in gravimetry. In the framework of the parameterized post-Newtonian
(PPN) formalism he considered possible dependence of the Newtonian constant G
on spatial variations of the Earth’s gravity field that are allowed by some alternative
theories of gravity. Results of the study are summarized in textbook [Will, 1993].
Bjerhammar [1985] pointed out to the possibility of practical applications of princi-
ples of general relativity for solving the problem of determination of geoid heights.
The first attempt to consider the influence of the post-Newtonian gravitational field
on the results of measurement of the Earth’s gravity has been undertaken by Sof-
fel et al. [1988a,b] who also suggested definition of relativistic geoid as well [Sof-
fel, 1989]. However, it is necessary to note that the works of Bjerhammar [1985]
and Soffel et al. [1988a,b] did not exhaust the theoretical part of the problem. In
particular, these authors have imposed rather restricting limits on accuracy of the
theory of geodetic measurements, which resulted in omitting many post-Newtonian
terms from their final formulas. For example, results of work [Bjerhammar, 1985]
are applicable, in fact, only in the Newtonian limit of general relativity. Our paper
[Kopejkin, 1991a] extended the applicability of the approach to relativistic geodesy
proposed by Soffel [1989].

The first calculation of relativistic effects in gradiometry was done by Shirokov
[Shirokov, 1973] who solved the equation of deviation of geodesics and calculated
the period of free oscillations of the relative distance between two test particles or-
biting around a spherically-symmetric body (a Schwarzschild black hole) in close
trajectories. It was found that the frequency of oscillations in the direction lying
in the orbital plane and that in the direction perpendicular to the orbit differ from
their Newtonian counterparts. Paper [Shirokov, 1973] also proposed the experiment
for measurement of this effect in the approximation of spherically-symmetric Earth.
Melkumova & Khlebnikov [Melkumova and Khlebnikov, 1990]) extended the the-
ory of Shirokov’s effect to the case of oblate and axially symmetric Earth. The
next step in development of relativistic gradiometry has been done in the work by
Braginsky & Polnarev [Braginskiǐ and Polnarev, 1980] and by Mashhoon & Theiss
[Mashhoon and Theiss, 1982a,b] who discussed how the gravitomagnetic tidal field
caused by rotation of a central massive body affects the geodesic motion of two test
particles coupled by a string. Distinctive feature of Mashhoon-Theiss’s approach is
that they described the gravitational field of the central body by means of the ex-
act Schwarzschild solution perturbed by the intrinsic angular momentum (spin) of
the body in a linearized approximation. This allowed them to solve the problem
without restricting time duration of the experiment inherently imposed by the post-
Newtonian approximation. Later on, Mashhoon & Theiss extended their study to the



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 8 — 2016/2/13 — 14:05 — page 653

653

lunar motion and discovered a new, long-periodic relativistic effect in the motion of
the Moon caused by rotation of the Sun [Mashhoon and Theiss, 1986, 1991]. Soffel
et al. [1988a,b]; Soffel [1989] and Gill et al. [1989] published a series of papers on
the post-Newtonian gradiometry partially motivated by the line of research proposed
by Mashhoon & Theiss. They were not able to reproduce the Mashhoon-Theiss re-
sults [Mashhoon and Theiss, 1986, 1991] in the post-Newtonian approximation of
the gravitational field of a rotating and oblate body. Scrutiny analysis of the under-
lying assumptions of these works shows that Gill et al. [Gill et al., 1989] discarded
the second and high-order post-Newtonian terms in the solution of the equation of
the geodesic deviation of two test masses. However, it is these, high-order post-
Newtonian terms are critical in the derivation of the Mashhoon-Theiss effect [Mash-
hoon, 1985] which goes essentially beyond the limitations imposed on the dynamic
evolution of the Earth-Moon system by the method of the post-Newtonian approxi-
mations.

The basic theoretical equation of relativistic gradiometry is that of the deviation
of geodesics. The detailed analysis of this equation from the point of view of the
measuring process and feasibility of detection of relativistic effects in satellite gra-
diometry has been carried out by Paik [1989, 2008] and Mashhoon et al. [1989]
in the approximation of an isolated, spherically-symmetric and uniformly rotating
Earth. Some useful theoretical results are contained also in publications [Khleb-
nikov, 1989; Melkumova and Khlebnikov, 1990]. Our paper [Kopejkin, 1991a] ex-
tends the analysis of Mashhoon et al. [1989] to the case of an N-body system.

The present chapter develops the post-Newtonian theory of gravimetric and geode-
tic measurements in application to the case of the real Earth with external bodies
taken into account. To make discussion less independent on previous chapters the ba-
sic relativistic equations and descriptions of the barycentric, geocentric and topocen-
tric reference frames will be recalled. One will find the post-Newtonian corrections
to the Earth’s gravity potential and its gradient, discuss relativistic equations of geoid
and a level surface and derive relativistic equivalent of Clairaut’s equation defining
the flattening of the Earth as a function of the angular speed of rotation and the mass
density distribution.
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8.2
Basic Equations

This chapter will imply general relativity everywhere and will not consider other
alternative theories of gravitation. This is because the urgent goal of relativistic
geodesy is to extend the definitions of reference frames and data processing algo-
rithms of gravimetric and gradiometric measurements from the Newtonian gravity
to the most reliable relativistic extension of the theory of gravity - general relativity.
Geodetic testing of other theories of gravity is a secondary goal for more distant fu-
ture which requires much more theoretical and experimental work in order to clearly
disentangle the effects of the Newtonian geodetic parameters (like Earth’s mass, mul-
tipole moments, center of mass, Love’s elasticity numbers, etc.) from the effects of
the alternative theories.

The spacetime in general relativity represents a curved Riemannian manifold, en-
dowed with a tensor field of the second rank - the metric tensor gαβ. The metric ten-
sor is obtained as solution of the Einstein field equations with the imposed boundary
and initial conditions. The Einstein equations in arbitrary coordinate system have
the following form, which should be compare with equation (4.2),

Rαβ =
8πG
c2

(
Tαβ −

1
2

gαβT
)
, (8.1)

where Rαβ is the Ricci tensor defined in (3.201); Tαβ is the energy-momentum tensor
of matter, and T = gαβTαβ. It is useful to point out here that the Einstein equations
generalize the Poisson equation of the Newtonian theory of gravity and the metric
tensor extends the notion of the Newtonian gravitational potential.

In what follows, a solution of the Einstein equations in the vicinity of the Earth’s
center of mass will be especially important. It can be determined only after one
defines the specific form of the energy-momentum tensor of the Earth’s matter. Nu-
merous gravimetric and geological measurements revealed that the Earth is not in
the state of exact hydrostatic equilibrium [Hofmann-Wellenhof and Moritz, 2005;
Moritz, 1989]. Therefore, the Earth’s matter cannot be considered as a perfect (non-
viscous) fluid and should be described by means of the energy-momentum tensor,
Tαβ, which incorporates anisotropic stresses. In accordance with equation (4.8) one
defines

c2Tαβ =
(
ρc2 + ρΠ

)
uαuβ + παβ , (8.2)

where ρ is the rest mass density of the Earth’s matter, Π - the specific internal energy
density of the matter, uα = dxα/cdτ - the four-velocity of a microscopic element
of the matter, παβ is the covariant form of the stress tensor of matter satisfying the
following conditions παβ = πβα and παβuα = παβuαuβ = 0. The former condition
means that the stress tensor is symmetric, and the latter condition means, that in the
local frame of reference comoving with the element of the Earth’s matter, tensor παβ

has components which are solely spatial. Moreover, in the local frame πi j is the
ordinary tensor of stresses of the classical theory of elasticity [Landau and Lifshit’s,
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1959]. A particular form of the stress tensor for a perfect fluid is

παβ = p
(
uαuβ + gαβ

)
, (8.3)

where p is the isotropic pressure. The trace παα = παβgαβ of the stress tensor of
the perfect fluid is equal to 3p, since the four-velocity is subject to the condition,
uαuα = −1, and gαβgαβ = 4. More realistic equations for the stress tensor include
the local values of other parameters like viscosity and/or elastic parameters [Landau
and Lifshit’s, 1959] which can be determined from geodetic measurements.

Data processing of geodetic (and any other kind of practical) observations requires
from us a construction of a reference frame associated with a four-dimensional co-
ordinate chart, xα (α = 0, 1, 2, 3). Usually, x0 is taken as time coordinate, and xi

(i = 1, 2, 3) are considered as spatial coordinates. The distance ds in spacetime be-
tween any two infinitesimally close events with coordinates xα and xα + dxα, can
be expressed through the increments of the coordinates dxα and the metric tensor
gαβ = gαβ(t, x) as

ds2 = gαβdxαdxβ = g00

(
dx0

)2
+ 2g0idx0dxi + gi jdxidx j . (8.4)

The metric in general relativity characterizes not only gravitational field, but the
geometric properties of spacetime as well. The distance ds (or in the relativistic
language - interval) is scalar, and can be spacelike (ds2 > 0), timelike (ds2 < 0),
or null (ds2 = 0) 6). When ds is timelike, it is possible to introduce parameter τ,
such that ds2 = −c2dτ2, and dτ2 > 0. This parameter has physical meaning of the
proper time of observer, moving along the timelike worldline and measuring time
with the help of, for example, atomic clock. This is a conventional point of view on
the proper time adopted, for example, in the IERS Conventions [McCarthy and Pe-
tit, 2004]. One should emphasize, however, that this is just a hypothesis adopted in
general relativity for facilitating practical measurements. Strictly speaking, atomic
clock operates on the basis not a geometric, but quantum mechanical principles. This
means that the atomic time may differ from the proper time which can be counted
only with the help of an ideal clock defined on the basis of a simplest physical phe-
nomena reflecting geometric structure of spacetime: motion of free test particles and
light signals, as stated by R. Marzke and John A. Wheeler in 1964 [Marzke and
Wheeler, 1964] 7). The ticks of the photon clock arise from the permanent exchange
of light signals between two mirrors separated by a constant distance. It is possible
to check and keep this constancy with the help of the motion of other free particles
and light signals, even allowing for curved spacetime [Carrier, 1994]. The overall
practical procedure of the time measurement with the help of the Marzke-Wheeler
clock works properly only in the free fall and have not yet been practically imple-
mented though the International Space Station can be an ideal place for building this
clock.

6) The null interval describes propagation of wave fronts of any massless field including both gravity and
light

7) See also [Carrier, 1994; Castagnino, 1968; Desloge, 1989; Feyerabend, 1994; MacDonald, 1992] for
further discussion of the geometry-based clock.
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The Einstein equations will be solved by means of the post-Newtonian iterations
as explained in section 4.2.3. Physical quantities uα, gαβ and σαβ are expanded in
powers of 1/c (in fact, ε and η):

u0 = −1 + c−2
(2)

u0 +O
(
c−4

)
, (8.5)

ui = c−1u0vi , (8.6)

σ00 = O
(
c−2

)
, (8.7)

σ0i = O
(
c−1

)
, (8.8)

σi j = ti j + O
(
c−2

)
, (8.9)

g00 = −1 + c−2
(2)

h00 +c−4
(4)

h00 +O
(
c−5

)
, (8.10)

g0i = c−3
(3)

h0i +O
(
c−5

)
, (8.11)

gi j = δi j + c−2
(2)

hi j +O
(
c−4

)
, (8.12)

These expansions are inserted into the Einstein equations (8.1), which in the first
post-Newtonian approximation and in the harmonic coordinates [Fock, 1964] ac-
quire the form

∆
(2)

h00 = −8πGρ∗ , (8.13)

∆
(2)

hi j = −8πGρ∗δi j , (8.14)

∆
(3)

h0i = −16πGρ∗vi , (8.15)

∆
(4)

h00 = −8πGρ∗
(

3
2

v2 + Π +
tkk

ρ∗
−

1
2

(2)

h00

)
+
∂2

(2)

h00

∂t2 −
1
2

∆

(
(2)

h00

)2

, (8.16)

where ρ∗ = ρ
√
−gu0 is the invariant density, introduced by Fock [Fock, 1964] and

∆ ≡ δi j∂i∂ j is the Laplace operator in the Euclidean space.
For development of relativistic theory of gravimetric and geodetic measurements

it is necessary to construct three basic coordinate charts associated with the solar sys-
tem barycentric (BRF), geocentric (GRF) and topocentric (TRF) or satellite (SRF)
reference frames. From the mathematical point of view, the construction of these
coordinates is done with the help of solution of the Einstein equations (8.13)-(8.16)
with specific boundary conditions imposed on the components of metric tensor as
explained in section 4.2.3. In BRF, the boundary conditions reflect the fact that the
solar system is isolated and gravitational field is regular everywhere. Construction
of GRF requires different boundary conditions. It is chosen from the reasons, that
in the vicinity of the geocenter mainly the Earth’s gravitational field dominates, as
the gravitational field of external bodies appears only in the form of tidal terms (see
section 4.5. When constructing TRF (SRF), one considers the observer as a mass-
less point particle. Therefore, in the neighborhood of the observer, the gravitational
potential contains only inertial and tidal terms and can be represented in the form of
a harmonic polynomial in powers of spatial topocentric (satellite) coordinates. That
is the boundary condition imposed on the metric tensor in the TRF (SRF).
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Solution of the post-Newtonian field equations (8.13)-(8.16) in BRF contains the
overall information about the functional structure of the metric tensor. However, in
GRF and TRF (SRF) solution for the metric tensors have, at first, some unknown
functions of time, which describe the gravitational field of external (with respect to
Earth or to observer) bodies. For example, in TRF these functions have the physical
meaning of the Earth’s gravity and its gradient [Brumberg and Kopejkin, 1989b;
Kopeikin, 1990; Kopejkin, 1991b]. Determination of the unknown functions in GRF
and TRF (SRF) metrics as well as relativistic relationships between the coordinates
is achieved by means of matching of the asymptotic expansions of the components
of the metric tensor in the domain of overlapping of the different coordinate charts
as explained in section 5.1.

Let us briefly repeat the idea of the asymptotic matching technique. For this sake
the BRF coordinates are denoted by xα = (x0, xi) = (ct, xi) and the GRF coordinates
by wα = (w0,wi) = (cu,wi), where t and u are the barycentric and geocentric coordi-
nate times. The BRF and GRF coordinates are overlapping in the vicinity of Earth’s
geocenter restricted by the lunar orbit. In this domain functions wα depend on xα

and vice versa, that is wα = wα(t, xi) and xα = xα(u,wi). It is possible to expand wα

in the vicinity of the Earth’s center of mass worldline xi
E(t) in powers of the relative

distance Ri
E = xi − xE(t) with so far unknown coefficients depending on time t only.

Then, one takes the BRF and GRF metrics and expand all terms describing gravita-
tional field of external masses in powers of Ri

E . Matching is done with the help of a
tensor law of transformation of the metric tensor

gαβ
(
t, xi

)
= ĝµν

(
u,wi

) ∂wµ

∂xα
∂wν

∂xβ
, (8.17)

which should be considered as an equation for determination of the coordinate trans-
formations. Indeed, the left-hand-side (l.h.s.) of equation (8.17) is known, but its
right-hand-side (r.h.s.) contains in the metric ĝµν and ∂wµ/∂xα the above-mentioned
unknown functions, which are determined by means of equating similar terms in the
l.h.s. and r.h.s of (8.17). This accomplishes matching of the BRF and GRF metric
tensors. Matching of the GRF and TRF (SRF) metric tensors is done in the same
manner [Brumberg and Kopejkin, 1989b; Kopeikin, 1989a; Kopejkin, 1991b] except
that equation (8.17) should be replaced in this case by the following one

ĝαβ
(
u,wi

)
= Gµν

(
τ, ξi

) ∂ξµ
∂wα

∂ξν

∂wβ
, (8.18)

where ξα = (ξ0, ξi) = (cτ, ξi) are the TRF (SRF) coordinates and Gµν

(
τ, ξi

)
represents

the TRF (SRF) metric tensor.
The outlined method is sufficiently simple, mathematically rigorous and does not

contain ambiguous assumptions. It allows us to construct the self-consistent rela-
tivistic theory of astronomical reference frames and time scales in the Solar system,
to derive relativistic equation of motion of the Earth’s satellite in the GRF [Brumberg
and Kopeikin, 1989; Brumberg and Kopejkin, 1989a] and that of the planetary cen-
ter of mass in BRF with all subtle effects taken into account [Kopeikin and Vlasov,
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2004], to describe the relativistic algorithm of data reduction of optical and radio
astronomical observations that is directly acceptable for practice.

Alternative approach to solving the similar problems was suggested by Ashby &
Bertotti [Ashby and Bertotti, 1984, 1986] and Fukushima et al. [Fukushima, 1988;
Fukushima et al., 1986]. Their method relies upon construction of the Fermi nor-
mal coordinates (3.214) in the vicinity of a self-gravitating body (Earth, planet, etc.).
However, the given method requires introduction of some special assumptions - the
absence of rotation and spherically-symmetric shape of the gravitating bodies, a spe-
cial choice of the external background metric, restricting the motion of the Earth’s
center of mass along a geodesic worldline of the background metric, etc., which is
not consistent with practice. Moreover, construction of the Fermi normal coordinates
is more difficult as compared to the construction of harmonic coordinates which is
achieved by straightforward solution of the Einstein equations (8.13)-(8.16).

Let us now go to the concrete description of the basic equations of the relativistic
coordinate frames in gravimetry and geodesy. Description of the global BRF was
given in section 4.3 to which the reader should refer for more detail. The local
GRF was outlined in section 4.5 but its mathematical structure is briefly repeated
below. The local topocentric frame of observer (TRF) plays a crucial role in geodetic
measurements and will be introduced in section 8.4.
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8.3
Geocentric Reference Frame

A metric tensor in the dynamically non-rotating GRF wα = (cu,wi) = (cu,w) is
obtained by means of solution of equations (8.13)-(8.16), and has the following form

ĝ00(u,w) = −1 +
2
c2

[
UE(u,w) + Qiwi +

1
2

Qi jwiw j +
1
6

Qi jkwiw jwk
]

(8.19)

+
2
c4

[
ΦE(u,w) − U2

E (u,w) −
1
2
∂2χE(u,w)

∂u2

]
+ O

(
r4

c2

)
+ O

(
r2

c4

)
+ O

(
1
c5

)
,

ĝ0i(u,w) = −
4
c3 U i

E(u,w) + O
(

r2

c3

)
+ O

(
1
c5

)
, (8.20)

ĝi j(u,w) = δi j

{
1 +

2
c2

[
UE(u,w) + Qkwk +

1
2

Qkpwkwp +
1
6

Qkpqwkwpwq
]}

(8.21)

+O
(

r4

c2

)
+ O

(
1
c4

)
.

Here the internal gravitational potentials of the Earth are defined by equations

UE(u,w) = G
∫

VE

ρ∗(u,w′)
|w − w′|

d3w′ , (8.22)

U i
E(u,w) = G

∫
VE

ρ∗(u,w′)vi(u,w′)
|w − w′|

d3w′ , (8.23)

χE(u,w) = −G
∫

VE

ρ∗(u,w′)|w − w′|d3w′ , (8.24)

ΦE(u,w) = G
∫

VE

ρ∗(u,w′)
[
3
2

v2(u,w′) − UE(u,w′) + Π(u,w′)
]

+ tkk(u,w′)

|w − w′|
d3w′ .(8.25)

The inertial gravity force due to the coupling between the Earth’s oblateness and the
tidal gravitational octupole Qi jk is given in equation (6.20) which is approximated
by

Qi = −
1
2

M−1
E Qi jkI jk

E + O
(
J3

L3
E

R3
E

)
+ O

(
1
c2

)
, (8.26)

where the baryon’s rest mass of the Earth

ME =

∫
VE

ρ∗(u,w)d3w , (8.27)

and the Earth’s second moment of inertia

Ii j
E =

∫
VE

ρ∗(u,w)wiw jd3w . (8.28)

Equation (8.26) for the inertial force should be compared with more complete ex-
pression for this force given in equation (6.20). The inertial force given by equation
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(8.26) is known in geodynamics as an indirect J2 effect [Gruber et al., 2009; Newhall
et al., 1983].

The tidal gravitational quadrupole and octupole moments are given by equation
(5.59)

Qi j = Ū,i j (t, xE) + O
(

1
c2

)
, (8.29)

Qi jk = Ū,i jk (t, xE) + O
(

1
c2

)
, (8.30)

where the external gravitational potential

Ū (t, xE) =
∑
A,E

UA(t, x) , (8.31)

UA(t, x) = G
∫

VA

ρ∗(t, x′)
|x − x′|

d3x′ , (8.32)

includes all bodies of the solar system other than Earth. One has omitted relativistic
terms in formulas (8.29), (8.30) since these terms have magnitudes, which are negli-
gibly small for the ground-based gravimetric and geodetic measurements. However,
the relativistic influence of tidal fields may be important for high-resolution determi-
nation of the fine-multipole structure of the gravitational field of the Earth in future
satellite missions and for testing general relativity with lunar laser ranging [Kopeikin
et al., 2008; Müller et al., 2008b].

Other notations that were used in above equations, are r = |w| =
√
δi jwiw j, vi =

dwi/du - velocity of the Earth’s matter with respect to GRF; LE - the mean radius of
the Earth; RE = |x − xE |; xα = (ct, xi) = (ct, x) - the barycentric (BRF) coordinates
of the Solar system, connected with the GRF coordinates by means of the post-
Newtonian transformations given in section (5.2.6); xE = xi

E(t) - the BRF coordinates
of the Earth’s center of mass; VE and VA denotes the matter volumes of the Earth and
another gravitating body A respectively; summation in the formula (8.31) is carried
out over all gravitating bodies of the Solar system other than Earth; J2 and J3 - the
oblateness factors of the Earth of the second and third order respectively.

Metric potentials UE , U i
E , ΦE , χE characterize gravitational field of the Earth only.

They can be expanded outside the Earth in the internal multipole harmonics with
respect to the powers of LE/r:

UE =
GME

r
+ G

∑
l=2

(−1)l

l!
Ji1i2 ...il

E

∂l

∂wi1∂wi2 ...∂wil

(
1
r

)
, (8.33)

U i
E =

G (SE × w)i

2r3 +
Gİi j

E w j

2r3 + O
(

L3
E

r3 ωE

)
, (8.34)

ΦE =
G
r

∫
VE

(
1
2
ρ∗v2 −

1
2
ρ∗UE + ρ∗Π

)
d3w +

GÏkk
E

2r
+ O

(
L4

E

r2 ω
2
E

)
, (8.35)

χE = −GMEr −
GIkk

3r
−

3
2

Ji j
E wiw j

r3 + O
(

L3
E

r2

)
. (8.36)
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Here the internal multipoles of the Earth are

Ji1i2 ...il
E =

∫
VE

ρ∗(u,w)w<i1 wi2 ...wil>d3w , (8.37)

S i
E =

∫
VE

ρ∗(u,w)(w × v)id3w , (8.38)

where i1, i2, ...il are the spatial indices of the GRF coordinates; the angular brackets
around the indices denote STF tensor; ωE is the module of the angular velocity of
the Earth’s rotation; Ji1i2 ...il

E is the Newtonian mass multipole moments of the Earth’s
gravitational field of the order l; S i

E is the intrinsic angular momentum (spin) of
the Earth; each dot over any function means the total derivative with respect to the
coordinate time u of the GRF. In the expansion of potential UE the infinite number
of the multipole moments is taken into account. This is because UE appears in the
Newtonian terms and, therefore, has to be calculated with exhaustive completeness.
In expansion of the other potentials, which appear always only in the post-Newtonian
terms, it is quite enough to take into account several first terms.

The mass multipole moments Ji1i2 ...il
E describe the dependence on the Earth’s inter-

nal mass distribution. They are inseparably linked with the geopotential coefficients
Clm and S lm (m = 0, 1, 2, ..., l) [Soffel et al., 2003] in the sense that there exists one-
to-one mapping between the geopotential coefficients and the STF multipoles Ji1i2 ...il

E .
In a simplified case of a mass distribution that is symmetric with respect to the axis
of rotation one can express the mass STF multipoles as follows

Ji1i2 ...il
E = MERl

E Jls<i1 si2 ...sil> , (8.39)

where si is the unit vector directed along the axis of rotation, Jl = −Cl0 are the zonal
coefficients characterizing the amount of oblateness of each zonal harmonic in the
expansion of geopotential UE , and the angular brackets indicate that the symmetric
and trace-free combination of the unit vectors must be taken. In conclusion of this
section one notices that the external potentials UA (A , E) can be decomposed to the
multipolar series in the same way as it was done for geopotential [Kopejkin, 1988a].

8.4
Topocentric Reference Frame

Topocentric reference frame (TRF) is more familiar to relativists under the name of
the proper reference frame of observer [Misner et al., 1973]. From practical point of
view TRF is the frame that is used for doing local measurements in spacetime [Brum-
berg and Kopejkin, 1989b; Klioner, 2004; Kopejkin, 1991a,b; Misner et al., 1973].
TRF can be introduced in many different ways. For example, the Fermi normal co-
ordinates [Misner et al., 1973; Schouten, 1954] are often used in order to describe
the functional structure of the metric tensor in the vicinity of the worldline of accel-
erated and rotating observer as demonstrated in papers [Li and Ni, 1979; Marzlin,
1994; Ni and Zimmermann, 1978b]. However, according to the principle of general
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covariance of general relativity any coordinates can be used in order to describe the
local measurements. One has used the harmonic coordinates as their construction is
more straightforward and requires solution of vacuum Einstein equations in a close
vicinity of the worldline of observer. The solution consists of the set of harmonic
polynomials with the coefficients which describe the inertial and tidal forces exist-
ing in the vicinity of observer. Detailed mathematical procedure is outlined in papers
[Suen, 1986; Zhang, 1986].

Let us introduce the TRF coordinates ξα = (cτ, ξi) = (cτ, ξ) that cover the immedi-
ate vicinity of a massless observer, which is always located at the origin of the TRF.
The TRF metric tensor Gαβ(τ, ξ) is obtained from equations (8.13)-(8.16), where
functions ρ∗, Π, and ti j are now set equal to zero identically. One stipulates that the
TRF is dynamically non-rotating which means that G0i component of the metric ten-
sor does not have terms being proportional to the angular velocity of rotation. Then,
with sufficient accuracy one has for the TRF metric tensor the following expressions
[Kopejkin, 1991a,b]

G00(τ, ξ) = −1 +
2
c2

(
Eiξ

i +
1
2

Ei jξ
iξ j +

1
6

Ei jkξ
iξ jξk

)
+ O

(
ξ4

c2

)
+ O

(
ξ2

c4

)
+ O

(
1
c5

)
,(8.40)

G0i(τ, ξ) = O
(
ξ2

c3

)
+ O

(
1
c5

)
, (8.41)

Gi j(τ, ξ) = δi j

[
1 +

2
c2

(
Ekξ

k +
1
2

Ekpξ
kξp +

1
6

Ekpqξ
kξpξq

)]
+ O

(
ξ4

c3

)
+ O

(
1
c4

)
,(8.42)

where the quantities Ei , Ei j, Ei jk depend on the coordinate time τ only, and are
STF tensors taken at the origin of TRF as follows from the solution of the homo-
geneous Laplace equations. Their precise form will be given later, when discussing
applications for gravimetry and gradiometry.

The topocentric coordinate time τ at the origin of TRF represents a proper time
of the observer that can be measured with observer’s clock. The spatial coordinates
of the TRF, ξi, in the infinitesimally close neighborhood of the observer measure
the proper distance and directions and can be interpreted as the standard Euclidean
coordinates of the Newtonian theory. Rotating TRF can be easily introduced in a
standard way by making a coordinate transformation to a rigidly rotating frame as
shown below in equation (8.58). The rotating TRF coordinates obtained in this way
are not harmonic as the harmonic gauge condition does not admit rigidly rotating
frames of reference [Brumberg and Kopejkin, 1989b; Kopejkin, 1991b].

Physical meaning of quantities Ei, Ei j, Ei jk is established by means of consider-
ation of the topocentric equations of motion of a test particle with negligibly small
mass m moving with respect to observer. Let Fα be the external non-gravitational
force exerted on the particle. Then, the particle moves along an accelerated worldline
described by the perturbed equation of geodesic [Landau and Lifshitz, 1975; Misner
et al., 1973]

d2ξα

dλ2 + c2Γα00

(
dτ
dλ

)2

+ 2cΓα0i
dτ
dλ

dξi

dλ
+ Γαi j

dξi

dλ
dξ j

dλ
=

Fα

m
, (8.43)
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where λ is the proper time of the particle (affine parameter), Γαβγ - the Christoffel
symbols, and the four-force satisfies the condition of orthogonality gαβFα(dξβ/dλ) =

0, which means that in the proper reference frame of the test particle the four-force
is a measurable observable quantity having only spatial components. In TRF the
four-force has all four components different from zero because TRF is not the proper
reference frame of the test particle under consideration. However, because the four-
force is orthogonal to four-velocity of the test particle, its time component is not
independent and can be always expressed in terms of its spatial components.

Calculating the Christoffel symbols and transforming the proper time λ to topocen-
tric coordinate time τ with the help of the definition of proper time,

−dλ2 = G00dτ2 +
2
c

G0idτdξi +
1
c2 Gi jdξidξ j , (8.44)

and the metric (8.40)-(8.42), one obtains the spatial components of the equations of
motion of the test particle

d2ξi

dτ2 =
F i

m
+ Ei + Ei jξ

j +
1
2

Ei jkξ
jξk −

4
c2 EiEkξ

k + O
(
ξ3

)
+ O

(
ξ2

c2

)
. (8.45)

This equation is nothing else but the second Newton’s law written down in a non-
inertial coordinate system because of the presence of the inertial acceleration Ei in
the right side of it. One can see that the Coriolis and centrifugal accelerations are
absent in (8.45). It means that the TRF is dynamically non-rotating. It follows
from equation (8.45) that the acceleration Ei taken with the sign minus (that is −Ei)
represents acceleration of the origin of the TRF caused by its non-inertial motion.
Indeed, let’s assume that the test particle is passing through the origin of TRF and is
in the state of a free fall, which means F i = 0 and ξi = 0. Equation (8.45) tells us
that in this case d2ξi/dτ2 = Ei. Since the freely-falling test particle moves along the
geodesic worldline and can not experience any physical acceleration by definition,
one concludes that the TRF is a non-inertial frame that moves with acceleration −Ei,
which creates a "fictitious" inertial acceleration Ei of the particle with an opposite
sign.

One can measure Ei by keeping the test particle at the origin of TRF. For this
sake, the experimentalist must apply a certain force F i , 0 to the particle to ensure
fulfillment of the following conditions: ξi = dξi/dτ = d2ξi/dτ2 = 0, which mean that
the particle is always at the origin of the TRF. Then, equation (8.45) tells us that Ei =

F i/m. Thus, measuring the force F i with the help of an accelerometer (gravimeter),
one obtains the exhaustive quantitative information about Ei. In section 8.6 it will be
shown that for the ground-based observer, Ei represents the acceleration of Earth’s
gravity with the post-Newtonian corrections taken into account. Topocentric frame
attached to a spacecraft orbiting the Earth is called satellite reference frame (SRF).
Mathematical description of SRF is the same as TRF but the inertial acceleration
Ei = 0 if the satellite is equipped with a drag-free control system. This system
comprises a proof mass which is disconnected from the satellite, a sensor to measure
any displacements between the proof mass and the satellite, as actuators a number of
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low-level (ideally proportional) thrusters, and the associated electronics and software
(drag-free control algorithms) [Debra, 2003]. Protected inside the satellite, the proof
mass follows a purely gravitational orbit. The position of the satellite with respect
to the proof mass is measured and fed back to thrusters, which force the satellite to
follow the proof mass.

The Ei j and Ei jk describe the tidal forces which can be expressed in terms of the
Riemannian curvature of spacetime and its derivatives. These forces can be measured
with the help of a gradiometer, located at the origin of the TRF (SRF). Functional
structure of Ei, Ei j, Ei jk as well as the relationship between the GRF and TRF co-
ordinates are determined by means of matching of the asymptotic expansions of the
metric tensors given by equations (8.19)-(8.21) and (8.40)-(8.42) as it was described
in section 8.3 and 8.4. These formulas constitute the basis of the relativistic gravime-
try, gradiometry, and geodesy. Results of the matching procedure are described in
the following sections.

8.5
Relationship between the Geocentric and Topocentric Frames

Let us stipulate that observer is permanently located at the origin of TRF and moves
in spacetime along a worldline described in GRF by spatial coordinates wi

T = wi
T (u)

depending on time u. One is looking for a post-Newtonian transformation between
GRF and TRF coordinates in the following form [Brumberg and Kopejkin, 1989b;
Kopejkin, 1991a,b]

τ = u −
1
c2

[
V(u) + vk

T rk
T

]
−

S (u)
c4 + O

( rT

c4

)
+ O

(
1
c5

)
, (8.46)

ξi = ri
T +

1
c2

[
1
2

vi
T vk

T + Rik(u) + Zik(u)
]

rk
T + O

(
r2

T

c2

)
+ O

(
1
c4

)
, (8.47)

where ri
T = wi − wi

T (u), and vi
T = dwi

T/du is velocity of the observer with respect to
the dynamically non-rotating GRF 8).

Functions V(u), S (u), and matrices Rik(u) = −Rki(u) and Zik(u) = Zki(u) depend
only on the geocentric time u and are determined from the matching procedure. In-
serting formulas (8.19)-(8.21), (8.40)-(8.42), (8.46), (8.47) to equation (8.18) and
matching the GRF and TRF coordinates (that is equating similar terms in both sides
of equation (8.18)), one concludes that these functions satisfy the following equa-

8) This velocity is associated with either the diurnal motion of the ground-based observer or with the
velocity of a satellite orbiting the Earth.
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tions

dV
du

=
1
2

v2
T + UE(wT ) + Qiwi

T +
1
2

Qi jwi
T w j

T +
1
6

Qi jkwi
T w j

T wk
T + O

(
w4

T

)
, (8.48)

dS
du

=
1
8

v4
T +

3
2

v2
T UE(wT ) − 4vi

T U i
E(wT ) −

1
2

U2
E (wT ) + ΦE(wT ) −

1
2
∂2χE(wT )
∂u2 + O (wT ) ,(8.49)

dRik

du
= 3v[i

T U ,k]
E (wT ) − 4U[i,k]

E (wT ) + v[i
T Ek] + O(wT ) , (8.50)

Zik = δik
[
UE(wT ) + Qpwp

T +
1
2

Qpqwp
T wq

T +
1
6

Q jpqw j
T wp

T wq
T

]
+ O

(
w4

T

)
. (8.51)

Formulas (8.46), (8.48) and (8.49) give the relationship between the geocentric and
topocentric coordinate time scales. In case of ri

T = 0, they give rise to relationship
between the proper time of observer and the geocentric time u. The symmetric matrix
Zik describes the isotropic gravitational contraction of the grid of the TRR spatial
coordinates with respect to that of the GRF spatial coordinates.

The anti-symmetric matrix Rik in equations (8.47), (8.50) describes a post-
Newtonian precession of the spatial axes of the TRF coordinates with respect to
the spatial GRF coordinates. Spin of a torque-free gyroscope that is placed to the
origin of TRF, will undergo this precession in accordance with equation

dS i

dτ
=

(
ΩpN × S

)i
, (8.52)

where ΩpN = (Ωi
pN) = 1

2 ε
i jkdR jk/dτ is the angular velocity of the post-Newtonian

precession, and one has replaced the time derivative with respect to time u by the
time derivative with respect to the proper time of observer τ as the difference between
them is of the post-Newtonian order of magnitude and can be neglected in equation
(8.52). Using the ordinary notation of vector analysis for gradient, (∂i) = ∇, equation
for the angular velocity of the relativistic precession can be recast to the form

Ωi
pN =

3
2

(vT × ∇UE)i + 2 (∇ × UE)i +
1
2

(vT × E)i , (8.53)

where vector-potential UE = (U i
E) which is explicitly given in equation (8.34). Stan-

dard textbooks on general relativity [Misner et al., 1973; Weinberg, 1972] derive the
relativistic precession (8.53) of gyroscope’s spin by making use of the Fermi-Walker
transport along accelerated worldline of the gyroscope’s center of mass. Our deriva-
tion of equation (8.53) originates from the post-Newtonian precession of the local
TRF derived by the asymptotic matching technique 9).

The first term in the right side of equation (8.50) is the de Sitter (geodetic) pre-
cession caused by the motion of observer with respect to GRF. The second term
in the right side of equation (8.50) is the Lense-Thirring (gravitomagnetic) preces-
sion caused by Earth’s rotation which drags the local inertial frames [Ciufolini and

9) Notice that the notation for the local acceleration measured by the observer differs by sign from that
used in the textbooks [Misner et al., 1973; Will, 1993]. Textbook [Weinberg, 1972] ignores the accel-
eration Ei and uses definitions, φ =: −UE and ζ i =: −4U i

E .
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Wheeler, 1995; Misner et al., 1973]. The measuring of the geodetic and gravito-
magnetic precessions has been achieved in the Gravity Probe-B (GPB) Relativity
Gyroscope Experiment [Everitt et al., 2008, 2009b; Turneaure et al., 2003]. An in-
dependent measurement of the gravitomagnetic precession of the orbit of LAGEOS
satellite was achieved by Ignazio Ciufolini with collaborators [Ciufolini, 2007; Ciu-
folini and Pavlis, 2004; Ciufolini et al., 2006] and independently confirmed by John
Ries [Ries, 2009]. The third term in the left side of equation (8.50) represents the
Thomas precession [Misner et al., 1973], which is not equal to zero only for the
observers which experience a local acceleration Ei , 0. It means that the Thomas
precession is absent, for example, for a GPB gyroscope onboard of satellite which
is in a free-fall flight. For the ground-based observer, the Thomas precession cou-
ples with the geodetic precession, since in the TRF Ei ' ∂iUE(wT ) (see equations
(8.54), (8.55). There exists also tidal contributions to the geodetic and gravitomag-
netic precession caused by the presence of external with respect to the Earth bodies
[Kopeikin, 1989a; Kopejkin, 1991b]. The magnitude of the tidal terms to the post-
Newtonian precession is very small amounting only to ≤ 10−3 arcsecond per 100
years. Therefore, measuring of the tidal corrections to equation (8.50) is problem-
atic.
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8.6
Post-Newtonian Gravimetry

Gravimetry is the science of measuring the strength and direction of Earth’s gravi-
tational field at different locations. Therefore, the basic formula of gravimetry is an
expression for the acceleration of Earth’s gravity. According to the physical nature
of the metric tensor the force of gravity is given in the topocentric reference frame
by a (co)vector Ei entering G00 component of the metric tensor as shown in equa-
tion (8.40). Exact analytic expression for this vector is derived from the matching of
asymptotic expansions of GRF and TRF metric tensors according to equation (8.18).
It yields

Ei = gN
i +

1
c2 gPN

i + O
(

1
c4

)
, (8.54)

where

gN
i = VE,i(wT ) − ai

T + Qi + Qi jw
j
T +

1
2

Qi jkw j
T wk

T + O
(
w3

T

)
, (8.55)

gPN
i = 4U i

E,u(wT ) + 4vk
T U i

E,k(wT ) − 4vk
T Uk

E,i(wT ) (8.56)

−3vi
T UE,u(wT ) − 3ai

T UE(wT ) −
7
2

vi
T vk

T UE,k(wT )

+2v2
T UE,i(wT ) −

1
2

vi
T

(
ak

T vk
T

)
− v2

T ai
T + gN

j Ri j + O(wT ) ,

and one has introduced a generalized gravitational potential

VE(w) = UE(w) +
1
c2

[
ΦE(w) −

1
2

U2
E (w) −

1
2
χE,uu(w)

]
, (8.57)

consisting of the Newtonian potential UE and a post-Newtonian contribution to it
(terms proportional to 1/c2). Quantities wT , vT = dwT/du, aT = dvT/du in the above
equations are respectively the GRF coordinates, velocity, and acceleration of the
observer measuring the gravity field with a gravimeter that is placed at the origin of
TRF; Ri j is a matrix of the relativistic precession defined by formula (8.50).

The coordinates wi
T are connected with the geodetic coordinates yi

T of the Interna-
tional Terrestrial Reference Frame (ITRF) by the orthogonal matrix of a continuous
rotational transformation [McCarthy and Petit, 2004]:

yi
T = S i jN jkPkqwq

T , (8.58)

where S i j = S i j(u), N i j = N i j(u), Pi j = Pi j(u) are matrices of the diurnal rotation,
nutation and precession of the Earth, which are functions of time u and determined
by the IERS Standards [McCarthy and Petit, 2004]. One notices that the current
convention is to include the post-Newtonian precession to the matrix of precession
Pi j taking into account that the spatial axes of the geocentric frame are fixed with
respect to the International Celestial Reference Frame based on radio quasars [Fey
et al., 2004; Souchay and R., 2010]. Differentiation of both sides of equation (8.58)
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with respect to the geocentric coordinate time u, one obtains the explicit expressions
for the geocentric velocity and acceleration of the observer:

vi
T = (Ω × wT )i + vi

TT , (8.59)

ai
T = (Ω × (Ω × wT ))i + 2(Ω × vTT )i + (Ω̇ × wT )i + ai

TT , (8.60)

where the first term in the right side of equation (8.59) represents velocity of ob-
server due to the diurnal rotation of the Earth, Ω = (Ωi) is the instantaneous angular
velocity of the Earth’s rotation with respect to the kinematically non-rotating geo-
centric frame (GRF); vi

TT and ai
TT = dvi

TT/du are velocity and acceleration of the
observer with respect to the terrestrial reference frame GRF+, which rotates with re-
spect to GRF with the angular velocity Ωi. When observer is at rest with respect to
the Earth’s crust, velocity vi

TT may be different from zero only because of geophysical
factors (crustal motion).

The first term in the right side of equation (8.60) is the centrifugal acceleration of
observer due to the diurnal rotation of the Earth. It decreases the force of gravity
for observers located at any point on Earth but poles. The second term in the right
side of equation (8.60) is the Coriolis acceleration which is different from zero only
for observers moving with respect to the GRF+ with velocity vi

TT . Third term in
right side of equation (8.60) is the acceleration due to the angular acceleration of
Earth’s rotation (time variations of the rotational velocity of the Earth). Acceleration
ai

TT due to the regular crustal motion is negligibly small 10). If the observer is doing
gravimetric measurement from a moving platform (ship, aircraft), the contribution of
vi

TT and ai
TT in the readings of measuring gravimetric devices is rather large and should

be taken into account. This correction is known as the Eötvös effect [Dehlinger,
1978].

One has pointed out already that the quantity gN
i extends the Newtonian definition

of the Earth’s gravity by taking into account the gradient of the other post-Newtonian
potentials, ΦE and χE , which are included to the first term in the right side of equation
(8.55) by means of definition (8.57). In particular, the presence of the term ΦE in
this definition indicates that besides the matter’s density ρ∗ the source of the gravity
force is the density of the internal self-gravitational energy of the Earth as well as
the kinetic and thermodynamics energy, and stresses (pressure) of matter. Their
contribution has a maximal amplitude of the order of a few µgals but they can not be
separated from the Newtonian gravity gradient in the gravimetric measurement.

The term ai
T in the right side of equation (8.55) is the centrifugal acceleration (8.60)

decreasing the gravity force depending of the latitude of observer. The third term Qi

in the right side of equation (8.55) describes the acceleration of the geoid’s center-of-
mass worldline from that of a spherically-symmetric Earth. The main contribution
to Qi is due to the interaction between the quadrupole moment Jik of the Earth and
the octupole tidal gravitational field Qi jk of external bodies (mostly the Moon) as
shown in equation (8.26). It is not difficult to evaluate that Qi changes periodically

10) The case of earthquakes, when the acceleration ai
TT can be rather large for a short interval of time, is an

important seismological parameter to measure but it has a loose connection to the present book and is
not analyzed.
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and has an amplitude of the order of 3 nanogals. The present-time super-conducting
gravimeters are not yet sufficiently precise for a direct measurement of the inertial
acceleration Qi on the ground. However, it must be taken into account in analysis of
observations of geodetic satellites like LAGEOS, GRACE [Levi, 2003], GOCI [Al-
bertella et al., 2002]. The term Qi must be taken into account in the barycentric equa-
tions of motion of the Earth and Moon for constructing high-precision ephemeris of
these bodies as shown in paper by Newhall et al. [1983]). This is because the accel-
eration Qi is comparable in magnitude with the Earth’s figure effects [Newhall et al.,
1983] and leads to noticeable periodic variation of the Earth-Moon distance. This
variation is approximately equal to |Qi|× (the mean motion of the Moon)−2 ' 10 me-
ters - much larger than the accuracy of the lunar laser ranging (LLR) measurements
to retro-reflectors on the Moon [Müller et al., 2008b].

The forth and fifth terms in the right side of equation (8.55) describe the direct
Newtonian influence of the tidal gravitational field of external bodies on the magni-
tude of the Earth’s gravity acceleration. The indirect influence of this field appears in
the form of the tidal deformation of the Earth’s figure leading to tidal variation of the
Earth’s gravitational potential UE [Melchior, 1983; Montenbruck and Gill, 2000].

The direct post-Newtonian correction gPN
i to the Newtonian gravity depends on

the gravitomagnetic potential U i
E , and velocity and acceleration of observer coupled

with the Newtonian potential UE . These terms reach maximal amplitude of the order
of a few nanogals on the Earth’s equator and reduce to zero at the poles.

The relativistic term gN
k Rik in the right side of equation (8.56) appears because of

the relativistic precession of TRF spatial axes with respect to GRF, and manifests
itself as a slowly varying-in-direction force in the equation of motion (8.45) of the
test particle. This force will change, for example, orientation of the swinging plane
of Foucault’s pendulum with respect to the dynamically non-rotating spatial axes of
GRF. The indicated effect can be used, in principle, for measuring the gravitomag-
netic potential U i

E of the Earth as it was suggested by Braginsky et al. [Braginskii
et al., 1984].

The post-Newtonian corrections to the Newtonian tidal variations of gravity were
not included to formula (8.56) since they are negligibly small - approximately by a
factor of 10−9 smaller as compared to the classic tidal variation of gravity ∼ Qi jw

j
T .

Explicit form of the tidal post-Newtonian corrections to Ei have been derived in
[Kopejkin, 1991b].

Finally, one considers the case when observer is located at the satellite orbiting
the Earth. Let us denote coordinates of the satellite (wi) = w, and its velocity (vi) =

v = dw/du. In this case the orbital acceleration of the satellite is ai = dvi/du and
the acceleration Ei is due to the non-gravitational forces (air drag, Yarkovsky’s effect
[Beekman, 2006], solar pressure, etc.) preventing satellite to move along a geodesic
worldline 11). In this case, equations (8.54)-(8.57) become the equation of motion of

11) If the satellite is equipped with the drag-free system control the non-gravitational acceleration Ei = 0.
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the satellite

ai = VE,i(w) − Ei + Qi + Qi jw j +
1
2

Qi jkw jwk (8.61)

+
1
c2

[
4U i

E,u(w) + 4vkU i
E,k(w) − 4vkUk

E,i(w)

−3viUE,u(w) − 3UE(w)UE,i(w) − 4vivkUE,k(w)

+v2UE,i(w)
]

+ O
(
w3

)
+ O

( w
c2

)
,

where the inertial acceleration Qi of the Earth’s geocenter causes the indirect J2 ef-
fect in the motion of satellites [Gruber et al., 2009], and terms with Qi j, Qi jk, etc., are
direct tidal accelerations from external bodies (Moon, Sun, planets) [Montenbruck
and Gill, 2000]. The post-Newtonian perturbations of the satellite’s orbit have been
analyzed in [Brumberg, 1991; Brumberg and Kopeikin, 1989; Brumberg and Kope-
jkin, 1989a; Martin et al., 1985; Soffel, 1989]. Among the post-Newtonian pertur-
bations, the most remarkable is the gravitomagnetic acceleration that is formed by
terms with vector-potential U i

E in the second line of equation (8.61)

ai
GM =

8
c2 vkU[i,k]

E (w) , (8.62)

where one has taken into account that in the approximation of the rigidly-rotating
Earth the partial time derivative from vector-potential U i

E is zero. The gravitomag-
netic acceleration can be recast to a more usual, double vector product form

ai
GM = −

4
c2 (v × (∇ × UE))i , (8.63)

where again notation UE = (U i
E) has been used. Assuming that the Earth is rotating

stationary, one can neglect the term with the time derivative in expression (8.34).
Substituting the spin-dependent term in equation (8.34) to equation (8.63) one ob-
tains

ai
GM = (v ×ΩLT )i , (8.64)

where ΩLT = (Ωi
LT ) is the angular velocity of a slow gravitomagnetic rotation of the

inertial frame caused by Earth’s rotation. It is given by equation

Ωi
LT =

2GS E

c2r3

[
si −

3wi(s · w)
r2

]
, (8.65)

where s = (si) is the unit vector in the direction of the Earth’s spin SE = S E s. The
gravitomagnetic acceleration of the satellite is similar to the effect of the Coriolis ac-
celeration acting on a moving body in a rotational frame of reference. It leads to the
precession of satellite’s perigee and node (the intersection of the Earth’s equatorial
plane with the satellite’s orbit) - the effect, envisaged by Lense and Thirring in 1918
[Lense and Thirring, 1918]. The angular velocity of the Lense-Thirring precession of
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satellite’s node and perigee is calculated on the basis of the equations for osculating
elements which yield (after averaging over one period of orbital revolution)

Ωnode
LT =

2GS E

c2a3(1 − e2)3/2 , (8.66)

Ω
perigee
LT = −3 cos i Ωnode , (8.67)

where i is the inclination of the orbital plane of the satellite to the Earth’s equator, a
and e are the semi-major axis and eccentricity of the satellite’s orbit.

The Lense-Thirring effect plays a major dynamical role in the accretion disks of
super-massive spinning black hole and in the alignment of jets in active galactic nu-
clei and quasars [Melia, 2003; Thorne et al., 1986]. However, Ωi

LT is extremely
small for a satellite orbiting the Earth. For example, for a LAGEOS satellite having
an orbital semi-major axis 12,238 km the Lense-Thirring angular shift of its node is
only about 33 mas yr−1, that is, nearly 1.4 m yr−1 in space. Van Patten and Everitt
[Van Patten and Everitt, 1976] discussed feasibility of the detection of the Lense-
Thirring effect with two counter-orbiting satellites placed on the polar orbit. Ciu-
folini [Ciufolini, 1986] proposed a more general technique for doing measurement
of the Lense-Thirring precession with two satellites having supplementary orbital
inclinations. It allows to suppress the Newtonian "noise" signal in the precessional
motion of the node and perigee of the satellite’s orbit produced by the low-order
harmonics Ji1i2 ...il

E in expansion of the gravitational field of the Earth. In any case,
Ciufolini’s method still requires precise knowledge of the multipole moments of the
Earth’s gravitational field. Recent advances in mapping gravitational field of the
Earth with GRACE satellite allowed Ciufolini & Pavlis [Ciufolini and Pavlis, 2004]
and Ries [Ries, 2009] to measure the gravitomagnetic Lense-Thirring effect by com-
paring a specifically-chosen, "differential" combination of the orbital elements of
LAGEOS and LAGEOS II geodynamic satellites.
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8.7
Post-Newtonian Gradiometry

Gravity gradiometry is a measure of differential acceleration of the Earth’s gravity
field over a unit distance. Gradiometry is widely used in practical explorations by
oil, gas and mining companies to directly measure the density of the subsurface and,
effectively, the rate of change of rock properties. From this information they can
build up a picture of sub-surface anomalies and more accurately target oil, gas and
mineral deposits. However, this section is mostly concerned with the application of
gradiometry to the study of the fundamental properties of the Earth’s gravity field.

Basic equation of gradiometry in both the Newtonian and relativistic gravity is the
equation of deviation of time-like worldlines of two proof masses. In most cases
these worldlines are assumed to be geodesic (see section 3.7.5) but this assumption
is not required here. Measurable quantity in this equation is an invariant "vector"
distance Xi = Xi

2 − X
i
1 connecting the two proof masses. In what follows, one will

derive a differential equation for Xi that will be defined as a "vector" distance taken
along a light geodesic connecting both proof masses with the invariant measure of the
distance between them being equal to the proper time τ measured by clocks attached
to the first mass. This is equivalent to introduction of Synge’s optical coordinates
[Synge, 1964] of the second mass with respect to the first one. Let us stipulate that
the first proof mass is always located at the origin of the topocentric reference frame
with the spatial coordinates ξi

1 = 0 that means Xi
1 = 0. Let’s a light signal (photon)

is emitted at time τ1 = 0 from the first proof mass. It will reach the second proof
mass at time of reception τ2 = τ when topocentric spatial coordinates of the second
proof mass are ξi

2 = ξi. Because the topocentric time τ coincides with the proper
time of the first mass, the optical coordinates of the second mass are

Xi = cKiτ , (8.68)

where one has taken into account that Xi = Xi
2 in case of Xi

1 = 0, and Ki is the unit
vector in the direction of the second particle: δi jKiK j = 1. Optical (or null) coor-
dinates are directly measurable quantities that are invariants. Full concept of these
coordinates has been worked out in the book of Synge [Synge, 1964] on the basis
of the, so-called, world function. Current gradiometry indeed uses electromagnetic
signals in order to track precise positions of the proof masses (satellites in case of
the CRACE mission). Therefore, the concept of the optical coordinates is highly
relevant to the discussion of the basic gradiometric equation.

In order to connect the optical coordinates Xi with the topocentric coordinates ξi

one will solve equation of the light geodesic in the topocentric coordinates

d2ξi

dτ2 =
c2

2
∂G00

∂ξi −
∂G00

∂ξk

dξi

dτ
dξk

dτ
−

(
∂Gik

∂ξp −
1
2
∂Gpk

∂ξi

)
dξp

dτ
dξk

dτ
, (8.69)

where all terms with the time derivatives from the topocentric metric Gαβ have been
neglected due to their smallness, and the parameter τ along the light geodesic is the
topocentric time that coincides with the proper time of the first proof mass always
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located at the origin of the topocentric frame. Substituting the metric coefficients
(8.40)-(8.42) to equation (8.69) and reducing similar terms yield

d2ξi

dτ2 =

[(
1 +

1
c2

dξp

dτ
dξp

dτ

)
δip −

4
c2

dξi

dτ
dξp

dτ

] (
Ep + Epqξ

q
)
, (8.70)

where one has omitted quadratic and higher-order terms with respect to the spa-
tial coordinates ξi. Equation (8.70) is solved by iterations. Unperturbed solution is
ξi = ckiτ, where ki is a unit vector along the unperturbed light ray: δpqkpkq = 1. Sub-
stituting the unperturbed solution to the right side of equation (8.70) and integrating
with respect to τ give us

ξi = ckiτ + τ2
(
δip − 2kikp

) (
Ep +

c
3

Epqkqτ
)
. (8.71)

The unperturbed unit vector ki is yet unknown and must be expressed in terms of the
unit vector Ki entering the definition of optical coordinates. This definition comes
about naturally from the requirement that the light signal indeed reaches the second
proof mass at the time τ and at the point ξi. It means that Ki = ξi/|ξ|, where |ξ| is the
coordinate distance |ξ| =

√
δpqξpξq. Simple calculation reveals that

ki = Ki −
τ

c

(
δip − kikp

) (
Ep +

c
3

Epqkqτ
)
. (8.72)

After substituting this expression to equation (8.71) and taking into account defini-
tion (8.68) one obtains for the optical coordinate of the second proof mass

Xi = ξi +
1
c2

(
Epξ

p +
1
3

Epqξ
pξq

)
ξi + O

(
ξ4

c2

)
, (8.73)

which yields the coordinate transform between the topocentric and optical coordi-
nates.

Let us take now the second time derivative along the worldlines of the masses
from both sides of equation (8.73), and substitute for the second time derivative of
coordinates ξi its value form the equation of motion (8.45). It brings about

d2Xi

dτ2 =
F i

2

m2
+ Ei +

(
Ei j −

3
c2 E<iE j>

)
ξ j +

1
2

Ei jpξ
jξp + O

(
ξ3

)
+ O

(
ξ2

c2

)
, (8.74)

where all velocity-dependent terms as well as terms with the time derivatives from
Ei, Ei j, etc. have been neglected in accordance with previous assumptions. Equation
of motion of the first proof mass is an exact relationship

d2ξi

dτ2 =
F i

1

m1
+ Ei = 0 , (8.75)

which follows from the condition that the first mass is always located at the origin
of the topocentric frame, so that the physical force F i

1 compensates the inertial force
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m1Ei. Making use of equation (8.75) in equation (8.74) gives us the basic equation
of gradiometry

d2Xi

dτ2 = F i + Ki jX
j +

1
2

Ki jpX
jXp + O

(
X3

)
+ O

(
X2

c2

)
, (8.76)

where

Ki j = Ei j −
3
c2 E<iE j> , (8.77)

Ki jk = Ei jk , (8.78)

and the force per unit mass

f i ≡
F i

2

m2
−

F i
1

m1
, (8.79)

represents all empirical non-gravitational forces that constrain the relative motion of
the proof masses. In particular, if the both masses are moving along geodesics f i = 0.
One can easily confirm that the linear term in equation (8.76) is the component of
the Riemann tensor

Ki j = −R0i0 j , (8.80)

while the quadratic term is its spatial derivative

Ki jp = −R0i0 j,p . (8.81)

The reader can notice that equation (8.77) apparently includes the quadratic de-
pendence on the inertial acceleration Ei. In fact, this dependence is illusory as the
component Ei j has not been defined yet, and, as shown later, has the same term which
cancels the quadratic dependence on the acceleration. The physical reason for this is
that the Riemann tensor R0i0 j characterizes the curvature of space-time and can not
depend on the acceleration of the particles that is solely a property of its worldline
alone.

The quantities Ki j, Ki jk represent the quadrupole and octupole tidal fields as mea-
sured by a local observer at the origin of the topocentric reference frame. Measure-
ment of these fields is the main practical task of gradiometry. The explicit functional
form of Ki j, Ki jk with the post-Newtonian corrections taken into account is obtained
after making the asymptotic matching of the GRF and TRF metric tensors. One has

Ki j = KN
i j + c−2KPN

i j + O
(

1
c4

)
, (8.82)

Ki jp = KN
i jp + O

(
1
c2

)
, (8.83)

where the Newtonian tidal matrices are

KN
i j = UE,<i j>(wT ) + 3Qi j + 15Qi jpwp

T + O(w2
T ) , (8.84)

KN
i jp = UE,<i jp>(wT ) + 15Qi jp + O(wT ) , (8.85)
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and the post-Newtonian contribution to the tidal matrix is

KPN
i j = KEM

i j + KGM
i j + 2KN

p<iR j>p , (8.86)

KEM
i j = ΦE,<i j>(wT ) − 2UE(wT )UE,<i j>(wT ) −

1
2
χE,uu<i j>(wT ) (8.87)

−2v<i
T U , j>

E (wT ) + 2v2
T UE,<i j>(wT ) − 3vk

T v<i
T U , j>k

E (wT )

+3a<i
T a j>

T − 6a<i
T U , j>

E (wT ) − 3E<iE j> + O
(
v2

T Qi j

)
,

KGM
i j = 4

[
U<i, j>u

E (wT ) + vk
T U<i, j>k

E (wT ) − vk
T Uk,<i j>

E (wT )
]
. (8.88)

These formulas are more general as compared to the results of work [Mashhoon
et al., 1989] that investigated the case of an isolated, spherically-symmetric and uni-
formly rotating Earth without explicit formulation of relativistic tidal effects of other
bodies of the solar system. However, the external bodies also produce tidal effects,
which appear in equations (8.84), (8.85) in the form of the external tidal multipoles
Qi j, Qi jk, and they should be taken into account in precise gradiometry.

The term KN
i j represents the Newtonian gradient of the Earth’s gravity field. The

main contribution to KN
i j is from the second derivatives of the Newtonian potential,

UE,<i j>, describing the quadrupole tidal matrix of the Earth’s gravitational field. Re-
placing in this term the expansion of UE according to formula (8.33), one obtains:

UE,<i j>(w) =
3GM

r5

(
wiw j −

1
3

r2δi j
)

(8.89)

+G
∑
l=2

(2l + 3)!!
l!

Jk1 ...kl
E wk1 ...wkl

r2l+5

(
wiw j −

1
2l + 3

r2δi j
)

−2G
∑
l=2

(2l + 1)!!
(l − 1)!

Jk1k2 ...kl(i
E w j)wk1 ...wkl

r2l+3 .

The first term in the right side of equation (8.89) is of the order of GME/r3. It can
reach magnitude of the order of 3000 E (∼ 3 × 10−6 s−2) on Earth’s surface. The
next order of magnitude term in the right side of equation (8.89) is associated with
the influence of the Earth’s quadrupole moment Ji j

E . It is proportional to Earth’s
dynamical oblateness factor J2 = 0.00108263 and reaches magnitude of the order
of 70 E (∼ 7 × 10−8 s−2) on Earth’s surface. Earth’s multipole moments of higher
order Ji1i2 ...il (l ≥ 3) contribute to the Newtonian gradient of the gravity force no
more than 10−1 E. Satellite gradiometry is currently a flourishing field of the Earth’s
gravity field research. Two space missions - GRACE [Levi, 2003] and GOCE [Al-
bertella et al., 2002] - represent a new generation of space gradiometers consisting
of two satellites (several proof masses in case of GOCE) flying closely to each other
and connecting via microwave ranging link that is used for measuring the relative
distance Xi between the satellites. Spatial resolution of GRACE is 320 km which
means that it can measure all multipole harmonics in the expansion (8.89) to the or-
der l = 120. GOCE main measuring device is an Electrostatic Gravity Gradiometer
(EGG) that consists of three pairs of identical accelerometers, which are about 50
cm apart and form three gradiometer arms mounted orthogonal to one another on
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the ultra-stable structure. One arm is aligned with the satellite’s trajectory, one per-
pendicular to the trajectory, and one pointing approximately towards the center of
the Earth. By combining these different acceleration measurements, it is possible to
derive the gravity-gradient components in the expansion (8.89). Spatial resolution of
GOCE is 100 km which corresponds to the multipole harmonics with l = 400.

The second and third terms in expression (8.84) for the KN
i j represent the

quadrupole and octupole tidal gravity’s gradient caused by the external bodies -
Moon, Sun, and planets. It is sufficient in gradiometric analysis to consider the ex-
ternal bodies as the point masses with gravitational potential UA = GMA/RA, where
RA = |RA| RA = Ri

A = xi− xi
A(t), xi

A(t) are the BRF coordinates of an external body A,
which are connected to the geocentric coordinates by the post-Newtonian transfor-
mations given in section 5.2.6. Taking into account the Newtonian tidal terms only,
one obtains (compare with equations (5.59), (5.89))

Qi j = 3
∑
A,E

GMA

R3
EA

(
N i

EAN j
EA −

1
3
δi j

)
+ O

(
1
c2

)
, (8.90)

Qi jk = 15
∑
A,E

GMA

R4
EA

(
N i

EAN j
EANk

EA −
1
5
δi jNk

EA −
1
5
δikN j

EA −
1
5
δ jkN i

EA

)
+ O

(
1
c2

)
,(8.91)

where N i
EA = Ri

EA/REA, REA = |REA|, REA = Ri
EA = xi

E(t) − xi
A(t) represents a

difference between the BRF spatial coordinates of the Earth’s center of mass (geo-
center) and the external body A. The most important external bodies in gradiometric
measurements are Moon and Sun. Magnitude of the external quadrupole Qi j for the
Moon is of the order of 1.7×10−4 E and for the Sun it amounts to 8×10−5 E, approx-
imately two times smaller than the tidal quadrupole of the Moon. Magnitude of the
contribution of the octupole field of the external masses to the quadrupole tidal ef-
fects is smaller by a factor of RE/REA as compared with the direct contribution from
the quadrupole components Qi j seen in equation (8.84). For example, in case of the
Moon Qi jkwk

T ' 3 × 10−6 E on the Earth’s surface.
The term KN

i jk describes the Newtonian octupole tidal gravitational field of the
Earth. With sufficient accuracy the first term in the right side of equation (8.85) has
the following form:

UE,<i jk> = −
15GME

r7

(
wiw jwk −

r2

5
δi jwk −

r2

5
δ jkwi −

r2

5
δikw j

)
+ O(J2) . (8.92)

Contribution of this term to the differential acceleration between two, freely-falling
particles, as described by equation (8.45), is by a factor ξ/RE smaller than the effect
of the local quadrupole field Ei j, where ξ is a separation between the two particles.
For the GOCE gradiometer, this is equivalent to the magnitude of KN

i jkξ
k ' 2.3×10−4

E, which is comparable with the tidal gravitational effect of the external quadrupole
Qi j from the Moon.

The term KPN
i j represents the post-Newtonian tidal matrix of the gravity’s gradient

of the Earth’s field. It consists of three parts: the "gravitoelectric" matrix - KGE
i j ,

the "gravitomagnetic" matrix - KGM
i j , and the term 2KN

p<iR j>p, which arises owing to
the relativistic precession of the dynamically non-rotating TRF with respect to the
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spatial axis of GRF. In principle, there are also post-Newtonian contributions from
the external masses - Moon, Sun, planets - but they are so small that can be neglected
without reservation (for discussion of these terms see [Kopejkin, 1991b]).

The matrix KGE
i j is defined by the formula (8.87). It is not difficult to understand

that potential ΦE in the g00(u,w) component of the GRF metric tensor re-defines the
Earth mass and the multiple moments because it has the same structure as the New-
tonian potential UE . Therefore, the term ΦE,<i j> linearly combines with UE,<i j> and
can not be observed separately. One stipulates in the post-newtonian approximation
that the Earth is in a stationary rotation and does not change its multipole moments
as times goes. It allows us to set all terms depending on partial time derivatives equal
to zero. Remaining terms in equation (8.87) yield

KGE
i j =

3GME

r3

[(
2v2 −

3GME

r

)
n<in j> + v<iv j> − 3(n · v)v<in j>

]
+ O(J2) , (8.93)

where ni = wi/r, vi = dwi/du. A magnitude of elements of the matrix (8.93) is
approximately equal to several µE in the immediate vicinity of the Earth’s surface.
As for the matrix KGM

i j , one can obtain the explicit expression of its main terms with
the help of formulas (8.34) and (8.88):

KGM
i j =

6GS E

r4

[
5(n · v)(s × n)<in j> − 5((s × n) · v)n<in j> − 3(s × v)<in j> − (s × n)<iv j>

]
,

(8.94)

where S E = (SE · SE)1/2, s = si = S i
E/S E . A magnitude of c−2KGM

i j is of the order of
several hundreds nanoEötvös at the low satellite orbits and approximately ten times
smaller on the Earth s surface (because velocity v on the Earth’s surface is that of the
Earth’s rotation).

Let us now specify the post-Newtonian tidal matrices KEM
i j and KGM

i j for a gra-
diometer deployed on-board of a satellite moving along a circular orbit. The circu-
lar orbit is characterized by instantaneous osculating orbital elements: eccentricity
e = 0, semi-major axis a, inclination relative to the Earth’s equator i, and angle of
nodes Ω (see Figure 8.2). Because of post-Newtonian perturbations, these orbital
elements, in particular i and Ω, will not be strictly constant, but instead they will
vary with time. This time variations of the orbital elements are important in cal-
culation of the Newtonian tidal matrix KN

i j since they can correlate with the direct
post-Newtonian terms. One emphasizes that the time variation of the orbital ele-
ments is not responsible for the precessional variation of the Newtonian tidal matrix
shown as the last term in equation (8.86) which is solely due to the post-Newtonian
precession of the spatial axis of the satellite reference frames described by the matrix
Ri j. Position of the satellite on the orbit is given by the unit vector n = (ni)

n = (cos Ω cosψ − cos i sin Ω sinψ) e1+(sin Ω cosψ + cos i cos Ω sinψ) e2+sin i sinψe3 ,

(8.95)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) are the unit vectors along w1,
w2, w3 axis respectively, ψ = (2π/Pb)u is the angular position of the satellites, and
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Figure 8.2 Satellite’s circular orbit is shown in the geocentric coordinates w = (w1,w2,w3).
Earth’s equatorial plane coincides with (w1,w2) plane. The satellite moves counterclockwise
with velocity v and the angular momentum h = w × v per unit mass.
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Pb = 2π
√

a3/GME is its orbital period. Osculating velocity of the satellite v =

dw/du = − (GME/a)1/2 v̂ where the unit vector

v̂ = (cos Ω sinψ + cos i sin Ω cosψ) e1+(sin Ω sinψ − cos i cos Ω cosψ) e2−sin i cosψe3 .

(8.96)

In what follows, one accepts that the node coincides with w1 axis, that is the angle
Ω = 0. Because the orbit is circular the dot product n·v = 0. Tedious but straightfor-
ward calculations give for the Newtonian (mass-induced) and post-Newtonian tidal
matrices the following expressions [Mashhoon et al., 1989]

KN
i j = 3GME

2a3



1
3 + cos 2ψ cos i sin 2ψ sin i sin 2ψ

cos i sin 2ψ 1
3 − sin2 i − cos2 i cos 2ψ sin i cos i(1 − cos 2ψ)

sin i sin 2ψ sin i cos i(1 − cos 2ψ) 1
3 − cos2 i − sin2 i cos 2ψ


(8.97)

KGE
i j =

3G2 M2
E

c2a4


− cos 2ψ − cos i sin 2ψ − sin i sin 2ψ

− cos i sin 2ψ cos2 i cos 2ψ sin i cos i cos 2ψ

− sin i sin 2ψ sin i cos i cos 2ψ sin2 i cos 2ψ


(8.98)

KGM
i j = 6GS E v

c3a3



− cos i cos2 ψ
(
1 − 3

2 cos2 i
)

sin 2ψ − 3
2 sin i cos i sin 2ψ(

1 − 3
2 cos2 i

)
sin 2ψ − cos i

(
1 − 5 sin2 i

)
sin2 ψ sin i

(
3
2 − 2 cos2 ψ − 5 cos2 i sin2 ψ

)
− 3

2 sin i cos i sin 2ψ sin i
(

3
2 − 2 cos2 ψ − 5 cos2 i sin2 ψ

)
cos i

(
1 − 5 sin2 i sin2 ψ

)


(8.99)

Various technical aspects of the ultra-precision gradiometric measurements have
been discussed during the past 20 years. Relativistic gravity’s gradient KPN

i j can be
measured only in a space mission with a dedicated super-conducting gradiometer
which was under development in the University of Maryland since the middle of
80-th [Chan et al., 1987; Chan and Paik, 1987; Moody et al., 1986; Paik, 1981].
Recent results in this development have been published by Paik in paper [Paik, 2008].
It is important to note that the measurement of the gravitoelectric matrix KGE

i j is
impossible as long as the inclination of the satellite’s orbit is kept constant. The
reason is that the functional structure of the tidal matrix KGE

i j is almost identical to
the Newtonian matrix KN

i j [Kopejkin, 1991a; Mashhoon et al., 1989]. Furthermore,
the influence of the post-Newtonian tidal forces KGE

i j on gradiometer will be masked
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by the errors in numerical values of the multipole moments Ji1i2 ...il
E of the Earth. On

the other hand, a vortex nature of a gravitomagnetic potential U i
E of the Earth leads to

the structure of the gravitomagnetic matrix KGM
i j , which is quite different from both

KN
i j and KGE

i j . Thus, the influence of the gravitomagnetic potential U i
E on gradiometer

can be separated from the Newtonian "noise". This idea was originally discussed by
Braginsky & Polnarev [Braginskiǐ and Polnarev, 1980].

Another exciting application of space gradiometry for deeper understanding the
laws of fundamental gravity is the satellite test of the equivalence principle (STEP)
- the idea proposed by Worden and Everitt [Worden and Everitt, 1974]. The equiv-
alence principle states the equality between gravitational, mg, and inertial mi mass,
which makes the bodies of different composition falling with the same acceleration
in a homogeneous and time-independent gravitational field. This postulate (mg = mi)
cannot be proven, it can only be tested to higher and higher precision. There is no
a priori reason why it should be strictly valid. Today, the experiments have reached
a level of a few parts in 10−13 with a torsion balance in a ground-based laboratory
[Schlamminger et al., 2008] and lunar-laser ranging [Williams et al., 2009]. A non-
null result would constitute the discovery of a new fundamental interaction of nature
[Damour, 2009b]. STEP will advance the testing of the equivalence principle from
several parts in 10−13 to 1 part in 10−18.

STEP will compare the accelerations of four pairs of proof masses in orbit [Wor-
den et al., 2000]. The drag-free control system on board of the satellite will make the
masses free-floating and isolated from disturbing non-gravitational force f i inside a
cryogenic dewar with super-conducting shielding and ultra-high vacuum. Differen-
tial accelerations will be measured by a super-conducting circuit using a quantum
interference device (SQUID) for the best sensitivity. Gravity gradient disturbances
caused by the tidal matrix Ki j, are eliminated by precise placement of the mass cen-
ters on each other. Under these circumstances the equation (8.76) can be written-
down as follows

d2Xi

dτ2 = η
∂UE

∂wi , (8.100)

where the gradient of the geopotential UE is multiplied with the Eötvös parameter

η = 2
(mg/mi)2 − (mg/mi)1

(mg/mi)2 + (mg/mi)1
, (8.101)

characterizes the empirical violation of the equivalence principle due to the possible
difference between the ratios mg/mi of the gravitational and inertial mass in each
arm of the gradiometer. The STEP mission will be flown in a near-circular sun-
synchronous orbit, to minimize temperature variations, for a period of six months.
The best altitude is approximately 550 km.

Two other, less ambitious space missions have been proposed. MICROSCOPE is a
French space mission for testing the equivalence principle [Touboul and Rodrigues,
2001]. The mission goal is the determination of the Eötvös parameter η with an
accuracy of 1015. GG (Galileo Galilei) mission is under development by the Italian
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Space Agency [Nobili et al., 2009]. The mission intends to measure the Eötvös
parameter with accuracy up to 10−17.
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8.8
Relativistic Geoid

8.8.1
Definition of geoid in the post-Newtonian gravity

The geoid in the Newtonian gravity is defined as the equipotential surface which
would coincide exactly with the mean ocean surface of the Earth, if the ocean’s wa-
ter were in equilibrium, at rest, and extended through the continents such as, for
instance, with very narrow canals. The geoid is the physical figure of the Earth, a
smooth but fairly irregular surface that corresponds not to the actual surface of the
Earth’s crust, but to a surface which can only be known through extensive gravita-
tional measurements and calculations (see Figure 8.1). Despite being an important
concept for almost two hundred years in the history of geodesy and geophysics, it has
only been defined to high precision in recent decades. The geoid should be distin-
guished from the idealized geometrical figure of a reference ellipsoid of the Earth.
The ellipsoid is used to approximate the bulk of the Earth’s shape, and departures
from the ellipsoid are represented by the geoid elevation above or below the ellip-
soid. The geoid can be as low as 106 meters below the ellipsoid or as high as 85
meters above. The geoid models are periodically updated since the goal of a geoid
model is to be consistent with actual physical characteristics as determined from
current observations. Older geoid models, such as GEOID99 and even GEOID03,
were built using observation data from the time of their formation, but are consid-
ered no longer consistent with the physical Earth. Satellite geodesy [Kaula, 1966;
Milani et al., 1987; Vaniček and Krakiwsky, 1986] brought important discoveries in
theory of geoid computation. The Precise Geoid Solution (PGS) by P. Vaniček and
co-workers [Martinec and Vaniček, 1994; Vaniček and Martinec, 1994] significantly
improved on geoid computation. The solution is based on the approach formulated
by Sir Gabriel Stokes in the 19th century and extended with F. R. Helmert’s idea of
condensing topography onto the geoid. It differs from M. S. Molodensky’s approach
[Moritz and Molodensky, 1971] where the geoid is replaced by a similar surface
called quasi-geoid. The quasi-geoid is derived from gravity data procured at the sur-
face of the Earth via an integral equation. The integration is carried out on a surface
similar to the surface of the Earth, called the telluroid. The mathematical beauty of
the Molodensky’s approach has practical difficulty with integration over an irregular
surface such as the telluroid. The approach by P. Vaniček and co-workers overcomes
this difficulty and enables millimeter-to-centimeter accuracy in geoid computation
- an order-of-magnitude improvement from previous classical solutions. However,
further improvements face a serious problem as the post-Newtonian corrections to
the Newtonian gravity field equations are of the same order of magnitude and must be
taken into account properly to avoid undesirable bias in determination of the geoid.

In the framework of general relativity there exist two definitions of the relativistic
geoid [Soffel et al., 1988b; Soffel, 1989]:

• Definition 1. The relativistic u-geoid represents a two-dimensional surface, being



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 8 — 2016/2/13 — 14:05 — page 683

683

close to the mean sea level, in any point of which the rate of the proper time τ of
an ideal clock is constant with respect to the geocentric coordinate time u, i.e.

dτ/du = const. , (8.102)

under conditions ri
T = dri

T/du = 0.
• Definition 2. The relativistic a-geoid represents a two-dimensional surface of

constant geocentric time u, being close to the mean sea level and orthogonal ev-
erywhere to the topocentric direction of the Earth’s gravity Ei (the plumb line), i.e.

Eidξi = 0 , (8.103)

under conditions u = const.

8.8.2
Post-Newtonian u-geoid

Let us begin with the derivation of the equation of the u-geoid. For this sake, one
differentiates formula (8.46) with respect to the time u, take ri

T = dri
T/du = 0, and,

after that use formulas (8.48), (8.49). Then, condition (8.102) defines function W0

that is constant on the surface of the relativistic u-geoid [Kopejkin, 1991a]

W0 =
1
2

v2 + UE + Qiwi +
3
2

Qi jwiw j +
5
2

Qi jkwiw jwk (8.104)

+
1
c2

[
1
8

v4 +
3
2

v2UE − 4viU i
E −

1
2

U2
E + ΦE −

1
2
χE,uu

]
,

where one has suppressed the index T near the geocentric coordinates and velocity
of observer because equation (8.104) is valid everywhere on the u-geoid. Thus, the
surface of the u-geoid is the one of the constant potential W0 which coincides in the
Newtonian limit with the classical potential of the force of gravity where the term
1/2v2 represents the potential of the centrifugal force due to the Earth’s rotation.

As follows from the derivation of equation (8.104), definition of the u-geoid is
quite general, since it does not require any specific assumptions about distribution of
density, velocity field and other characteristics of the Earth’s matter or the require-
ment of the hydrostatic behavior of the Earth tides. Equation (8.104) makes more
exact the equation of u-geoid derived by Soffel et al. [Soffel et al., 1988b; Soffel,
1989].

8.8.3
Post-Newtonian a-geoid

Let us now derive equation of the a-geoid. First, one expresses the differential dξi

of the topocentric coordinates on the geoid’s surface in terms of the differential dwi

of the geocentric coordinates with the help of formula (8.47) and the conditions
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du = 0 following from the definition of the a-geoid representing the hypersurface of
a constant geocentric time. One has (index ’T’ is suppressed again)

dξi = dwi +
1
c2

(
1
2

viv j + Ri j + Zi j
)

dw j + O
( rT

c2

)
+ O

(
1
c4

)
. (8.105)

Second, one calculates the scalar product of the acceleration of gravity Ei defined by
equation (8.54), and dξi represented by equation (8.105). It yields

Eidξi = dW0 +
4
c2

(
U i,u

E + vkU i,k
E + Uk

E vk,i
)
, (8.106)

where the function W0 is given by formula (8.104). Now, one supposes that the
Earth’s matter has a constant rigid-body rotation with velocity vi = (ω×w)i, whereωi

is the angular velocity of the rotation. Then the-vector-potential U i
E can be expressed

as

U i
E = viUE + ε i jkω jχE,k . (8.107)

This expression must be replaced in the corresponding terms in right side of equation
(8.106), which are not incorporated to the total derivative dW0. One obtains, rather
remarkably that all such terms cancel out exactly. Thus, finally one gets a simple
result

Eidξi = dW0 , (8.108)

which, along with the definition of the a-geoid, tell us that the equation of the a-
geoid is the same as that for u-geoid and is given by formula (8.104). Moreover, one
concludes from formula (8.108) that Earth’s gravity force can be explicitly expressed
on the relativistic geoid’s surface in terms of the gradient of potential W0

Ei =

(
∂W0

∂ξi

)
u=const.

=

(
∂W0

∂wk

) (
∂wk

∂ξi

)
. (8.109)

It is instructive from methodological point of view to compare the equation of the
relativistic geoid with that of the relativistic level surface of a self-gravitating and
rotating fluid ball. It is well-known that in the Newtonian theory the level surface of
the self-gravitating fluid coincides exactly with the equipotential surface. But is it
hold true in the post-Newtonian approximation of general relativity? In other words,
can the relativistic geoid be an equilibrium figure like in the Newtonian gravity?

8.8.4
Post-Newtonian level surface

In order to answer this question let us suppose that the Earth’s matter consists of the
perfect fluid with the energy-momentum tensor Tαβ in the form of equations (8.2)
and (8.3). The relativistic level surface is defined by means of condition of a constant
pressure p = 0. The post-Newtonian hydrodynamic equation of the perfect fluid are
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derived from the law of conservation of the energy-momentum tensor that has the
following form{

ρvi
[
1 +

1
c2

(
v2 + Π + 2UE

)]
+

pvi

c2

}
,u

+ (8.110){
ρvivk

[
1 +

1
c2

(
v2 + Π + 2UE

)]
+

pvivk

c2

}
,k

+p,i − ρUE,i − ρ

(
Qi + 3Qikwk +

15
2

Qi jkw jwk
)

+
ρ

c2

(
4vkUk,i

E − 4vkU i,k
E − 4U i,u

E = 4viUE,u + 4vivkUE,k

−2v2UE,i +
1
2
χE,iuu − 2ΦE,i + 2UEUE,i − ΠUE,i

)
−

1
c2

(
2p,iUE + pUE,i

)
= 0 .

Suppose that the Earth’s matter has a constant rigid-body rotation about a fixed axis,
and tides from external bodies (Sun and Moon) are in the hydrostatic equilibrium.
These conditions mean that the Earth’s density ρ, pressure p, specific internal energy
Π and the Newtonian gravitational potential UE do not depend on geocentric time u
and their total time derivatives are equal to zero. Equation (8.110) can be drastically
simplified and recast to a more compact form

∂p
∂wi =

(
ρc2 + ρΠ + p

) ∂ log u0

∂wi (8.111)

where

u0 =
[
−ĝ00(u,w) − 2ĝ0i(u,w)vi − ĝik(u,w)vivk

]−1/2
(8.112)

represents the time component of the four-velocity of an element of the perfect fluid,
vi = (ω×w)i is three-dimensional velocity of the fluid’d element, and the geocentric
metric ĝαβ is defined according to formulas (8.19)-(8.21). Let us note that equa-
tion (8.111) is the post-Newtonian analog of the Newtonian fundamental equation of
hydrostatic equilibrium.

Take now the curl from the left and right sides of equation (8.111). Since the curl
from a gradient ∂ f /∂wi of any scalar function f is equal to zero identically, one
obtains the following relations

∇ρ × ∇p = 0 , ∇Π × ∇p = 0 , (8.113)

where the symbol ∇ denotes the operator of gradient ∇ ≡ (∂/∂wi), and the symbol ×
denotes the Euclidean cross-product of two vectors. Relations (8.113) mean that any
surface of a constant pressure p will coincide with the surfaces of constant density
ρ and/or constant specific internal energy Π. Because the level surface is defined by
the condition p = 0, it can be also defined as the surface of constant density and/or
the internal energy. Therefore, from equation (8.111) it follows that the relativistic
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level surface has the constant time component u0 of four-velocity. It is not difficult to
show that after substituting expressions (8.19)-(8.21) of the geocentric metric tensor
into formula (8.112) one obtains:

u0 = W0 + const. (8.114)

Thus, the equation of the relativistic level surface is the same as that of the rela-
tivistic geoid. From this derivation one can conclude that the relativistic geoid is the
equilibrium figure, if any deviation of the Earth’s matter from the perfect fluid and
rigid rotation are neglected. This result facilitates incorporation of the relativistic
concepts to geodesy because the primary definition of the geoid and the level surface
is directly extrapolated from the Newtonian to the post-Newtonian approximation.

8.8.5
Post-Newtonian Clairaut’s equation

The post-Newtonian Clairaut’s equation is derived from the equation (8.104) where
the terms of the order of v2UE were neglected due to their smallness. Then, the
equipotential surface derived in equation (8.104) is simplified to

W0 =
1
2

v2 + UE +
1
c2

(
ΦE −

1
2

U2
E

)
= const. (8.115)

Let us introduce a new potential U∗E ≡ UE + c−2ΦE , which can be presented in the
form of the integral

U∗E = G
∫

VE

ε∗(u,w′)d3w′

|w − w′|
, (8.116)

with the effective density ε∗ defined as

ε∗ = ρ +
1
c2 (ρΠ − ρUE + 3p) . (8.117)

Equation (8.115) can be re-written now in the form:

W0 =
1
2

v2 + U∗E −
U∗2E

c2 . (8.118)

As it follows from equations (8.111) and (8.113), the potential W0 is a function of
density ρ only. Taking into account a formal analogy of the integral forms of U∗E and
UE , one can use a standard technique of classical geodesy [Moritz, 1989] and split
U∗E in the two parts - the interior and exterior potentials at an internal point P lying
on the surface of constant density S P inside the body. Then, by making use of the
well-known Legendre series for a centrifugal potential and function |w − w′|−1, one
obtains for W0 the following main terms in the Legendre expansion with respect to
the Legendre polynomials

W0 =
4πG

3
α2ε∗ [A0(α) + A2(α)P2(cos θ)]−

8π2G2

9c2 α4ε∗2
[
A2

0(α) + 2A0(α)A2(α)P2(cos θ)
]
,
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(8.119)

where ε∗ is the mean effective density of the Earth, α is the mean radius of the surface
S P divided by the mean radius RE of the Earth and the functions A0(α), A2(α) are
defined, for example, in [Moritz, 1989, equation 104] with replacement of density ρ
by ε∗. Since W0 = W0(α) does not depend on the angle θ, it follows from (8.119)
that A2(α) = 0. This condition yields the post-Newtonian Clairaut’s equation, which
retains in the approximation under consideration its classical form 12)

d2 f
dr2 +

6
r
ε∗

D(r)
d f
dr

+
6
r2

[
ε∗

D(r)
− 1

]
f = 0 , (8.120)

where f = f (r) represents the flattening of the Earth, and

D(r) =
3
r3

∫ r

0
ε∗(q)q2dq , (8.121)

denotes the mean effective density inside the surface S P calculated with taking into
account the post-Newtonian contribution.

When deriving the Clairaut’s equation (8.120) one neglected all terms of the order
of f 2, f 3, and so on. In principle, development of a self-consistent relativistic theory
of the equilibrium Figures of celestial bodies of the Solar system requires taking into
account these terms.

12) Let us recall again that one has neglected in W0 the terms of the order of v2UE
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9
Relativity in IAU Resolutions
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9.1
Introduction

A series of resolutions passed by the International Astronomical Union (IAU) at its
General Assemblies in 1997 and 2000 represents the most significant set of interna-
tional agreements in positional astronomy in several decades. The approval of these
resolutions culminated a process – not without controversy – that began with the
formation of an inter-commission Working Group on Reference Systems at the 1985
IAU General Assembly in Delhi.

The resolutions came at the end of a remarkable decade for astrometry, geodesy,
and dynamical astronomy. That decade witnessed the successes of the Hipparcos
satellite and the Hubble Space Telescope (in both cases, after apparently fatal initial
problems), the completion of the Global Positioning System, 25-year milestones in
the use of very long baseline interferometry (VLBI) and lunar laser ranging (LLR)
for astrometric and geodetic measurements, the discovery of Kuiper Belt objects and
extra-solar planets, and the impact of comet Shoemaker-Levy 9 onto Jupiter. At the
end of the decade, interest in near-Earth asteroids and advances in sensor design
were motivating plans for rapid and deep all-sky surveys. Significant advances in
theory also took place, facilitated by inexpensive computer power and the Internet.
Positional and dynamical astronomy were enriched by a deeper understanding of
chaos and resonances in the solar system, advances in the theory of the rotational
dynamics of the Earth, and increasingly sophisticated models of how planetary and
stellar systems form and evolve. It is not too much of an exaggeration to say that
as a result of these and similar developments, the old idea that astrometry is an
essential tool of astrophysics was rediscovered. The IAU resolutions thus came at
a fortuitous time, providing a solid framework for interpreting the modern high-
precision measurements that are revitalizing so many areas of astronomy.

This chapter is an attempt to explain these resolutions and provide guidance on
their implementation. General relativity is at the heart of these resolutions; their
ultimate purpose is to establish a modern physical foundation for astronomical mea-
surements and models that can serve us well into the 21st century. This chapter also
covers the IAU resolutions passed in 2006 and 2009, which refine the basic changes
made in 1997 and 2000.

Of course, the IAU resolutions of 1997-2000 did not arise in a vacuum. Many
people participated in various IAU working groups, colloquia, and symposia in the
1980s and 1990s on these topics, and some important resolutions were in fact passed
by the IAU in the early 1990s. Furthermore, any set of international standards deal-
ing with such fundamental matters as space and time must to some extent be based
on, and provide continuity with, existing practice. Therefore, many of the new reso-
lutions carry “baggage” from the past, and there is always the question of how much
of this history (some of it quite convoluted) is important for those who simply wish
to implement the latest recommendations. Material in this chapter generally avoids
detailed history in an effort to present the most succinct and least confusing picture
possible. However, many readers will be involved with modifying existing software
systems, and some mention of previous practice is necessary simply to indicate what
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needs to be changed. A limited amount of background material also sometimes aids
in understanding and provides a context for the new recommendations. The reader
should be aware that the presentation of such material is selective and one has made
no attempt at historical completeness.

It should be emphasized that the resolutions described here affect astronomical
quantities only at the level of some tens of milliarcseconds or less at the present
epoch. And, despite some initial misinformation to the contrary, familiar concepts
such as the equinox and sidereal time have not been discarded. The largest system-
atic change is due to the new rate of precession, which is 0.3 arcsecond per century
less than the previous (1976) rate; the change affects some types of astronomical
coordinates and sidereal time. Astronomical software applications that work accept-
ably well now at the arcsecond or 0.1-arcsecond level (which would include most
telescope control systems) will continue to work at that level, even when used with
new sources of reference data, such as the Hipparcos, Tycho-2, or 2MASS star cat-
alogs or one of the VCS radio source catalogs. Applications that are independent
of the rotation of the Earth, such as those for differential (small-field) astrometry,
are largely unaffected. For these kinds of systems, changes to computer code that
implement the new resolutions are recommended as a long-term goal, to maintain
standardization of algorithms throughout the astronomical community, but are not
an immediate practical necessity.

9.1.1
Overview of the Resolutions

The IAU resolutions described in this chapter cover a range of fundamental topics in
positional astronomy:

• Relativity Resolutions passed in 2000 provide the relativistic metric tensors for
reference systems with origins at the solar system barycenter and the geocenter,
and the transformation between the two systems. While these are mostly of use to
theorists – for example, in the formulation of accurate models of observations –
they provide a proper relativistic framework for current and future developments
in precise astrometry, geodesy, and dynamical astronomy. (See section 9.2.)

• Time Scales Resolutions passed in 1991, 2000, and 2006 provide the definitions
of various kinds of astronomical time and the relationships between them. In-
cluded are time scales based on the Système International (SI) second (“atomic”
time scales) as well as those based on the rotation of the Earth. (See section 9.3.)

• The Fundamental Astronomical Reference System A resolution passed in
1997 established the International Celestial Reference System (ICRS), a high pre-
cision coordinate system with its origin at the solar system barycenter and “space
fixed” (kinematically non-rotating) axes. The resolution included the specification
of two sets of benchmark objects and their coordinates, one for radio observations
(VLBI-measured positions of point-like extragalactic sources) and one for optical
observations (Hipparcos-measured positions of stars). The IAU replaced the list
of radio sources and their coordinates in 2009 while maintaining the overall ori-
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entation of the system. These two sets of reference objects provide the practical
implementation of the system and allow new observations to be related to it. (See
section 9.4.)

• Precession and Nutation Resolutions passed in 2000 and 2006 provided a new
precise definition of the celestial pole and endorsed specific theoretical develop-
ments for computing its instantaneous motion. The celestial pole to which these
developments refer is called the Celestial Intermediate Pole (CIP); the instanta-
neous equatorial plane is orthogonal to the CIP. There are now precise algorithms
for computing the pole’s position on the celestial sphere at any time, in the form
of new expressions for precession and nutation. (See section 9.6.)

• Earth Rotation A resolution passed in 2000 establishes new reference points,
one on the celestial sphere and one on the surface of the Earth, for the measurement
of the rotation of the Earth about its axis. The new points are called, respectively,
the Celestial Intermediate Origin (CIO) and the Terrestrial Intermediate Origin
(TIO). Both lie in the instantaneous equatorial plane. The rotation of the Earth
is simply the geocentric angle, θ, between these two points, a linear function of
Universal Time (UT1). The CIO is analogous to the equinox, the reference point
on the celestial sphere for sidereal time. Unlike the equinox, however, the CIO
has no motion along the instantaneous equator, and unlike sidereal time, θ is not
“contaminated” by precession or nutation. The new CIO-TIO-based Earth rotation
paradigm thus allows a clean separation of Earth rotation, precession, and nutation
in the transformation between terrestrial and celestial reference systems. (See
section 9.7.)

This chapter also includes a brief description (in section 9.5) of the de facto stan-
dard solar system model, produced and distributed by the Jet Propulsion Laboratory.
This model, labeled DE405/LE405, provides the positions and velocities of the eight
major planets, Pluto, and the Moon with respect to the solar system barycenter for
any date and time between 1600 and 2200. The positions and velocities are given in
rectangular coordinates, referred to the ICRS axes. This ephemeris is not the subject
of any IAU resolutions but has become widely adopted internationally; for example,
it is the basis for the tabulations in The Astronomical Almanac and it underlies some
of the other algorithms presented in this chapter. However, DE405/LE405 has been
in widespread use for about a decade and will likely be superseded within the next
few years.

The IAU resolutions on positional astronomy adopted between 1997 and 2009
form an interrelated and coherent set of standards for positional astronomy. For in-
stance, the definitions of the SI-based time scales rely on the relativity resolutions,
and the position of the Celestial Intermediate Pole and the Celestial Intermediate
Origin can only be properly computed using the new precession and nutation expres-
sions. Many other links between the resolutions exist. In fact, attempting to apply
the resolutions selectively can lead to quite incorrect (or impossible to interpret) re-
sults. This chapter is meant to provide an explanatory and computational framework
for a holistic approach to implementing these resolutions in various astronomical
applications. Let us hope that what is presented here does justice to the efforts of
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the many people who worked very hard over the last decade to take some important
scientific ideas and work out their practical implications for positional astronomy, to
the benefit of the entire scientific community.

9.1.2
About this Chapter

The six main subject areas described above are discussed in sections of this chapter.
Each of the sections contains a list of the relevant IAU resolutions, a summary of
the recommendations, an explanatory narrative, and, in most sections, a collection
of formulas used in implementing the recommendations.

One assumes that readers have a basic knowledge of positional astronomy; that
the terms right ascension, declination, sidereal time, precession, nutation, equinox,
ecliptic, and ephemeris are familiar. Some experience in computing some type of
positional astronomy data is useful, because the ultimate purpose of the chapter is to
enable such computations to be carried out in accordance with the IAU resolutions
that are discussed. The explanatory narratives deal primarily with new or unfamiliar
concepts introduced by the resolutions – concepts that would not generally be de-
scribed in most introductory textbooks on positional astronomy. This chapter is not
a substitute for such textbooks.

IAU resolutions are referred to in the text in the form “resolution N of year”, for
example, “resolution B1.2 of 2000”. The year refers to the year of the IAU General
Assembly that passed the resolution. The proceedings of each General Assembly,
including the text of the resolutions, are usually published the following year. An
online reference for the text of IAU resolutions (beginning with those passed at the
1994 General Assembly) is the IAU Information Bulletin (IB) series distributed by
IAU Secretariat [2010]. Resolutions are printed in the January IB following a Gen-
eral Assembly, i.e., IB numbers 74, 81, 88, 94, etc. An appendix C at the end of this
book contains the complete text of the resolutions passed by the 1997, 2000, 2006,
and 2009 General Assemblies, which are the focus of attention in this chapter.

9.1.3
Other Resources

An increasing number of publications, data, and software related to the recent IAU
resolutions are becoming available.

A major online resource for implementing the IAU resolutions involving Earth
rotation and time (see sections 9.3, 9.6, and 9.7) is the document of conventions used
by the International Earth Rotation and Reference Systems Service (IERS): IERS
Technical Note No. 32, edited by McCarthy and Petit [2004]. It is available in printed
form from the IERS and also on the web [McCarthy and Petit, 2003b]. The online
document contains links to Fortran subroutines that implement the recommended
models. The document also contains algorithms specific to geodetic applications,
such as tidal and geopotential models, that have not been the subject of IAU action
and are not discussed in this chapter. The IERS also maintains an online list of FAQs
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on the IAU resolutions [IERS, 2010]. A new version of the IERS Conventions is in
preparation and will be released at the end of 2010.

The IAU Working Group on Nomenclature for Fundamental Astronomy (2003-
2006) has a website [Capitaine et al., 2007] with many helpful documents, including
a list of definitions (some of which are used in this chapter) and other educational
material.

In addition to the IERS software, two other packages of computer subroutines
are available for implementing the IAU resolutions: the Standards of Fundamental
Astronomy (SOFA) [IAU SOFA Center, 2009], and the Naval Observatory Vector
Astrometry Software (NOVAS) [Kaplan et al., 2009]. Both packages are available
in both Fortran and C. SOFA is a collection of routines managed by an international
panel, the SOFA Reviewing Board, that works under the auspices of IAU Division 1.
The board has adopted a set of coding standards for algorithm implementations and is
soliciting code from the astrometric and geodetic communities that implements IAU
models. Procedures (Fortran subroutines or C functions) are adapted to the coding
standards and validated for accuracy before being added to the SOFA collection.
NOVAS is an integrated package of procedures for the computation of a wide variety
of common astrometric quantities and transformations. NOVAS dates back to the
1970s but has been continually updated to adhere to subsequent IAU resolutions.

The Astronomical Almanac [2010], beginning with the 2006 edition, is also a re-
source for implementing the IAU resolutions. Not only does it list various algorithms
arising from or consistent with the resolutions, but its tabular data serve as numerical
checks for independent developments. Both SOFA and NOVAS subroutines are used
in preparing the tabulations in The Astronomical Almanac, and various checks have
been made to ensure the consistency of the output of the two software packages.
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9.2
Relativity

Relevant IAU resolutions:

• A4.I, A4.II, A4.III, A4.IV of 1991;
• B1.3, B1.4, B1.5 of 2000;
• B2 (rec. 2) of 2006.

In 2000, the IAU defined a system of spacetime coordinates for (1) the solar sys-
tem, and (2) the Earth, within the framework of general relativity, by specifying the
form of the metric tensors for each and the four-dimensional spacetime transforma-
tion between them. The former is called the Barycentric Celestial Reference System
(BCRS) and the latter is called the Geocentric Celestial Reference System (GCRS).
The BCRS is the system appropriate for the production of the basic ephemerides of
solar system objects and the storage of astrometric reference data on galactic and ex-
tragalactic objects. The GCRS is the system appropriate for describing the rotation
of the Earth, the orbits of Earth satellites, and geodetic quantities such as instrument
locations and baselines. The analysis of precise observations inevitably involves
quantities expressed in both systems and the transformations between them.

9.2.1
Background

Although the theory of relativity has been with us for over a century (Einstein’s first
papers on special relativity were published in 1905), it has only been within the last
few decades that it has become a routine consideration in positional astronomy. The
reason is simply that the observational effects of both special and general relativity
are small. In the solar system, deviations from Newtonian physics did not need to
be taken into account – except for the advance of the perihelion of Mercury – until
the advent of highly precise space techniques in the 1960s and 1970s: radar rang-
ing, spacecraft Doppler tracking, very long baseline interferometry (VLBI), pulsar
timing, and satellite/lunar laser ranging (SLR/LLR). More recently, even optical as-
trometry has joined the list, with all-sky satellite measurements (Hipparcos) at the
milliarcsecond level. The effects of relativity have been often treated as small cor-
rections added to basically Newtonian developments. But it has become evident that
the next generation of instrumentation and theory will require a more comprehen-
sive approach, one that encompasses definitions of such basic concepts as coordinate
systems, time scales, and units of measurement in a purely relativistic language. It
may remain the case that, for certain applications, relativistic effects can either be
ignored or handled as second-order corrections to Newtonian formulas. However,
even in such pro-Newtonian cases, the establishment of a self-consistent relativistic
framework has benefits – it, at least, allows the physical assumptions and the errors
involved to be more clearly spelled out and understood.

In 1991, the IAU made a series of recommendations concerning how the theory
of relativity could best be incorporated into positional astronomy. These recommen-
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dations and their implications were studied by several working groups in the 1990s
and some deficiencies were noted. As a result, a series of new recommendations was
proposed and discussed at IAU Colloquium 180 [Johnston et al., 2000]. The new
recommendations were passed by the IAU General Assembly in 2000 and they are
given for the purpose of reference in appendix C of this book. It is these recommen-
dations that are described briefly in this chapter.

In special relativity, the Newtonian idea of absolute time in all inertial reference
systems is replaced by the concept that time runs differently in different inertial sys-
tems, in such a way that there is a fundamental speed c that has the same measured
value in all of them. Operational realization of the universal invariant speed c is
currently based on the speed of light in vacuum since there were no experiments
showing violation of special relativity for vacuum electromagnetic fields. In future,
the practical measurement of c may be extended to gravity and the other fields that
also propagates in space with the fundamental speed. This interesting question is
discussed in [Kopeikin, 2004, 2005; Low, 1999].

In both Newtonian physics and special relativity, inertial reference systems are
privileged in the sense that physical laws are simple when written in terms of inertial
coordinates 1) In general relativity , however, the structure of spacetime is defined
by the Einstein equations of gravitational field, and there are no privileged reference
systems. One can use, in principle, any coordinates to model physical processes. For
an infinitely small spacetime region around an observer (considered to be a massless
point) in free fall, one can introduce a, so-called, locally-inertial reference system
where, according to the Einstein’s equivalence principle , all physical laws have the
same form as in an inertial reference system in special relativity. Such locally in-
ertial reference systems are used to describe observations taken by the point-like
observer. In general-relativistic reference systems of finite spatial extent, the geom-
etry of spacetime is defined by a metric tensor, a 4×4 matrix of mathematical ex-
pressions, that serves as an operator on two four-vectors. In its simplest application,
the metric tensor directly yields the generalized (four-dimensional) distance between
two neighboring spacetime events called the interval. The metric tensor (and other
geometric objects depending on it) effectively enters the equations through which
physics is described in the reference system. For further mathematical details and
more precise definitions the reader is referred to Chapters 2 and 3 on special and
general relativity.

Time in general relativity can be operationally understood as follows. An ob-
server carries out an idealized clock and travels through spacetime along a timelike
worldline. Each point (a spacetime event) on the worldline that he follows, can be
characterized by a set of four numbers. These four numbers are the values of the
four coordinates in four-dimensional spacetime. For the same worldline in a dif-
ferent coordinate system, the numbers will, in general, be different. Proper time of
the observer is defined as the time kept by the observer’s idealized clock, in what-
ever trajectory and gravity field it finds itself. Proper time is always measurable

1) The reader should not confuse the privileged role of the inertial coordinates with the existence of a
preferred frame associated with æther. This point is briefly discussed in section 2.1.5.
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irrespectively of existence of other observers who measure their own proper times.
To measure properties of spacetime, the proper times of the observers must be syn-
chronized. The synchronization is done with exchange of electromagnetic signals
stamped by the observers with the proper-time identification tags. To reduce all the
data to a single operational time network, proper times are converted to a coordinate
time. Coordinate time is one of the four independent coordinates used to characterize
a spacetime event. Coordinate time is not directly measurable with observer’s clock
but is connected to the clock’s proper time by the spacetime coordinate transforma-
tion. On the other hand, the coordinate time of a reference system is the independent
argument of the equations of motion of bodies in that reference system. For this
reason, it can be measured through continuous astronomical observations of motions
of the celestial bodies (planets, Moon, Earth’s satellites). Though measurement of
the proper time by an ensemble of atomic clocks synchronized through the Global
Positioning System (GPS) is the most precise realization of time scale, the coordi-
nate time continues to play a fundamental role in dynamical astronomy of the solar
system bodies. The IAU resolutions on relativity passed in 2000 are concerned with
two coordinate charts, one barycentric and one geocentric, and the coordinate times
used in each one.

9.2.2
The BCRS and the GCRS

In resolution B1.3 of 2000, the IAU defined two coordinate charts for use in astron-
omy, one with its origin at the solar system barycenter and one with its origin at
the geocenter. In current astronomical usage these are referred to as reference sys-
tems. The astronomical distinction between reference systems and reference frames
is discussed in section 9.4. The two systems are the Barycentric Celestial Reference
System (BCRS) and the Geocentric Celestial Reference System (GCRS). Harmonic
coordinates are recommended for both systems, i.e., the harmonic gauge imposed
on the metric tensor, is used. The resolution provides the specific forms of the met-
ric tensors for the two coordinate systems and the four-dimensional transformation
between them. The latter would reduce to a Lorentz transformation for a fictitious
Earth moving with constant velocity in the absence of gravitational fields. The gen-
eral forms of the gravitational potentials, which appear in the metric tensors, are also
presented. In resolution B1.4, specific expansions of the Earth’s gravitational poten-
tial in the GCRS are recommended. In resolution B1.5, the relationship between the
coordinate time scales for the two reference systems, Barycentric Coordinate Time
(TCB), and Geocentric Coordinate Time (TCG), is given. Each of the resolutions is
mathematically detailed, and the formulas may be found in the text of the resolutions
in the appendix C. For interested readers, the Chapters 4, 5, 6 of this book are highly
recommended to understand the mathematical structure of the theory underlying the
IAU resolutions. This section makes only very general comments on the BCRS and
GCRS, although the time scales TCB and TCG are described in a bit more detail in
section 9.3.

The BCRS is a global reference system in which the positions and motions of
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bodies outside the immediate environment of the Earth are to be expressed. It is the
reference system appropriate for the solution of the equations of motion of solar sys-
tem bodies (that is, the development of solar system ephemerides) and within which
the positions and motions of galactic and extragalactic objects are most simply ex-
pressed. It is the system to be used for most positional-astronomy reference data,
e.g., star catalogs. The GCRS is a local reference system for Earth-based measure-
ments and the solution of the equations of motion of bodies in the near-Earth envi-
ronment, e.g., artificial satellites. The time-varying position of the Earth’s celestial
pole is defined within the GCRS (resolution B1.7 of 2000). Precise astronomical ob-
servations involve both systems: the instrumental coordinates, boresights, baselines,
etc., may be expressed in the GCRS, but in general one wants the astronomical re-
sults expressed in the BCRS where they are cataloged and easier to interpret. Thus it
is unavoidable that data analysis procedures for precise techniques will involve both
GCRS and BCRS quantities and the transformation between them. For example, the
basic equation for VLBI delay (the time difference between wavefront arrivals at two
antennas) explicitly involves vectors expressed in both systems – antenna-antenna
baselines are given in the GCRS, while solar system coordinates and velocities and
quasar directions are expressed in the BCRS. Various relativistic factors connect the
two kinds of vectors 2)

In the 2000 resolutions, the coordinate axes of the two reference systems do not
have a defined orientation. They are described as kinematically non-rotating, which
means that the axes have no systematic rotation with respect to distant objects in the
universe, and specifically the radio sources that make up the ICRF – see section 9.4.
Since the axis directions are not specified, one interpretation of the 2000 resolutions
is that the BCRS and GCRS in effect define families of coordinate systems, the mem-
bers of which differ only in overall orientation. The IAU Working Group on Nomen-
clature for Fundamental Astronomy (2003-2006) recommended that the directions
of the coordinate axes of the BCRS be understood to be those of the International
Celestial Reference System (ICRS) described in section 9.4. That recommendation
was formalized into IAU resolution B2 (recommendation 3) of 2006. And, since
the transformation between the BCRS and GCRS is specified in the resolutions, the
directions of the GCRS axes are also implicitly defined by this understanding. Here
are the definitions of the two systems recommended by the working group.

Barycentric Celestial Reference System (BCRS): A system of barycentric
spacetime coordinates for the solar system within the framework of general rel-
ativity with metric tensor specified by the IAU 2000 resolution B1.3. Formally,
the metric tensor of the BCRS does not fix the coordinates completely, leaving
the final orientation of the spatial axes undefined. However, for all practical
applications, unless otherwise stated, the BCRS is assumed to be oriented ac-
cording to the ICRS axes.
Geocentric Celestial Reference System (GCRS): A system of geocentric
spacetime coordinates within the framework of general relativity with metric

2) Section 7.7.3 discusses definitions and mathematics of VLBI technique.
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tensor specified by the IAU 2000 resolution B1.3. The GCRS is defined such
that the transformation between BCRS and GCRS spatial coordinates contains
no rotation component, so that GCRS is kinematically non-rotating with respect
to BCRS. The equations of motion of, for example, an Earth satellite with re-
spect to the GCRS will contain relativistic Coriolis forces that come mainly from
geodetic precession. The spatial orientation of the GCRS is derived from that of
the BCRS, that is, unless otherwise stated, by the orientation of the ICRS.

Because, according to the last sentence of the GCRS definition, the orientation of
the GCRS is determined by that of the BCRS, and therefore the ICRS, in this chapter
the GCRS will often be described as the “geocentric ICRS”. However, this sentence
does not imply that the spatial orientation of the GCRS is the same as that of the
BCRS (ICRS). The relative orientation of these two systems is embodied in the four-
dimensional transformation given in resolution B1.3 of 2000, which are shown in
the next section 3), is itself embodied in the algorithms used to compute observable
quantities from BCRS (ICRS) reference data. From another perspective, the GCRS
is just a rotation (or series of rotations) of the international geodetic system (dis-
cussed in section 9.7). The geodetic system rotates with the crust of the Earth, while
the GCRS has no systematic rotation relative to extragalactic objects.

The above definition of the GCRS also indicates some of the subtleties involved
in defining the spatial orientation of its axes. Without the kinematically non-rotating
constraint, the GCRS would have a slow rotation with respect to the BCRS, the
largest component of which is called geodetic precession also known as de Sitter-
Fokker precession. This rotation, approximately 1.9 arcseconds per century, would
be inherent in the GCRS if its axes had been defined as dynamically non-rotating
rather than kinematically non-rotating. By imposing the latter condition, Coriolis
terms must be added (via the inertial parts of the potentials in the metric; see notes
to resolution B1.3 of 2000) to the equations of motion of bodies expressed in the
GCRS. For example, as mentioned above, the motion of the celestial pole is defined
within the GCRS, and geodetic precession appears in the precession-nutation theory
rather than in the transformation between the GCRS and BCRS. Other barycentric-
geocentric transformation terms that affect the equations of motion of bodies in the
GCRS because of the axis-orientation constraint are described in Soffel et al. [2003,
section 3.3] and Kopeikin and Vlasov [2004, section 6], and their derivation are
summarized in Chapter 5 of this book.

9.2.3
Computing Observables

Ultimately, the goal of these theoretical formulations is to facilitate the accurate
computation of the values of observable astrometric quantities: transit times(, zenith
distances, focal plane coordinates, interferometric delays, etc.) at the time and place
of observation, that is, in the proper reference system of the observer (that is called

3) See also Chapter 5.
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the proper reference frame in section 2.6. There are some subtleties involved because
in Newtonian physics and special relativity, observables are directly expressed in
terms of some inertial coordinates, while according to the rules of general relativity,
observables must be defined in a coordinate-independent manner allowing to use
arbitrary coordinates.

In any case, to obtain observables, there are a number of reductions that must be
performed. Typically, one predicts the value of an observable, based on theory and
data in hand, then compare this value with what is actually measured; the difference
yields information on various parameters of interest. The procedure begins with
astrometric reference data: a pre-computed solar system ephemeris and, if a star
(optical or radio source) is involved, a star catalog with positions and proper motions
listed for a specified epoch. The phenomena listed below and that must be taken into
account, as traditionally categorized, are, for stars:

• Proper motion: the 3-D space motion of the star, relative to that of the solar system
barycenter, between the catalog epoch and the date of interest. It is assumed linear
and computed from the catalog proper motion components, radial velocity, and
parallax. Projected onto the sky, the motion amounts to less than 1 arcsecond per
year (usually much less) except for a few nearby stars. For components of a binary
or multiple system, the motion of the star relative to that of the system’s center of
mass must also be accounted for.

• Parallax: the change in one’s perspective on stars in the solar neighborhood due
to the varying position of the Earth in its orbit. Its magnitude in arcseconds is
(distance in parsecs)−1, and hence is always less than 1 arcsecond for any star.

• Gravitational light bending: the apparent deflection of the light path in the gravita-
tional field of the Sun and (to a much lesser extent) the other planets (see sections
7.5.2 and 7.9.5). Although it reaches 1.75 arcsecond at the limb of the Sun, it
falls to 0.05 arcsecond at 10◦ from the Sun, and amounts to no more than a few
milliarcseconds over the hemisphere of the sky opposite the Sun.

• Aberration: the change in the apparent direction of light caused by the observer’s
velocity with respect to the solar system barycenter (see section 2.5.8). Indepen-
dent of distance, it is equal approximately to β = V/c, expressed as an angle.
Therefore, it can reach 21 arcseconds for observers on the surface of the Earth
(V = 30 km/s), and somewhat more for instruments in orbit.

• Atmospheric refraction: the total angular change in the direction of the light path
through the Earth’s atmosphere; applies only to an observer on or near the surface
of the Earth. The direction of refraction is usually assumed to be parallel to the
local vertical and a function only of zenith distance (although these assumptions
may not be true in all cases). At optical wavelengths, its magnitude is zero at
the zenith, about 1 arcminute at a zenith distance of 45◦, and 0.5◦ at the horizon.
Refraction is roughly proportional to the atmospheric pressure at the observer, but
it also depends on other atmospheric parameters and the observational wavelength
of light.

The same effects are relevant to objects in the solar system, except that the proper
motion calculation is replaced by a function that retrieves an object’s barycentric
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position from its ephemeris, as part of an iterative light-time calculation. For the
purposes of these calculations, extragalactic objects can be considered in most cases
as having zero parallax and proper motion. The star or planet positions computed
by considering all these effects obviously depend on the location of the observer;
so that an observer on the surface of the Earth will see a slightly different position
than a fictitious observer at the geocenter - the effect known as diurnal parallax, the
differences being greater for solar system objects, especially nearby ones, reaching
about 1◦ for the Moon.

Collectively, these calculations will be referred to in this chapter as the algorithms
for proper place of an observed object - a term that refers explicitly to angular vari-
ables. The same effects must be accounted for in the time domain for VLBI and
pulsar timing. Ranging observations within the solar system (LLR, radar, spacecraft
Doppler tracking) involve two-way signals (often with different sending and receiv-
ing stations) and are therefore even more complex (see, for example, section 7.8 of
this book).

For Earth-based observing systems, one must also account for precession, nuta-
tion, Earth rotation, and polar motion, which can be taken together and represented
as a single rotation matrix applied at the end of the proper place calculation (for de-
tails, see sections 9.6 and 9.7). That allows the object coordinates to be expressed in
one of the “equator of date” (now also called “intermediate”) coordinate systems.

There are classical expressions for all these effects (except gravitational deflec-
tion), and relativity explicitly enters the procedure in only a few places, usually as
added terms to the classical expressions, and in the formulas that link the various
time scales used. In fact, the way these effects are categorized and visualized is
based on a classical point of view. It has become common, then, to view this ensem-
ble of calculations as being carried out entirely in a single reference system; or, two
reference systems, barycentric and geocentric, that have parallel axes and differ only
in the origin of coordinates (that is, they are connected by a Galilean transforma-
tion). For example, the coordinate system defined by the “mean equator and equinox
of J2000.0”, can be thought of as either barycentric or geocentric. The relativistic
effects then are interpreted simply as “corrections” to the classical result.

While such a viewpoint may seem aesthetically tidy, it breaks down at high levels
of accuracy and for some types of observations. Relativity theory leads to a more
correct, albeit more subtle, interpretation for the same set of calculations. It is rep-
resented by the BCRS-GCRS paradigm wherein some of the astrometric quantities
are expressed relative to the BCRS, and others are defined relative to the GCRS. The
two systems are quite different in a number of ways, as described in the previous
section as well as in sections 4.3 and 4.5 of this book. The situation is easiest to
describe if one restricts the discussion to a fictitious observer at the center of mass
of the Earth, that is, to observations referred to the geocenter. The transformation
between the two systems is not explicit in the currently-adopted algorithms, but is
embodied in the relativistic terms in the expressions used for aberration or VLBI
delay. The distinction between the two systems is most obvious in the formulation
for angular variables. There, the algorithms for space motion, parallax, light-time,
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and gravitational deflection 4) all use vectors expressed in the BCRS star catalogs(
and solar system ephemerides are inherently BCRS), while the series for preces-
sion, nutation, Earth rotation, and polar motion (if applied in that order) starts with
vectors expressed in the GCRS. In essence, the aberration calculation connects the
two systems because it contains the transformation between them: its input is a pair
of vectors in the BCRS and its output is a vector in the GCRS. In the VLBI case,
aberration does not appear explicitly 5), but the conventional algorithm for the delay
observable [McCarthy and Petit, 2004, Chapter 11] incorporates vectors expressed
in both systems, with appropriate conversion factors obtained from the indexBCRS-
GCRS transformation given, for example, in chapter 5.2.6 of this book.

For an observer on or near the Earth’s surface, the calculations have to include the
position and velocity of the observer relative to the geocenter. These are naturally
expressed in the GCRS but for some of the calculations (parallax, light-time, gravita-
tional light deflection, and aberration) they must be added to the position and velocity
of the geocenter relative to the solar system barycenter, which are expressed in the
BCRS. Thus, additional observer-to-GCRS transformation is indicated, although the
velocity of the observer in the GCRS (i.e., relative to the geocenter) is sufficiently
small that a Galilean transformation (simple vector addition) suffices for current ob-
servational accuracy. Correct use of the resulting vectors results in the values of the
observables expressed, not in the GCRS, but in the proper (locally-inertial) reference
frame of the observer, which is also known in astronomy as the topocentric frame.
The reader is advised to read sections 8.3, 8.4, and 8.5 of the present book for the
observer-GCRS transformation.

Preceding chapters of this book explore these considerations in detail and provides
algorithms for computing observables within the context of general relativity and the
IAU recommended reference systems. A shorter exposition of just the calculations
needed for high precision angular observations from space is given by Brumberg
et al. [1990]; Klioner [2003a]; Klioner and Kopeikin [1994].

9.2.4
Other Considerations

The 2000 IAU resolutions on relativity define a framework for future dynamical
developments within the context of general relativity. However, there is much un-
finished business. The apparently familiar concept of the ecliptic plane has not yet
been defined in the context of relativity resolutions. A consistent relativistic theory
of Earth rotation is still under development [Klioner et al., 2009b]; the algorithms
described in section 9.6 are not such a theory, although they contain all the main
relativistic effects and are quite adequate for the current observational precision.

A local reference system similar to the GCRS can be easily constructed for any

4) In the case of a fictitious observer at the geocenter, one neglects the gravity field of the Earth itself in
computing gravitational deflection.

5) Part of the expression for VLBI delay, in the time domain, accounts for what would be called aberration
in the angular domain; it is possible to compute aberration from the VLBI time-delay algorithm as
demonstrated in papers [Kaplan, 1998; Kopeikin, 1990; Kopeikin et al., 1999].
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body of an N-body system in exactly the same way as the GCRS, simply by chang-
ing the notation in resolutions B1.3-B1.5 of 2000 so that the subscript E denotes
a body other than the Earth. In particular, a selenocentric reference system for the
Moon plays an important role in lunar laser ranging [Kopeikin et al., 2008; Xie and
Kopeikin, 2010].

It is also worth noting that the 2000 resolutions do not describe the proper refer-
ence system of the observer – the local, or topocentric, system in which most mea-
surements are actually taken. VLBI( observations are unique in that they exist only
after data from various individual antennas are combined; therefore they are referred
to the GCRS ab initio.) A kinematically non-rotating version of the proper reference
system of the observer is just a simplified version of the GCRS: xi

E should be un-
derstood to be the BCRS position of the observer (vi

E and ai
E are then the observer’s

velocity and acceleration) and one should neglect the internal potentials. See papers
[Klioner, 2004; Kopejkin, 1991a] and chapter 8.

One final point: the 2000 IAU resolutions as adopted, apply specifically to Ein-
stein’s theory of gravity, i.e., the general theory of relativity. The scalar-tensor theory
of gravity (see, e.g., Brans and Dicke [1961]; Damour and Esposito-Farese [1992];
Macías et al. [2001]) is more general, and possible modification of the IAU 2000 res-
olutions have been discussed by Kopeikin and Vlasov [2004] and Kopeikin [2010b]
with the purpose to incorporate the parameters β and γ of this theory. In the IAU
2000 resolutions, it is assumed that the scalar-tensor theory parameters β and γ are
both equal to 1.

One should notice that the parameterized post-Newtonian (PPN) formalism [Will,
1993] also includes parameters βPPN and γPPN, which should not be confused with β
and γ parameters of the scalar-tensor theory of gravity. The difference is vanishing
in case of a static, spherically-symmetric gravitational field. However, since the PPN
formalism is not a theory, it fails to provide definitive (covariant) answers in a more
complicated dynamic situation of N-body problem. An attempt to apply the PPN
formalism for extension of the IAU 2000 resolutions was undertaken by Klioner and
Soffel [2000] but the results are not consistent with the scalar-tensor theory for the
above-said reason (see pages 313-314 of the paper by Kopeikin and Vlasov [2004]
for further details).

In 2006, IAU Commission 52, “Relativity in Fundamental Astronomy”, was es-
tablished to pursue all these and similar issues.
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9.3
Time Scales

Relevant IAU resolutions:

• A4.III, A4.IV, A4.V, A4.VI of 1991;
• C7 of 1994;
• B1.3, B1.5, B1.7, B1.8, B1.9, and B2 of 2000;
• B3 of 2006.

The IAU has not established any new time scales since 1991, but more recent
IAU resolutions have redefined or clarified those already in use, with no loss of
continuity. There are, at least, four major classes (groups) of time scales used in
astronomy. They are based on: (1) the atomic SI second, (2) the rotation of the
Earth, (3) the rotation of pulsars, and (4) the orbital motion of astronomical bodies
(planets, pulsars). IAU accepts currently the atomic time and the time scale based
on the rotation of the Earth. Orbital motion of the solar system bodies was used as a
basis of ephemeris time (ET) but it was abandoned because of inability to compete
with the atomic standards. Pulsar time scales based on the rotation and orbital motion
of pulsars are maintained by various pulsar timing groups around the world but these
time scales are not used (at least now) as time references for practical applications.

The SI second has a simple definition that allows it to be used (in practice and in
theory) in any reference system. Time scales based on the SI second include TAI and
TT for practical applications, and TCG and TCB for theoretical developments. The
latter are to be used for relativistically correct dynamical theories in the geocentric
and barycentric reference systems, respectively. Closely related to these are two time
scales, TDB and Teph, are implemented in the current generation of the solar system
ephemerides. The dynamical time scales used to be called the ephemeris time, and
they were widely used in astronomical practice before the advent of atomic clocks
[Guinot and Seidelmann, 1988].

Time scales based on the rotation of the Earth include mean and apparent sidereal
time and UT1. Because of irregularities in the Earth’s rotation, and its tidal decel-
eration, Earth-rotation-based time scales do not advance at a uniform rate, and they
increasingly lag behind the SI-second-based time scales. UT1 is now defined to be
a linear function of a quantity called the Earth Rotation Angle, θ. In the formula
for mean sidereal time, θ now constitutes the “fast term”. The widely disseminated
time scale UTC is a hybrid: it advances by SI seconds but is subject to one-second
corrections called leap seconds, to keep it within 0.s9 of UT1. That procedure is now
the subject of debate and there is a movement to eliminate leap seconds from UTC
to keep its rate uniform.

Pulsar time scales [Foster and Backer, 1990; Ilyasov et al., 1998; Kopeikin, 1997b;
Petit and Tavella, 1996; Taylor, 1991] based on the intrinsic rotation (PT) of pul-
sars and their orbital motion in binary systems (BPT) are not practically-accepted
time-keeping references. The study of stability and accuracy of PT and BPT scales
continues at radio astronomical observatories as the pulsar timing data is accumu-
lating. Current state of the art of the pulsar time scale indicates that it might be
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useful to maintain the uniformity of atomic time scales on a very long time interval
exceeding a decade [Guinot and Petit, 1991; Hobbs, 2010; Kopeikin, 1999; Manch-
ester, 2008] and for possible detection of low-frequency gravitational waves [Hobbs,
2008; Kopeikin, 1997a; Kramer and Wex, 2009; Sazhin, 1978; Verbiest et al., 2009].

9.3.1
Different Flavors of Time

The phrase time scale is used quite freely in astronomical contexts, but there is suffi-
cient confusion surrounding astronomical times scales that it is worthwhile revisiting
the basic concept. A time scale is simply a well defined way of measuring time based
on a specific periodic natural phenomenon. The definition of a time scale must pro-
vide a description of the phenomenon to be used (what defines a period, and under
what conditions), the rate of advance (how many time units correspond to the natural
period), and an initial epoch (the time reading at some identifiable event). For exam-
ple, one could define a time scale where the swing of a certain kind of pendulum, in
vacuum at sea level, defines one second, and where the time 00:00:00 corresponds to
the transit of a specified star across a certain geographic meridian on an agreed-upon
date.

As used in astronomy, a time scale is an idealization, a set of specifications writ-
ten on a piece of paper. The instruments called clocks, no matter how sophisticated
or accurate, provide some imperfect approximation to the time scale they are meant
to represent. In this sense, time scales are similar to spatial reference systems (see
section 9.4), which have precise definitions but various imperfect realizations. The
parallels are not coincidental, since for modern high-precision applications one ac-
tually uses spacetime reference systems in the framework of general relativity (see
section 9.2). All time scales get therefore associated with specific reference systems.

Operationally, two fundamentally different groups of time scales are currently used
in the solar system ephemeris astronomy. The first group of time scales is based on
the “atomic" second that is defined as part of the the Système International (SI), and
the second group is based on the rotation of the Earth. The SI second is defined as
9, 192, 631, 770 cycles of the radiation corresponding to the ground state hyperfine
transition of Cesium 133 [Göbel et al., 2006], and provides a very precise and con-
stant rate of time measurement, at least for observers local to the apparatus in which
such seconds are counted. The rotation of the Earth defines the unit of time called
length of day, and it is quite a different basis for time, since it is variable and has
unpredictable components. It must be continuously monitored through astronomi-
cal observations, now done primarily with very long baseline [radio] interferometry
(VLBI). The SI-based time scales are relatively new in the history of time-keeping
metrology, since they rely on atomic clocks first put into regular use in the 1950s.
Before that, all time scales were tied to the rotation of the Earth. Crystal oscillator
clocks in the 1930s were the first artificial time-keeping mechanisms to exceed the
accuracy of the Earth itself but they were quickly superseded by atomic clocks and
had been used in time-keeping metrology only for a short while. As one will see,
the ubiquitous use of SI-based time for modern applications has led to a conundrum
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about what the relationship between the two kinds of time should be in the future.
Both kinds of time scales can be further subdivided into those that are represented
by actual clock systems and those that are idealized theoretical constructs including
the geometrodynamical clock by Marzke and Wheeler [1964].

General reviews of astronomical time scales are given in [Guinot, 1979, 1986;
Guinot and Seidelmann, 1988; Seidelmann and Fukushima, 1992] and Chapter 2 of
the Explanatory Supplement to the Astronomical Almanac [Seidelmann and Urban,
2010].

9.3.2
Time Scales Based on the SI Second

Let us first consider the time scales based on the SI second. As a simple count of
cycles of microwave radiation from a specific atomic transition, the SI second can be
implemented, at least in principle, by an observer anywhere. Thus, SI-based proper
time scales can be constructed or hypothesized on the surface of the Earth, on other
celestial bodies, on spacecraft, or at theoretically interesting locations in space, such
as the solar system barycenter. According to relativity theory, clocks advancing by
SI seconds as measured by a local, comoving observer may not appear to advance
by SI seconds to an observer on another spacetime trajectory. In general, there will
be an observed difference in rate and possibly higher-order or periodic differences,
depending on the relative trajectory of the clocks and the remote observer and the
gravitational fields involved. The precise conversion formulas [Brumberg, 1991;
Brumberg and Kopeikin, 1990; Harada and Fukushima, 2003; McCarthy and Petit,
2004] can be mathematically complex, involving the positions and velocities not just
of the clock and observer but also those of an ensemble of massive bodies (Earth,
Sun, Moon, planets).

These considerations also apply to coordinate time scales established for specific
reference systems in the context of general relativity. However, the definition of an
“SI second” as something that is measurable, strictly applies only to proper time
scales; it may be better to say that coordinate time scales are expressed in “SI-
induced seconds” [Klioner et al., 2009a]. This is a metrological and semantic dis-
tinction without any computational consequences. The time-scale conversions are
taken from the general four-dimensional spacetime transformation between the ref-
erence systems given by relativity theory as described in sections 9.2 and 5.

Two SI-second-based times have already been mentioned in section 9.2: these
are the coordinate time scales for theoretical developments based on the Barycentric
Celestial Reference System (BCRS) or the Geocentric Celestial Reference System
(GCRS). These time scales are called, respectively, Barycentric Coordinate Time
(TCB) and Geocentric Coordinate Time (TCG). With respect to a time scale based
on SI second as measured on the surface of the Earth, TCG advances at a rate
6.97×10−10 faster, while TCB advances at a rate 1.55×10−8 faster. TCB and TCG are
not likely to come into common use for practical applications, but they appear as the
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independent arguments 6) for theoretical developments in dynamical astronomy (e.g.,
Moisson and Bretagnon [2001]). However, none of the current IAU recommended
models used in the analysis of astrometric data use TCB or TCG as a basis. This
simply reflects the fact that there has not been enough time or motivation for a new
generation of dynamical models to be fully developed within the IAU-recommended
relativistic paradigm.

For practical applications on or near the surface of the Earth, International Atomic
Time (TAI) is a commonly used time scale. It is based on the SI second on the
Earth’s surface at sea level (specifically, the rotating geoid). TAI is the most pre-
cisely determined time scale that is now available for astronomical use. This scale
results from analyses by the Bureau International des Poids et Mesures (BIPM) in
Sèvres, France, of data from atomic time standards of many countries, according to
an agreed-upon algorithm. Although TAI was not officially introduced until 1972,
atomic time scales have been available since 1956, and TAI may be extrapolated
backwards to the period 1956-1971 7). An interesting discussion of whether TAI
should be considered a coordinate time or a kind of modified proper time 8) in the
context of general relativity has been given by Guinot [1986]. In any event, TAI is
readily available as an integral number of seconds offset from UTC, which is exten-
sively disseminated; UTC is discussed at the end of this section. The TAI offset from
UTC is designated ∆AT = TAI-UTC. For example, in 2009 and 2010, ∆AT = 34 s.
∆AT increases by 1 s whenever a positive leap second is introduced into UTC (see
below). The history of ∆AT values can be found on page K9 of each issue of The
Astronomical Almanac [2010] and the current value can be found at the beginning
of Bulletin A of the Central Bureau of the IERS [2010] and Bulletins A & B of the
IERS Rapid Service/Prediction Centre [2010].

The astronomical time scale called Terrestrial Time (TT), used widely for geo-
centric and topocentric ephemerides such as in The Astronomical Almanac [2010],
is defined to run at a rate of (1 − LG) times that of TCG, where the rate factor
LG = 6.969290134×10−10. The rate factor applied to TCG to create TT means
that TT runs at the same rate as a time scale based on SI seconds on the surface of
the Earth. LG is now considered a defining constant, not subject to further revision.
Since TCG is a theoretical time scale that is not kept by any real clock, for practi-
cal purposes, TT can be considered an idealized form of TAI with an epoch offset:
TT = TAI + 32.s184. This expression for TT preserves continuity with previously-
used (now obsolete) “dynamical” time scales, Terrestrial Dynamical Time (TDT)
and Ephemeris Time (ET). That is, ET→ TDT→ TT can be considered as a single
continuous time scale.

Important Note: The “standard epoch” for modern astrometric reference data,
designated J2000.0, is expressed as a TT instant: J2000.0 is 2000 January 1, 12h TT
(JD 2451545.0 TT) at the geocenter.

6) They are denoted respectively as t and u in Chapters 4-8 of this book.
7) See Nelson et al. [2001] for a history of TAI.
8) These terms are described in section 9.2, p. 696.
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The fundamental solar system ephemerides from the Jet Propulsion Laboratory
(JPL) that are the basis for many of the tabulations in The Astronomical Almanac
[2010] and other national almanacs were computed in a barycentric reference system
and are distributed with the independent argument being a coordinate time scale
called Teph (section 9.5 describes the JPL ephemerides). Teph differs in rate (by
about 10−8 at the geocenter) from that of TCB, the IAU recommended time scale for
barycentric developments; the rate of Teph matches that of TT, on average, over the
time span of the ephemerides. For many years, Teph was treated as being functionally
equivalent to Barycentric Dynamical Time (TDB), defined by the IAU in 1976 and
1979. Both are meant to be “time scales for equations of motion referred to the
barycenter of the solar system” yet (loosely speaking) match TT in average rate. The
original IAU definition of TDB specified that “there be only periodic variations”
with respect to what is now called TT; however, Brumberg and Kopeikin [1990]
and Standish [1998b] pointed out that this condition cannot be rigorously fulfilled in
practice. Therefore, IAU resolution B3 of 2006 redefined TDB to be a linear function
of TCB that is equivalent to Teph for the JPL DE405 ephemeris. Barycentric and
heliocentric data derived from the JPL ephemerides are often tabulated with TDB
shown as the time argument in The Astronomical Almanac [2010], and TDB is the
specified time argument for many of the equations presented in this section.

The time scales TCB and TCG are the “natural” coordinate times for the BCRS
and GCRS reference systems as explained in sections 4.3 and 4.5, while TDB (or
Teph ) and TT are defined to be linear functions of TCB and TCG, respectively. TDB
(or Teph ) and TT are, therefore, sometimes referred to as being “scaled” – that is, the
rate has been adjusted for convenience – whereas TCB and TCG are “unscaled”. An
advantage of the former is that their long-term rates closely match those of proper
time scales of observers on the Earth’s surface as well as TAI. An advantage of the
latter is that fundamental physical constants have the same numerical values in all
reference systems that use unscaled coordinate time. When either TDB or TT is
used, there must be a corresponding scaling of the spatial coordinates and constants
[Brumberg and Kopejkin, 1989a; Irwin and Fukushima, 1999]. Specifically, because
Teph = TDB has a rate offset with respect to TCB, the values of parameters deter-
mined from or consistent with the JPL ephemerides will, in general, require scaling
to convert them to TCB-compatible quantities. This includes the length of the as-
tronomical unit [Klioner, 2008]. Dimensionless quantities such as mass ratios are
unaffected. Fundamental solar system ephemerides with TCB as the independent
time argument would not, of course, require such scaling. Lists of astronomical con-
stants now often contain separate “TDB compatible" and “TCB compatible” values.

The problem of defining relativistic time scales in the solar system has been treated
by Brumberg and Kopeikin [1990], which is quite general but pre-dates the current
terminology. Soffel and Brumberg [1991] and Seidelmann and Fukushima [1992]
discuss the necessity of introducing the relativistic time scales in dynamical astron-
omy operating with a rather simple theoretical arguments. Klioner et al. [2009a]
describes some of the subtleties related to units of time in the IAU relativistic con-
text and suggests some terminology.
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9.3.3
Time Scales Based on the Rotation of the Earth

Time scales that are based on the rotation of the Earth are frequently used in as-
tronomical applications, such as telescope pointing, that depend on the geographic
location of the observer. Greenwich sidereal time is the hour angle of the equinox
measured with respect to the Greenwich meridian. Local sidereal time is the local
hour angle of the equinox, or the Greenwich sidereal time plus the longitude (east
positive) of the observer, expressed in time units. Sidereal time appears in two forms,
mean and apparent, depending on whether the mean or true equinox is the reference
point. The position of the mean equinox is affected only by precession while the true
equinox is affected by both precession and nutation. The difference between true
and mean sidereal time is the equation of the equinoxes, which is a complex periodic
function with a maximum amplitude of about 1 s. Of the two forms, apparent sidereal
time is more relevant to actual observations, since it includes the effect of nutation.
Greenwich (or local) apparent sidereal time can be observationally obtained from the
right ascensions of celestial objects transiting the Greenwich (or local) meridian.

Universal Time (UT) is also widely used in astronomy, and now almost always
refers to the specific time scale UT1. Historically, Universal Time (formerly, Green-
wich Mean Time) has been obtained from Greenwich Sidereal Time using a standard
expression. In 2000, the IAU redefined UT1 to be a linear function of the Earth Rota-
tion Angle, θ, which is the geocentric angle between two directions in the equatorial
plane called, respectively, the Celestial Intermediate Origin (CIO) and the Terres-
trial Intermediate Origin (TIO) (resolution B1.8 of 20009)). The TIO rotates with
the Earth, while the CIO has no instantaneous rotation around the Earth’s axis, so
that θ is a direct measure of the Earth’s rotational motion: conceptually, θ̇ = ω, the
Earth’s average angular velocity of rotation. See section 9.7 for a more complete
description of these new reference points. The definition of UT1 based on sidereal
time is still widely used, but the definition based on θ is becoming more common for
precise applications. In fact, the two definitions are equivalent, since the expression
for sidereal time as a function of UT1 is itself now based on θ.

Since they are mathematically linked, sidereal time, θ, and UT1 are all affected
by variations in the Earth’s rate of rotation (length of day), which are unpredictable
and must be routinely measured through astronomical observations. The lengths of
the sidereal and UT1 seconds are therefore not precisely constant when expressed in
a uniform time scale such as TT. The accumulated difference in time measured by
a clock keeping SI seconds on the geoid from that measured by the rotation of the
Earth is ∆T = TT-UT1. A table of observed and extrapolated values of ∆T is given
in The Astronomical Almanac [2010] on page K9. The long-term trend for ∆T is
to increase gradually because of the tidal deceleration of the Earth’s rotation, which
causes UT1 to lag increasingly behind TT.

9) In the resolution, these points are called the Celestial Ephemeris Origin (CEO) and the Terrestrial
Ephemeris Origin (TEO). The change in terminology to CIO and TIO was adopted at the 2006 IAU
General Assembly.
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In predicting the precise times of topocentric phenomena, like solar eclipse con-
tacts, both TT and UT1 come into play. Therefore, assumptions have to be made
about the value of ∆T at the time of the phenomenon. Alternatively, the circum-
stances of such phenomena can be expressed in terms of an imaginary system of
geographic meridians that rotate uniformly about the Earth’s axis (∆T is assumed
zero, so that UT1=TT) rather than with the real Earth; the real value of ∆T then does
not need to be known when the predictions are made. The zero-longitude meridian
of the uniformly rotating system is called the ephemeris meridian. As the time of
the phenomenon approaches and the value of ∆T can be estimated with some confi-
dence, the predictions can be related to the real Earth: the uniformly rotating system
is 1.002738 ∆T east of the real system of geographic meridians. (The 1.002738
factor converts a UT1 interval to the equivalent Earth Rotation Angle – i.e., the side-
real/solar time ratio.)

9.3.4
Coordinated Universal Time (UTC)

The worldwide system of civil time is based on Coordinated Universal Time (UTC),
which is now ubiquitous and tightly synchronized. This is the de facto situation;
though many nations’ legal codes do not mention UTC specifically. UTC is a hybrid
time scale, using the SI second on the geoid as its fundamental unit, but subject to
occasional 1-second adjustments to keep it within 0.s9 of UT1. Such adjustments,
called leap seconds, are normally introduced at the end of June or December, when
necessary, by international agreement. Tables of the remaining difference, UT1-
UTC, for various dates are published by the International Earth Rotation Service
(IERS) [IERS Rapid Service/Prediction Centre, 2010]. Both past observations and
predictions are available. DUT1, an approximation to UT1-UTC, is transmitted in
code with some radio time signals, such as those from WWV. As previously dis-
cussed in the context of TAI, the difference ∆AT = TAI-UTC is an integral number
of seconds, a number that increases by 1 whenever a (positive) leap second is intro-
duced into UTC. That is, UTC and TAI share the same seconds ticks, they are just
labeled differently.

Clearly UT1-UTC and ∆T must be related, since they are both measures of the
natural “error” in the Earth’s angle of rotation at some date. The relation is ∆T =

32.s184 + ∆AT - (UT1-UTC).
For the user, then, UTC, which is widely available from GPS, radio broadcast

services, and the Internet, is the practical starting point for computing any of the
other time scales described above. For the SI-based time scales, one simply adds the
current value of ∆AT to UTC to obtain TAI. TT is then just 32.s184 seconds ahead
of TAI. The theoretical time scales TCG, TCB, TDB, and Teph can be obtained from
TT using the appropriate mathematical formulas. For the time scales based on the
rotation of the Earth, one again starts with UTC and add the current value of UT1-
UTC to obtain UT1. The various kinds of sidereal time can then be computed from
UT1 using standard formulas.
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Figure 9.1 Differences in readings of various time scales compared to International Atomic
Time (TAI). TT and its predecessors, TDT and ET, are all shown as TAI+32.184 s. The periodic
terms of TCB and TDB are exaggerated by a factor of 100. The “stair-step” appearance of UTC
is due to the leap seconds inserted into that time scale so that it tracks UT1. TT and the “steps”
of UTC are parallel to the TAI line because they are all based on the SI second on the geoid.
TDB (or Teph) tracks TT on average over the time span of the specific ephemeris to which it
applies. Note the instant at the beginning of 1977 when TT, TCB, and TCG all had the same
value. The figure is from [Seidelmann and Fukushima, 1992].
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9.3.5
To Leap or Not to Leap

Because of the widespread and increasing use of UTC for applications not consid-
ered three decades ago – such as precisely time-tagging electronic fund transfers
and other networked business transactions – the addition of leap seconds to UTC
at unpredictable intervals creates technical problems and legal issues for service
providers. There is now a movement to relax the requirement that UTC remains
within 0.9 seconds of UT1. The issue is compounded by the unavoidable scientific
fact that the Earth’s rotation is slowing due to tidal friction, so that the rate of addition
of leap seconds to UTC must inevitably increase. Aside from monthly, annual, and
decadal variations, the Earth’s angular velocity of rotation is decreasing linearly (be-
cause of the tidal friction), which means that the accumulated lag in UT1 increases
quadratically; viewed over many centuries, the ∆T curve is roughly a parabola. The
formulas for sidereal time, and length of the ephemeris second to which the SI sec-
ond was originally calibrated, are based on the average (assumed fixed) rate of Earth
rotation of the mid-1800s [Nelson et al., 2001]. All modern time-keeping systems
are ultimately based on what the Earth was doing a century and a half ago!

An IAU Working Group on the Redefinition of Universal Time Coordinated (UTC)
was established to consider the leap second problem and recommend a solution,
working with the IERS, the International Union of Radio Science (URSI), the Ra-
diocommunication Sector of the International Telecommunications Union (ITU-R),
the International Bureau for Weights and Measures (BIPM), and the relevant navi-
gational agencies (IAU resolution B2 of 2000). The IAU Working Group ended its
work in 2006 without making a specific recommendation for change. Possibilities
that were considered included: using TAI for technical applications instead of UTC;
allowing UT1 and UTC to diverge by a larger amount (e.g., 10 or 100 seconds) be-
fore a multi-second correction to UTC is made; making a variable correction to UTC
at regularly scheduled dates; eliminating the corrections to UTC entirely and allow-
ing UTC and UT1 to drift apart; or changing the definition of the SI second. No
solution is ideal (including the status quo) and each of these possibilities has its own
problems. For example, if one keeps leap seconds, or a less frequent multi-second
correction, can current systems properly time-tag the date and time of an event that
occurs during the correction? Does a time scale that diverges from UT1 provide
a legally acceptable representation of civil time? If corrections are made less fre-
quently, will the possibility of technical blunders increase? If leap seconds are elim-
inated, won’t natural phenomena such as sunrise and sunset eventually fall out of
sync with civil time? How does one find all the existing computer code that assumes
|UT1-UTC| ≤ 0.9 s? The matter is now in the hands of the ITU-R, where a working
group has proposed eliminating all future leap seconds and letting UTC diverge from
UT1. At the end of 2009 it was unclear whether there is the necessary international
consensus (within the rules of the ITU) to make this change. In any event, it would
take a number of years for any proposed change to take place because of the many
institutions and international bodies that would have to be involved.

For scientific instrumentation, the use of TAI – which is free of leap seconds – has



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 9 — 2016/2/13 — 14:05 — page 713

713

much to recommend it. Its seconds can be easily synchronized to those of UTC (only
the labels of the seconds are different). It is straightforward to convert from TAI to
any of the other time scales. Use of TAI provides an internationally recognized time
standard and avoids the need to establish an instrument-specific time scale when
continuity of time tags is a requirement.

9.3.6
Formulas

9.3.6.1 Formulas for Time Scales Based on the SI Second
For the SI-based time scales, the event tagged 1977 January 1, 00:00:00 TAI (JD
2443144.5 TAI) at the geocenter is special. At that event, the time scales TT,
TCG, and TCB all read 1977 January 1, 00:00:32.184 (JD 2443144.5003725). (The
32.s184 offset is the estimated difference between TAI and the old Ephemeris Time
scale.) This event will be designated t0 in the following; it can be represented in any
of the time scales, and the context will dictate which time scale is appropriate.

From the perspective of a user, the starting point for computing all the time scales
is Coordinated Universal Time (UTC). From UTC, one can immediately get Inter-
national Atomic Time (TAI)

TAI = UTC + ∆AT , (9.1)

where ∆AT, an integral number of seconds, is the accumulated number of leap sec-
onds applied to UTC.

The astronomical time scale Terrestrial Time (TT) is defined by the epoch t0 and
its IAU-specified rate with respect to Geocentric Coordinate Time (TCG)

dTT
dTCG

= 1 − LG , (9.2)

where LG = 6.969290134×10−10 exactly, from which one obtains

TT = TCG − LG (TCG − t0) . (9.3)

However, TCG is a theoretical time scale, not kept by any real clock system, so in
practice,

TT = TAI + 32.s184 , (9.4)

and one obtains TCG from TT.
The relationship between TCG and Barycentric Coordinate Time (TCB) is more

complex. TCG and TCB are both coordinate time scales, to be used with the geo-
centric and barycentric reference systems (the GCRS and BCRS), respectively. The
exact formula for the relationship between TCG and TCB is given in resolution B1.5
of 2000, recommendation 2. For a given TCB epoch, one has 10)

TCG = TCB −
1
c2

∫ TCB

t0

(v2
E

2
+ Uext(xE)

)
dt −

vE

c2 · (x − xE) + · · · , (9.5)

10) This is equation (5.92) from section 5.2.6 with u =TCG and t =TCB.
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where c is the fundamental speed (= speed of light), xE and vE are the position and
velocity vectors of the Earth’s center with respect to the solar system barycenter, and
Uext is the Newtonian potential of all solar system bodies apart from the Earth. The
integral is carried out in TCB since the positions and motions of the Earth and other
solar system bodies are represented (ideally) as functions of TCB. The last term on
the right contains the barycentric position vector of the point of interest, x, and will
be zero for the geocenter, as would normally be the case. The omitted terms are
of maximum order c−4 as shown in equation (5.92). Note that the transformation is
ephemeris-dependent, since it is a function of the time series of xE and vE values.
The result is a “time ephemeris” [Harada and Fukushima, 2003] associated with ev-
ery spatial ephemeris of solar system bodies expressed in TCB. It is to be expected
that ephemeris developers will supply appropriate time conversion algorithms (soft-
ware) to allow the positions and motions of solar system bodies to be retrieved for
epochs in conventional time scales such as TT or TAI. It is unlikely that ordinary
ephemeris users will have to compute equation (9.5) on their own.

The functional form of the above expressions may seem backwards for practical
applications; that is, they provide TCG from TCB and TT from TCG. These forms
make sense, however, when one considers how an ephemeris of a solar system body
(or bodies) or a spacecraft is developed. The equations of motion for the body (or
bodies) of interest are expressed in either the barycentric or geocentric system as a
function of some independent coordinate time argument. For barycentric equations
of motion, expressed in SI units, one wouldbe tempted immediately to identify this
time argument with TCB. Actually, however, the association of the time argument
with TCB is not automatic; it comes about only when the solution of the equations
of motion is made to satisfy the boundary conditions set by the ensemble of real
observations of various kinds. Generally, these observations will be time-tagged in
UTC, TAI, or TT all of which are based on the SI second on the geoid, and these
time tags must be associated with the time argument of the ephemeris. The above
formulas can be used to make that association, which then allows the ephemeris to be
fit to the observations. More precisely, the spacetime coordinates of the observation
events must be transformed to the BCRS. As a consequence, the time argument of
the ephemeris becomes a realization of TCB. The fit of the computed ephemeris to
observations usually proceeds iteratively, and every iteration of the spatial ephemeris
produces a new time ephemeris. With each iteration, the spatial coordinates of the
ephemeris become better grounded in reality, as represented by the observations,
and the time coordinate becomes a better approximation to TCB. Viewed from this
computational perspective, the ephemeris and its time argument are the starting point
of the process and the sequence TCB→ TCG→ TT makes sense.

One can compute an ephemeris and fit it to observations using other formulas for
the time scale conversions. A completely valid and precise ephemeris can be con-
structed in this way, but its independent time argument could not be called TCB.
The values of various constants used in, or derived from, such an ephemeris would
also not be TCB-based, and a conversion factor would have to be applied to convert
them to or from TCB-compatible units. Such is the case with the solar system Devel-
opment Ephemeris (DE) series from the Jet Propulsion Laboratory. DE405 is now
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the consensus standard for solar system ephemerides and is described in section 9.5.
The DE series dates back to the 1960s, long before TCB and TCG were defined,
and its independent time argument is now called Teph. Teph can be considered to
be TCB with a rate factor applied. Or, as mentioned above, Teph can be considered
to be functionally equivalent to the time scale called TDB. Both Teph and TDB ad-
vance, on average, at the same rate as TT. This arrangement makes accessing the DE
ephemerides straightforward, since for most purposes, TT can be used as the input
argument with little error. The total error in time in using TT as the input argument
is <2 ms, which for the geocentric position of the Moon would correspond to an
angular error of <1 mas. When more precision is required, the following formula
can be used

Teph ≈ TDB ≈ TT + 0.001657 sin (628.3076 T + 6.2401)

+ 0.000022 sin (575.3385 T + 4.2970)

+ 0.000014 sin (1256.6152 T + 6.1969)

+ 0.000005 sin (606.9777 T + 4.0212) (9.6)

+ 0.000005 sin (52.9691 T + 0.4444)

+ 0.000002 sin (21.3299 T + 5.5431)

+ 0.000010 T sin (628.3076 T + 4.2490) + · · · ,

where the coefficients are in seconds, the angular arguments are in radians, and T is
the number of Julian centuries of TT from J2000.0

T =
JD(TT) − 2451545.0

36525
. (9.7)

The above is a truncated form of a much longer and more precise series given by
Fairhead and Bretagnon [1990]. The maximum error in using the above formula
is about 10 µs from 1600 to 2200; that is, its precision is more than two orders of
magnitude better than the approximation Teph≈TDB≈TT. For even more precise ap-
plications, the series expansion by Harada and Fukushima [2003] is recommended.

A word of caution: The idea that “Teph and TDB advance, on average, at the
same rate as TT” is problematic. The independent time argument of a barycentric
ephemeris (whether considered to be Teph, TDB, or TCB) has a large number of
periodic components with respect to TT. Some of the periods are quite long, and may
extend beyond the time period of the ephemeris. Thus, the “average rate” of the time
argument of the ephemeris, with respect to TT, depends on the averaging method
and the time span considered. Differences in rate of some tens of microseconds per
century are possible [Fairhead and Bretagnon, 1990]. These rate ambiguities are
probably unimportant (amounting to fractional errors of only ∼10−14) for retrieving
positions and velocities from the ephemeris but do affect pulsar timing models that
are reduced to the barycentric time scale (see section 7.7.2).
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9.3.6.2 Formulas for Time Scales Based on the Rotation of the Earth
For the time scales that are based on the rotation of the Earth, one again starts with
UTC. One has

UT1 = UTC + (UT1-UTC) (9.8)

≈ UTC + DUT1 , (9.9)

where DUT1 is a broadcast approximation to UT1-UTC (precision ±0.s1). One also
has

UT1 = TT − ∆T , (9.10)

where ∆T = 32.s184 + ∆AT - (UT1-UTC). The most recent values of UT1-UTC and
∆AT are listed in Bulletin A of the Central Bureau of the IERS [2010] and Bulleins
A & B of the IERS Rapid Service/Prediction Centre [2010]. Values of ∆T are listed
in The Astronomical Almanac [2010] on page K9.

The Earth Rotation Angle, θ, is

θ = 0.7790572732640 + 1.00273781191135448 DU , (9.11)

where DU is the number of UT1 days from 2000 January 1, 12h UT1: DU = JD(UT1)
- 2451545.0. The angle θ is given in terms of rotations (units of 2π radians or 360◦).
The above rate coefficient gives an Earth rotation period of 86164.0989036903511
seconds of UT1. If one considers this number to be equivalent to the adopted av-
erage rotation period of the Earth in SI seconds, it is consistent with the nominal
mean angular velocity of Earth rotation, ω = 7.292115×10−5 radian s−1, used by the
International Association of Geodesy. The above expression is taken directly from
note 3 to IAU resolution B1.8 of 2000. An equivalent form of this expression (if the
integral number of rotations is neglected) that is usually more numerically precise is

θ = 0.7790572732640 + 0.00273781191135448 DU + frac[JD(UT1)] , (9.12)

where frac[JD(UT1)] is the fractional part of the UT1 Julian date, i.e., JD(UT1)
modulus 1.0. Then, Greenwich mean sidereal time (GMST) in seconds is

GMST = 86400 · θ + (0.014506 + 4612.156534 T + 1.3915817 T 2

− 0.00000044 T 3 − 0.000029956 T 4 − 0.0000000368 T 5)/15 , (9.13)

where T is the number of centuries of TDB (equivalently for this purpose, TT) from
J2000.0

T =
JD(TDB) − 2451545.0

36525
. (9.14)

The polynomial in parentheses is the accumulated precession of the equinox in right
ascension, in arcseconds, as given for the P03 solution (equation 42) in paper by
Capitaine et al. [2003]. Note that two time scales are now required to compute
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sidereal time: in the “fast term”, θ is a function of UT1, while in the remaining
terms, T is expressed in TDB (or TT).

To obtain Greenwich apparent sidereal time (GAST) in seconds, one must add the
equation of the equinoxes

GAST = GMST + EΥ/15 , (9.15)

which accounts for the motion of the equinox due to nutation. An extended series
is now used for the equation of the equinoxes. The new series includes so-called
complementary terms and more fully accounts for the accumulated effect of com-
bined precession and nutation on the position of the equinox. The equation of the
equinoxes in arcseconds is

EΥ = ∆ψ cos ε

+ 0.00264096 sin (Ω)

+ 0.00006352 sin (2Ω)

+ 0.00001175 sin (2F − 2D + 3Ω)

+ 0.00001121 sin (2F − 2D + Ω)

− 0.00000455 sin (2F − 2D + 2Ω) (9.16)

+ 0.00000202 sin (2F + 3Ω)

+ 0.00000198 sin (2F + Ω)

− 0.00000172 sin (3Ω)

− 0.00000087 T sin (Ω) + · · · ,

where ∆ψ is the nutation in longitude, in arcseconds; ε is the mean obliquity of
the ecliptic ; and F, D, and Ω are fundamental luni-solar arguments. All of these
quantities are functions of TDB (or TT); see section 9.6 for expressions (especially
equations (9.42), (9.46), & (9.50)). The above series is a truncated form of a longer
series given in the IERS Conventions [McCarthy and Petit, 2004], but should be
adequate for almost all practical applications.

Local mean sidereal time (LMST) and local apparent sidereal time (LAST) in
seconds can then be computed respectively from

LMST = GMST +

(
3600

15

)
λ (9.17)

LAST = GAST +

(
3600
15

)
λ , (9.18)

where λ is the longitude of the place of interest, in degrees, positive for places east
of Greenwich.

In the above, “Greenwich” actually refers to a plane containing the geocenter, the
Celestial Intermediate Pole (CIP), and the point called the Terrestrial Intermediate
Origin (TIO). These concepts are described in sections 9.6 and 9.7. Loosely, the CIP
is the rotational pole, defined by the precession and nutation theories. For astronom-
ical purposes, the TIO can be considered to be a point on the rotational equator (the
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plane orthogonal to the CIP) essentially fixed at geodetic longitude 0. Strictly, then,
the longitude λ should be measured around the axis of the CIP from the TIO to the
location of interest. Because of polar motion, the pole of the conventional system of
geodetic coordinates is not at the CIP so the longitude needed, is not quite the same
as the geodetic longitude. The longitude, in degrees, to be used in equation (9.18) is

λ = λG + (xp sin λG + yp cos λG) tan φG /3600 , (9.19)

where λG and φG are the usual geodetic longitude and latitude of the place, with
λG in degrees (north latitudes and east longitudes are positive); and xp and yp are
the coordinates of the pole (CIP) with respect to the geodetic system, in arcseconds
(xp and yp can be a few tenths of an arcsecond). The geodetic system is formally
the International Terrestrial Reference System (ITRS), which matches WGS-84 sys-
tem(available from GPS) to several centimeters. The local meridian assumed by the
formula for LAST, using the longitude λ, passes through the local zenith (orthogo-
nal to the local surface of the WGS-84 ellipsoid) and the north and south celestial
poles – close to but not through the local geodetic north and south points. This is the
meridian that all stars with apparent topocentric right ascension equal to LAST will
pass over at time UT1. More information can be found in sections 9.7.4, 9.7.5.5, and
9.7.5.7.

The above formulas are entirely geometric. Not described are astronomical lati-
tude and longitude, which are based on the local direction of gravity. Astronomical
latitude and longitude are affected by the deflection of the vertical caused by perma-
nent gravitational anomalies and, at a much lower level, semidiurnal tides. Astro-
nomical latitude and longitude must be corrected for such effects to obtain geodetic
latitude and longitude.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 9 — 2016/2/13 — 14:05 — page 719

719

9.4
The Fundamental Celestial Reference System

Reference data for positional astronomy, such as the data in astrometric star catalogs
or barycentric planetary ephemerides, are now specified within the International Ce-
lestial Reference System (ICRS). The ICRS is a coordinate system whose origin is
at the solar system barycenter and whose axis directions are effectively defined by
the adopted coordinates of an ensemble of extragalactic radio sources determined by
very long-baseline radio interferometry (VLBI). These radio sources (quasars and
active galactic nuclei (AGN)) are assumed to have no observable intrinsic angular
motions 11). Thus, the ICRS is a “space-fixed” system (more precisely, a kinemat-
ically non-rotating coordinate system) without an associated epoch. However, the
ICRS closely matches the conventional dynamical system defined by the Earth’s
mean equator and equinox of J2000.0; the alignment difference is at the 0.02 arc-
second level, negligible for many applications. The ICRS replaced the FK5 as the
IAU-recommended fundamental astronomical reference system in 1998.

Strictly speaking, the ICRS is somewhat of an abstraction, a set of coordinate di-
rections that perfectly satisfies a list of theoretical criteria. The list of radio source
positions that define it for practical purposes is called the International Celestial Ref-
erence Frame (ICRF), now in its second generation [Ma et al., 1998, 2009]. In the
terminology that is now commonly used, a reference system like the ICRS is “re-
alized” by a reference frame like the ICRF, and there can be more than one such
realization. In the case of the ICRS, there is, in fact, a lower-accuracy realization
for work at optical wavelengths, called the Hipparcos Celestial Reference Frame
(HCRF). The HCRF is composed of the positions and proper motions of the astro-
metrically “well-behaved" stars in the Hipparcos catalog.

Astrometric data referred to the ICRS are becoming more common, with new
catalogs now available in the optical, infrared, and radio.

The ICRS defines the spatial orientation of the Barycentric Celestial Reference
System, which incorporates the relativistic metric specified in IAU resolution B1.3 of
2000 for solar system barycentric coordinate systems. The BCRS metric is explained
in more detail in section 4.3.2 of this book.

9.4.1
The ICRS, the ICRF, and the HCRF

The fundamental celestial reference system for astronomical applications is now the
International Celestial Reference System (ICRS), as provided in IAU resolution B2
of 1997. The ICRS is a coordinate system with its origin at the solar system barycen-
ter and axis directions that are fixed with respect to distant objects in the universe;
it is to be used to express the fundamental positions and motions of stars, planets,
and other celestial objects. Unlike geocentric or topocentric reference systems that

11) This assumption is subsequently checked and the sources which do not satisfy it, are excluded from
ICRS [Hughes et al., 1991; Jacobs et al., 2003; Ma et al., 2009].
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are used for expressing the apparent directions of celestial objects for observational
purposes, the ICRS is a system in which the equations of motion of these objects
are relatively simple (it is close to being a locally inertial system), and is, there-
fore, suitable for basic reference data, such as star catalogs or barycentric planetary
ephemerides derived from numerical integration. The ICRS has replaced the previ-
ous FK5 system but is consistent with it to within the FK5’s errors.

The specifications for what became the ICRS were established by IAU working
groups in the late 1980s and early 1990s, and most particularly in IAU resolution A2
of 1991 (Recommendations VI and VII). These specifications can be summarized as
follows:

• Origin is at solar system barycenter;
• Defining objects are unresolved, stationary, and stable extragalactic radio sources

(i.e., with minimal structural variations), including a large proportion with “well
identified optical counterparts”;

• Positions of defining objects are determined by long baseline radio interferometry;
• Direction of axes are fixed in space – do not rotate with respect to defining objects;
• To be “as near as possible” to system defined by the Earth mean equator and

equinox of J2000.0 and to the FK5;
• Independent of time and specific realizations (if the objects that define it, eventu-

ally are changed).

The relativistic basis of the ICRS is that of the Barycentric Celestial Reference
System (BCRS) as defined by IAU resolution B1.3 of 2000, which is described in
sections 4.3 and 9.2 of this book. Strictly speaking, according to IAU resolution B2
(recommendation 2) of 2006, the ICRS is the spatial orientation of the BCRS, and as
such its axes are kinematically non-rotating (see section 4.3.1). Because the ICRS
and BCRS are so closely linked, the two terms are often used interchangeably. The
two terms refer to different aspects of the fundamental barycentric reference system
and are not, therefore, independent. A simple way of understanding the connection
is that BCRS vectors are expressed with respect to the ICRS spatial axes and ICRS
data are based on the BCRS metric.

To establish the ICRS as a practical system, in 1997 the IAU specified a particular
set of distant benchmark objects, observable at radio wavelengths, whose adopted
coordinates effectively define the directions of the ICRS axes. This first “realiza-
tion” of the ICRS, called the International Celestial Reference Frame (ICRF or, now,
ICRF1), is a set of high accuracy positions of extragalactic radio sources measured
by Very Long Baseline Interferometry (VLBI) [Ma et al., 1998; Ma and Feissel,
1997]. In 2009, the IAU replaced the original list of sources and coordinates with
a revised and enlarged list [Ma et al., 2009], referred to as ICRF2 (IAU resolution
B3 of 2009). The ICRS is realized at optical wavelengths – but at lower accuracy
– by the Hipparcos Celestial Reference Frame (HCRF), consisting of the Hipparcos
Catalogue [Perryman and ESA, 1997] of star positions and motions, with certain
exclusions (IAU resolution B1.2 of 2000). The areal density of the two ICRS re-
alizations is quite different: the ICRF2 consists of about 3400 radio sources, while
the HCRF contains about 100,000 stars. The coordinates of the ICRF radio sources
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and HCRF stars are given relative to the ICRS origin at the solar system barycenter,
and a number of transformations are required to obtain the coordinates that would
be observed from a given location on or near the Earth at a specific date and time.
Observations taken from or near the Earth are expressed in the Geocentric Celestial
Reference System (GCRS). The GCRS is briefly described in section and 9.2.2, as
is the transformation between the BCRS and GCRS. Detailed description of GCRS
is given in sections 4.5 and 8.3. The standard algorithms for computing geocentric
“apparent places” of stars or planets incorporate the BCRS-to-GCRS transformation
given in section 5.2.6.

Although the directions of the ICRS coordinate axes are not defined by the kine-
matics of the Earth, the ICRS axes (as implemented by the ICRF1, ICRF2, and
HCRF) closely approximate the axes that would be defined by the mean Earth equa-
tor and equinox of J2000.0 (to within about 0.02 arcsecond), if the latter is considered
to be a barycentric system. Because the ICRS axes are meant to be “space fixed”,
i.e., kinematically non-rotating, there is no date associated with the ICRS. Further-
more, since the defining radio sources are assumed to be so distant that their angular
motions, seen from Earth, are negligible, there is no epoch associated with the ICRF.
It is technically incorrect, then, to say that the ICRS is a “J2000.0 system”, even
though for many current data sources, the directions in space defined by the equator
and equinox of J2000.0 and the ICRS axes are the same to within the uncertainties
of the data.

The IAU Working Group on Nomenclature for Fundamental Astronomy, which
worked from 2003 to 2006, recommended the following definitions for the ICRS
and ICRF:

International Celestial Reference System (ICRS): The idealized barycentric
coordinate system to which celestial positions are referred. It is kinematically
non-rotating with respect to the ensemble of distant extragalactic objects. It has
no intrinsic orientation, but was aligned close to the mean equator and dynamical
equinox of J2000.0 for continuity with previous fundamental reference systems.
Its orientation is independent of epoch, ecliptic or equator and is realized by a
list of adopted coordinates of extragalactic sources.
International Celestial Reference Frame (ICRF): A set of extragalactic objects
whose adopted positions and uncertainties realize the ICRS axes and give the
uncertainties of the axes. It is also the name of the radio catalog whose 212
defining sources are currently the most accurate realization of the ICRS. Note
that the orientation of the ICRF catalog was carried over from earlier IERS
radio catalogs and was within the errors of the standard stellar and dynamic
frames at the time of adoption. Successive revisions of the ICRF are intended to
minimize rotation from its original orientation. Other realizations of the ICRS
have specific names (e.g., Hipparcos Celestial Reference Frame).

As previously noted, the ICRF has been superseded by the ICRF2; there are now
295 defining sources.
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9.4.2
Background: Reference Systems and Reference Frames

The terminology that has become standard over the past several decades distin-
guishes between a reference system and a reference frame. A reference system is
the complete theoretical specification of how a celestial coordinate system is to be
formed. Both the origin and the orientation of the fundamental planes (or axes) are
defined. A reference system also incorporates a specification of the fundamental
models needed to construct the system; that is, the basis for the algorithms used to
transform between observable quantities and reference data in the system. A ref-
erence frame, on the other hand, consists of a set of identifiable fiducial points on
the sky along with their coordinates, which serve as the practical realization of a
reference system.

For example, the fundamental plane of an astronomical reference system has con-
ventionally been the extension of the Earth’s equatorial plane, at some date, to in-
finity. Declination is the angular distance north or south of this plane, and right
ascension is the angular distance measured eastward along the equator from some
defined reference point (see figure 9.2). This reference point, the right ascension
origin, has traditionally been the equinox: the point at which the Sun, in its yearly
circuit of the celestial sphere, crosses the equatorial plane moving from south to
north. The Sun’s apparent yearly motion lies in the ecliptic, the plane of the Earth’s
orbit. The equinox, therefore, is a direction in space along the nodal line defined by
the intersection of the ecliptic and equatorial planes; equivalently, on the celestial
sphere, the equinox is at one of the two intersections of the great circles representing
these planes. Because both of these planes are moving, the coordinate systems that
they define must have a date associated with them; such a reference system must
therefore be specified as “the equator and equinox of (some) date”.

Of course, such a reference system is an idealization, because the theories of mo-
tion of the Earth that define how the two planes move are imperfect. In fact, the
very definitions of these planes are problematic for high precision work. Even if the
fundamental planes of a reference system are defined without any reference to the
motions of the Earth, there is no way magically to paint them on the celestial sphere
at any particular time. Therefore, in practice, one uses a specific reference frame –
a set of fiducial objects with assigned coordinates – as the practical representation
of an astronomical reference system. The scheme is completely analogous to how
terrestrial reference systems are established using survey control stations (geodetic
reference points) on the Earth’s surface.

Most commonly, a reference frame consists of a catalog of precise positions (and
motions, if measurable) of stars or extragalactic objects, as seen from the solar sys-
tem barycenter at a specific epoch (now usually “J2000.0”, which is 12h TT on 1 Jan-
uary 2000). Each object’s instantaneous position, expressed as right ascension and
declination, indicates the object’s angular distance from the catalog’s equator and
origin of right ascension. (A catalog’s right ascension origin was formerly referred
to as the catalog equinox, a now-obsolete term.) Therefore, any two such objects
in the catalog – if they are not coincident or antipodal – uniquely orient a spherical
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Figure 9.2 Schematic of the celestial coordinates of a catalog object. Celestial coordinates of
objects in a catalog are expressed with respect to the catalog equator and right ascension
origin, which generally are close approximations to the mean Earth equator and equinox at
some date (e.g., J2000.0). Conversely, the tabulated coordinates of all the objects in a catalog
define, in an average sense, the location of the catalog equator and equinox on the sky.

coordinate system on the sky – a reference frame.
To be useful, a reference frame must be implemented at the time of actual obser-

vations, and this requires the computation of the apparent coordinates of the catalog
objects at arbitrary dates and times (see section 9.2.3). Astrometric star catalogs
list proper motions, which are the projection of each star’s space motion onto the
celestial sphere, expressed as an angular rate in right ascension and declination per
unit time (usually now milliarcseconds/year). For stars or other galactic objects, the
proper motions allow the reference frame to be established at epochs other than that
of the positions listed in the catalog.

The positions of solar system objects can also be used to define a reference frame.
For each solar system body involved, an ephemeris (plural ephemerides) is used,
which is simply a table of the celestial coordinates of the body as a function of
time (or an algorithm that yields such a table). A reference frame defined by the
ephemerides of one or more solar system bodies is called a dynamical reference
frame. Because the ephemerides used incorporate the motion of the Earth as well
as that of the other solar system bodies, dynamical reference frames embody in a
very fundamental way the moving equator and ecliptic, hence the equinox. They
have, therefore, been used to correct the orientation of star catalog reference frames
(the star positions were systematically adjusted) on the basis of simultaneous obser-
vations of stars and planets. In a sense, the solar system is used in this way as a
gyrocompass with planets playing a role of a "rotating wheel" maintaining the pre-
cise orientation in the inertial space with respect to "stars". However, dynamical
reference frames are not very practical for establishing a coordinate system for day-
to-day astronomical observations, because the sky density of solar system objects is
low, many are resolved, and they tend to be clustered near the ecliptic plane.

Descriptions of reference frames and reference systems often refer to three coor-
dinate axes, which are simply the set of right-handed Cartesian axes that correspond
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to the usual celestial spherical coordinate system. The xy-plane is the equator, the z-
axis points toward the north celestial pole, and the x-axis points toward the origin of
right ascension. Although, in principle, this allows us to specify the position of any
celestial object in rectangular coordinates, the distance scale (based on stellar paral-
laxes) is not established to high precision beyond the solar system. What a reference
system actually defines is the way in which the two conventional astronomical an-
gular coordinates - right ascension and declination - relate to real observable points
in the sky. See equations (9.24) & (9.25) for the conversion between rectangular and
spherical celestial coordinates.

9.4.3
The Effect of Catalog Errors on Reference Frames

A modern astrometric catalog contains data on a huge number of celestial objects
(N), so the coordinate system it defines, is vastly over-determined. The quality of the
reference frame provided by a catalog depends on the extent to which the coordinates
of all possible pairs of the objects (≈ N2/2) serve to define the identical equator and
right ascension origin, within the expected random errors. Of course, in practice, the
catalog’s equator and right ascension origin are effectively defined by averages over
the objects that are used for a specific application. Therefore, random errors in the
coordinates of the selected objects limit the accuracy with which the reference frame
approximates the intended reference system for the particular application; generally,
the accuracy will be proportional to the square root of the number of objects used.

However, the object’ positions listed in catalogs also may contain systematic er-
rors, which are errors in the coordinates that are similar for objects that are in the
same area of the sky, or are of the same magnitude (flux) or color (spectral index).
Systematic errors in position mean that the reference frame is warped (distorted), or
is effectively different for different classes of objects. Systematic errors do not obey
square-root-of-N statistics, and may be unrecognized, so they tend to be more perni-
cious in effect than random errors. Obviously, minimizing systematic errors, when
a catalog is constructed, is at least as important as minimizing the random errors,
although much more difficult.

Typical applications of reference frames involve sets of astronomical observations
taken at various dates. To establish a reference frame based on stars or other galactic
objects at the dates of the observations, the proper motions in the catalog must be
used to update the positions. The accuracy of the proper motions in the catalog
largely determines how well the reference frame can be established for dates that are
many years beyond (or prior to) the catalog’s epoch. Because the tabulated proper
motions are never perfect, any celestial reference frame based on galactic objects
deteriorates with time. Just as for the positions, errors in proper motion can be both
random and systematic.

Random errors in proper motion will naturally result from the random errors in the
measurements of an object’s positions at various epochs (see figure 9.3), but they can
also result from an incomplete model of the object’s motion. Many stars are com-
ponents of binary or multiple systems. Ideally, the catalog’s proper motion should
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Figure 9.3 Errors in proper motion resulting from the random errors in the measurement of
position at various epochs. The true path of a star (black line), with its positions at several
epochs marked. The measured positions of the star (gray points) on the same dates are also
shown, with their error ellipses. The catalog proper motion of the star (which determines its
computed path across the sky) derived from these measurements is in error; therefore, the
predicted positions of the star will deteriorate in accuracy with time. Since all the stars in a
catalog share this problem to some extent, the reference frame that the catalog defines slowly
degrades. If the proper motion errors have systematic trends across the sky, the catalog’s
reference frame may develop warps or exhibit a small, spurious net rotation.

reflect the linear space motion of the center of mass of the system, and the orbit of
the star about that center of mass would then have to be taken into account as part of
the computation of the star’s position for any arbitrary date. Alternatively, stars may
be listed with second- or higher-order terms in their motion (as in the Hipparcos cat-
alog). However, in practice, a relatively small number of binary systems have well
determined orbits, or are even recognized as such. The orbital motion of many stars
is unknown and contaminates their measured proper motion. This is especially true
of catalogs based on a relatively short time span of observations, where the slight
curvature of the star’s path may be less than the observational uncertainty [Makarov
and Kaplan, 2005]. Under-sampling of short-period binary orbits has a similar effect.
A related problem arises from measurements of the positions of the blended images
of binaries that are unresolved to the instrument(s) used in a catalog’s construction.
However, such binaries may be resolved with other instruments or the blended im-
age may appear displaced at other wavelength bands if the two stars are of different
colors. For the individual stars involved, such modeling or observational problems
would be considered systematic errors, although the net effect of many such errors
on the reference frame as a whole would be random.

Additionally, there may be systematic errors in a catalog’s proper motions. Such
errors arise when the causes of the systematic errors in position are themselves func-
tions of time. Systematic errors in the proper motions can produce time-dependent
warping and spurious rotations of the frame. Therefore, the accuracy and consis-
tency of the proper motions are critical to the overall quality, utility, and longevity of
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reference frames defined by stars.
Even reference frames defined by extragalactic objects, which are usually con-

sidered to have zero proper motion (i.e., unmeasurably small 12)), may deteriorate
because many of these objects show small apparent motions at radio wavelengths
that are artifacts of their emission mechanisms. Furthermore, if an object is even
partially resolved, observations at wavelengths other than that used in the construc-
tion of the catalog may show an image center displaced from the catalog’s position,
arising from a color or spectral index gradient across the image. The variable radio
flux and image structure of these objects may mean that some of them eventually
must be replaced as reference frame benchmarks [Titov, 2007]. The systematic er-
rors of reference frames based on extragalactic objects can be caused by the secular
aberration [Kopeikin and Makarov, 2006] or asymmetry in the radio source distri-
bution between hemispheres [Titov and Malkin, 2009].

9.4.4
Late 20th Century Developments

The establishment of celestial reference systems is coordinated by the IAU. The
previous astronomical reference system was based on the equator and equinox of
J2000.0 determined from observations of planetary motions, together with the IAU
(1976) System of Astronomical Constants and related algorithms [Kaplan, 1981,
2005c]. The reference frame that embodied this system for practical purposes was
the Fifth Fundamental Catalogue (FK5). The FK5 is a catalog of 1535 bright stars
(to magnitude 7.5), supplemented by a fainter extension of 3117 additional stars (to
magnitude 9.5), compiled at the Astronomische Rechen-Institut in Heidelberg and
the U.S. Naval Observatory in Washington [Fricke et al., 1991, 1988]. The FK5 was
the successor to the FK3 and FK4 catalogs, all of which were based on meridian
observations taken in the visual band – many such observations were, in fact, taken
by eye. The formal uncertainties in the star positions of the FK5 at the time of its
publication in 1988 were about 30-40 milliarcseconds over most of the sky, but the
errors are considerably worse when systematic trends are taken into account.

Beginning in the 1970s, the most precise wide-angle astrometry was conducted,
not in the optical regime, but at radio wavelengths, involving the techniques of Very
Long Baseline Interferometry (VLBI) and pulsar timing. Uncertainties of radio
source positions listed in good all-sky VLBI catalogs are now typically a fraction
of a milliarcsecond. Furthermore, because these radio sources are very distant extra-
galactic objects (mostly optically faint quasars) that are not expected to show measur-
able intrinsic motion, a reference frame defined by VLBI positions should be “more
inertial” (less subject to spurious rotation) than a reference frame defined by galactic
objects, such as stars or pulsars. The origin of right ascension in VLBI catalogs is
somewhat arbitrary, because VLBI has little sensitivity to the ecliptic plane and the
location of the equinox is not easily determined. The VLBI origin of right ascension
has effectively been carried over from one catalog to the next; it was originally based

12) See, however, [MacMillan, 2005].
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on the right ascension of the source 3C273B based on lunar occultations.
Because of the accuracy and stability of radio reference frames, since the mid

1980s, astronomical measurements of the Earth’s rotation – from which universal
time (UT1) is determined – have depended heavily on VLBI, with classical methods
based on star transits being phased out. Hence, the situation evolved to where the
definition of the fundamental astronomical reference frame (the FK5) became irrel-
evant to some of the most precise and important astrometric measurements. VLBI
revealed, in addition, that the models of the Earth’s precession and nutation that were
part of the old system were inadequate for modern astrometric precision. In partic-
ular, the “constant of precession”– a measurement of the long-term rate of change
of the orientation of the Earth’s axis in space – had been overestimated by about 0.3
arcsecond/century. Moreover, the success of the European Space Agency’s Hippar-
cos astrometric satellite, launched in 1989, promised to provide a new, very accurate
set of star coordinates in the optical regime.

Thus, beginning in 1988, a number of IAU working groups began considering the
requirements for a new fundamental astronomical reference system [Hughes et al.,
1991; Lieske and Abalakin, 1990]. The resulting series of IAU resolutions, passed
in 1991, 1994, 1997, and 2000 effectively form the specifications for the ICRS. The
axes of the ICRS are defined by the adopted positions of a specific set of extragalactic
objects, which are assumed to have no measurable proper motions. The ICRS axes
are consistent, to about 0.02 arcsecond, with the equator and equinox of J2000.0 de-
fined by the dynamics of the Earth. However, the ICRS axes are meant to be regarded
as fixed directions in space that have an existence independent of the dynamics of
the Earth or the particular set of objects used to define them at any given time.

Shortly after the adoption of the ICRS, Feissel and Mignard [1998] wrote a concise
review of the the implications of that change. A few years later, Seidelmann and
Kovalevsky [2002] published a broader review of the ICRS and the new IAU Earth
orientation models. Although now somewhat dated, both publications give a good
idea of how the IAU resolutions of 1997 and 2000 created a fundamental break with
past practice.

The promotion, maintenance, extension, and use of the ICRS are the responsibili-
ties of IAU Division 1 (Fundamental Astronomy).

9.4.5
ICRS Implementation

9.4.5.1 The Defining Extragalactic Frame
The original International Celestial Reference Frame (ICRF or ICRF1) is a cata-
log of positions of 608 extragalactic radio sources observed with VLBI, all strong
(>0.1 Jy) at S and X bands (wavelengths 13 and 3.6 cm) [Ma and Feissel, 1997;
Souchay and R., 2010]. The catalog was adopted by the IAU in 1997 as the primary
realization of the ICRS. Most of the sources in the catalog have faint optical coun-
terparts (typically mV � 18) and the majority are quasars. Of these objects, 212 are
defining sources that establish the orientation of the ICRS axes, with origin at the so-
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lar system barycenter. Typical position uncertainties for the defining sources are of
order 0.5 milliarcsecond; the orientation of the axes is defined from the ensemble to
an accuracy of about 0.02 milliarcsecond. As described in section 9.4.7, these axes
correspond closely to what would conventionally be described as “the mean equator
and equinox of J2000.0”.

The International Earth Rotation and Reference Systems Service (IERS) monitors
the radio sources involved in the ICRF. This monitoring is necessary because, at
some level, most of the sources are variable in both flux and structure and the centers
of emission can display spurious motions, which may not be linear or constant (see
discussion in [Ma et al., 1998, section 8]). As a result of additional observations and
analysis, ICRF Extensions 1 and 2 were developed [Fey et al., 2004]; the positions of
the non-defining sources were improved and new sources were added. The positions
of the 212 defining sources were left unchanged.

By 2006, it was recognized that a major update of the ICRF was needed to main-
tain the accuracy and fixed orientation of the overall frame, and an IAU working
group was established to update the list of sources and coordinates. The working
group presented a revised and extended list of sources and coordinates. The new
list was adopted by the IAU in 2009 as the “Second Realization of the International
Celestial Reference Frame,” or ICRF2 [Ma et al., 2009], superseding the original in
defining the spatial orientation of the ICRS at S and X bands. The ICRF2 has 295
defining sources, chosen from a solution for the positions of 3414 sources. Only 97
of the defining sources are also defining sources in ICRF1, reflecting the results of
the ongoing analysis of source stability and the working group’s goal of mitigating
source position variations. The positional uncertainties have been reduced consid-
erably and the new list is more evenly distributed across the sky, especially in the
south. Typical ICRF2 defining source position errors, all things considered, are not
expected to exceed 0.1 milliarcseconds; the “noise floor” is 0.040 milliarcseconds.
The overall orientation of the axes is estimated to be stable within 0.010 milliarcsec-
onds and is consistent with that of ICRF1.

9.4.5.2 The Frame at Optical Wavelengths
The ICRS is realized at optical wavelengths by a subset of the Hipparcos catalog
of 118,218 stars, some as faint as visual magnitude 12 [Perryman and ESA, 1997].
Only stars with uncomplicated and well-determined proper motions (e.g., no known
binaries) are used for the ICRS realization. This subset, referred to as the Hippar-
cos Celestial Reference Frame (HCRF), comprises 85% of the stars in the Hipparcos
catalog.13) Hipparcos star coordinates and proper motions are given within the ICRS
coordinate system, but are listed for epoch J1991.25. It means that the catalog ef-
fectively represents a snapshot of the positions and motions of the stars taken on
2 April 1991, a date that is near the mean epoch of the Hipparcos observations.
At the catalog epoch, Hipparcos uncertainties for stars brighter than 9th magnitude
have median values somewhat better than 1 milliarcsecond in position and 1 mil-

13) The HCRF excludes the stars in the Hipparcos catalog with astrometric solutions flagged C, G, O, V,
or X.
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liarcsecond/year in proper motion [Mignard, 1997; Perryman and ESA, 1997]. The
overall alignment to the ICRF at that epoch is estimated to be within 0.6 milliarc-
second, with any spurious rotations or distortions less than 0.25 milliarcsecond/year.
Projected to epoch 2010, typical position errors for the brighter Hipparcos stars are
approximately 20 milliarcseconds.

A major reanalysis of the original Hipparcos observations [van Leeuwen, 2007a,b]
has resulted in a new Hipparcos catalog with substantially improved astrometric data.
However, the IAU has not taken any action that officially replaces the original Hip-
parcos catalog as the basis for the HCRF.

Extensions of the ICRS to fainter magnitudes are described in section 9.4.8.

9.4.6
Standard Algorithms

Sections 9.2, 9.3, 9.6, and 9.7 of this Chapter describe IAU-sanctioned algorithms
used in the construction, maintenance, and use of the ICRS.

The 2000 IAU resolutions provide the relativistic metric tensors for what it called
the Barycentric Celestial Reference System (BCRS) and the Geocentric Celestial
Reference System (GCRS), as well as expressions for the transformation between
the two systems; see section 9.2 and IAU resolution B1.3 of 2000. IAU resolution 2
of 2006 provides that the orientation of the BCRS axes be understood to be that of
the ICRS/ICRF (now ICRF2).

In 2000, the IAU also adopted new models for the computation of the Earth’s
instantaneous orientation, which affect the analysis of VLBI observations that are
used to define and maintain the ICRS, as well as the calculation of various observable
quantities from ICRS-compatible reference data. The new models include what is
referred to as the IAU 2000A precession-nutation model, a new definition of the
celestial pole, and two new reference points in the equatorial plane for measuring the
rotational angle of the Earth around its instantaneous axis. Despite the IAU action
in 2000, some aspects of the models were not finalized until late 2002 (mid-2005 for
agreement on the final precession expressions). These algorithms are described in
sections 9.6 and 9.7 of this Chapter and in the McCarthy and Petit [2004].

The new Earth orientation models are, of course, relevant only to fundamental ob-
servations made from the surface of the Earth. Astrometric observations taken from
space platforms, or those that are differential in nature (based on reference objects
all located within a small field), do not use these models. There are, of course, other
effects that must be taken into account in analyzing astrometric observations – e.g.,
proper motion, parallax, aberration, and gravitational light-bending – and algorithms
for these may be found in Volumes 1 and 3 of the Hipparcos catalog documentation
[Perryman and ESA, 1997]. For analysis of very high accuracy satellite observations,
see the development by Klioner [2003a].

As described in section 9.1.3, there are two collections of general-purpose com-
puter subroutines that implement the new IAU-sanctioned algorithms for practical
applications: the Standards of Fundamental Astronomy (SOFA) [IAU SOFA Center,
2009], and the Naval Observatory Vector Astrometry Subroutines (NOVAS) [Ka-
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plan et al., 2009]. NOVAS also implements many of the Hipparcos algorithms, or
the equivalent.

For ground-based applications requiring accuracies of no better than 50 milliarc-
seconds between about 1990 and 2010, the algorithms described in Chapter 3 of the
Seidelmann and Urban [2010] can still be used with ICRS data. For such purposes,
ICRS data can be treated as being on the dynamical equator and equinox of J2000.0.
A major revision of the Explanatory Supplement to reflect the adoption of the ICRS
and all the new models was expected to be complete in 2010.

9.4.7
Relationship to Other Systems

The orientation of the ICRS axes is consistent with the equator and equinox of
J2000.0 represented by the FK5, within the errors of the latter 14). Systematically,
the FK5 equator is tilted by 22 milliarcseconds and its origin of right ascension is
offset by 23 milliarcseconds with respect to the ICRS. But the uncertainties of the
FK5 equator and right ascension system with respect to the dynamical equator and
equinox of J2000.0 are 50 and 80 milliarcseconds, respectively. Since, at J2000.0,
the errors of the FK5 are significantly worse than those of Hipparcos, the ICRS (as
realized by the HCRF) can be considered to be a refinement of the FK5 system [Per-
ryman and ESA, 1997] at (or near) that epoch. For a more complete discussion of
FK5 errors, see [Mignard and Frœschlé, 2000].

The ICRS can also be considered to be a good approximation (at least as good as
the FK5) to the conventionally defined dynamical equator and equinox of J2000.0
[Feissel and Mignard, 1998], if the latter system is considered to be barycentric. This
follows from the IAU resolution passed in 1991 (see section 9.4.1) that provided the
original specifications for the new fundamental astronomical reference system based
on extragalactic objects – what became the ICRS. In fact, the equator is well deter-
mined fundamentally from the VLBI observations that are the basis for the ICRS,
and the ICRS pole is within 20 milliarcseconds of the dynamical pole. The rea-
son that the ICRS pole is not perfectly aligned with the dynamical pole is complex.
The ICRF was created from almost 20 years of VLBI observations from which a
grand solution was made for the directions to the extragalactic radio sources and the
changing position of the celestial pole. A specific decision made in that analysis 15)

resulted in an offset of the ICRF (hence ICRS) pole at J2000.0. With respect to the
ICRS X and Y axes, the dynamical mean pole has coordinates on the unit sphere, in
milliarcseconds, of approximately (−16.6,−6.8).

The zero point of VLBI-derived right ascensions is arbitrary, but traditionally has
been set by assigning to the right ascension of source 3C 273B a value derived from
lunar occultation timings – the Moon’s ephemeris thus providing an indirect link
to the dynamical equinox.16) The ICRS origin of right ascension was made to be

14) See [Feissel and Mignard, 1998] for a short discussion.
15) See Figure 9.5 and discussion related to it.
16) The original right ascension value, with respect to the equinox of 1950.0, was given by Hazard et al.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 9 — 2016/2/13 — 14:05 — page 731

731

consistent with that in a group of VLBI catalogs previously used by the IERS, each
of which had been individually aligned to the lunar occultation right ascension of
3C 273B. The difference between the ICRS origin of right ascension and the dy-
namical equinox has been independently measured by two groups that used differ-
ent definitions of the equinox, but in both cases the difference found was less than
0.1 arcsecond.

Because of its consistency with previous reference systems, implementation of the
ICRS will be transparent to any applications with accuracy requirements of no better
than 0.1 arcseconds near epoch J2000.0. That is, for applications of this accuracy, the
distinctions between the ICRS, FK5, and dynamical equator and equinox of J2000.0
are not significant.

9.4.8
Data in the ICRS

Although the ICRF2 and HCRF are its basic radio and optical realizations, the ICRS
is gradually being extended to fainter magnitudes and other wavelengths. Thus, an
increasing amount of fundamental astronomical data is being brought within the new
system. A number of projects for the densification of the ICRS have been completed
or are in progress.

As described above, the ICRF2 consists of the adopted positions of 3414 extra-
galactic radio sources, less than a tenth of which are defining sources. Because all
of the observational data were part of a common catalog solution, the adopted co-
ordinates of all the sources are in the ICRS. The non-defining sources tend to have
positional uncertainties that are larger than those of the defining sources. Many of
the non-defining sources are part of the VLBA Calibrator Survey (described below)
and have a very limited observational base – 1966 of them were observed in only
one session. Thus, their long-term stability has not been evaluated.

The VLBA Calibrator Survey is a list of radio sources, with positions in the ICRS,
to be used as calibrators for the Very Long Baseline Array and the Very Large Array.
The original list was prepared by Beasley et al. [2002]; the list has been extended
several times and the current version is known as VCS6 [Petrov et al., 2008]. The
ICRS is also being established at higher radio frequencies (8, 24, 32, and 43 GHz);
see, e.g., papers by Fey et al. [2009]; Jacobs et al. [2003]; Jacobs and Sovers [2008].

In the optical regime, the Tycho-2 Catalog [Høg et al., 2000] (which supersedes
the original Tycho Catalog and the ACT Reference Catalog) combines a re-analysis
of the Hipparcos star mapper observations with data from 144 ground-based star
catalogs. The ground-based catalogs include the Astrographic Catalog (AC), a large
photographic project carried out near the beginning of the 20th century, involving
20 observatories worldwide. Tycho-2 contains 2,539,913 stars, to about magnitude
12, and combines the accuracy of the recent Hipparcos position measurements with
proper motions derived from a time baseline of almost a century. Proper motion
uncertainties are 1-3 milliarcseconds/year. The epoch J2000.0 Tycho-2 positions of

[1971]; the equivalent value in the J2000.0 system was first computed by Kaplan et al. [1982].
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stars brighter than 9th magnitude are typically in error by 20 milliarcseconds. How-
ever, the positional accuracy degrades quite rapidly for magnitudes fainter than 9, so
that 12th magnitude stars generally have a median J2000.0 position error exceeding
100 milliarcseconds.

Also in the optical band, the U.S. Naval Observatory CCD Astrographic Catalog
(UCAC) provides ICRS-compatible positions and proper motions for stars as faint
as visual magnitude 16. See Zacharias et al. [2004] for information on the second
release of UCAC data; the third version was released on August 10, 2009 at the IAU
General Assembly in Rio de Janeiro. The accuracy of the positions at epoch 2010 is
estimated to be in the 20-100 milliarcsecond range, depending on magnitude. Proper
motion errors are about 1-3 milliarcseconds/year for stars to 12th magnitude, and
about 4-7 milliarcseconds/year for fainter stars to 16th magnitude.

The Large Quasar Reference Frame (LQRF) is another representation of the ICRS
at faint optical magnitudes [Andrei et al., 2009]. It contains the coordinates of
100,165 quasars, well distributed around the sky, accurate to about 100 milliarc-
seconds.

The ICRS has been extended to the near infrared through the Two Micron All
Sky Survey (2MASS) [Cutri et al., 2003; Zacharias et al., 2005]. This ground-based
program provides positions for 471 million point sources, most of which are stars,
observed in the J, H, and Ks infrared bands. 2MASS is a single epoch survey with-
out proper motions; positions are listed for J2000.0, which is within the four-year
span of observations. Astrometric accuracy is around 80 milliarcseconds in the Ks

magnitude range 9-14, with larger errors at both brighter and fainter magnitudes.
The Jet Propulsion Laboratory DE405/LE405 planetary and lunar ephemerides

(usually just referred to as DE405) [Standish, 1998a] have been aligned to the ICRS.
These ephemerides provide the positions and velocities of the nine major planets and
the Moon with respect to the solar system barycenter, in rectangular coordinates. The
data are represented in Chebyshev’s polynomial series form, and Fortran subroutines
are provided to read and evaluate the series for any date and time. DE405 spans the
years 1600 to 2200; a long version, DE406, spans the years −3000 to +3000 with
lower precision. More recent ephemerides from JPL, such as DE421, are also aligned
to the ICRS. See section 9.5 for further details.

The barycentric data tabulated in The Astronomical Almanac [2010] are in the
ICRS; this began with the Astronomical Almanac 2003 edition. Planetary and lunar
ephemerides are derived from DE405/LE405. The Astronomical Almanac for 2006
is the first edition fully to support the new ICRS-related algorithms, including the
new IAU Earth rotation models. Geocentric coordinates are based, therefore, on the
GCRS: the reference system based on the true equator and equinox of date is just a
rotation from the GCRS.

9.4.9
Formulas

A rotational matrixB is required to convert ICRS data to the dynamical mean equator
and equinox of J2000.0 (the “J2000.0 system”), the latter considered for this purpose
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to be a barycentric system. The same matrix is used in the geocentric transformations
described in sections 9.6 and 9.7 to adjust vectors in the GCRS (the “geocentric
ICRS”) so that they can be operated on by the conventional precession and nutation
matrices. The matrix B is called the frame bias matrix, and it corresponds to a fixed
set of very small rotations. In the barycentric reference system, it is used as follows

rmean(J2000.0) = B rICRS (9.20)

where rICRS is a BCRS vector with components measured with respect to the ICRS
and rmean(J2000.0) is a BCRS vector with respect to the dynamical mean equator
and equinox of J2000.0. Both of the r’s are column vectors and, if they represent a
direction on the sky 17), are of the general form of a unit vector

r =


nx

ny

nz

 =


cos δ cosα
cos δ sinα

sin δ

 (9.21)

where n2
x + n2

y + n2
z = 1, α is the right ascension and δ is the declination, with respect

to the ICRS, or the dynamical system of J2000.0, as appropriate.
In the geocentric case, rICRS is replaced by rGCRS , and rmean(2000) is then a geocentric

vector. This transformation must be carried out, for example, before precession is
applied to GCRS vectors, since the precession algorithm assumes a dynamically
based coordinate system. That is, the above transformation is a necessary step in
obtaining coordinates with respect to the mean equator and equinox of date, if one
starts with ICRS reference data. See section 9.6 for more information.

The matrix B is, to first order,

B =


1 dα0 −ξ0

−dα0 1 −η0

ξ0 η0 1

 (9.22)

where dα0 = −14.6 mas, ξ0 = −16.6170 mas, and η0 = −6.8192 mas; all converted
to radians (divide the numbers by 206 264 806.247). The values of the three small
angular offsets are taken from the IERS Conventions [McCarthy and Petit, 2004].
They can be considered adopted values; previous investigations of the dynamical-
ICRS relationship obtained results that differ at the mas level or more, depending on
the technique and assumptions 18). The angles ξ0 and η0 are the ICRS pole offsets,
and dα0 is the offset in the ICRS right ascension origin with respect to the dynamical
equinox of J2000.0, as measured in an inertial (non-rotating) reference system.

The above matrix can also be used to transform vectors from the ICRS to the FK5
system at J2000.0. For this purpose, one should simply substitute dα0 = −22.9,
ξ0 = 9.1, and η0 = −19.9 (milliarcseconds). However, there is also a time-dependent
rotation of the FK5 with respect to the ICRS (i.e., a slow spin), reflecting the non-
inertiality of the FK5 proper motions; see [Mignard and Frœschlé, 2000].

17) The length of the vector r is defined by the Euclidean norm as explained in section 2.3.2.1.
18) See the discussion in [Hilton and Hohenkerk, 2004].
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Although the above matrix is adequate for most applications, a more precise result
can be obtained by using the second-order version

B =


1 − 1

2 (dα2
0 + ξ2

0) dα0 −ξ0

−dα0 − η0ξ0 1 − 1
2 (dα2

0 + η2
0) −η0

ξ0 − η0dα0 η0 + ξ0dα0 1 − 1
2 (η2

0 + ξ2
0)

 (9.23)

The above matrix, from the paper by Slabinski [2005], is an excellent approximation
to the set of rotations R1(−η0)R2(ξ0)R3(dα0), where R1, R2, and R3 are standard
rotations about the x, y, and z axes, respectively (see appendix , “Abbreviations and
Symbols Frequently Used” for precise definitions).
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9.5
Ephemerides of the Major Solar System Bodies

The de facto standard source of accurate data on the positions and motions of the
major solar system bodies is currently the ephemeris designated DE405/LE405 (or
simply DE405) developed at the Jet Propulsion Laboratory. This ephemeris provides
instantaneous position and velocity vectors of the eight major planets, Pluto, and the
Earth’s Moon, with respect to the solar system barycenter, for any date and time
between 1600 and 2201. Lunar rotation angles (libration)are also provided. The
ephemeris has been the basis for the tabulations in the Astronomical Almanac since
the 2003 edition. The DE405 coordinate system has been aligned to the ICRS.

IAU-standard data on the sizes, shapes, rotational parameters, and latitude-
longitude systems for the major planets and their satellites are given in the reports of
the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements,
issued every three years.

9.5.1
The JPL Ephemerides

A list of positions of one or more solar system bodies as a function of time is called
an ephemeris (pl. ephemerides). An ephemeris can take many forms, including
a printed tabulation, a sequential computer file, or a piece of software that, when
interrogated, computes the requested data from series approximations or other math-
ematical schemes. As used in this section, an ephemeris represents the 3-D spatial
coordinates of one or more solar system bodies, expressed in the BCRS as a function
of a coordinate time scale such as TCB.

Ephemerides of the major solar system bodies, with respect to the solar system
barycenter, have been calculated for many years at the Jet Propulsion Laboratory
(JPL) to support various spacecraft missions. These ephemerides have been widely
distributed and, because of their quality, have become the de facto standard source
of such data for applications requiring the highest accuracy. Between the early
1980s and about 2000, the JPL ephemeris designated DE200/LE200 was most fre-
quently used for such applications; it was the basis for the tabulations in the Astro-
nomical Almanac from the 1984 to 2002 editions. A more recent JPL ephemeris,
DE405/LE405, created in 1997, has been in widespread use since about 2000; for
example, it has been the basis for the Astronomical Almanac since the 2003 edition.
These ephemerides are usually referred to as just DE200 and DE405, respectively.
Neither DE200 nor DE405 were ever formally adopted by the IAU, although they
have been frequently reported on at various IAU-sponsored meetings and DE405 is
a recommended standard of the IERS [McCarthy and Petit, 2004]. DE405 is now
the basis of the barycentric time scale TDB (see below) as well as the precession of
the ecliptic in the IAU-recommended P03 precession development. A comparison
of DE405 with DE200, with an estimate of their errors, has been given by Standish
[2004].

The JPL ephemerides are computed by an N-body numerical integration, carried
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out in a barycentric reference system which is consistent, except for the time scale
used, with the Barycentric Celestial Reference System (BCRS) described in sec-
tion 9.2, and in more theoretical details in section 4.3. The equations of motion 19),
the method of integration, and the techniques used to adjust the starting conditions
of the integration so that the results are an optimal fit to observations are described in
Chapter 5 of the Seidelmann and Urban [2010]. That chapter specifically describes
DE200, but the basic procedures are largely the same for all of the JPL ephemerides.

The position and velocity data provided by the JPL ephemerides represent the cen-
ters of mass of each planet-satellite system, although data for the Earth and Moon
can be extracted separately. Therefore, the positions, when converted to geocentric
apparent places – angular coordinates of an object as seen from Earth – do not pre-
cisely indicate the center of the apparent planetary disk. Displacements can amount
to a few tens of milliarcseconds for Jupiter and Saturn, a few milliarcseconds for
Uranus and Neptune, and about 0.1 arcsecond for Pluto.

9.5.2
DE405

The JPL DE405/LE405 ephemeris provides the coordinates and velocities of the
major planets, Pluto, the Sun, and the Earth’s Moon for the period 1600 to 2200
[Standish, 1998a]. The position and velocity 3-vectors are in equatorial rectangu-
lar coordinates referred to the solar system barycenter. The reference frame for the
DE405 is the ICRF; the alignment onto this frame, and therefore onto the ICRS, has
an estimated accuracy of a few milliarcseconds, at least for the inner-planet data.
Optical, radar, laser, and spacecraft observations were analyzed to determine start-
ing (initial) conditions for the numerical integration of the EIH equations of motion
6.82 and values of fundamental constants such as the Earth/Moon mass ratio and the
length of the astronomical unit in meters. In addition to the planetary and lunar co-
ordinates and velocities, the ephemerides, as distributed, include the nutation angles
of the Earth and the rotation (libration) angles of the Moon. Note, however, that the
nutation angles are not derived from the IAU 2000A theory described in section 9.6.

As described in section 9.3.2, DE405 was computed in a barycentric reference
system using a coordinate time called Teph as the independent argument . Teph is
similar to the IAU-defined coordinate time TCB (used in the BCRS) but differs in
rate. For many years, users of the JPL ephemerides assumed that Teph was simply
another name for TDB, a coordinate time for barycentric developments that was de-
fined by the IAU in 1976 and 1979; both Teph and TDB are meant to match the rate
of TT at the geocenter. However, the original definition of TDB was problematic
when used with numerically integrated ephemerides [Standish, 1998b]. Therefore,
IAU resolution B3 of 2006 redefined TDB to be a linear function of TCB that is ef-
fectively equivalent to Teph for DE405. However, because Teph = TDB differs in rate
from that of TCB, many astronomical constants obtained from the JPL ephemerides
must be scaled to be compatible with BCRS quantities based on TCB.

19) More exactly, the post-Newtonian equations of motion, are given in section 6.3.4 of this book.
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The ephemerides are distributed by JPL as plain-text (ASCII) computer files of
Chebyshev’s polynomial series coefficients and Fortran source code. Third-party C
versions of the code are also available and, for Unix users, the data files can be down-
loaded in binary form. Once the system is installed on a given computer, a Fortran
subroutine named PLEPH can be called to provide the position and velocity of any
requested body, at any date and time; PLEPH supervises the process of reading the
Chebyshev file and evaluating the appropriate series. Normally the position and ve-
locity vectors returned are expressed in units of AU and AU/day, respectively. The
date/time requested must be expressed as a Teph or TDB Julian date. An entry named
DPLEPH is provided that allows the input Julian date to be split into two parts for
greater precision. And, since |TT − Teph| < 0.002 s, a TT Julian date may be used
for applications not requiring the highest accuracy. The data and software files can
be obtained on CD-ROM from Willmann-Bell, Inc. [Standish et al., 2010], or down-
loaded from a JPL ftp server ftp://ssd.jpl.nasa.gov/pub/eph/export/. A “README”
file provides export information and software documentation (available separately at
Folkner [2007]).

An extended version of DE405/LE405, called DE406/LE406, is available that
spans the years -3000 to +3000, but with coordinates given to lower precision (they
are represented by shorter Chebyshev series). The nutation angles and the lunar ro-
tation angles are also omitted from the DE406 files. DE406 is provided only in Unix
binary format. These files are about 1/3 the size of those for DE405 for a given
span of time. The additional error in the coordinates (DE406 - DE405) may amount
to 25 m for the planets and 1 m for the Moon, which may be significant for some
applications.

The NOVAS software package mentioned in the introduction to this chapter pro-
vides an interface to an existing DE405 or DE406 installation through Fortran sub-
routine SOLSYS (version 2) or C function ephemeris.

9.5.3
Recent Ephemeris Development

As this book is being written, DE405 has been in use for over ten years and the ques-
tion of a successor has arisen, given new observational data from spacecraft made in
the last decade. As of the date of this writing, DE421 is the most recent ephemeris
produced by the JPL ephemeris group. That group is headed by Dr. William Folkner,
and his report to IAU Commission 4 (Ephemerides) in August 2009 20) summarized
the ongoing work as follows:

“In the past three years the accuracy of the ephemerides of Venus and Saturn have
improved dramatically due to observations from the ESA Venus Express mission and
the NASA Cassini mission. The Mars ephemeris accuracy is being maintained by
continuing observations of Mars-orbiting spacecraft. . . The outer planet ephemerides
are being slowly improved by continuing ground-based astrometric observations,

20) See also the IPN Progress Report 42-178 on http://ipnpr.jpl.nasa.gov/progress_report/
42-178/178C.pdf

http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf
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and some older observations are being re-processed against modern ICRF-based star
catalogs.

“The most recent JPL ephemeris released is DE421. The next release is planned
for September 2009, primarily to include data from two encounters of Mercury by
the MESSENGER spacecraft and in preparation for its third Mercury encounter in
November 2009. Following that, the Mars spacecraft VLBI data set will be re-
reduced against the recently released ICRF 2, followed by a new ephemeris fit in
spring 2010.”

It is worth noting here that the accuracy of modern ephemerides of bodies in the
inner solar system is largely limited by perturbations by asteroids of unknown mass
[Standish and Fienga, 2002]. Well determined masses are available for only a few of
the largest asteroids, along with a few smaller ones that have been visited by space-
craft; the rest essentially represent a source of noise in the perturbing functions. In
ephemeris computations, more sophisticated representation of groups of asteroids,
by taxonomic or orbital family, can help, but until the masses of many more indi-
vidual asteroids are known (particularly those with close approaches to the inner
planets), the problem will remain. Continuing observations are needed to bound the
runoff.

Two other ephemeris groups are now producing high quality solar system
ephemerides comparable to the JPL products: the Institut de Mécanique Céleste
et de Calcul des Éphémérides (IMCCE), associated with the Paris Observatory, and
the Institute of Applied Astronomy (IAA) at St. Petersburg, Russia. Both groups use
simultaneous N-body numerical integrations fitted to a large number of observations
from a wide variety of sources, including recent in situ measurements by spacecraft.
The equations of motion include general relativity terms consistent with the defini-
tion of the BCRS. The IMCCE series of ephemerides are referred to as INPOP(n)
(Intégration Numérique Planétaire d’Observatoire de Paris; n is a serial number)
and the IAA ephemerides are referred to as EPMy (Ephemerides of the Planets and
Moon; y is a year). Both the INPOP and EPM ephemerides are available in versions
based on TDB and TCB as the time argument.

Having three sets of fundamental planetary and lunar ephemerides (from JPL, IM-
CCE, and IAA), possibly joined by others in the future, is a healthy development
for the field and will undoubtedly spur improvements. In 2010, a project was be-
gun by IAU Commission 4 (Ephemerides) to provide a detailed comparison of these
ephemerides, covering the models, numerical procedures, observation sets, and re-
sults, with the objective of providing users with information that would enable an
informed choice for specific applications.

9.5.4
Sizes, Shapes, and Rotational Data

The IAU/IAG21) Working Group on Cartographic Coordinates and Rotational Ele-
ments [Seidelmann et al., 2006] produces a report every three years for each IAU

21) IAG = International Association of Geodesy



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 9 — 2016/2/13 — 14:05 — page 739

739

General Assembly, giving the best estimates for the dimensions and rotational pa-
rameters of the planets, satellites, and asteroids, as far as is known. The working
group is also responsible for establishing latitude-longitude coordinate systems for
these bodies. The rotational elements given in the report for the 2006 General As-
sembly [Seidelmann et al., 2007] serve to orient these coordinate systems within
the ICRS as a function of time. The working group’s reports are the basis for the
physical ephemerides of the planets given in The Astronomical Almanac [2010].

Although the rotational elements of the Earth and Moon are given in each report
for completeness, the expressions given there provide only an approximation to the
known motions and should not be used for precise work. Lunar rotation (libration)
angles can be obtained from DE405, and sections 9.6 and 9.7 of this chapter describe
algorithms for the precise instantaneous alignment of the terrestrial coordinate sys-
tem within the GCRS (the “geocentric ICRS”).
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9.6
Precession and Nutation

Precession and nutation are really two aspects of a single phenomenon, the overall
response of the spinning, oblate, elastic Earth to external gravitational torques from
the Moon, Sun, and planets. As a result of these torques, the orientation of the Earth’s
rotation axis is constantly changing with respect to a space-fixed (locally inertial)
reference system. The motion of the celestial pole among the stars is conventionally
described as consisting of a smooth long-term motion called precession upon which
is superimposed a series of small periodic components called nutation.

The algorithms for precession used generally from about 1980 through 2000 (in
the Astronomical Almanac from the 1984 through 2005 editions) were based on the
IAU (1976) value for the rate of general precession in ecliptic longitude (5029.0966
arcseconds per Julian century at J2000.0). Nutation over most of the same time pe-
riod was given by the 1980 IAU Theory of Nutation. However, not long after these
algorithms were widely adopted, it became clear that the IAU (1976) rate of preces-
sion had been overestimated by approximately 3 milliarcseconds per year. Further
observations also revealed periodic errors of a few milliarcseconds in the 1980 IAU
Theory of Nutation. For many applications these errors are negligible, but they are
significant at the level of the best ground-based astrometry and geodesy.

As part of the 2000 IAU resolutions, the IAU 2000A precession-nutation model
was introduced, based on an updated value for the rate of precession and a com-
pletely new nutation theory. As before, the model actually consists of two parts, a
precession algorithm describing the smooth secular motion of the celestial pole and
a nutation algorithm describing the small periodic variations in the pole’s position.
The precession algorithm consists of short polynomial series for the values of cer-
tain angles. The sines and cosines of these angles, in combination, then define the
elements of a precession matrix, P. The nutation algorithm consists of a rather long
series expansion in Fourier terms for the angular offsets, in ecliptic longitude and
latitude, of the actual celestial pole (as modeled) from the precession-only pole (true
pole - mean pole). The sines and cosines of these offsets, in combination, then de-
fine the elements of a nutation matrix, N. The P and N matrices are applied to the
coordinates of celestial objects, expressed as 3-vectors, to transform them from the
equator and equinox of one epoch to the equator and equinox of another.

9.6.1
Aspects of Earth Rotation

The Earth is a relatively well-behaved rotating body, and illustrates the three basic
elements of classical spin dynamics: precession, nutation, and Eulerian wobble. In
fact, to first order, the Earth can be considered to be a rigid “fast top”, and very good
approximations to its rotational motion can be obtained from elementary develop-
ments. Although the effects of the Earth’s liquid core, elastic mantle, and oceans are
not negligible for modern observations, they can be considered to be small perturba-
tions on the rigid-body motion. Since the Earth is nearly spherical and experiences
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relatively weak torques, its axis of rotation moves slowly with respect to both the
stars and the body of the Earth itself.

The orientation of any rotating rigid body can be theoretically described as a time
series of three Euler angles that relate a body-fixed coordinate system to a space-
fixed coordinate system. If the body-fixed coordinate system can be defined such
that the rate of change of one of the three Euler angles is much greater than that of
the other two – as is the case for the Earth – then the rotational kinematics are usually
described in terms of the slowly changing orientation of an axis of rotation passing
through the body’s center of mass. One can equivalently speak of the kinematics of
the pole: one of the points where the axis of rotation intersects the body’s surface
or, extended to infinity, the “celestial sphere” 22). For this kinematic construction to
work well, the angular motion of the axis or pole should be small and nearly linear
over one rotation, predictable from theory, and observable.

However, as was pointed out by Smith and Turcotte [1993], when one practically
uses such an axis or pole, one needs five angles, not three, to fully describe the instan-
taneous orientation of the body: two angles to describe the orientation of the body
rotational axis with respect to the body-fixed coordinate system, one to describe the
angle of the body’s rotation about the axis, and two more to describe the orientation
of the body-fixed coordinate system with respect to the non-rotating inertial space.
For the Earth, these five angles correspond to the five standard parameters of Earth
orientation disseminated by organizations such as the IERS: the coordinates of the
pole, xp and yp, measured in a terrestrial coordinate system; the Universal Time dif-
ference, UT1-UTC; and the celestial pole offsets, dψ and dε, measured in a celestial
coordinate system. Phenomenologically, the parameters divide up as follows: xp and
yp describe polar motion, the variations in the position of the pole with respect to the
Earth’s crust; UT1-UTC measures the integrated variation in , the departure from
a constant angular rate of rotation; and dψ and dε are the errors in the computed
position of the celestial pole, reflecting deficiencies in the adopted algorithms for
precession and nutation.

What one calls polar motion corresponds, in rigid-body rotation, to the free Eu-
lerian wobble of the figure axis about the rotation axis. On the real Earth, the phe-
nomenon is not that simple. From an Earth-fixed (rotating) frame of reference, polar
motion is a 10-meter (0.3 arcsecond) quasi-circular excursion in the pole position,
with principal periods of 12 and 14 months. The 14-month component corresponds
to the Eulerian wobble, as modified by the Earth’s elasticity, while the 12-month
component undoubtedly is a seasonal effect. Smaller, quasi-random variations are
not well understood. None of the components is regular enough to permit reliable
predictions, and polar motion must be obtained from observations.

Variations in the Earth’s rotation rate are due to several causes. There are fort-
nightly, monthly, semiannual, and annual tidal effects, and other short-term and sea-
sonal changes are largely due to exchange of angular momentum with the atmo-

22) Only the former definition of the pole is accepted in the relativistic framework because the rotational
theory of a body (see section 6.2.2) is formulated in the local coordinates which do not spread out to
infinity.
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Figure 9.4 The path of the true celestial pole on the sky, over an 18-year period, compared to
the mean pole. The mean pole moves along a smooth arc at a rate of 20 arcseconds per year
due to precession only. The complex epicyclic motion of the true pole is nutation. The inset
shows the detail of one year’s motion.

sphere. Longer-term variations (decade fluctuations) are less well understood. For
a discussion of time scales that are based on the variable rotation of the Earth, see
sections 9.3.1 and 9.3.3.

Precession and nutation refer to the changing orientation of the Earth’s axis, with
respect to a space-fixed (kinematically non-rotating) system, in response to external
torques. The torques are due to the gravitational attraction of the Moon and Sun and,
to a much lesser extent, the planets on the equatorial bulge of the Earth. Preces-
sion and nutation are really different aspects of a single physical phenomenon, and
it has become more common in recent years to write “precession-nutation”. Preces-
sion is simply the secular term in the response of Earth to the external gravitational
torque, while nutation is the set of periodic terms. Due to the precession the celes-
tial pole traces out a circle on the celestial sphere, about 23◦ in radius, centered on
the ecliptic pole (the direction orthogonal to the ecliptic plane), taking about 26,000
years to complete one circuit (≈20 arcseconds/year). Precession theory describes
this smooth, long-term motion, and the precessional pole is referred to as the mean
pole (the orthogonal plane is the mean equator). But the pole also undergoes a hier-
archy of small epicyclic motions, the largest of which is a 14×18 arcsecond ellipse
traced out every 18.6 years (see Figure 9.4). Nutation theory describes this and other
periodic motions with unprecedented precision. To get the path of the true pole on
the celestial sphere (i.e., the direction of the Earth’s axis in space), it is necessary
to compute both precession and nutation; conventionally, they are described by sep-
arate time-dependent rotation matrices, P(t) and N(t), which are either multiplied
together or applied sequentially.
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9.6.2
Which Pole?

In theoretical developments of Earth rotation, the first issue that must be confronted
is the definition of the celestial pole. If the Earth were a rigid oblate spheroid, there
would be three possible axes, and corresponding poles, to choose from: the angu-
lar momentum axis; the rotation axis, defined by the instantaneous angular velocity
vector; and the figure axis, which is the body-fixed axis orthogonal to the geometric
equator and along the unique eigenvector of the Earth’s inertia tensor. The distinc-
tions among the axes arise from the physics of rotation. For example, as previously
noted, in a rotating rigid body, the free Eulerian wobble describes the motion of the
figure axis with respect to the rotation axis (or vice versa). The analog of this on the
real Earth is polar motion.

In the previous section, precession-nutation was described as the changing orien-
tation of the Earth’s axis in response to external torques, expressed in a space-fixed
(non-rotating) frame of reference. Which axis? The principal components of the
response are rather large, amounting to many arcseconds over the course of a year,
and are nearly the same for all three axes. However, the three axes cannot coincide
in the presence of external torques. For a rigid Earth, the forced oscillations of the
figure and rotation axes differ by about 10 milliarcseconds, and those of the angu-
lar momentum and rotation axes differ by only about 1 milliarcsecond. Until the
mid-20th century, observations were not accurate enough to distinguish between the
axes, so the choice of the best axis for theory was academic. But with improving
observational accuracy and new techniques coming online in the 1960s and 1970s,
the question of which axis should be used for the theoretical developments became
important. After considerable discussion, the consensus emerged that the forced mo-
tion of the figure axis was the most relevant for observations, and therefore also for
theory 23).

At about the same time, new theoretical work was being undertaken based on
Earth models that were triaxial and contained a liquid core and elastic mantle. Such
theories complicate the axis question considerably, because the inertia tensor varies
with time as the Earth’s shape responds to tidal forces, and the tidal deformation
results in large daily excursions of the Earth’s axis of figure. These excursions do
not, in general, reflect the changing overall orientation of the Earth’s crust in space,
which is relevant to astronomical observations. That is, for the elastic Earth, the
figure axis as classically defined is not an astronomically useful axis. The solution
is to construct a rotating Cartesian coordinate system tied to the elastic, rotating
Earth in such a way that (1) the net angular momentum of the tidal deformation,
relative to this system, is always zero; and (2) for zero tidal deformation, the axes
correspond to the principal axes of the Earth’s mantle. These axes are the “Tisserand
mean axes of the body” [Munk and MacDonald, 1960], and the Tisserand axis of

23) Section 6.2.2 demonstrates unequivocally that the external torque affects directly motion of the angular
momentum (spin) of the body. However, the practical measurement of the direction of the angular
momentum is impossible.
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the maximum moment of inertia is referred to in resolution B1.7 of 2000 as “the
mean surface geographic axis”. Almost all modern theories of nutation refer to the
principal Tisserand axis; in the previously used 1980 IAU Theory of Nutation it was
referred to as axis B, and the corresponding pole called the “Celestial Ephemeris
Pole”.

However, even if one has chosen an axis that best reflects the overall rotation of
stations (observatories) on the Earth’s surface, a further complication arises as the
observations and theoretical developments become more sensitive to short-period
motions. The problem is the small but non-negligible circular components of nu-
tation or polar motion with periods near one day. One can imagine the geometric
confusion that arises when the pole undergoes a circular motion in one rotation pe-
riod; in fact, it becomes difficult to disentangle the various effects, and the conven-
tional labels become nearly meaningless. For example, any prograde nearly-diurnal
nutation is equivalent to a long-period variation in polar motion, and any retrograde
nearly-diurnal polar motion appears as a long-period nutation component [Capitaine,
2000]. In practice, this means a potential “leakage” or “crossover” from the Earth
orientation parameters xp and yp to dψ and dε or vice versa. The only practical so-
lution is an explicit (although somewhat arbitrary) cutoff in the periods of what is
considered precession-nutation, embodied in the definition of the celestial pole.

Therefore, the new IAU definition of the celestial pole to be used for the new
precession-nutation model (IAU resolution B1.7 of 2000) is defined by the motions
of Tisserand mean axis of the Earth with periods greater than two days in the ce-
lestial reference system. This pole is called the Celestial Intermediate Pole (CIP).
The position of the CIP is given by the adopted precession-nutation model plus ob-
servational corrections. The word intermediate reminds us that the definition of the
pole is merely a convention, serving to impose a division between what one calls
precession-nutation (the Earth orientation angles measured in the celestial system)
and polar motion (the Earth orientation angles measured in the terrestrial system).
The CIP is the true pole, orthogonal to the true equator of date. Its motion is de-
fined within the Geocentric Celestial Reference System (GCRS) – see section 9.2.
Therefore, the geometric transformations described in this section (as well as those
in section 9.7) all apply within a geocentric system. The GCRS can be described
loosely as the “geocentric ICRS”, since its axis directions are obtained from those of
the ICRS.

9.6.3
The New Models

The variables dψ and dε are the small angular offsets on the sky expressing the
difference between the position of the celestial pole that is observed and the position
predicted by the conventional precession and nutation theories. These angles are
just the differential forms of the angles ∆ψ and ∆ε in which nutation theories are
conventionally expressed (dψ and dε are sometimes labeled ∆∆ψ and ∆∆ε). ∆ψ and
∆ε are in turn differential forms of the ecliptic coordinates of the celestial pole (see
Figure 9.4).
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Obviously the time series of dψ and dε values, if they show systematic trends,
can be used to improve the theories of precession and nutation. In fact, 20 years
of dψ and dε values from VLBI show significant patterns as shown in figure 9.5.
Most obvious is the overall downward slope in longitude and an annual periodicity
in both longitude and obliquity, suggesting the need for substantial corrections to
the precession rate as well to the annual nutation term. A long-period sinusoid is
also evident, and spectral analysis reveals the presence of a number of periodic com-
ponents. The Figure 9.5 indicates the origin of the ICRS “frame bias” discussed in
section 9.4. The pole offsets shown are taken from the solution for the ICRF cata-
log. The ICRS frame biases in longitude and obliquity are essentially the values, at
J2000.0 (Time=100), of the two curves fitted to the data. The data was arbitrarily
zeroed near the beginning of the data span, which led to non-zero values at J2000.0.

Other techniques, particularly lunar laser ranging (LLR), confirm the general
trends. As a result, there has been a major multinational effort to improve the preces-
sion and nutation formulation and obtain interesting geophysical information in the
process. This project, coordinated by an IAU/IUGG24) working group, has involved
dozens of investigators in several fields, and the resulting algorithms, taken together,
are referred to as the IAU 2000A precession-nutation model.

The VLBI observations of dψ and dε indicate the error in the computed position of
the pole with respect to a space-fixed system defined by the positions of extragalac-
tic objects. However, the conventional expressions for precession and nutation have
used angles measured with respect to the ecliptic, a plane to which VLBI is not sensi-
tive. The ecliptic plane has a slow precessional movement of its own due to planetary
perturbations on the heliocentric orbital motion of the Earth-Moon barycenter.25) In
the theoretical developments it is necessary to distinguish between precession of the
equator and precession of the ecliptic, which were formerly called, respectively, lu-
nisolar precession and planetary precession. Both types of precession are measured
with respect to a space-fixed system. The algorithms for precession and nutation pro-
vide the motion of the equator, as appropriate for most observations, but generally
use a moving ecliptic as a reference plane for at least some of the angles involved
(there are different formulations of precession using different angle sets). This al-
lows the precession and nutation transformations to properly account for the motion
of the equinox as well as that of the equator. The precession of the ecliptic is ob-
tained from theory (although indirectly tied to observations through the JPL DE405
ephemeris), as are the high-order (unobserved) components of the precession of the
equator. However, because of the mix of theory and observation that is involved in
the final expressions, raw corrections to rates of precession from VLBI observations
will not in general propagate exactly to the familiar precession quantities.

The changes in the amplitudes of the nutation components are also not directly
taken from these observations; instead, a new nutation theory is developed and fit
to observations by allowing a small number of geophysical constants to be free pa-

24) IUGG = International Union of Geodesy and Geophysics
25) The mean ecliptic is always implied. This is the smoothly moving plane that does not undergo the

periodic oscillations of the instantaneous orbital plane of the Earth.
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Figure 9.5 Observed values of celestial pole offsets from VLBI data. Offsets in longitude have
been multiplied by the sine of the obliquity to allow the same scale to be used for both
components. Circled points with error bars represent the offset of the observed pole with
respect to the computed pole, and the solid line in each plot is a curve fitted to the data. The
computed pole is given by Lieske et al. [1977] precession expressions and the 1980 IAU
Theory of Nutation. These plots are from [Ma et al., 1998].
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Table 9.1 Precession-Nutation: Old & New. Values are given in arcseconds at J2000.0

Quantity Old value New value New-Old
General precession in longitude (/cen) 5029.0966 5028.796195 −0.3004
Mean obliquity 84381.448 84381.406 −0.042
Mean obliquity rate (/cen) −46.8150 −46.836769 −0.0218
In-phase nutation amplitudes:

18.6-year longitude −17.1966 −17.2064161 −0.0098
18.6-year obliquity 9.2025 9.2052331 0.0027
9.3-year longitude 0.2062 0.2074554 0.0013
9.3-year obliquity −0.0895 −0.0897492 −0.0002
annual longitude 0.1426 0.1475877 0.0050
annual obliquity 0.0054 0.0073871 0.0020
semiannual longitude −1.3187 −1.3170906 0.0016
semiannual obliquity 0.5736 0.5730336 −0.0006
122-day longitude −0.0517 −0.0516821 0.0000
122-day obliquity 0.0224 0.0224386 0.0000
monthly longitude 0.0712 0.0711159 −0.0001
monthly obliquity −0.0007 −0.0006750 0.0000
semimonthly longitude −0.2274 −0.2276413 −0.0002
semimonthly obliquity 0.0977 0.0978459 0.0001

rameters. These parameters are constants in a “transfer function” that modifies the
amplitudes of the terms from a rigid-Earth nutation development. Since there are
fewer solved-for geophysical constants than the number of terms with observed am-
plitudes, the fit cannot be perfect. For the IAU 2000A model, seven geophysical
parameters were determined based on the observed amplitudes of 21 nutation terms
(prograde and retrograde amplitudes for each) together with the apparent change in
the rate of precession in longitude. Note that the number of observational constraints
and the number of free parameters in the model are both quite small compared to the
1365 terms in the new, full nutation series.

Table 9.1 compares the old and new values, at epoch J2000.0, of some of the
primary quantities involved in the precession and nutation algorithms. In the table,
all quantities are in arcseconds, and the rates (marked /cen) are per Julian century
of TDB (or TT). The longitude components should be multiplied by the sine of the
obliquity (≈0.3978) to obtain the corresponding motion of the pole on the celestial
sphere. The new mean obliquity at J2000.0 is 23◦ 26′ 21.′′406. The theories from
which the values are taken are:

• Old precession: given by [Lieske et al., 1977], based on the IAU (1976) values for
general precession and the obliquity at J2000.0, shown in the table 9.1

• Old nutation: 1980 IAU Theory of Nutation by Wahr [1981], based on the theory
by Kinoshita [1977]; see report of the IAU working group by Seidelmann [1982]

• New precession: P03 solution by Capitaine et al. [2003]; see report of the IAU
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Figure 9.6 Observed values of celestial pole offsets, similar to Figure 9.5, but comparing recent
VLBI data with the currently recommended precession-nutation theories (P03 precession and
MHB nutation). The ordinates dX and dY correspond closely to the ordinates ∆ψ sin ε and ∆ε,
respectively, used in the previous figure (but note the change of scale). The periodic signature
that remains is due mainly to the free core nutation, which has a period of about 430 days but
an arbitrary amplitude and phase. These plots are from Capitaine et al. [2009].

working group by Hilton et al. [2006]
• New nutation: worked out by Buffett et al. [2002] (often referred to as MHB),

based on the work by Souchay et al. [1999]; series listed in [McCarthy and Petit,
2003a]

The MHB nutation was adopted in IAU resolution B1.6 of 2000, even though
the theory had not been finalized at the time of the IAU General Assembly of that
year. The new precession development was adopted in IAU resolution B2 of 2006,
although it had been available since 2003. Used together, these two developments
yield the computed path of the Celestial Intermediate Pole (CIP) as well as that of
the true equinox. The formulas given below are based on these two developments.

A comparison of the new theories, taken together, with modern high accuracy
observations is shown in figure 9.6.

It should be noted that the new precession model uses a slightly different value of
the obliquity of the ecliptic than was assumed for the nutation model, and it also in-
corporates a rate of change in the Earth’s dynamical form-factor (J2) not considered
previously. As explained by Capitaine et al. [2005], when the new nutation model is
used with the new precession model (as would normally be the case) the nutation se-
ries terms require some correction to account for these differences in the underlying
dynamical model. In practice, the required corrections affect only a few terms, and
the changes are at the microarcsecond level at the current epoch. The corrections
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have not been formally adopted by the IAU, and are not discussed or implicit in any
of the following developments. However, a corrected nutation series is available as
part of the SOFA subroutines.

9.6.4
Formulas

In the development below, precession and nutation are represented as 3×3 rotation
matrices that operate on column 3-vectors. The latter are position vectors in a spe-
cific celestial coordinate system – which must be stated or understood – with com-
ponents that are Cartesian (rectangular) coordinates. They have the general form

r =


rx

ry

rz

 =


r cos δ cosα
r cos δ sinα

r sin δ

 (9.24)

where rx, ry, and rz are the three rectangular components of vector r, α is the right
ascension, δ is the declination, and r = (r2

x + r2
y + r2

z )1/2 is the radial coordinate
distance from the specified origin. The distance r is an important observable for
the objects lying within the solar system. However, for stars and other objects “at
infinity” (beyond the solar system), r is not so important, or simply unmeasurable,
and often set to 1. The celestial coordinate system being used will be indicated by
a subscript, e.g., rGCRS . If one has the vector r in some coordinate system, then the
right ascension and declination in that coordinate system can be obtained from

α = arctan
(

ry

rx

)
, (9.25a)

δ = arctan

 rz√
r2

x + r2
y

 . (9.25b)

A two-argument arctangent function (often called “atan2") will return the correct
quadrant for α, if ry and rx are provided separately.

In the context of traditional equatorial celestial coordinate systems, the adjective
mean is applied to quantities (pole, equator, equinox, coordinates) affected only by
precession, while true describes quantities affected by both precession and nutation.
This is a computational distinction only, since precession and nutation are simply
different aspects of the same physical phenomenon. Thus, it is the true quantities
that are directly relevant to observations; mean quantities now usually represent an
intermediate step in the computations, or the final step where only very low accuracy
is needed (10 arcseconds or worse) and nutation can be ignored.

Thus, a precession transformation is applied to celestial coordinates to convert
them from the mean equator and equinox of J2000.0 to the mean equator and equinox
of another date, t. Nutation is applied to the resulting coordinates to transform them
to the true equator and equinox of t. These transformations should be understood to
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be inherently geocentric rotations and they originate in dynamical theories. Gener-
ally, one will be starting with celestial coordinates in the GCRS, which are obtained
from basic ICRS data by applying the usual algorithms for proper place.

Computing proper place involves adjusting the catalog place of a star or other
extra-solar system object for proper motion and parallax (where known), gravita-
tional light deflection within the solar system, and aberration due to the observer’s
and Earth’s motions. For a solar system object there are comparable adjustments
to its position vector taken from a barycentric dynamical ephemeris 26). In con-
ventional usage, an apparent place can be considered to be a proper place that has
been transformed to the true equator and equinox of date. The details of the proper
place computations are beyond the scope of this Chapter but are described in detail
in many textbooks on positional astronomy, and in papers by Smith et al. [1989,?];
Yallop et al. [1989], and Klioner [2003a].

As discussed in section 9.4, the ICRS is not based on a dynamically defined equa-
tor and equinox and so neither is the GCRS. Therefore, before one applies precession
and nutation – and if one requires a final accuracy of better than 0.02 arcsecond –
one must first apply the frame bias correction (section 9.4.9) to transform the GCRS
coordinates to the dynamical mean equator and equinox of J2000.0. Schematically,
these transformations sequence is

GCRS
‖

frame bias

⇓

mean equator & equinox of J2000.0

‖

precession

⇓

mean equator & equinox of t

‖

nutation

⇓

true equator & equinox of t

Mathematically, this sequence can be represented as the matrix transform

rtrue(t) = N(t) P(t) B rGCRS (9.26)

where rGCRS is a direction vector with respect to the GCRS and rtrue is the equivalent
vector with respect to the true equator and equinox of t. In equation (9.26), N(t) and
P(t) are the nutation and precession rotation matrices, respectively. The remainder

26) See section 9.2.3.
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of this section shows how to compute the elements of these matrices. The quantity
B in equation (9.26) is the constant frame-bias matrix given in section 9.4.9.

The transformation from the mean equator and equinox of J2000.0 to the mean
equator and equinox of t is simply

rmean(t) = P(t) rmean(J2000.0) (9.27)

and the reverse transformation is

rmean(J2000.0) = PT(t) rmean(t) (9.28)

where PT(t) is the transpose of matrix P(t).
What is described above are all conventional, equinox-based transformations. The

equinox is the traditional origin of right ascension. An alternative transformation has
been developed based on another point on the celestial equator called the Celestial
Intermediate Origin (CIO); see resolution B1.8 of 2000. The alternative scheme has
been introduced because the equinox is based on a barycentric concept (the eclip-
tic, the Earth’s mean orbit) that is not relevant to a geocentric system; furthermore,
the equinox suffers from ambiguity of definition below the 0.1 arcsecond level. Ad-
ditionally, the new scheme cleanly separates different aspects of Earth orientation
in the overall transformation between the terrestrial and celestial coordinate sys-
tems. The conventional transformations are described in this section because of
widespread current usage. The angles needed for these transformations are pro-
vided by the newest theories of precession and nutation. The transformation, which
combines frame bias, precession, and nutation into a single matrix, is given in sec-
tion 9.6.7 and is described more fully in section 9.7, where the CIO is introduced
and explained.

The true celestial pole of date t – the Celestial Intermediate Pole (CIP) – has, by
definition, unit vector coordinates (0,0,1) with respect to the true equator and equinox
of date. Therefore one can obtain the computed coordinates of the CIP with respect
to the GCRS by simply reversing the transformation of equation (9.26)

r(CIP)GCRS =


X
Y
Z

 = BT PT(t) NT(t)


0
0
1

 =


(NPB)31

(NPB)32

(NPB)33

 (9.29)

where one has used notation NPB = N(t)P(t)B, and where the sub-indices indicate
the corresponding components of the matrix NPB. Daily values of the elements of
the combined matrix NPB are listed in The Astronomical Almanac [2010].

McCarthy and Petit [2004] list series expansions that directly provide X and Y ,
the two most rapidly changing components of the pole position unit vector. Daily
values of X and Y are also listed in The Astronomical Almanac [2010]. The values
of X and Y are given in arcseconds and are converted to dimensionless unit vector
components simply by dividing them by the number of arcseconds in one radian,
648000”/π ' 206264.806247. As soon as X and Y components are known, then,
Z =

√
1 − X2 − Y2. The values of X and Y are used in the new transformation

scheme discussed in section 9.6.7 and in several places in section 9.7.
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9.6.5
Formulas for Precession

To construct the precession matrix for the transformation of coordinates from one
date to another, one must evaluate short polynomials for the angles involved. The
expressions for these angles in the IAU 2000A model, given below, have only a sin-
gle time argument, since precession from or to J2000.0 (actually, the TDB equivalent
of J2000.0) is assumed. As used in this Chapter (and The Astronomical Almanac
[2010]), the matrix P(t) always denotes precession from J2000.0 (TDB) to another
date, t. To precess in the opposite direction, the angles are the same but the transpose
of the precession matrix, PT(t), is used. To precess coordinates from one arbitrary
date, t1, to another, t2, it is necessary to precess them from t1 to J2000.0 (using
PT(t1)), then from J2000.0 to t2 (using P(t2)). Where high accuracy is not required,
and t1 and t2 are not more than a few years apart, a simpler procedure for precession
from t1 to t2 is available and is given at the end of this subsection.

All expressions given in this subsection are from section 7 (P03 solution) of the
work by Capitaine et al. [2003] and all coefficients are expressed in arcseconds. This
is the theory of precession recommended by the IAU Working Group on Precession
and the Ecliptic [Hilton et al., 2006].

For a given TDB date and time t, let T be the number of Julian centuries of TDB
since 2000 Jan 1, 12h TDB. If the dates and times are expressed as Julian dates,
then T = (t − 2451545.0)/36525. TT dates and times can be used equally well –
the resulting error in precession is only a few ×10−9 arcseconds. Then, the mean
obliquity of the ecliptic at J2000.0 (or the equivalent TDB date) is ε0 = 84381.406
arcseconds, and the angles, characterizing the precession are as follows

ψA = 5038.481507 T − 1.0790069 T 2 − 0.00114045 T 3 (9.30)

+0.000132851 T 4 − 0.0000000951 T 5 ,

ωA = ε0 − 0.025754 T + 0.0512623 T 2 − 0.00772503 T 3 (9.31)

−0.000000467 T 4 + 0.0000003337 T 5 ,

χA = 10.556403 T − 2.3814292 T 2 − 0.00121197 T 3 (9.32)

+0.000170663 T 4 − 0.0000000560 T 5 ,
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or equivalently, in notation appropriate for computer programs,

ψA = (((( − 0.0000000951 T

+ 0.000132851 ) T

− 0.00114045 ) T

− 1.0790069 ) T

+ 5038.481507 ) T ,

ωA = (((( + 0.0000003337 T

− 0.000000467 ) T

− 0.00772503 ) T (9.33)

+ 0.0512623 ) T

− 0.025754 ) T + ε0 ,

χA = (((( − 0.0000000560 T

+ 0.000170663 ) T

− 0.00121197 ) T

− 2.3814292 ) T

+ 10.556403 ) T .

The precession matrix is, then, a product of the four matrices

P(t) = R3(χA)R1(−ωA)R3(−ψA)R1(ε0) , (9.34)

where R1 and R3 are standard counterclockwise rotations about the x and z axes, re-
spectively (see appendix “Abbreviations and Symbols Frequently Used” for precise
definitions). This four-angle precession formulation is comprised of the following
elements:

1) A rotation from the mean equator and equinox of J2000.0 to the mean ecliptic and
equinox of J2000.0. This is a rotation around the x-axis (the direction toward the
mean equinox of J2000.0) by the angle ε0, the mean obliquity of J2000.0. After
the rotation, the fundamental plane is the ecliptic of J2000.0.

2) A rotation around the new z-axis (the direction toward the ecliptic pole of J2000.0)
by the angle −ψA, the amount of precession of the equator from J2000.0 to t.

3) A rotation around the new x-axis (the direction along the intersection of the mean
equator of t with the ecliptic of J2000.0) by the angle −ωA, the obliquity of the
mean equator of t with respect to the ecliptic of J2000.0. After the rotation, the
fundamental plane is the mean equator of t.

4) A rotation around the new z-axis (the direction toward the mean celestial pole of
t) by the angle χA, accounting for the precession of the ecliptic along the mean
equator of t. After the rotation, the new x-axis is in the direction of the mean
equinox of date.

If one denotes

S 1 = sin(ε0) , S 2 = sin(−ψA) , S 3 = sin(−ωA) , S 4 = sin(χA) , (9.35)
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C1 = cos(ε0) , C2 = cos(−ψA) , C3 = cos(−ωA) , C4 = cos(χA) , (9.36)

then, the overall four-angle precession matrix P(t) can also be written as follows

P(t) = (9.37)
C4C2−S 2S 4C3 C4S 2C1+S 4C3C2C1−S 1S 4S 3 C4S 2S 1+S 4C3C2S 1+C1S 4S 3

−S 4C2−S 2C4C3 −S 4S 2C1+C4C3C2C1−S 1C4S 3 −S 4S 2S 1+C4C3C2S 1+C1C4S 3

S 2S 3 −S 3C2C1−S 1C3 −S 3C2S 1+C3C1


Existing applications that use the 3-angle precession formulation of Newcomb and

Lieske can be easily modified for the IAU 2000A precession, by replacing the current
polynomials for the angles ζA, zA, and θA with the following

ζA = 2.650545 + 2306.083227 T + 0.2988499 T 2 + 0.01801828 T 3 (9.38)

−0.000005971 T 4 − 0.0000003173 T 5 ,

zA = −2.650545 + 2306.077181 T + 1.0927348 T 2 + 0.01826837 T 3 (9.39)

−0.000028596 T 4 − 0.0000002904 T 5 ,

θA = 2004.191903 T − 0.4294934 T 2 − 0.04182264 T 3 (9.40)

−0.000007089 T 4 − 0.0000001274 T 5 ,

The 3-angle precession matrix is

P(t) = R3(−zA)R2(θA)R3(−ζA) , (9.41)

but any existing correct construction of P using these three angles can still be used.
The expression for the mean obliquity of the ecliptic (the angle between the mean

equator and ecliptic, or, equivalently, between the ecliptic pole and mean celestial
pole of date) is

ε = ε0 − 46.836769 T − 0.0001831 T 2 + 0.00200340 T 3 (9.42)

−0.000000576 T 4 − 0.0000000434 T 5 ,

where, as stated above, ε0 = 84381.406 arcseconds. This expression arises from
the precession formulation but is actually used only for nutation. Almost all of the
obliquity rate – the term linear in T in equation (9.42) – is due to the precession of
the ecliptic.

Where high accuracy is not required, the precession between two dates, t1 and t2,
not too far apart (i.e., where |t2 − t1| � 1 century), can be approximated using the
rates of change of right ascension and declination with respect to the mean equator
and equinox of date. These rates are respectively

m ' 4612.16 + 2.78 T (9.43)

n ' 2004.19 − 0.86 T (9.44)

where the values are in arcseconds per century, and T is the number of centuries
between J2000.0 and the midpoint of t1 and t2. If the dates are expressed as Julian
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dates, T = [(t1 + t2)/2− 2451545.0]/36525. Then, denoting the celestial coordinates
at t1 by (α1, δ1) and those at t2 by (α2, δ2),

α2 ' α1 + τ (m + n sinα1 tan δ1)

δ2 ' δ1 + τ (n cosα1) (9.45)

where τ = t2 − t1, expressed in centuries. These formulas deteriorate in accuracy at
high (or low) declinations and should not be used at all for coordinates close to the
celestial poles (how close depends on the accuracy requirement and the value of τ) .

9.6.6
Formulas for Nutation

Nutation is conventionally expressed as two small angles, ∆ψ, the nutation in lon-
gitude, and ∆ε, the nutation in obliquity. These angles are measured in the ecliptic
system of date, which is developed as part of the precession formulation. The angle
∆ψ is the small change in the position of the equinox along the ecliptic due to nuta-
tion, so the effect of nutation on the ecliptic coordinates of a fixed point in the sky is
simply to add ∆ψ to its ecliptic longitude. The angle ∆ε is the small change in the
obliquity of the ecliptic due to nutation. The true obliquity of date is ε′ = ε + ∆ε.
Nutation in obliquity reflects the orientation of the equator in space and does not
affect the ecliptic coordinates of a fixed point on the sky.

The angles ∆ψ and ∆ε can also be thought of as small shifts in the position of
the celestial pole (CIP) with respect to the ecliptic and mean equinox of date. In
that coordinate system, and assuming positive values for ∆ψ and ∆ε, the nutation
in longitude shifts the celestial pole westward on the sky by the angle ∆ψ sin ε,
decreasing the pole’s mean ecliptic longitude by ∆ψ. Nutation in obliquity moves the
celestial pole further from the ecliptic pole, i.e., southward in ecliptic coordinates, by
∆ε. Negative values of ∆ψ and ∆ε move the pole eastward and northward in ecliptic
coordinates.

The effect of nutation on the equatorial coordinates (α,δ) of a fixed point in the
sky is more complex and is best dealt with through the action of the nutation matrix,
N(t), on the equatorial position vector, rmean(t). Where high accuracy is not required,
formulas that directly give the changes to α and δ as a function of ∆ψ and ∆ε are
available and are given at the end of this subsection.

The values of ∆ψ and ∆ε are obtained by evaluating rather lengthy trigonometric
series, of the general form

∆ψ =

N∑
i=1

[
(S i + Ṡ iT ) sin Φi + C′i cos Φi

]
(9.46a)

∆ε =

N∑
i=1

[
(Ci + ĊiT ) cos Φi + S ′i sin Φi

]
, (9.46b)
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where, in each term

Φi =

K∑
j=1

Mi, j φ j(T ) , (9.47)

with Mi, j being well-determined numerical multipliers listed in the the IAU 2000A
model, for which N=1365 and K=14. The 14 φ j(T ) are the fundamental arguments,
which are, except for one, orbital angles. The main time dependence of the nutation
series enters through these arguments. The expressions given below are all taken
from the paper by Simon et al. [1994], and all coefficients are in arcseconds.

The first eight fundamental arguments are the mean heliocentric ecliptic longitudes
of the planets Mercury through Neptune

φ1 = 908103.259872 + 538101628.688982 T

φ2 = 655127.283060 + 210664136.433548 T

φ3 = 361679.244588 + 129597742.283429 T

φ4 = 1279558.798488 + 68905077.493988 T (9.48)

φ5 = 123665.467464 + 10925660.377991 T

φ6 = 180278.799480 + 4399609.855732 T

φ7 = 1130598.018396 + 1542481.193933 T

φ8 = 1095655.195728 + 786550.320744 T

In all of these expressions, T is the number of Julian centuries of TDB since 2000
Jan 1, 12h TDB (or, with negligible error, the number of Julian centuries of TT
since J2000.0). In some implementations it may be necessary to reduce the resulting
angles, which are expressed in arcseconds, to radians in the range 0-2π. The ninth
argument is an approximation to the general precession in longitude

φ9 = 5028.8200 T + 1.112022 T 2 (9.49)

The last five arguments are the same fundamental luni-solar arguments used in pre-
vious nutation theories, but with updated expresssions. They are, respectively, l, the
mean anomaly of the Moon; l′, the mean anomaly of the Sun; F, the mean argument
of latitude of the Moon; D, the mean elongation of the Moon from the Sun, and Ω,
the mean longitude of the Moon’s mean ascending node

φ10 = l = 485868.249036 + 1717915923.2178 T + 31.8792 T 2 + 0.051635 T 3 − 0.00024470 T 4

φ11 = l′ = 1287104.79305 + 129596581.0481 T − 0.5532 T 2 + 0.000136 T 3 − 0.00001149 T 4

φ12 = F = 335779.526232 + 1739527262.8478 T − 12.7512 T 2 − 0.001037 T 3 + 0.00000417 T 4

φ13 = D = 1072260.70369 + 1602961601.2090 T − 6.3706 T 2 + 0.006593 T 3 − 0.00003169 T 4

φ14 = Ω = 450160.398036 − 6962890.5431 T + 7.4722 T 2 + 0.007702 T 3 − 0.00005939 T 4 (9.50)

The first step in evaluating the series for nutation for a given date is to compute
the values of all 14 fundamental arguments for the date of interest. This is done
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only once. Then the nutation terms are evaluated one by one. For each term i,
first compute Φi according to equation (9.47), using the 14 integer multipliers, Mi, j,
listed for the term; i.e., sum over Mi, j × φ j (where j=1-14). Then the cosine and sine
components for the term can be evaluated, as per equation (9.46), using the listed
values of the coefficients S i, Ṡ i, C′i , Ci, Ċi, and S ′i for the term. Generally it is good
practice to sum the terms from smallest to largest to preserve precision in the sums.

Table 9.2 (at the very end of this section) lists 40 sample terms from the IAU
2000A nutation series. The entire nutation series is listed at the end of USNO Circu-
lar 179 [Kaplan, 2005b]. About the first half of the series consists of lunisolar terms,
which depend only on l, l′, F, D, and Ω (= φ10 to φ14). In all of these terms, the first
nine multipliers are all zero. The generally smaller planetary terms comprise the
remainder of the series. As an example of how the individual terms are computed
according to equations (9.46) and (9.47), term 6 would be evaluated

∆ψ6 = (−0.0516821 + 0.0001226 T ) sin Φ6 − 0.0000524 cos Φ6

∆ε6 = ( 0.0224386 − 0.0000667 T ) cos Φ6 − 0.0000174 sin Φ6

where Φ6 = φ11 + 2φ12 − 2φ13 + 2φ14

since M6,1 through M6,10 are zero, and only φ11 through φ14 are therefore relevant
for this term. It is assumed that all the φ j have been pre-computed (for all terms)
using the appropriate value of T for the date and time of interest. A printed version
of a 1365-term nutation series is obviously not the most convenient form for com-
putation. As noted earlier, the series is available as a pair of plain-text computer
files at McCarthy and Petit [2003a], and the SOFA and NOVAS software packages
(IAU SOFA Center [2009], Kaplan et al. [2009]) include subroutines for evaluating
it. There are also shorter series available where the highest precision is not required.
The IERS web site provides, in addition to the full IAU 2000A series, an IAU 2000B
series, which has only 77 terms and duplicates the IAU 2000A results to within a
milliarcsecond for input times between 1995 and 2050. NOVAS also provides a
subroutine that evaluates a truncated series, with 488 terms, that duplicates the full
series to 0.1 milliarcsecond accuracy between 1700 and 2300.

Once the nutation series has been evaluated and the values of ∆ψ and ∆ε are
available, the nutation matrix can be constructed. The nutation matrix is simply
N(t) = R1(−ε′)R3(−∆ψ)R1(ε), where, again, R1 and R3 are standard rotations about
the x and z axes, respectively (see “Abbreviations and Symbols Frequently Used”
for precise definitions), and ε′ = ε + ∆ε is the true obliquity (compute ε using equa-
tion (9.42)). This formulation is comprised of

1) A rotation from the mean equator and equinox of t to the mean ecliptic and equinox
of t. This is simply a rotation around the x-axis (the direction toward the mean
equinox of t) by the angle ε, the mean obliquity of t. After the rotation, the funda-
mental plane is the ecliptic of t.

2) A rotation around the new z-axis (the direction toward the ecliptic pole of t) by the
angle −∆ψ, the amount of nutation in longitude at t. After the rotation, the new
x-axis is in the direction of the true equinox of t.
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3) A rotation around the new x-axis (the direction toward the true equinox of t) by
the angle −ε′, the true obliquity of t. After the rotation, the fundamental plane is
the true equator of t, orthogonal to the computed position of the CIP at t.

If one let

S 1 = sin (ε)

S 2 = sin (−∆ψ)

S 3 = sin (−ε − ∆ε)

C1 = cos (ε)

C2 = cos (−∆ψ) (9.51)

C3 = cos (−ε − ∆ε)

then the nutation matrix can also be written

N(t) =


C2 S 2C1 S 2S 1

−S 2C3 C3C2C1 − S 1S 3 C3C2S 1 + C1S 3

S 2S 3 −S 3C2C1 − S 1C3 −S 3C2S 1 + C3C1

 (9.52)

Where high accuracy is not required, coordinates corrected for nutation in right
ascension and declination can be obtained from

αt ≈ αm + ∆ψ (cos ε′ + sin ε′ sinαm tan δm) − ∆ε cosαm tan δm

δt ≈ δm + ∆ψ sin ε′ cosαm + ∆ε sinαm (9.53)

where (αm, δm) are coordinates with respect to the mean equator and equinox of date
(precession only), (αt, δt) are the corresponding coordinates with respect to the true
equator and equinox of date (precession + nutation), and ε′ is the true obliquity.
Note the tan δm factor in right ascension that makes these formulas unsuitable for
use close to the celestial poles.

The traditional formula for the equation of the equinoxes (the difference between
apparent and mean sidereal time) is ∆ψ cos ε′, but in recent years this has been su-
perceded by the more accurate version given in equation (9.16).

9.6.7
Alternative Combined Transformation

The following matrix, C(t), combines precession, nutation, and frame bias and is
used to transform vectors from the GCRS to the Celestial Intermediate Reference
System (CIRS). The CIRS is defined by the equator of the CIP and an origin of
right ascension called the Celestial Intermediate Origin (CIO). The CIO is discussed
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extensively in section 9.7. There, the CIRS is symbolized Eσ; it is analogous to the
true equator and equinox of date, but with a different right ascension origin.

The matrix C(t) is used in the sense

rCIRS = C(t) rGCRS (9.54)

and the components of C(t), as given in the McCarthy and Petit [2004] and The
Astronomical Almanac [2010], are

C(t) = R3(−s)


1 − bX2 −bXY −X
−bXY 1 − bY2 −Y

X Y 1 − b(X2 + Y2)

 (9.55)

where X and Y are the dimensionless coordinates of the CIP in the GCRS (unit vector
components), b = 1/(1 + Z), Z =

√
1 − X2 − Y2, and s is the CIO locator, a small

angle described in section 9.7. All of these quantities are functions of time. R3 is
a standard rotation around the z axis; see appendix , “Abbreviations and Symbols
Frequently Used” for a precise definition.
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9.6.8
Observational Corrections to Precession-Nutation

The IERS still publishes daily values of the observed celestial pole offsets, despite
the vast improvement to the pole position predictions given by the IAU 2000A
precession-nutation model. The offsets now have magnitudes generally less than
1 mas. The fact that they are non-zero is due in part to an effect of unpredictable
amplitude and phase called the free core nutation (or nearly diurnal free wobble),
caused by the rotation of the fluid core of the Earth inside the ellipsoidal cavity that
it occupies. The free core nutation appears as a very small nutation component with
a period of about 430 days (see Figure 9.6). Any other effects not accounted for in
the adopted precession-nutation model will also appear in the celestial pole offsets.
In any event, the celestial pole offsets are now so small that many users may now
decide to ignore them. However, it is worth noting again that, by definition, the
Celestial Intermediate Pole (CIP) includes these observed offsets.

The IERS now publishes celestial pole offsets with respect to the IAU 2000A
precession-nutation model only as dX and dY – corrections to the pole’s computed
unit vector components X and Y in the GCRS (see equation (9.29) and following
notes). The IERS pole offsets are published in units of milliarcseconds but they can
be converted to dimensionless quantities by dividing them by the number of mil-
liarcseconds in one radian, 206264806.247... . Then, the observationally corrected
values of X and Y are

Xcor = X + dX and Ycor = Y + dY (9.56)

The corrected values, expressed as dimensionless quantities (unit vector compo-
nents), are used, e.g., in the matrix C given in sections 9.6.7 and 9.7.5.6. That is,
in equations (9.55) and (9.77), assume X = Xcor and Y = Ycor.

The ecliptic-based pole celestial offsets, dψ and dε, which are used to correct the
nutation theory’s output angles ∆ψ and ∆ε, are no longer supplied (actually, they are
supplied but only for the old pre-2000 precession-nutation model). Software that has
not been coded to use X and Y directly – which includes all software developed prior
to 2003 – will need a front-end to convert the IERS dX and dY values to dψ and dε.
A derivation of a conversion algorithm and several options for its implementation
(depending on the accuracy desired) are given by Kaplan [2003]. Succinctly, given
dimensionless dX and dY values for a given date t, let

dX′

dY ′

dZ′

 = P(t)


dX
dY
dZ

 (9.57)

where P(t) is the precession matrix from J2000.0 to date t, and one can set dZ= 0 in
this approximation, which holds for only a few centuries around J2000.0. Then one
computes the ecliptic-based correction angles in radians using

dψ = dX′/ sin ε and dε = dY ′ (9.58)
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where ε is the mean obliquity of the ecliptic of date t, computed according to equa-
tion (9.42). The observationally corrected values of ∆ψ and ∆ε are obtained simply
by adding dψ and dε, respectively

∆ψcor = ∆ψ + dψ and ∆εcor = ∆ε + dε (9.59)

where care must be taken to ensure that all angles are expressed in the same
units. The corrected values are used in forming the nutation matrix N(t) and in
other nutation-related expressions. That is, in equations (9.51) and (9.53), assume
∆ψ = ∆ψcor and ∆ε = ∆εcor. At the same time, the corrected value of ∆ψ should be
used in forming the equation of the equinoxes using equation (9.16).

The following table 9.2 lists 40 terms from the IAU2000A nutation series adopted
by the IAU, developed by Buffett et al. [2002] (MHB): the first 20 lunisolar terms
and the first 20 planetary terms (these terms are among the largest in the series). The
entire series, in the same format, is printed in Kaplan [2005b]. The series is also
available from the IERS as a pair of plain-text computer files at McCarthy and Pe-
tit [2003a], although the arrangement of the columns differs from what is presented
here. The IERS also provides a Fortran subroutine for evaluating the nutation series,
written by P. Wallace, at McCarthy and Petit [2003c]. The NOVAS software package
includes this subroutine, and the SOFA package contains the same code in a subrou-
tine of a different name. There are also subroutines available that evaluate only a
subset of the series terms for applications that do not require the highest accuracy.

There are 1365 terms in the complete series, 678 lunisolar terms and 687 planetary
terms. (The term numbers are arbitrary and are not involved in the computation.) In
the lunisolar terms, the only fundamental argument multipliers that are non-zero are
Mi,10 through Mi,14, corresponding to the arguments l, l′, F, D, and Ω, respectively.
In the planetary terms, there are no rates of change of the coefficients, i.e., Ṡ i and Ċi

are zero.
The formulas for evaluating the series are given in section 9.6.6; see equa-

tions (9.46)-(9.47) and the text that follows them.
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Table 9.2 Nutation Series – Sample Terms.

Term Fundamental Argument Multipliers Mi, j ∆ψ Coefficients ∆ε Coefficients
i j= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 S i Ṡ i C′i Ci Ċi S ′i

′′ ′′ ′′ ′′ ′′ ′′

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -17.2064161 -0.0174666 0.0033386 9.2052331 0.0009086 0.0015377
2 0 0 0 0 0 0 0 0 0 0 0 2 -2 2 -1.3170906 -0.0001675 -0.0013696 0.5730336 -0.0003015 -0.0004587
3 0 0 0 0 0 0 0 0 0 0 0 2 0 2 -0.2276413 -0.0000234 0.0002796 0.0978459 -0.0000485 0.0001374
4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.2074554 0.0000207 -0.0000698 -0.0897492 0.0000470 -0.0000291
5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.1475877 -0.0003633 0.0011817 0.0073871 -0.0000184 -0.0001924
6 0 0 0 0 0 0 0 0 0 0 1 2 -2 2 -0.0516821 0.0001226 -0.0000524 0.0224386 -0.0000677 -0.0000174
7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.0711159 0.0000073 -0.0000872 -0.0006750 0.0000000 0.0000358
8 0 0 0 0 0 0 0 0 0 0 0 2 0 1 -0.0387298 -0.0000367 0.0000380 0.0200728 0.0000018 0.0000318
9 0 0 0 0 0 0 0 0 0 1 0 2 0 2 -0.0301461 -0.0000036 0.0000816 0.0129025 -0.0000063 0.0000367

10 0 0 0 0 0 0 0 0 0 0 -1 2 -2 2 0.0215829 -0.0000494 0.0000111 -0.0095929 0.0000299 0.0000132
11 0 0 0 0 0 0 0 0 0 0 0 2 -2 1 0.0128227 0.0000137 0.0000181 -0.0068982 -0.0000009 0.0000039
12 0 0 0 0 0 0 0 0 0 -1 0 2 0 2 0.0123457 0.0000011 0.0000019 -0.0053311 0.0000032 -0.0000004
13 0 0 0 0 0 0 0 0 0 -1 0 0 2 0 0.0156994 0.0000010 -0.0000168 -0.0001235 0.0000000 0.0000082
14 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0.0063110 0.0000063 0.0000027 -0.0033228 0.0000000 -0.0000009
15 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 -0.0057976 -0.0000063 -0.0000189 0.0031429 0.0000000 -0.0000075
16 0 0 0 0 0 0 0 0 0 -1 0 2 2 2 -0.0059641 -0.0000011 0.0000149 0.0025543 -0.0000011 0.0000066
17 0 0 0 0 0 0 0 0 0 1 0 2 0 1 -0.0051613 -0.0000042 0.0000129 0.0026366 0.0000000 0.0000078
18 0 0 0 0 0 0 0 0 0 -2 0 2 0 1 0.0045893 0.0000050 0.0000031 -0.0024236 -0.0000010 0.0000020
19 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0.0063384 0.0000011 -0.0000150 -0.0001220 0.0000000 0.0000029
20 0 0 0 0 0 0 0 0 0 0 0 2 2 2 -0.0038571 -0.0000001 0.0000158 0.0016452 -0.0000011 0.0000068

679 0 0 8 -16 4 5 0 0 0 0 0 0 0 0 0.0001440 0. 0.0000000 0.0000000 0. 0.0000000
680 0 0 -8 16 -4 -5 0 0 2 0 0 0 0 0 0.0000056 0. -0.0000117 -0.0000040 0. -0.0000042
681 0 0 8 -16 4 5 0 0 2 0 0 0 0 0 0.0000125 0. -0.0000043 -0.0000054 0. 0.0000000
682 0 0 0 0 0 0 -1 2 2 0 0 0 0 0 0.0000000 0. 0.0000005 0.0000000 0. 0.0000000
683 0 0 -4 8 -1 -5 0 0 2 0 0 0 0 0 0.0000003 0. -0.0000007 0.0000000 0. -0.0000003
684 0 0 4 -8 3 0 0 0 1 0 0 0 0 0 0.0000003 0. 0.0000000 -0.0000002 0. 0.0000000
685 0 0 3 -8 3 0 0 0 0 0 0 1 -1 1 -0.0000114 0. 0.0000000 0.0000061 0. 0.0000000
686 0 10 -3 0 0 0 0 0 0 -1 0 0 0 0 -0.0000219 0. 0.0000089 0.0000000 0. 0.0000000
687 0 0 0 0 -2 6 -3 0 2 0 0 0 0 0 -0.0000003 0. 0.0000000 0.0000000 0. 0.0000000
688 0 0 4 -8 3 0 0 0 0 0 0 0 0 0 -0.0000462 0. 0.0001604 0.0000000 0. 0.0000000
689 0 0 -5 8 -3 0 0 0 0 0 0 1 -1 1 0.0000099 0. 0.0000000 -0.0000053 0. 0.0000000
690 0 0 -4 8 -3 0 0 0 1 0 0 0 0 0 -0.0000003 0. 0.0000000 0.0000002 0. 0.0000000
691 0 0 4 -8 1 5 0 0 2 0 0 0 0 0 0.0000000 0. 0.0000006 0.0000000 0. 0.0000002
692 0 -5 6 4 0 0 0 0 2 0 0 0 0 0 0.0000003 0. 0.0000000 0.0000000 0. 0.0000000
693 0 0 0 0 2 -5 0 0 2 0 0 0 0 0 -0.0000012 0. 0.0000000 0.0000000 0. 0.0000000
694 0 0 0 0 2 -5 0 0 1 0 0 0 0 0 0.0000014 0. -0.0000218 0.0000008 0. 0.0000117
695 0 0 -1 0 2 -5 0 0 0 0 0 1 -1 1 0.0000031 0. -0.0000481 -0.0000017 0. -0.0000257
696 0 0 0 0 2 -5 0 0 0 0 0 0 0 0 -0.0000491 0. 0.0000128 0.0000000 0. 0.0000000
697 0 0 -1 0 -2 5 0 0 0 0 0 1 -1 1 -0.0003084 0. 0.0005123 0.0001647 0. 0.0002735
698 0 0 0 0 -2 5 0 0 1 0 0 0 0 0 -0.0001444 0. 0.0002409 -0.0000771 0. -0.0001286
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9.7
Modeling the Earth’s Rotation

IAU Resolution 1.8 of 2000 establishes two new reference points in the plane of
the moving (instantaneous) equator for the measurement of Earth rotation: the point
on the geocentric celestial sphere is called the Celestial Intermediate Origin (CIO)
and the point on the surface of the Earth is called the Terrestrial Intermediate Origin
(TIO). The CIO and TIO are specific examples of a concept called a non-rotating
origin that was first described by Guinot [1979, 1981].

The Earth Rotation Angle, θ, is the geocentric angle between the directions of
the CIO and TIO, and provides a new way to represent the rotation of the Earth in
the transformation from terrestrial to celestial systems or vice versa. Traditionally,
Greenwich sidereal time, which is the hour angle of the equinox with respect to
the Greenwich meridian, has served this purpose. The CIO and TIO are defined in
such a way that θ is a linear function of Universal Time (UT1) and independent of
the Earth’s precession and nutation; it is a direct measure of the rotational angle of
the Earth around the Celestial Intermediate Pole (the Celestial Intermediate Pole is
described in section 9.6). Since none of these statements holds for sidereal time,
the scheme based on the CIO, TIO, and θ represents a simplification of the way the
rotation of the Earth is treated. In particular, the transformation between Earth-fixed
and space-fixed reference systems can now be specified by three rotation matrices
that are independent of each other: one for polar motion, one for “pure” rotation
(i.e., θ), and one for precession-nutation.

The recent IAU resolutions do not eliminate sidereal time or the use of the equinox
as a fundamental reference point. Instead, the resolutions establish an alternative
way of dealing with Earth rotation. The comparison between the two schemes can
be illuminating. For example, the CIO helps to clarify the relationship between
sidereal time and the Earth’s rotation, since θ is now the “fast term” in the formula
for sidereal time as a function of UT1. The remaining terms comprise the equation of
the origins and represent the accumulated amount of precession and nutation along
the equator as a function of time. The equation of the origins is the length of the arc
between the equinox and the CIO.

9.7.1
A Messy Business

In the computation of the positions of celestial objects with respect to an Earth-fixed
system – or, equivalently, in the transformation between terrestrial and celestial co-
ordinate systems – sidereal time has conventionally represented the Earth’s rotation
about its axis. For example, the hour angle of an object is simply the local appar-
ent sidereal time minus the object’s apparent right ascension with respect to the true
equator and equinox of date (see section 9.3.6.2). Once its hour angle and declination
are available, the object’s zenith distance and azimuth, or its coordinates with respect
to some ground-based instrumental system, can be easily obtained. The same result
can be accomplished by a direct transformation between the celestial and terrestrial
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coordinate systems, conventionally represented by a series of rotation matrices, one
each for precession, nutation, sidereal time, and polar motion.

Yet there is something untidy about these procedures. The computation of appar-
ent sidereal time mixes quantities related to Earth rotation, precession, and nutation
(see equations (9.11)-(9.16)). Because sidereal time is defined as the hour angle of
the equinox, the precession of the equinox in right ascension must be a part of the
expression for sidereal time (the terms in parentheses in equation (9.13)), and the
mean sidereal day is thereby shorter than the rotation period of the Earth by about
0.s008. Nutation also appears, in the equation of the equinoxes (equations (9.15) &
(9.16)). The result is that in the computation of hour angle, precession and nutation
enter twice: once in the sidereal time formula and again in the computation of the
star’s apparent right ascension; the two contributions cancel for stars on the equator.
Similarly, in the transformation between the celestial and terrestrial coordinate sys-
tems, precession and nutation each enter into two of the rotation matrices, and none
of the matrices represents Earth rotation alone.

A consequence of this way of doing things is that whenever improvements are
made to the theory of precession, the numerical coefficients in the expression for
sidereal time must also change. This was not an issue for most of the twentieth cen-
tury, since no adjustments were made to the standard precession algorithm, and the
expression for mean sidereal time derived from Newcomb’s developments was used
without much thought given to the matter. It was the change to this expression, ne-
cessitated by the adjustment of the precession constant in the IAU (1976) System of
Astronomical Constants, that first motivated the search for a fundamental change of
procedure. At about the same time, new high-precision observing techniques, such
as VLBI and lunar laser ranging, were being applied to the study of all components
of the Earth’s rotation, and a review of the basic algorithms seemed appropriate. In
particular, there was interest in constructing a new geometrical picture and set of
expressions for the orientation of the Earth as a function of time that would cleanly
separate the effects of rotation, precession and nutation, and polar motion. Further-
more, since VLBI is not sensitive to the equinox, a procedure that used a different
reference point seemed desirable.

To bring the Earth’s rotation period explicitly into the terrestrial-celestial transfor-
mation, one must define an angle of rotation about the Earth’s axis. As described in
section 9.6, what one specifically means by “the Earth’s axis” is the line through the
geocenter in the direction of the Celestial Intermediate Pole (CIP). The angle of ro-
tation about this axis must be measured with respect to some agreed-upon direction
in space. Since the CIP moves small amounts during one rotation of the Earth (∼0.1
arcsecond with respect to the stars and ∼0.005 arcsecond with respect to the Earth’s
crust), the reference direction cannot be simply a fixed vector or plane in inertial
space. What one needs is an appropriate azimuthal27) origin – a point in the moving
equatorial plane, which is orthogonal to the CIP.

27) The word “azimuthal” is used in its general sense, referring to an angle measured about the z-axis of a
coordinate system.
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9.7.2
Non-Rotating Origins

The reference point that one defines must be such that the rate of change of the
Earth’s rotation angle, measured with respect to this point, is the angular velocity
of the Earth about the CIP. As the CIP moves, the point must move to remain in
the equatorial plane; but the point’s motion must be such that the measured rotation
angle is not contaminated by some component of the motion of the CIP itself.

The concept of a “non-rotating origin” (NRO) on the equator can be applied to any
rotating body. The NRO idea was first described by Bernard Guinot [Guinot, 1979,
1981] and further developed by Nicole Capitaine and collaborators [Capitaine, 1990,
2000; Capitaine and Chollet, 1991; Capitaine et al., 2000, 1986]. The condition on
the motion of such a point is simple: as the equator moves, the point’s instantaneous
motion must always be orthogonal to the equator. That is, the point’s motion at some
time t must be directly toward or away from the position of the pole of rotation at
t. Any other motion of the point would have a component around the axis/pole and
would thus introduce a spurious rate into the measurement of the rotation angle of
the body as a function of time. The point is not unique; any arbitrary point on the
moving equator could be made to move in the prescribed manner. For the Earth, the
difference between the motion of a non-rotating origin and that of the equinox on the
geocentric celestial sphere is illustrated in figure 9.7.

As illustrated in the figure, the motion of the non-rotating origin, σ, is always or-
thogonal to the equator, whereas the equinox has a motion along the equator (the
precession in right ascension). How does one specify the location of a non-rotating
origin? There are three possibilities, outlined in the Formulas subsection below. In
the most straightforward scheme, one simply uses the GCRS right ascension of σ
obtained from a numerical integration (the GCRS is the “geocentric ICRS”). Al-
ternatively, the position of σ can be defined by a quantity, s, that is the difference
between the lengths of two arcs on the celestial sphere. Finally, one can specify the
location of σ with respect to the equinox, Υ: the equatorial arc Υσ is called the
equation of the origins. Whatever geometry is used, the position of σ ultimately de-
pends on an integral over time, because the defining property of σ is its motion – not
a static geometrical relationship with other points or planes. The integral involved is
fairly simple and depends only on the coordinates of the pole and their derivatives
with respect to time. The initial point for the integration can be any point on the
moving equator at any time t0.

So far one has discussed a non-rotating origin only on the celestial sphere, required
because of the movement of the CIP in a space-fixed reference system. But there is
a corresponding situation on the surface of the Earth. The CIP has motions in both
the celestial and terrestrial reference systems. Its motion in the celestial system is
precession-nutation and its motion in the terrestrial system is polar motion, or wob-
ble. From the point of view of a conventional geodetic coordinate system “attached”
to the surface of the Earth (i.e., defined by the specified coordinates of a group of
stations), the CIP wanders around near the geodetic pole in a quasi-circular motion
with an amplitude of about 10 meters (0.3 arcsec) and two primary periods, 12 and
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Figure 9.7 Motion of a non-rotating origin, σ, compared with that of the true equinox, Υ.
“Snapshots” of the positions of the points are shown at three successive times, t1, t2, and t3.
The positions are shown with respect to a geocentric reference system that has no systematic
rotation with respect to a set of extragalactic objects. The ecliptic is shown in the figure as
fixed, although it, too, has a small motion in inertial space.
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14 months. Thus the equator of the CIP has a slight quasi-annual wobble around the
geodetic equator. Actually, it is better thought of in the opposite sense: the geodetic
equator has a slight wobble with respect to the equator of the CIP. That point of view
makes it is a little clearer why a simple “stake in the ground” at the geodetic equator
would not be suitable for measuring the Earth rotation angle around the CIP. The
situation is orders of magnitude less troublesome than that on the celestial sphere,
but for completeness (and very precise applications) it is appropriate to define a ter-
restrial non-rotating origin, designated $. It stays on the CIP equator, and assuming
that the current amplitude of polar motion remains approximately constant, $ will
bob north and south by about 10 m in geodetic latitude every year or so and will have
a secular eastward motion in longitude of about 1.5 mm/cen. The exact motion of $
depends, of course, on what polar motion, which is unpredictable, actually turns out
to be.

The two non-rotating origins, σ and$, are called the Celestial Intermediate Origin
(CIO) and the Terrestrial Intermediate Origin (TIO). Both lie in the same plane –
the equator of the CIP. The Earth Rotation Angle, θ, is defined as the geocentric
angle between these two points. The angle θ is a linear function of Universal Time
(UT1). The formula, given in the note to resolution B1.8 of 2000, is simply θ =

2π (0.7790572732640 + 1.00273781191135448 DU ), where DU is the number of
UT1 days from JD 2451545.0 UT1. The formula assumes a constant angular velocity
of the Earth: no attempt is made to model its secular decrease due to tidal friction,
monthly tidal variations, changes due to the exchange of angular momentum between
the atmosphere and the solid Earth, and other phenomena. These effects will be
reflected in the time series of UT1-UTC or ∆T values (see section 9.3) derived from
precise observations.

The expression given above for θ is now the “fast term” in the formula for mean
sidereal time; see equation (9.13). It accounts for the rotation of the Earth, while the
other terms account for the motion of the equinox along the equator due to preces-
sion.

The plane defined by the geocenter, the CIP, and TIO is called the TIO meridian.
For most ordinary astronomical purposes the TIO meridian can be considered to be
identical to what is often referred to as the Greenwich meridian. The movement
of this meridian with respect to a conventional geodetic system is important only
for the most precise astrometric/geodetic applications. It is worth noting that the
TIO meridian, and the zero-longitude meridians of modern geodetic systems, are
about 100 m from the old transit circle at Greenwich [Dillon et al., 1977; Gebel and
Matthews, 1971]. The term “Greenwich meridian” has ceased to have a technical
meaning in the context of precise geodesy – despite the nice line in the sidewalk at
the old Greenwich observatory. This has become obvious to tourists carrying GPS
receivers!
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9.7.3
The Path of the CIO on the Sky

If one takes the epoch J2000.0 as the starting epoch for evaluating the integral that
provides the position of the CIO, the only mathematical requirement for the initial
point is that it lie on the instantaneous (true) equator of that date – its position along
the equator is arbitrary. By convention, however, the initial position of the CIO on
the instantaneous equator of J2000.0 is set so that equinox-based and CIO-based
computations of Earth rotation yield the same answers; one wants the hour angle of
a given celestial object to be the same, as a function of UT1 (or UTC), no matter how
the calculation is done. For this to happen, the position of the CIO of J2000.0 must
be at GCRS right ascension 0◦ 0′ 00.′′002012. This is about 12.8 arcseconds west of
the true equinox of that date.

Since the CIO rides on the instantaneous equator, its primary motion over the next
few millenia is southward at the rate of precession in declination, initially 2004 arc-
seconds per century. Its rate of southward motion is modulated (but never reversed)
by the nutation periodicities. Its motion in GCRS right ascension is orders of mag-
nitude less rapid; remember that the CIO has no motion along the instantaneous
equator, and the instantaneous equator of J2000.0 is nearly co-planar with the GCRS
equator (xy-plane). The motion of the CIO in GCRS right ascension over the next
few millenia is dominated by a term proportional to t3; the GCRS right ascension
of the CIO at the beginning of year 2100 is only 0.′′068; at the beginning of 2200 it
is 0.′′573; and at the beginning of 2300 it is 1.′′941. Nutation does produce a very
slight wobble in the CIO’s right ascension, but the influence of the nutation terms is
suppressed by several orders of magnitude relative to their effect on the position of
the pole. One can say, therefore, that to within a few arcseconds error, the path of
the CIO on the celestial sphere over the next few centuries is nearly a straight line
southward along the GCRS α=0 hour circle.

The solid line on the left side of Figure 9.8 indicates the locus of the CIO in the
GCRS over 50,000 years – about two precession cycles. The ecliptic is shown as a
dashed line. The initial nearly straight southward motion from the starting point at
J2000.0 is clearly shown. There are occasional “cusps” in the CIO’s motion, where
its secular motion comes to a temporary halt before reversing. The first of these
stationary points occurs in just over a quarter of a precession cycle, as the section of
the moving equator that is farthest south in ecliptic coordinates precesses to near the
GCRS α=0 hour circle. At that time, the CIO will exhibit only nutational oscillations
around a point that remains fixed on the celestial sphere to within 10 mas for almost a
decade. Then its motion resumes, this time northward and westward.28) The motion
of the equinox over the same 50,000-year time period begins at nearly the same
point as the CIO (on the plot scale used, the points overlap), but smoothly follows
the ecliptic westward (to the right on the plot), wrapping around twice and ending

28) There is nothing profound about the stationary points or the dates on which they occur. If one had
started the CIO at GCRS right ascension 6h or 18h at J2000.0, it would have started at a stationary
point.
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Figure 9.8 Locus of the CIO (solid line) and equinox (dashed line) on the celestial sphere over
5×104 years, with respect to space-fixed coordinates. During this time the equinox wraps
around the figure twice and ends up approximately at the starting point.
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up essentially at the starting point.

9.7.4
Transforming Vectors Between Reference Systems

The reference points described above allow us to define three geocentric reference
systems that share, as a common reference plane, the instantaneous, or true, equator
of date. The instantaneous equator is now defined as the plane through the geocenter
orthogonal to the direction of the CIP at a given time, t. The three reference systems
are:

1) True equator and equinox of t – azimuthal origin at the true equinox (Υ) of t
2) Celestial Intermediate Reference System (CIRS) – azimuthal origin at the Celestial

Intermediate Origin (CIO or σ) of t
3) Terrestrial Intermediate Reference System (TIRS) – azimuthal origin at the Ter-

restrial Intermediate Origin (TIO or $) of t

This chapter will often refer to these reference systems by the symbols E
Υ
, Eσ, and

E$, respectively; E denotes an equatorial system, and the subscript indicates the
azimuthal origin. E$ rotates with the Earth whereas the orientations of E

Υ
and Eσ

change slowly with respect to local inertial space. The transformation between E
Υ

and E$ is just a rotation about the z-axis (which points toward the CIP) by GAST, the
angular equivalent of Greenwich apparent sidereal time. The transformation between
Eσ and E$ is a similar rotation, but by θ, the Earth Rotation Angle. These two
transformations reflect different ways – old and new – of representing the rotation of
the Earth.

A short digression into terrestrial, i.e., geodetic, reference systems is in order here.
These systems all have their origin at the geocenter and rotate with the crust of the
Earth. Terrestrial latitude, longitude, and height are now most commonly given with
respect to a reference ellipsoid, an oblate spheroid that approximates the Earth’s
overall shape (actually, that best fits the geoid, a gravitational equipotential sur-
face). The current standard reference elliposid for most purposes is that of the World
Geodetic System 1984 (WGS 84), which forms the basis for the coordinates obtained
from GPS. The WGS 84 ellipsoid has an equatorial radius of 6,378,137 meters and
a polar flattening of 1/298.257223563. For the precise measurement of Earth rota-
tion, however, the International Terrestrial Reference System (ITRS) is used, which
was defined by the International Union of Geodesy and Geophysics (IUGG) in 1991.
The ITRS is realized for practical purposes by the adopted coordinates and veloc-
ities29) of a large group of observing stations. These coordinates are expressed as
geocentric rectangular 3-vectors and thus are not dependent on a reference ellipsoid.
The list of stations and their coordinates is referred to as the International Terrestrial
Reference Frame (ITRF). The fundamental terrestrial coordinate system is therefore
defined in exactly the same way as the fundamental celestial coordinate system (see
section 9.4): a prescription is given for an idealized coordinate system (the ITRS or

29) The velocities are quite small and are due to plate tectonics and post-glacial rebound.
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the ICRS), which is realized in practice by the adopted coordinates of a group of
reference points (the ITRF stations or the ICRF quasars). The coordinates may be
refined as time goes on but the overall system is preserved. It is important to know,
however, that the ITRS/ITRF is consistent with WGS 84 to within a few centimeters;
thus for all astronomical purposes the GPS-obtained coordinates of instruments can
be used with the algorithms presented here.

Our goal is to be able to transform an arbitrary vector (representing for example, an
instrumental position, axis, boresight, or baseline) from the ITRS (≈WGS 84≈GPS)
to the GCRS. The three equatorial reference systems described above – E

Υ
, Eσ, and

E$ – are waypoints, or intermediate stops, in that process. The complete transfor-
mations are
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Equinox-Based Transformation

ITRS or WGS 84
‖

polar motion

⇓

E$ – Terrestrial Intermediate Ref. System

‖

Greenwich apparent sidereal time

⇓

E
Υ

– true equator & equinox

‖

equinox-based rotation for

nutation + precession + frame bias

⇓

GCRS

CIO-Based Transformation

ITRS or WGS 84
‖

polar motion

⇓

E$ – Terrestrial Intermediate Ref. System

‖

Earth Rotation Angle

⇓

Eσ – Celestial Intermediate Ref. System

‖

CIO-based rotation for

nutation + precession + frame bias

⇓

GCRS

which are equivalent. That is, given the same input vector, the same output
vector will result from the two procedures. In the CIO-based transformation,
the three sub-transformations (for polar motion, Earth Rotation Angle, and nuta-
tion/precession/frame bias) are independent. That is not true for the equinox-based
method, because apparent sidereal time incorporates precession and nutation. Each
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of the two methods could be made into a single matrix, and the two matrices must
be numerically identical. That means that the use of the CIO in the second method
does not increase the precision of the result but simply allows for a mathematical
redescription of the overall transformation – basically, a re-sorting of the effects to
be taken into account. This redescription of the transformation provides a clean
separation of the three main aspects of Earth rotation, and recognizes that the obser-
vations defining modern reference systems are not sensitive to the equinox. It thus
yields a more straightforward conceptual view and facilitates a simpler observational
analysis for Earth-rotation measurements and Earth-based astrometry.

These transformations are all rotations that pivot around a common point, the geo-
center. Although developed for observations referred to the geocenter, the same set
of rotations can be applied to observations made from a specific point on the surface
of the Earth. (This follows from the assumption that all points in or on the Earth
are rigidly attached to all other points. The actual non-rigidity – e.g., Earth tides –
is handled as a separate correction.) In such a case, the computations for parallax,
light-bending, aberration, etc., must take into account the non-geocentric position
and velocity of the observer. Then the final computed coordinates are referred, not
to the GCRS, but rather to a proper reference system (in the terminology of relativ-
ity) of the observer.

Let us return to the more familiar problem mentioned at the beginning of the sec-
tion: the computation of local hour angle. In the usual equinox-based scheme, the
apparent place30) of the star or planet is expressed with respect to the true equator
and equinox of date (E

Υ
). The local hour angle is just h = GAST - α

Υ
+ λ, where

GAST is Greenwich apparent sidereal time, α
Υ

is the apparent right ascension of
the object, measured with respect to the true equinox, and λ is the longitude of the
observer (corrected, where necessary, for polar motion). Obviously these quantities
must all be given in the same units. In the CIO-based scheme, the apparent place
would be expressed in the Celestial Intermediate Reference System (Eσ), and h = θ

- ασ + λ, where θ is the Earth Rotation Angle and ασ is the apparent right ascension
of the object, measured with respect to the CIO. (The recommended terminology is
intermediate place for the object position in the Eσ and intermediate right ascension
for the quantity ασ, although some people hold that the term right ascension should
refer only to an origin at the equinox.) In the CIO-based formula, precession and
nutation come into play only once, in expressing the object’s right ascension in the
Eσ system. See section 9.7.5.7 for more details.

9.7.5
Formulas

The formulas below draw heavily on the developments presented previously. In
particular, the 3×3 matrices P, N, and B represent the transformations for precession,
nutation, and frame bias, respectively, and are taken directly from sections 9.6 and

30) See definition on page 750.
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9.4. The matrices P and N are functions of time, t. The time measured in Julian
centuries of TDB (or TT) from J2000.0 is denoted T and is given by T = (JD(TDB)
- 2451545.0)/36525. The elementary rotation matrices R1, R2, and R3 are defined
in “Abbreviations and Symbols Frequently Used”. Formulas from section 9.3 for
sidereal time and the Earth Rotation Angle are used. Explanations of, and formulas
for the time scales UT1, TT, and TDB are also found in section 9.3.

The ultimate objective is to express “local” Earth-fixed vectors, representing ge-
ographic positions, baselines, instrumental axes and boresights, etc., in the GCRS,
where they can be related to the proper coordinates31) of celestial objects. As men-
tioned above, the “GCRS” is a reference system that can be thought of as the “geo-
centric ICRS”. Celestial coordinates in the GCRS are obtained from basic ICRS data
(which are barycentric) by applying the usual algorithms for proper place; see sec-
tion 9.2.3. This section will be working out entirely in a geocentric system and the
GCRS will be obtained from a series of rotations that start with an ordinary Earth-
fixed geodetic system.

9.7.5.1 Location of Cardinal Points
Let us start by establishing the positions of three cardinal points within the GCRS:
the Celestial Intermediate Pole (CIP), the true equinox of date (Υ), and the Celestial
Intermediate Origin (CIO). The unit vectors toward these points will be designated
nGCRS , ΥGCRS , and σGCRS , respectively. As the Earth precesses and nutates in local
inertial space, these points are in continual motion.

The CIP and the equinox can easily be located in the GCRS at any time t simply
by recognizing that they are, respectively, the z- and x-axes of the true equator and
equinox of date system (E

Υ
) at t. The unit vectors therefore are

CIP : nGCRS (t) = BT PT(t) NT(t)


0
0
1


(9.60)

Equinox: ΥGCRS (t) = BT PT(t) NT(t)


1
0
0


where the matrix B accounts for the GCRS frame bias (same as for the ICRS) and
the matrices P(t) and N(t) provide the transformations for precession and nutation,
respectively, at time t. These matrices were developed in sections 9.4.9 and 9.6.4;
the superscript T’s above indicate that the transpose of each of these matrices as
previously developed is used (i.e., one is using the “reverse” transformations here,
from the true equator and equinox of t to the GCRS). The first equation above is
simply equation (9.29) rewritten. Note that ΥGCRS is orthogonal to nGCRS at each time
t.

The components of the unit vector in the direction of the pole, nGCRS , are denoted X,
Y , and Z, and another approach to determining nGCRS is to use the series expansions

31) See footnote 1 on page 750.



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. 9 — 2016/2/13 — 14:05 — page 775

775

Figure 9.9 Relationship between various points involved in locating the CIO. The figure
approximates the relative positions at 2020.0, although the spacings are not to scale. The point
labeled σ is the CIO; Υ is the true equinox; Σ0 is the GCRS right ascension origin; N is the
ascending node of the instantaneous (true) equator of date on the GCRS equator; and Σ′0 is
the point on the instantaneous equator that is the same distance from N as Σ0. As shown, the
quantities s and Eo are respectively positive and negative. The motion of the instantaneous
equator (which is orthogonal to the CIP) is generally southward (down in the figure) near RA=0,
which tends to move the equinox westward (right) and the CIO very slightly eastward (left) with
respect to the GCRS.

for X and Y given in the McCarthy and Petit [2004]. There is a table of daily values
of X and Y in section B of The Astronomical Almanac [2010] (there labeled X and
Y). Once X and Y are converted to dimensionless values, Z =

√
1 − X2 − Y2. (The

IERS series for X and Y are part of a data analysis approach adopted by the IERS that
avoids any explicit reference to the ecliptic or the equinox, although the underlying
theories are those described in section 9.6.)

There are three possible procedures for obtaining the location of the Celestial In-
termediate Origin on the celestial sphere at a given time: (1) following the arc on
the instantaneous equator from the equinox to the CIO; (2) directly computing the
position vector of the CIO in the GCRS by numerical integration; or (3) using the
quantity s, representing the difference in two arcs on the celestial sphere, one of
which ends at the CIO. These procedures will be described in the three subsections
below. Figure 9.9 indicates the geometric relationships among the points mentioned.
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9.7.5.2 CIO Location Relative to the Equinox
The arc on the instantaneous (true) equator of date t from the CIO to the equinox
is called the equation of the origins and is the right ascension of the true equinox
relative to the CIO (or, minus the true right ascension of the CIO). The equation
of the origins is also the difference θ − GAST. It therefore equals the accumulated
precession-nutation of the equinox in right ascension, given by the sum of the terms
in parentheses from equation (9.13) and the equation of the equinoxes given in equa-
tion (9.16) (all times -1). The equation of the origins in arcseconds therefore is

Eo = − 0.014506 − 4612.156534 T − 1.3915817 T 2 + 0.00000044 T 3

+ 0.000029956 T 4 + 0.0000000368 T 5 − ∆ψ cos ε

− 0.00264096 sin (Ω)

− 0.00006352 sin (2Ω)

− 0.00001175 sin (2F − 2D + 3Ω)

− 0.00001121 sin (2F − 2D + Ω) (9.61)

+ 0.00000455 sin (2F − 2D + 2Ω)

− 0.00000202 sin (2F + 3Ω)

− 0.00000198 sin (2F + Ω)

+ 0.00000172 sin (3Ω)

+ 0.00000087 T sin (Ω) + · · ·

where T is the number of centuries of TDB (or TT) from J2000.0; ∆ψ is the nutation
in longitude, in arcseconds; ε is the mean obliquity of the ecliptic; and F, D, and Ω

are fundamental luni-solar arguments. All of the angles are functions of time; see
section 9.6 for expressions (especially equations (9.42), (9.46), & (9.50)). There is a
table of daily values of Eo in section B of The Astronomical Almanac [2010].

To transform an object’s celestial coordinates from the true equator and equinox
of t to the Celestial Intermediate System (i.e., from E

Υ
to Eσ), simply add Eo to the

object’s true right ascension. To similarly transform the components of a position
vector, apply the rotation R3(−Eo). Since many existing software systems are set
up to produce positions with respect to the equator and equinox of date, this is a
relatively easy way to convert those positions to the Celestial Intermediate Reference
System if desired. Note that in such a case there is no computational difference in
using either the equinox-based or CIO-based methods for computing hour angle:
Eo is computed in both methods and is just applied to different quantities. In the
equinox-based method, Eo is subtracted from θ to form sidereal time; in the CIO-
based method, Eo is added to the object’s true right ascension so that θ can be used
in place of sidereal time.

The position of the CIO in the GCRS, σGCRS , can be established by taking the
position vector of the equinox in the GCRS, ΥGCRS , and rotating it counterclockwise
by the angle −Eo (i.e., clockwise by Eo) about the axis nGCRS . Equivalently, establish
the orthonormal basis triad of the equator-and-equinox system within the GCRS:
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ΥGCRS , (nGCRS× ΥGCRS ), and nGCRS . Then

σGCRS = ΥGCRS cosEo − (nGCRS × ΥGCRS ) sinEo (9.62)

9.7.5.3 CIO Location from Numerical Integration
As described above, a non-rotating origin can be described as a point on the moving
equator whose instantaneous motion is always orthogonal to the equator. A sim-
ple geometric construction based on this definition yields the following differential
equation for the motion of a non-rotating origin

σ̇(t) = −
(
σ(t) · ṅ(t)

)
n(t) (9.63)

That is, if one has a model for the motion of the pole, n(t), the path of the non-
rotating origin is described by σ(t), once an initial point on the equator, σ(t0), is
chosen. Conceptually and practically, it is simple to integrate this equation, using,
for example, a standard 4th-order Runge-Kutta integrator. For the motions of the real
Earth, fixed step sizes of order 0.5 day work quite well, and the integration is quite
robust. This is actually a one-dimensional problem carried out in three dimensions,
since one knows the non-rotating origin remains on the equator; one really needs
only to know where along the equator it is. Therefore, two constraints can be applied
at each step: |σ| = 1 and σ · n = 0. See McCarthy [2005].

The above equation is quite general, and to get the specific motion of the CIO,
each of the vectors in the above equation is expressed with respect to the GCRS, i.e.,
σ(t) → σGCRS (t), n(t) → nGCRS (t), and ṅ(t) → ṅGCRS (t). The pole’s position, nGCRS (t),
is given by the first expression in equation (9.60). The pole’s motion, ṅGCRS (t), can
be obtained by numerical differentiation of the pole’s position. By numerically inte-
grating the above equation, one obtains a time series of unit vectors, σGCRS (ti), where
each i is an integration step. The fact that this is actually just a one-dimensional
problem means that it is sufficient to store as output the CIO right ascensions (with
respect to the GCRS), using equation (9.25) to decompose the σGCRS (ti) vectors. In
this way, the integration results in a tabulation of CIO right ascensions at discrete
times. For example, see Kaplan [2005a], where the times are expressed as TDB Ju-
lian dates and the right ascensions are in arcseconds. This file runs from years 1700
to 2300 at 1.2-day intervals.

When one needs to obtain the position of the CIO for some specific time, the file
of CIO right ascensions can be interpolated to that time. The CIO’s unit vector, if
required, can be readily computed: generally, given a fixed coordinate system within
which a pole and its equator move, a point of interest on the equator has a position
vector in the fixed system given by

r =


Z cosα
Z sinα

−X cosα − Y sinα

 (9.64)

where α is the right ascension of the point, and X, Y , and Z are the components of
the pole’s instantaneous unit vector, and all of these quantities are measured relative
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to the fixed coordinate system. The vector r is not in general of unit length but it can
be readily normalized. This formula allows us to reconstruct the unit vector toward
the CIO from just its GCRS right ascension value at the time of interest, since one
already knows how to obtain the pole’s position vector in the GCRS for that time.

Equation (9.63) can be also made to yield the locus of the Terrestrial Interme-
diate Origin (TIO), simply by referring all the vectors to the ITRS – a rotating
geodetic system – rather than the GCRS. In this case, therefore, σ(t) → $ITRS (t),
n(t) → nITRS (t), and ṅ(t) → ṅITRS (t). The path of the CIP within the ITRS ( nITRS (t) )
is what is called polar motion (usually specified by the parameters xp and yp), and is
fundamentally unpredictable. The integration can therefore only be accurately done
for past times, using observed pole positions. A computed future path of the TIO on
the surface of the Earth depends on the assumption that the two major periodicities
observed in polar motion will continue at approximately the current amplitude.

9.7.5.4 CIO Location from the Arc-Difference s
On the celestial sphere, the Earth’s instantaneous (moving) equator intersects the
GCRS equator at two nodes. Let N be the ascending node of the instantaneous
equator on the GCRS equator. One can define a scalar quantity s(t) that represents
the difference between the length of the arc from N westward to the CIO (on the
instantaneous equator) and the length of the arc from N westward to the GCRS origin
of right ascension (on the GCRS equator). The quantity s is called the CIO locator.
If σ represents the CIO and Σ0 represents the right ascension origin of the GCRS
(the direction of the GCRS x-axis), then

s = σN − Σ0N (9.65)

See figure 9.9, where the points Σ0 and Σ′0 are equidistant from the node N. The
quantity s is seen to be the “extra” length of the arc on the instantaneous equator
from N to σ, the position of the CIO. The value of s is fundamentally obtained from
an integral,

s(t) = −

∫ t

t0

X(t)Ẏ(t) − Y(t)Ẋ(t)
1 + Z(t)

dt + s0 (9.66)

where X(t), Y(t), and Z(t) are the three components of the unit vector, nGCRS (t), toward
the celestial pole (CIP). See, e.g., Capitaine et al. [2000] or the McCarthy and Petit
[2004]. The constant of integration, s0, has been set to ensure that the equinox-based
and CIO-based computations of Earth rotation yield the same answers: s0 = 94 µas
[McCarthy and Petit, 2004]. Effectively, the constant adjusts the position of the CIO
on the equator and is thus part of the arc σN. For practical purposes, the value of
s at any given time is provided by a series expansion, given in Table 5.2c of the
McCarthy and Petit [2004]. Software to evaluate this series is available at the IERS
Conventions web site and is also part of the SOFA package. There is a table of daily
values of s in section B of The Astronomical Almanac [2010].

At any time, t, the the unit vector toward the node N is simply NGCRS =

(−Y, X, 0)/
√

X2 + Y2 (where one is no longer explicitly indicating the time depen-
dence of X and Y). To locate the CIO, one rearranges equation (9.65) to yield the arc
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length σN

σN = s + Σ0N = s + arctan(X/(−Y)) (9.67)

The location of the CIO is then obtained by starting at the node N and moving along
the instantaneous equator of t through the arc σN. That is, σGCRS can be constructed
by taking the position vector of the node N in the GCRS, NGCRS , and rotating it
counterclockwise by the angle −σN (i.e., clockwise by σN) about the axis nGCRS .
Equivalently,

σGCRS = NGCRS cos(σN) − (nGCRS × NGCRS ) sin(σN) (9.68)

The three methods for determining the position of the CIO in the GCRS are numer-
ically the same to within several microarcseconds (µas) over six centuries centered
on J2000.0. One now has formulas in hand for obtaining the positions of the three
cardinal points on the sky – the CIP, the CIO, and the equinox – that are involved
in the ITRS-to-GCRS (terrestrial-to-celestial) transformations. In the following, it is
assumed that nGCRS , σGCRS , and ΥGCRS are known vectors for some time t of interest.

9.7.5.5 Geodetic Position Vectors and Polar Motion
Vectors representing the geocentric positions of points on or near the surface of the
Earth are of the general form

r =


(aC + h) cos φG cos λG

(aC + h) cos φG sin λG

(aS + h) sin φG

 (9.69)

where λG is the geodetic longitude, φG is the geodetic latitude, and h is the height.
These coordinates are measured with respect to a reference ellipsoid, fit to the
equipotential surface that effectively defines mean sea level. The ellipsoid has an
equatorial radius of a and a flattening factor f . The quantities C and S depend on
the flattening

C = 1/
√

cos2 φG + (1 − f )2 sin2 φG S = (1 − f )2 C (9.70)

A complete description of geodetic concepts, reference ellipsoids, and computations
is beyond the scope of this Chapter, but a brief summary can be found in section K
of The Astronomical Almanac [2010] and a more thorough account is given in Chap-
ter 4 of the Seidelmann and Urban [2010]. More information can be found in any
introductory textbook on geodesy. Suffice it here to say that the reference ellip-
soid for GPS is WGS 84, with a = 6378137 m and f = 1/298.257223563. For
astronomical purposes it can be assumed that WGS 84 is a good approximation to
the International Terrestrial Reference System (ITRS) described previously in this
section. That is, GPS provides a realization of the ITRS.

It is worth noting that modern space techniques often measure geocentric positions
in rectangular coordinates directly, without using a reference ellipsoid. Also, not all
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vectors of interest represent geographic locations. Vectors representing instrumental
axes, baselines, and boresights are often of more interest to astronomers and these
can usually be easily expressed in the same geodetic system as the instrument lo-
cation. All Earth-fixed vectors, regardless of what they represent, are subject to the
same transformations described below. The ITRS is the assumed starting point for
these transformations, even though in most cases astronomers will be using vectors
in some system that approximates the ITRS.

For astronomical applications, one must correct ITRS vectors for polar motion
(also called wobble). In current terminology, this is a transformation from the ITRS
to the Terrestrial Intermediate Reference System (TIRS; in this Chapter it is desig-
nated E$), and is the first transformation shown in the flowcharts on page 771. Polar
motion is the small quasi-periodic excursion of the geodetic pole from the pole of
rotation, or, more precisely stated, the excursion of the ITRS z-axis from the CIP.
It is described by the parameters xp and yp, which are the coordinates of the CIP in
the ITRS, and which generally amount to a few tenths of an arcsecond. Daily val-
ues of x and y, the observed pole coordinates, are published by the IERS (see, e.g.,
Central Bureau of the IERS [2010]). These published values should, for the most
precise applications (<1 mas), be augmented by very small predictable components
to polar motion, with periods ≤1.2 days. These extra components are evaluated and
added after interpolation of the published x and y values – see section 5.4.2 of the
McCarthy and Petit [2004]. The sum (total polar motion) is xp and yp. However,
most users will be able to assume xp = x and yp = y.

The transformation one seesk not only must reorient the pole from the ITRS z-
axis to the CIP, it also must move the origin of longitude very slightly from the
ITRS x-axis to the Terrestrial Intermediate Origin (TIO). The latter shift is so tiny
that its magnitude can be given by an approximate formula, linear in time, based
on the two main circular components of polar motion as observed over the last few
decades. That shift is s′ = −47 µas T , where T is the time (either TT or TDB)
in centuries from J2000.0 [Lambert and Bizouard, 2002]. Since 47 µas amounts to
1.5 mm on the surface of the Earth, this correction is entirely negligible for most
purposes. Nevertheless, it is included here for completeness.

The ITRS to E$ transformation then is accomplished using the polar motion (wob-
ble) matrix W(t)

rE$
= W(t) rITRS (9.71)

where

W(t) = R3(−s′) R2(xp) R1(yp) (9.72)

If one let

S x = sin (xp)

S y = sin (yp)

S s = sin (−s′)
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Cx = cos (xp)

Cy = cos (yp) (9.73)

Cs = cos (−s′)

then the wobble matrix can also be written

W(t) =


CxCs S xS yCs + CyS s −S xCyCs + S yS s

−CxS s −S xS yS s + CyCs S xCyS s + S yCs

S x −CxS y CxCy

 ≈


1 −s′ −xp

s′ 1 yp

xp −yp 1


(9.74)

where the form on the right is a first-order approximation. Due to the smallness of
the angles involved, the first-order matrix is quite adequate for most applications –
further, s′ can be set to zero.

9.7.5.6 Complete Terrestrial to Celestial Transformation
The transformations corresponding to the two flowcharts on page 771 are

Equinox-based transformation: rGCRS = BT PT NT R3(−GAST) W rITRS

CIO-based transformation: rGCRS = CT R3(−θ) W rITRS (9.75)

where all of the matrices except B are time-dependent. GAST is Greenwich appar-
ent sidereal time and θ is the Earth Rotation Angle; formulas are given in section
9.3.6.2 (equations (9.11)-(9.16)). The matrices, working from right to left, perform
the following sub-transformations

W ITRS to E$

R3(−GAST) E$ to E
Υ

BT PT NT E
Υ

to GCRS
R3(−θ) E$ to Eσ

CT Eσ to GCRS

The three “E” reference systems were described on page 770.
The matrix C has not yet been developed in this section. One form of the matrix

C was introduced in section 9.6.7 for the transformation from the GCRS to Eσ. The
transpose is used here because one is interested in the opposite transformation. C
or CT is easy to construct because one already has the three basis vectors of Eσ

expressed in the GCRS: the z-axis is toward nGCRS , the CIP; the x-axis is toward
σGCRS , the CIO; and the y-axis is toward nGCRS × σGCRS . Call the latter vector yGCRS .
Then,

CT =
(
σGCRS yGCRS nGCRS

)
=


σ1 y1 n1

σ2 y2 n2

σ3 y3 n3

 =


σ1 y1 X
σ2 y2 Y
σ3 y3 Z

 (9.76)
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where X, Y , and Z are the CIP coordinates, expressed as dimensionless quantities.
As in section 9.6.7, the matrix can also be constructed using only X and Y , together
with the CIO locator, s

CT =


1 − bX2 −bXY X
−bXY 1 − bY2 Y
−X −Y 1 − b(X2 + Y2)

 R3(s) (9.77)

where b = 1/(1 + Z) and Z =
√

1 − X2 − Y2. The latter form is taken from the Mc-
Carthy and Petit [2004], Chapter 5, where CT is called Q(t). The two constructions
of CT are numerically the same.

9.7.5.7 Hour Angle
The local hour angle of a celestial object is given by

Equinox-based formula: h = GAST − α
Υ

+ λ

CIO-based formula: h = θ − ασ + λ (9.78)

where GAST is Greenwich apparent sidereal time, θ is the Earth Rotation Angle,
and λ is the longitude of the observer. The quantities involved can be expressed
in either angle or time units as long as they are consistent. The right ascension in
the two cases is expressed with respect to different origins: α

Υ
is the apparent right

ascension of the object, measured with respect to the true equinox, and ασ is the
apparent right ascension of the object, measured with respect to the CIO. That is, the
coordinates of the object are expressed in system E

Υ
in the equinox-based formula

and in system Eσ in the CIO-based formula. Since both systems share the same
equator – the instantaneous equator of date, orthogonal to the CIP – the apparent
declination of the object is the same in the two cases.

The two formulas in (9.78) are equivalent, which can be seen by substituting, in
the equinox-based formula, GAST = θ − Eo and α

Υ
= ασ − Eo, where Eo is the

equation of the origins.
The longitude of the observer, λ, is expressed in the E$ system, that is, it is cor-

rected for polar motion. Using the first-order form of the matrix W, given in equa-
tion (9.74) (and assuming s′=0), it is straightforward to derive equation (9.19) for λ.
Using notation consistent with that used in this section, this equation is

λ ≡ λE$
= λITRS +

(
xp sin λITRS + yp cos λITRS

)
tan φITRS /3600 (9.79)

where λITRS and φITRS are the ITRS (geodetic) longitude and latitude of the observer,
with λITRS in degrees; and xp and yp are the coordinates of the pole (CIP), in arc-
seconds. This formula is approximate and should not be used for places at polar
latitudes.

The corresponding equation for the latitude, φ, corrected for polar motion is

φ ≡ φE$
= φITRS +

(
xp cos λITRS − yp sin λITRS

)
/3600 (9.80)

although this equation is not needed in hour angle computations; it is given here only
for completeness.
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The common notion of hour angle can be expressed more precisely using concepts
introduced in sections 9.6 and 9.7. The local hour angle of an object is the angle
between two planes: the plane containing the geocenter, the CIP, and the observer;
and the plane containing the geocenter, the CIP, and the object. Hour angle increases
with time and is positive when the object is west of the observer as viewed from the
geocenter. The two planes define meridians on the celestial sphere that meet at the
CIP. From the point of view of the observer, the CIP is not, in general, exactly at the
geodetic north point, which is the direction toward the ITRS z-axis. The azimuths

of the two directions differ by as much as
√

x2
p + y2

p/ cos φITRS , depending on time of
day. This difference is small (usually <1 arcsecond) and often negligible for practical
applications. The plane defining the astronomical Greenwich meridian (from which
Greenwich hour angles are measured) can be understood to contain the geocenter,
the CIP, and TIO; there, λ ≡ λE$

= 0. This plane is now called the TIO meridian.
The CIO-based formula for hour angle is quite simple to use (since θ is linear with

time) if one has the coordinates of the object expressed in system Eσ. Fortunately,
this is straightforward if one has the object’s coordinates expressed in the GCRS,
because one also has the basis vectors of Eσ expressed in the GCRS. If the object’s
vector in the GCRS is rGCRS , then the object’s vector in Eσ is simply

rEσ
= C rGCRS =


rGCRS · σGCRS

rGCRS · yGCRS

rGCRS · nGCRS

 where yGCRS = nGCRS × σGCRS (9.81)

Then

ασ = arctan
(

rGCRS · yGCRS

rGCRS · σGCRS

)
(9.82)

As a specific case, one knows the position vector of the equinox, ΥGCRS . Applying
equation (9.82) to ΥGCRS and using it in the second formula of (9.78), with λ=0, one
obtains the hour angle of the equinox at the Greenwich (or TIO) meridian. But this
is the definition of Greenwich Apparent Sidereal Time. Therefore,

GAST = θ − arctan
(

ΥGCRS · yGCRS

ΥGCRS · σGCRS

)
(9.83)

Evidently, then,

Eo = arctan
(

ΥGCRS · yGCRS

ΥGCRS · σGCRS

)
(9.84)

which merely restates the definition of Eo – the equatorial angle from the CIO to the
equinox, i.e., the right ascension of the equinox in system Eσ.
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A
Fundamental Solution of the Laplace Equation

This appendix gives solutions of the Laplace equations for scalar F(t, x), vec-
tor Fi(t, x), and tensor Fi j(t, x) fields in three dimensional space with coordinates
r = (x, y, z). These equations are

4F(t, x) = 0 , (A.1a)

4Fi(t, x) = 0 , (A.1b)

4Fi j(t, x) = 0 , (A.1c)

where 4 = δi j∂i∂ j is the Laplace operator, and ∂i = ∂/∂x j is a partial derivative
along i-th coordinate axis. The procedure of finding solutions of equations (A.1) is
based on the approach developed by Gelfand et al. [1958] (see also [Blanchet and
Damour, 1986; Thorne, 1980] and references therein).

Basic spherical harmonics are [Gelfand et al., 1958, page 42, equation 14]

Y lm(θ, φ) =
1
√

2π
eimφPm

l (cosθ) , (−l ≤ m ≤ l), (A.2)

where Pm
l (cos θ) are the normalized associated Legendre functions

Pm
l (z) =

√
(l + m)!
(l − m)!

√
2l + 1

2
(1 − z2)−m/2

2ll!
dl−m(z2 − 1)l

dzl−m . (A.3)

Spherical harmonics Y lm(θ, φ) form an orthogonal system of elements of a canonical
basis on the surface of a unit sphere.

The general theorem concerning the resolution of a unitary representation of the
group of rotation into irreducible representations means that every function, F(θ, φ),
such that its squared modulus is integrable over the surface of the sphere, may be
expanded in a convergent series with respect to the spherical harmonics

F(θ, φ) =

∞∑
l=0

l∑
m=−l

FlmY lm(θ, φ) , (A.4)

where Flm are complex-numbered coefficients. Making use of transformation from
spherical to Cartesian coordinates, one can obtain a one-to-one mapping between the
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spherical harmonics and the symmetric trace-free (STF) tensors with rank l [Thorne,
1980]:

Y lm(θ, φ) = Ylm
<Kl>

NKl , (A.5)

where here and nowhere else, the repeated indices do not assume the Einstein sum-
mation rule, the object

NKl = nk1 nk2 ...nkl , (A.6)

is a tensor of l-th rank made of the product of l components of the unit radial vector,
n = (ni) = (nx, ny, nz). Tensors Ylm

<Kl>
≡ Ylm

<k1k2 ...kl>
with index m taking values

−l ≤ m ≤ l, form a basis in (2l + 1)-dimensional space of symmetric and trace-free
tensors with l indices. Their exact form is rather long and is not important in the
current discussion. It can be found in [Thorne, 1980, equation 2.12].

Any STF tensor of rank l can be represented in form of a finite decomposition

F<Kl> =

l∑
m=−l

F lmYlm
<Kl>

, (A.7)

where the multi-index Kl ≡ k1k2...kl. Hence, equation (A.4) can be recast to the
following form

F(θ, φ) =

∞∑
l=0

F<Kl>NKl , (A.8)

or in equivalent form

F(θ, φ) =

∞∑
l=0

F<L>NL , (A.9)

that replaces the multi-index Kl → L which can be understood as a set of any l
indices which enter the summation as the dummy indices.

Spherical harmonics are the eigenfunctions of the orbital angular momentum op-
erator

L2Y lm ≡
[
∂r(r2∂r) − r24

]
Y lm = l(l + 1)Y lm , (A.10)

that is a consequence of definition of the canonical basis in the sub-space in which
the irreducible representation with weight l is realized [Gelfand et al., 1958]. Equa-
tions (A.8) and (A.10) reveal that any scalar function F(t, x) that is a solution of the
Laplace equation (A.1a) is given by

F(t, x) =

∞∑
l=0

[
A<L>∂Lr−1 + B<L>xL

]
, (A.11)

where A<L> and B<L> are STF multipole moments depending on time t only, and
∂L = ∂k1∂k2 ...∂kl is the operator of l partial derivatives. Two terms in the right side
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of equation (A.11) behave differently as the radial distance goes to zero and to infin-
ity. These two solutions are singled out by the boundary conditions imposed on the
solution. If the solution is supposed to be convergent at the coordinate origin, the
coefficients A<L> = 0. On the other hand, if the solution is supposed to behave well
at infinity, the coefficients B<L> = 0. Notice that the solution with coefficients A<L>

consists of a set of partial derivatives taken from the fundamental solution 1/r of the
Laplace equation.

Vector and tensor spherical harmonics are obtained from the direct product of two
irreducible representations of the rotation group with weights n and k which can be
expanded into irreducible representations with weights |n−k| ≤ l ≤ |n+k|. Canonical
orthonormal basis in the sub-space of the vector spherical harmonics in which the
irreducible representation has weight l, is the set of 3(2l + 1) functions

Yl−1, lm(θ, φ) =

l−1∑
p=−l−1

1∑
q=−1

Blm
1,q;l−1,pξqY l−1 p(θ, φ) , (A.12a)

Yl, lm(θ, φ) =

l∑
p=−l

1∑
q=−1

Blm
1,q;l,pξqY lp(θ, φ) , (A.12b)

Yl+1, lm(θ, φ) =

l+1∑
p=−l+1

1∑
q=−1

Blm
1,q;l+1,pξqY l+1 p(θ, φ) , (A.12c)

(A.12d)

where notation Blm
k,q;n,p stands for the Clebsch-Gordan coefficients [Gelfand et al.,

1958, page 148, equation 16], and three unit vectors

ξ−1 =
ex − iey
√

2
, ξ0 = ez , ξ1 = −

ex + iey
√

2
(A.13)

represent a canonical basis of the main matrix representation of order 1.
Canonical basis in the three-dimensional space of constant tensors of second rank

is made of 9 tensors such that five of them,

tm =

1∑
p=−1

1∑
q=−1

B2m
1,q;1,pξp ⊗ ξq , (−2 ≤ m ≤ 2) (A.14)

are symmetric trace-free tensors; three tensors,

Pm =

1∑
p=−1

1∑
q=−1

B1m
1,q;1,pξp ⊗ ξq , (−1 ≤ m ≤ 1) (A.15)

are fully antisymmetric, and one,

δ =

1∑
p=−1

1∑
q=−1

B00
1,q;1,pξp ⊗ ξq , (A.16)
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is the unit tensor. The antisymmetric part of the basis will be abandoned as one is
interested only in the symmetric tensors. Hence, the canonical basis in the sub-space
of such tensors of the second rank with irreducible representation with weight l is
formed from 6(2l + 1) tensor harmonics

T2n, lm =

n∑
p=−n

2∑
q=−2

Blm
2,q;n,pYnptq , (A.17)

where each n takes one of the values l − 2 ≤ n ≤ l + 2, along with 2l + 1 scalar
spherical harmonics

T0l, lm = Y lmδ . (A.18)

Finally, solutions of the Laplace equations for vector, Fi = Fi(t, x), and tensor,
Fi j = Fi j(t, x), functions (A.1a) are given as follows

Fi(t, x) =

∞∑
l=0

[
C<L>∂iLr−1 + D<L>xiL

]
(A.19)

+

∞∑
l=1

[
G<iL−1>∂L−1r−1 + H<iL−1>xL−1

]
+

∞∑
l=1

εipq

[
E<qL−1>∂pL−1r−1 + F<qL−1>xpL−1

]
,

Fi j(t, x) =

∞∑
l=0

[
I<L>∂Lr−1 + J<L>xL

]
δi j (A.20)

+

∞∑
l=0

[
K<L>∂i jLr−1 + M<L>x<i jL>

]
+

∞∑
l=2

[
V<i jL−2>∂L−2r−1 + W<i jL−2>xL−2

]
+

∞∑
l=1

[
N<iL−1>∂ jL−1r−1 + P<iL−1>x< jL−1>

]Sym(i j)

+

∞∑
l=2

[
εipq

(
S <q jL−2>∂pL−2r−1 + T<q jL−1>x<pL−2>

)]Sym(i j)

+

∞∑
l=1

[
εipq

(
Q<qL−1>∂ jpL−1r−1 + R<qL−1>x< jpL−1>

)]Sym(i j)
,

where the symbol [...]Sym(i j) denotes symmetrization of the terms enclosed to the
brackets with respect to indices i and j; coefficients CL,DL, ...,TL represent STF
multipole moments depending on time t only, and multi-indices L − 1 ≡ k1k2...kl−1,
L − 2 ≡ k1k2...kl−2.
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B
Astronomical Constants

This appendix does not contain a list of adopted fundamental astronomical constants,
because the IAU is no longer maintaining such a list. The last set of officially adopted
constant values was the IAU (1976) System of Astronomical Constants. That list is
almost entirely obsolete. For a while, an IAU working group maintained a list of
“best estimates” of various constant values, but the IAU General Assembly of 2003
did not renew that mandate. It can be argued that a list of fundamental astronomical
constants is no longer possible, given the complexity of the models now used and the
many free parameters that must be adjusted in each model to fit observations. That
is, there are more constants now to consider, and their values are theory dependent.
In many cases, it would be incorrect to attempt to use a constant value, obtained from
the fit of one theory to observations, with another theory.

One is left with three defining constants with IAU-sanctioned values that are in-
tended to be fixed:

1) The Gaussian gravitational constant: k =

0.01720209895. The dimensions of k2 are
AU3M©·

−1d−2 where AU is the astronomical unit, M©· is the solar mass, and
d is the day of 86400 seconds.

2) The speed of light: c = 299 792 458 m s−1.
3) The fractional difference in rate between the time scales TT and TCG: LG =

6.969290134×10−10. Specifically, the derivative dTT/dTCG = 1−LG. (See Chap-
ter 9.4.)

The [McCarthy and Petit, 2004] includes a list of constants as its Table 1.1. Several
useful ones from this list that are not highly theory dependent (for astronomical use,
at least) are:

1) Equatorial radius of the Earth: aE = 6 378 136.6 m.
2) Flattening factor of the Earth: f = 1/298.25642.
3) Dynamical form factor of the Earth: J2 = 1.0826359×10−3.
4) Nominal mean angular velocity of Earth rotation: ω = 7.292115×10−5 rad s−1.
5) Constant of gravitation: G = 6.673×10−11 m3kg−1s−2.

(CODATA 2002 recommended value: 6.6742×10−11 m3kg−1s−2).

The first four values above were recommended by Special Commission 3 of the In-
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ternational Association of Geodesy; the first three are so-called “zero tide” values.
The need to introduce the concept of “zero tide” values indicates how theory creeps
into even such basic constants as the radius of the Earth as the precision of measure-
ment increases. See section 1.1 of the [McCarthy and Petit, 2004]. Planetary masses,
the length of the astronomical unit, and related constants used in or obtained from
the Jet Propulsion Laboratory DE405/LE405 ephemeris are listed with its descrip-
tion in Chapter 9.5.1. The rate of general precession in longitude (the “constant of
precession”) is given in Chapter 9.6 on the precession and nutation theories.

The World Geodetic System 1984 (WGS 84), which is the basis for coordi-
nates obtained from GPS, uses an Earth ellipsoid with aE = 6378137m and f =

1/298.257223563.
Some astronomical “constants” (along with reference data such as star positions)

actually represent quantities that slowly vary, and the values given must therefore be
associated with a specific epoch. That epoch is now almost always 2000 January 1,
12h (JD 2451545.0), which can be expressed in any of the usual time scales. If,
however, that epoch is considered an event at the geocenter and given in the TT time
scale, the epoch is designated J2000.0. See Chapter 9.3.

The table below yields a list of the best estimates of the astronomical constants
compiled by Dr. B. Luzum from the United States Naval Observatory on the basis
of references cited at the end of the table.
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Defining Constants 

Constant Description Value Reference 

Natural Defining Constant 

c Speed of light 2.997 924 58   10
8
 ms

-1 [7]

Auxiliary Defining Constants 

k
[1]

 Gaussian gravitational constant 1.720 209 895   10
-2 [14, 11] 

LG 1–d(TT)/d(TCG) 6.969 290 134   10
-10 [15, 25] 

LB 1–d(TDB)/d(TCB) 1.550 519 768   10
-8 [16]

TDB0
[2]

 TDB –TCB at T0 –6.55   10
-5

 s [16]

!0
[3] Earth Rotation Angle at J2000.0 0.779 057 273 264 0 

revolutions

[15, 4] 

d!/dt
[3] Rate of advance of Earth 

Rotation Angle 

1.002 737 811 911 354 48 

revolutions UT1-day
-1

[15, 4] 

Current Best Estimates 

Constant Description Value Uncertainty Reference

  Natural Measurable Constants 

G Constant of gravitation 6.674 28   10
-11

 m
3
kg

-1
s

-2
 6.7   10

-15
 m

3
kg

-1
s

-2 [7]

Derived Constants 

au
[4] 

Astronomical unit 1.495 978 707 00   10
11

 m 3 m [26] 

LC Average value of 1–

d(TCG)/d(TCB)
1.480 826 867 41   10

-8
 2   10

-17 [18]

Body Constants
[5]

MM/ME Ratio of the mass of the 

Moon to the Earth 
1.230 003 71   10

-2
 4   10

-10 [26]

MS/MMe Ratio of the mass of the 

Sun to Mercury 
6.023 6   10

6
 3   10

2 [1]

MS/MVe Ratio of the mass of the 

Sun to Venus 
4.085 237 19   10

5
 8   10

-3 [23]

MS/MMa Ratio of the mass of the 

Sun to Mars 
3.098 703 59   10

6
 2   10

-2 [24]

MS/MJ Ratio of the mass of the 

Sun to Jupiter 
1.047 348 644   10

3
 1.7   10

-5 [20]

MS/MSa Ratio of the mass of the 

Sun to Saturn 
3.497 901 8   10

3
 1   10

-4 [21]

MS/MU Ratio of the mass of the 

Sun to Uranus 
2.290 298   10

4
 3   10

-2 [19]
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MS/MN Ratio of the mass of the 

Sun to Neptune 
1.941 226   10

4
 3   10

-2 [22]

MS/MP Ratio of the mass of the 

Sun to Pluto 
1.365 66   10

8
 2.8   10

4 [29]

MS/MEris Ratio of the mass of the 

Sun to Eris 
1.191   10

8
 1.4   10

6 [2]

MCeres/MS Ratio of the mass of Ceres 

to the Sun 
4.72   10

-10
 3   10

-12 [26]

MPallas/MS Ratio of the mass of Pallas 

to the Sun 
1.03   10

-10
 3   10

-12 [26]

MVesta/MS Ratio of the mass of Vesta 

to the Sun 
1.35   10

-10
 3   10

-12 [26]

aE
[6] 

Equatorial radius of the 

Earth
6.378 136 6   10

6
 m 1   10

-1
 m [12, 3] 

J2
[6]

 Dynamical form factor 1.082 635 9   10
-3

 1   10
-10 [12]

dJ2/dt Long-term variation in J2 –3.001   10
-9

 cy
-1

 6   10
-10

 cy
-1 [16]

GMS Heliocentric gravitational 

constant
1.327 124 420 99   10

20

m
3
s

-2
 (TCB-compatible) 

1.327 124 400 41   10
20

m
3
s

-2
 (TDB-compatible) 

1.0   10
10

 m
3
s

-2

(TCB-compatible) 

1.0   10
10

 m
3
s

-2

(TDB-compatible) 

[8]

GME Geocentric gravitational 

constant
3.986 004 418   10

14
 m

3
s

-2

(TCB-compatible) 

3.986 004 415   10
14

 m
3
s

-2

(TT-compatible) 

3.986 004 356   10
14

 m
3
s

-2

(TDB-compatible) 

8   10
5
 m

3
s

-2
 (TCB-

compatible) 

8   10
5
 m

3
s

-2
 (TT-

compatible) 

8   10
5
 m

3
s

-2

(TDB-compatible) 

[27]

W0 Potential of the geoid 6.263 685 60   10
7
 m

2
s

-2
 5   10

-1
 m

2
s

-2 [12]

!
[7] Nominal mean angular 

velocity of the Earth 
7.292 115   10

-5
 rad s

-1  [12] 

Initial Values at J2000.0 

"J2000
[8] Obliquity of the ecliptic at 

J2000.0
8.438 140 6   10

4
# 1   10

-3
# [16, 13, 

6]

Notes:

1. The Gaussian gravitational constant, k, defines au. 

2. This constant comes from the expression TDB = TCB – LB   ( JDTCB – T0 )  

86400 + TDB0, where T0 = 2443144.5003725. 

3. This constant comes from the expression $(UT1) = 2%(0.7790572732640 + 

1.00273781191135448   (Julian UT1 date – 2451545.0). 

4. The value for au is TDB-compatible.  An accepted definition for the TCB-

compatible value of au is still under discussion.

5. All values of the masses from Mars through Eris are the sum of the masses of the 

celestial body and its satellites. 
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6. The values for aE and J2 are “zero tide” values (see IERS Conventions for an 

explanation of the terminology).  Values according to other conventions can be 

found in Groten et al. (2000). 

7.   is a nominal value and was chosen to have the number of significant digits 

limited to those for which the value can be considered constant. 

8. !J2000 is a component of the IAU 2006 precession model, which includes 

expressions that are time dependent. 

9. The rate of precession appearing in previous lists of constants is no longer 

appropriate given the IAU 2006 precession model [16].  
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C
Text of IAU Resolutions

The full text of recent resolutions of the International Astronomical Union (IAU)
regarding fundamental reference systems, time scales, and Earth orientation models
is given on the following pages. The resolutions are grouped by date of adoption
(1997, 2000, 2006, and 2009), not subject matter.

Some of the later resolutions clarify or even supersede previous ones. For ex-
ample, the terminology of Celestial (or Terrestrial) Ephemeris Origin used in reso-
lution B1.8 of 2000 was replaced by Celestial (or Terrestrial) Intermediate Origin
in resolution B2 (recommendation 1) of 2006. Resolution B1.6 of 2000 “encour-
ages...the development of new expressions for precession consistent with the IAU
2000A model” but the final precession model was not adopted until resolution B1
of 2006. Similarly, the resolutions that established the BCRS in 2000 left its spa-
tial orientation undefined; the orientation was specified in 2006 as that of the ICRS.
It could be argued that the BCRS and ICRS should have been specified at the same
time, since they are so closely linked (the BCRS is the relativistic basis for the ICRS;
the ICRS is the spatial orientation of the BCRS), and possibly given a single name
that encompasses the complete definition.

Legislation of this kind is rarely a complete or perfect representation of the un-
derlying science, and compromises, poor wording, and unintended consequences
sometimes creep into the process. A particular concern is specifications that rely on
references to papers not yet published at the time the resolution was adopted or to
web sites with content that changes.

C.1

Text of IAU Resolutions of 1997 Adopted at the XXIII-rd General Assembly,
Kyoto

Resolution B2 On the International Celestial Reference System (ICRS)

The XXIIIrd International Astronomical Union General Assembly
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Considering

(a) That Recommendation VII of Resolution A4 of the 21st General Assembly spec-
ifies the coordinate system for the new celestial reference frame and, in particular,
its continuity with the FK5 system at J2000.0;

(b) That Resolution B5 of the 22nd General Assembly specifies a list of extragalac-
tic sources for consideration as candidates for the realization of the new celestial
reference frame;

(c) That the IAU Working Group on Reference Frames has in 1995 finalized the
positions of these candidate extragalactic sources in a coordinate frame aligned to
that of the FK5 to within the tolerance of the errors in the latter (see note 1);

(d) That the Hipparcos Catalogue was finalized in 1996 and that its coordinate frame
is aligned to that of the frame of the extragalactic sources in (c) with one sigma
uncertainties of ± 0.6 milliarcseconds (mas) at epoch J1991.25 and ± 0.25 mas per
year in rotation rate;

Noting

That all the conditions in the IAU Resolutions have now been met;

Resolves

(a) That, as from 1 January 1998, the IAU celestial reference system shall be the
International Celestial Reference System (ICRS) as specified in the 1991 IAU Reso-
lution on reference frames and as defined by the International Earth Rotation Service
(IERS) (see note 2);

(b) That the corresponding fundamental reference frame shall be the International
Celestial Reference Frame (ICRF) constructed by the IAU Working Group on Ref-
erence Frames;

(c) That the Hipparcos Catalogue shall be the primary realization of the ICRS at
optical wavelengths;

(d) That IERS should take appropriate measures, in conjunction with the IAU Work-
ing Group on reference frames, to maintain the ICRF and its ties to the reference
frames at other wavelengths.

Note 1: IERS 1995 Report, Observatoire de Paris, p. II-19 (1996).

Note 2: “The extragalactic reference system of the International Earth Rotation Ser-
vice (ICRS)”, Arias, E.F. et al. A&A 303, 604 (1995).

Resolution B4 On Non-Rigid Earth Nutation Theory
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The XXIIIrd International Astronomical Union General Assembly

Recognizing

that the International Astronomical Union and the International Union of Geodesy
and Geophysics Working Group (IAU-IUGG WG) on Non-rigid Earth Nutation The-
ory has met its goal by identifying the remaining geophysical and astronomical phe-
nomena that must be modeled before an accurate theory of nutation for a non-rigid
Earth can be adopted, and

that, as instructed by IAU Recommendation C1 in 1994, the International Earth Ro-
tation Service (IERS) has published in the IERS Conventions (1996) an interim
precession-nutation model that matches the observations with an uncertainty of ±
1 milliarcsecond (mas),

endorses

the conclusions of the IAU-IUGG WG on Non-rigid Earth Nutation Theory given in
the appendix,

requests

the IAU-IUGG WG on Non-rigid Earth Nutation Theory to present a detailed report
to the next IUGG General Assembly (August 1999), at which time the WG will be
discontinued,

and urges

the scientific community to address the following questions in the future:

- completion of a new rigid Earth nutation series with the additional terms necessary
for the theory to be complete to within ± 5 microarcseconds, and

- completion of a new non-rigid Earth transfer function for an Earth initially in non-
hydrostatic equilibrium, incorporating mantle inelasticity and a Free Core Nutation
period in agreement with the observations, and taking into account better modeling
of the fluid parts of the planet, including dissipation.

APPENDIX

The WG on Non-rigid Earth Nutation Theory has quantified the problems in the
nutation series adopted by the IAU in 1980 by noting:

(1) that there is a difference in the precession rate of about −3.0milliarcseconds per
year (mas/year) between the value observed by Very Long Baseline Interferometry
(VLBI) and Lunar Laser Ranging (LLR) and the adopted value,

(2) that the obliquity has been observed (by VLBI and LLR) to change at a rate
of about −0.24mas/year, although there is no such change implied by the 1980
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precession-nutation theory,

(3) that, in addition to these trends, there are observable peak-to-peak differences of
up to 20 milliarcseconds (mas) between the nutation observed by VLBI and LLR
and the nutation adopted by the IAU in 1980,

(4) that these differences correspond to spectral amplitudes of up to several mas, and

(5) that the differences between observation and theory are well beyond the present
observational accuracy.

The WG has recognized the improvements made in the modeling of these quantities,
and recommends, in order to derive a more precise nutation model, at the mas level
in spectral amplitudes and at a few mas level in the peak to peak analysis, the use of
models:

(1) based on a new non-rigid Earth transfer function for an Earth initially in non-
hydrostatic equilibrium, incorporating mantle inelasticity, a core-mantle-boundary
flattening giving a Free Core Nutation (FCN) period in agreement with the observed
value, and a global Earth dynamical flattening in agreement with the observed pre-
cession, and

(2) based on a new rigid Earth nutation series which takes into account the following
perturbing effects:

1. in lunisolar ephemerides: indirect planetary effects, lunar inequality, J2-tilt,
planetary-tilt, secular variations of the amplitudes, effects of precession and nu-
tation,

2. in the perturbing bodies to be considered: in addition to the Moon and the
Sun, the direct planetary effects of Venus, Jupiter, Mars, and Saturn, should be
included,

3. in the order of the external potential to be considered: J3 and J4 effects for
the Moon, and

4. in the theory itself: effects of the tri-axiality of the Earth, relativistic effects
and second order effects.

The WG recognizes that this new generation of models still has some imperfections,
the principal one being poor modeling of the dissipation in the core and of certain ef-
fects of the ocean and the atmosphere, and urges the scientific community to address
these questions in the future.

The WG recognizes that, due to the remaining imperfections of the present theoret-
ical nutation models, the nutation series published in the IERS Conventions (1996),
following 1994 IAU recommendation C1, still provides the users with the best nuta-
tion series. This IERS model being based on observations of the celestial pole offset,
the WG supports the recommendation that the scientific community continue VLBI
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and LLR observations to provide accurate estimations of nutation, precession and
rate of change in obliquity.

C.2

Text of IAU Resolutions of 2000 Adopted at the XXIV-th General Assembly,
Manchester

Resolution B1.1 Maintenance and Establishment of Reference Frames and
Systems

The XXIVth International Astronomical Union

Noting

1. that Resolution B2 of the XXIIIrd General Assembly (1997) specifies that “the
fundamental reference frame shall be the International Celestial Reference Frame
(ICRF) constructed by the IAU Working Group on Reference Frames,"

2. that Resolution B2 of the XXIIIrd General Assembly (1997) specifies “That the
Hipparcos Catalogue shall be the primary realization of the ICRS at optical wave-
lengths", and

3. the need for accurate definition of reference systems brought about by unprece-
dented precision, and

Recognizing

1. the importance of continuing operational observations made with Very Long Base-
line Interferometry (VLBI) to maintain the ICRF,

2. the importance of VLBI observations to the operational determination of the pa-
rameters needed to specify the time-variable transformation between the Interna-
tional Celestial and Terrestrial Reference Frames,

3. the progressive shift between the Hipparcos frame and the ICRF, and

4. the need to maintain the optical realization as close as possible to the ICRF

Recommends

1. that IAU Division I maintain the Working Group on Celestial Reference Systems
formed from Division I members to consult with the International Earth Rotation
Service (IERS) regarding the maintenance of the ICRS,

2. that the IAU recognize the International VLBI service (IVS) for Geodesy and
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Astrometry as an IAU Service Organization,

3. that an official representative of the IVS be invited to participate in the IAU
Working Group on Celestial Reference Systems,

4. that the IAU continue to provide an official representative to the IVS Directing
Board,

5. that the astrometric and geodetic VLBI observing programs consider the require-
ments for maintenance of the ICRF and linking to the Hipparcos optical frame in the
selection of sources to be observed (with emphasis on the Southern Hemisphere),
design of observing networks, and the distribution of data, and

6. that the scientific community continue with high priority ground- and space-based
observations (a) for the maintenance of the optical Hipparcos frame and frames at
other wavelengths and (b) for the links of the frames to the ICRF.

Resolution B1.2 Hipparcos Celestial Reference Frame

The XXIVth International Astronomical Union

Noting

1. that Resolution B2 of the XXIIIrd General Assembly (1997) specifies, “That the
Hipparcos Catalogue shall be the primary realization of the International Celestial
Reference System (ICRS) at optical wavelengths,"

2. the need for this realization to be of the highest precision,

3. that the proper motions of many of the Hipparcos stars known, or suspected, to be
multiple are adversely affected by uncorrected orbital motion,

4. the extensive use of the Hipparcos Catalogue as reference for the ICRS in exten-
sion to fainter stars,

5. the need to avoid confusion between the International Celestial Reference Frame
(ICRF) and the Hipparcos frame, and

6. the progressive shift between the Hipparcos frame and the ICRF,

Recommends

1. that Resolution B2 of the XXIIIrd IAU General Assembly (1997) be amended by
excluding from the optical realization of the ICRS all stars flagged C, G, O, V and X
in the Hipparcos Catalogue, and

2. that this modified Hipparcos frame be labeled the Hipparcos Celestial Reference
Frame (HCRF).
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Resolution B1.3 Definition of Barycentric Celestial Reference System and
Geocentric Celestial Reference System

The XXIVth International Astronomical Union

Considering

1. that the Resolution A4 of the XXIst General Assembly (1991) has defined a
system of spacetime coordinates for (a) the solar system (now called the Barycentric
Celestial Reference System, (BCRS)) and (b) the Earth (now called the Geocentric
Celestial Reference System (GCRS)), within the framework of General Relativity,

2. the desire to write the metric tensors both in the BCRS and in the GCRS in a
compact and self-consistent form, and

3. the fact that considerable work in General Relativity has been done using the
harmonic gauge that was found to be a useful and simplifying gauge for many kinds
of applications,

Recommends

1. the choice of harmonic coordinates both for the barycentric and for the geocentric
reference systems.

2. writing the time-time component and the space-space component of the barycen-
tric metric gµν with barycentric coordinates (t, x) (t = Barycentric Coordinate Time
(TCB)) with a single scalar potential w(t, x) that generalizes the Newtonian poten-
tial, and the spacetime component with a vector potential wi(t, x); as a boundary
condition it is assumed that these two potentials vanish far from the solar system,
explicitly,

g00 = −1 +
2w
c2 −

2w2

c4 ,

g0i = −
4
c3 wi ,

gi j = δi j

(
1 +

2
c2 w

)
,

with

w(t, x) = G
∫

d3x′
σ(t, x′)
|x − x′|

+
G

2c2

∂2

∂t2

∫
d3x′σ(t, x′)|x − x′| ,

wi(t, x) = G
∫

d3x′
σi(t, x′)
|x − x′|

.
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Here, σ and σi are the gravitational mass and current densities, respectively.

3. writing the geocentric metric tensor Gαβ with geocentric coordinates (T, X) (T=

Geocentric Coordinate Time (TCG)) in the same form as the barycentric one but with
potentials W(T, X) and Wa(T, X); these geocentric potentials should be split into two
parts – potentials W and Wa arising from the gravitational action of the Earth and
external parts Wext and Wa

ext due to tidal and inertial effects; the external parts of the
metric potentials are assumed to vanish at the geocenter and admit an expansion into
positive powers of X,

explicitly,

G00 = −1 +
2W
c2 −

2W2

c4 ,

G0a = −
4
c3 Wa ,

Gab = δab

(
1 +

2
c2 W

)
.

The potentials W and Wa should be split according to

W(T, X) = WE(T, X) + Wext(T, X) ,

Wa(T, X) = Wa
E(T, X) + Wa

ext(T, X) .

The Earth’s potentials WE and Wa
E are defined in the same way as w and wi but with

quantities calculated in the GCRS with integrals taken over the whole Earth.

4. using, if accuracy requires, the full post-Newtonian coordinate transformation be-
tween the BCRS and the GCRS as induced by the form of the corresponding metric
tensors,

explicitly, for the kinematically non-rotating GCRS (T=TCG, t=TCB, ri
E ≡ xi−xi

E(t)
and a summation from 1 to 3 over equal indices is implied),

T = t −
1
c2

[
A(t) + vi

Eri
E

]
+

1
c4

[
B(t) + Bi(t)ri

E + Bi j(t)ri
Er j

E + C(t, x)
]

+ O(c−5) ,

Xa = δai

[
ri

E +
1
c2

(
1
2

vi
Ev j

Er j
E + wext(xE)ri

E + ri
Ea j

Er j
E −

1
2

ai
Er2

E

)]
+ O

(
c−4

)
,

where
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dA(t)
dt

=
1
2

v2
E + wext(xE) ,

dB(t)
dt

= −
1
8

v4
E −

3
2

v2
Ewext(xE) + 4vi

Ewi
ext(xE) +

1
2

w2
ext(xE) ,

Bi(t) = −
1
2

v2
Evi

E + 4wi
ext(xE) − 3vi

Ewext(xE) ,

Bi j(t) = −vi
Eδa jQa + 2

∂

∂x j wi
ext(xE) − vi

E
∂

∂x j wext(xE) +
1
2
δi jẇext(xE) ,

C(t, x) = −
1
10

r2
E(ȧi

Eri
E) .

Here xi
E, vi

E, and ai
E are the barycentric position, velocity and acceleration vectors of

the Earth, the dot stands for the total derivative with respect to t, and

Qa = δai

[
∂

∂xi
wext(xE) − ai

E

]
.

The external potentials, wext and wi
ext, are given by

wext =
∑
A,E

wA, wi
ext =

∑
A,E

wi
A

where E stands for the Earth and wA and wi
A are determined by the expressions for

w and wi with integrals taken over body A only.

Notes.

It is to be understood that these expressions for w and wi give g00 correct up to
O(c−5), g0i up to O(c−5), and gi j up to O

(
c−4

)
. The densities σ and σi are determined

by the components of the energy momentum tensor of the matter composing the
solar system bodies as given in the references. Accuracies for Gαβ in terms of c−n

correspond to those of gµν.

The external potentials Wext and Wa
ext can be written in the form

Wext = Wtidal + Winer ,

Wa
ext = Wa

tidal + Wa
iner .
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Wtidal generalizes the Newtonian expression for the tidal potential. Post-Newtonian
expressions for Wtidal and Wa

tidal can be found in the references. The potentials Winer,
Wa

iner are inertial contributions that are linear in Xa. The former is determined mainly
by the coupling of the Earth’s non-sphericity to the external potential. In the kine-
matically non-rotating Geocentric Celestial Reference System, Wa

iner describes the
Coriolis force induced mainly by geodetic precession.

Finally, the local gravitational potentials WE and Wa
E of the Earth are related to the

barycentric gravitational potentials wE and wi
E by

WE(T, X) = wE(t, x)
(
1 +

2
c2 v2

E

)
−

4
c2 vi

Ewi
E(t, x) + O

(
c−4

)
,

Wa
E(T, X) = δai

(
wi

E(t, x) − vi
EwE(t, x)

)
+ O

(
c−2

)
.
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Resolution B1.4 Post-Newtonian Potential Coefficients

The XXIVth International Astronomical Union

Considering

1. that for many applications in the fields of celestial mechanics and astrometry a
suitable parametrization of the metric potentials (or multipole moments) outside the
massive solar-system bodies in the form of expansions in terms of potential coeffi-
cients are extremely useful, and

2. that physically meaningful post-Newtonian potential coefficients can be derived
from the literature,

Recommends



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. C — 2016/2/13 — 14:05 — page 805

805

1. expansion of the post-Newtonian potential of the Earth in the Geocentric Celestial
Reference System (GCRS) outside the Earth in the form

WE(T, X) =
GME

R

1 +

∞∑
l=2

+l∑
m=0

(RE

R

)l

Plm(cos θ)
[
CE

lm(T ) cos mφ + S E
lm(T ) sin mφ

] ,

where CE
lm and S E

lm are, to sufficient accuracy, equivalent to the post-Newtonian mul-
tipole moments introduced in (Damour et al., Phys. Rev. D, 43, 3273, 1991), θ and
φ are the polar angles corresponding to the spatial coordinates Xa of the GCRS and
R = |X|, and

2. expression of the vector potential outside the Earth, leading to the well-known
Lense-Thirring effect, in terms of the Earth’s total angular momentum vector SE in
the form

Wa
E(T, X) = −

G
2

(X × SE)a

R3 .

Resolution B1.5 Extended relativistic framework for time transformations
and realization of coordinate times in the solar system

The XXIVth International Astronomical Union

Considering

1. that the Resolution A4 of the XXIst General Assembly (1991) has defined sys-
tems of spacetime coordinates for the solar system (Barycentric Reference System)
and for the Earth (Geocentric Reference System), within the framework of General
Relativity,

2. that Resolution B1.3 entitled “Definition of Barycentric Celestial Reference Sys-
tem and Geocentric Celestial Reference System" has renamed these systems the
Barycentric Celestial Reference System (BCRS) and the Geocentric Celestial Ref-
erence System (GCRS), respectively, and has specified a general framework for ex-
pressing their metric tensor and defining coordinate transformations at the first post-
Newtonian level,

3. that, based on the anticipated performance of atomic clocks, future time and
frequency measurements will require practical application of this framework in the
BCRS, and

4. that theoretical work requiring such expansions has already been performed,
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Recommends

that for applications that concern time transformations and realization of coordinate
times within the solar system, Resolution B1.3 be applied as follows:

1. the metric tensor be expressed as

g00 = −1 +
2
c2 [w(t, x) + wL(t, x)] −

2
c4

[
w2(t, x) + ∆(t, x)

]
,

g0i = −
4
c3 wi(t, x) ,

gi j =

(
1 +

2w(t, x)
c2

)
δi j ,

where ( t ≡ Barycentric Coordinate Time (TCB), x) are the barycentric coordinates,
w = G

∑
A MA/rA with the summation carried out over all solar system bodies A,

rA = x − xA, xA are the coordinates of the center of mass of body A, rA = |rA|, and
where wL contains the expansion in terms of multipole moments [see their definition
in the Resolution B1.4 entitled “Post-Newtonian Potential Coefficients"] required for
each body. The vector potential wi(t, x) =

∑
A wi

A(t, x), and the function ∆(t, x) =∑
A ∆A(t, x) are given in note 2.

2. the relation between TCB and Geocentric Coordinate Time (TCG) can be ex-
pressed to sufficient accuracy by

TCB − TCG =
1
c2

∫ t

t0

v2
E

2
+ wext(xE)

 dt + vi
Eri

E


+

1
c4

∫ t

t0

[
1
8

v4
E +

3
2

v2
Ewext(xE) − 4vi

Ewi
ext(xE) −

1
2

w2
ext(xE)

]
dt

+
1
c4

3wext(xE) +
v2

E

2

 vi
Eri

E ,

where vE is the barycentric velocity of the Earth and where the index “ext" refers to
summation over all bodies except the Earth.

Notes

1. This formulation will provide an uncertainty not larger than 5 × 10−18 in rate and,
for quasi-periodic terms, not larger than 5 × 10−18 in rate amplitude and 0.2 ps in
phase amplitude, for locations farther than a few solar radii from the Sun. The same



Sergei Kopeikin, Michael Efroimsky, George Kaplan: Relativistic Celestial Mechanics of the Solar System.
Wiley-VCH: Berlin ISBN Print: 978-3-527-40856-6 — Chap. C — 2016/2/13 — 14:05 — page 807

807

uncertainty also applies to the transformation between TCB and TCG for locations
within 50000 km of the Earth. Uncertainties in the values of astronomical quantities
may induce larger errors in the formulas.

2. Within the above mentioned uncertainties, it is sufficient to express the vector
potential wi

A(t, x) of body A as

wi
A(t, x) = G

 MAvi
A

rA
−

(rA × SA)i

2r3
A

 ,
where SA is the total angular momentum of body A and vi

A is the barycentric coor-
dinate velocity of body A. As for the function ∆A(t, x) it is sufficient to express it
as

∆A(t, x) =
GMA

rA

−2v2
a +

∑
B,A

GMB

rBA
+

1
2

 (rk
Avk

A)2

r2
A

+ rk
Aak

A

 +
2Gvk

A(rA × SA)k

r3
A

,

where rBA = |xB− xA| and ak
A is the barycentric coordinate acceleration of body A. In

these formulas, the terms in SA are needed only for Jupiter (|SJ| ≈ 6.9×1038m2s−1kg)
and Saturn (|SS| ≈ 1.4 × 1038m2s−1kg), in the immediate vicinity of these planets.

3. Because the present recommendation provides an extension of the IAU 1991
recommendations valid at the full first post-Newtonian level, the constants LC and
LB that were introduced in the IAU 1991 recommendations should be defined as
<TCG/TCB>= 1 − LC and <TT/TCB>= 1 − LBB, where TT refers to Terrestrial
Time and < ... > refers to a sufficiently long average taken at the geocenter. The
most recent estimate of LC is (Irwin, A. and Fukushima, T., Astron. Astroph., 348,
642-652, 1999)

LC = 1.48082686741 × 10−8 ± 2 × 10−17 .

From Resolution B1.9 on “Redefinition of Terrestrial Time TT", one infers LB =

1.55051976772 × 10−8 ± 2 × 10−17 by using the relation 1 − LB = (1 − LC)(1 − LG).
LG is defined in Resolution B1.9.

Because no unambiguous definition may be provided for LB and LC, these constants
should not be used in formulating time transformations when it would require know-
ing their value with an uncertainty of order 1 × 10−16 or less.

4. If TCB−TCG is computed using planetary ephemerides which are expressed in
terms of a time argument (noted Teph) which is close to Barycentric Dynamical Time
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(TDB), rather than in terms of TCB, the first integral in Recommendation 2 above
may be computed as

∫ t

t0

v2
E

2
+ wext(xE)

 dt =
1

1 − LB

∫ Teph

Teph0

v2
E

2
+ wext(xE)

 dt .

Resolution B1.6 IAU 2000 Precession-Nutation Model

The XXIVth International Astronomical Union

Recognizing

1. that the International Astronomical Union and the International Union of Geodesy
and Geophysics Working Group (IAU-IUGG WG) on ‘Non-rigid Earth Nutation
Theory’ has met its goals by

a. establishing new high precision rigid Earth nutation series, such as (1)
SMART97 of Bretagnon et al., 1998, Astron. Astroph., 329, 329-338; (2)
REN2000 of Souchay et al., 1999, Astron. Astroph. Supl. Ser., 135, 111-131;
(3) RDAN97 of Roosbeek and Dehant 1999, Celest. Mech., 70, 215-253;

b. completing the comparison of new non-rigid Earth transfer functions for
an Earth initially in non-hydrostatic equilibrium, incorporating mantle anelas-
ticity and a Free Core Nutation period in agreement with observations,

c. noting that numerical integration models are not yet ready to incorporate
dissipation in the core,

d. noting the effects of other geophysical and astronomical phenomena that
must be modelled, such as ocean and atmospheric tides, that need further devel-
opment;

2. that, as instructed by IAU Recommendation C1 in 1994, the International Earth
Rotation Service (IERS) will publish in the IERS Conventions (2000) a precession-
nutation model that matches the observations with a weighted rms of 0.2 milliarc-
second (mas);

3. that semi-analytical geophysical theories of forced nutation are available which
incorporate some or all of the following – anelasticity and electromagnetic couplings
at the core-mantle and inner core-outer core boundaries, annual atmospheric tide,
geodesic nutation, and ocean tide effects;

4. that ocean tide corrections are necessary at all nutation frequencies; and

5. that empirical models based on a resonance formula without further corrections
do also exist;
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Accepts

the conclusions of the IAU-IUGG WG on Non-rigid Earth Nutation Theory pub-
lished by Dehant et al., 1999, Celest. Mech. 72(4), 245-310 and the recent compar-
isons between the various possibilities, and

Recommends

that, beginning on 1 January 2003, the IAU 1976 Precession Model and IAU 1980
Theory of Nutation, be replaced by the precession-nutation model IAU 2000A
(MHB2000, based on the transfer functions of Mathews, Herring and Buffett, 2000
– submitted to the Journal of Geophysical Research) for those who need a model
at the 0.2 mas level, or its shorter version IAU 2000B for those who need a model
only at the 1 mas level, together with their associated precession and obliquity rates,
and their associated celestial pole offsets at J2000.0, to be published in the IERS
Conventions 2000, and

Encourages

1. the continuation of theoretical developments of non-rigid Earth nutation series,

2. the continuation of VLBI observations to increase the accuracy of the nutation
series and the nutation model, and to monitor the unpredictable free core nutation,
and

3. the development of new expressions for precession consistent with the IAU 2000A
model.

Resolution B1.7 Definition of Celestial Intermediate Pole

The XXIVth International Astronomical Union

Noting

the need for accurate definition of reference systems brought about by unprecedented
observational precision, and

Recognizing

1. the need to specify an axis with respect to which the Earth’s angle of rotation is
defined,

2. that the Celestial Ephemeris Pole (CEP) does not take account of diurnal and
higher frequency variations in the Earth’s orientation,

Recommends

1. that the Celestial Intermediate Pole (CIP) be the pole, the motion of which is
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specified in the Geocentric Celestial Reference System (GCRS, see Resolution B1.3)
by motion of the Tisserand mean axis of the Earth with periods greater than two days,

2. that the direction of the CIP at J2000.0 be offset from the direction of the pole
of the GCRS in a manner consistent with the IAU 2000A (see Resolution B1.6)
precession-nutation model,

3. that the motion of the CIP in the GCRS be realized by the IAU 2000A model for
precession and forced nutation for periods greater than two days plus additional time-
dependent corrections provided by the International Earth Rotation Service (IERS)
through appropriate astro-geodetic observations,

4. that the motion of the CIP in the International Terrestrial Reference System (ITRS)
be provided by the IERS through appropriate astro-geodetic observations and models
including high-frequency variations,

5. that for highest precision, corrections to the models for the motion of the CIP in
the ITRS may be estimated using procedures specified by the IERS, and

6. that implementation of the CIP be on 1 January 2003.

Notes

1. The forced nutations with periods less than two days are included in the model
for the motion of the CIP in the ITRS.

2. The Tisserand mean axis of the Earth corresponds to the mean surface geographic
axis, quoted B axis, in Seidelmann, 1982, Celest. Mech., 27, 79-106.

3. As a consequence of this resolution, the Celestial Ephemeris Pole is no longer
necessary.

Resolution B1.8 Definition and use of Celestial and Terrestrial Ephemeris
Origin

The XXIVth International Astronomical Union

Recognizing

1. the need for reference system definitions suitable for modern realizations of the
conventional reference systems and consistent with observational precision,

2. the need for a rigorous definition of sidereal rotation of the Earth,

3. the desirability of describing the rotation of the Earth independently from its
orbital motion, and

Noting
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that the use of the “non-rotating origin" (Guinot, 1979) on the moving equator ful-
fills the above conditions and allows for a definition of UT1 which is insensitive to
changes in models for precession and nutation at the microarcsecond level,

Recommends

1. the use of the “non-rotating origin" in the Geocentric Celestial Reference System
(GCRS) and that this point be designated as the Celestial Ephemeris Origin (CEO)
on the equator of the Celestial Intermediate Pole (CIP),

2. the use of the “non-rotating origin" in the International Terrestrial Reference
System (ITRS) and that this point be designated as the Terrestrial Ephemeris Origin
(TEO) on the equator of the CIP,

3. that UT1 be linearly proportional to the Earth Rotation Angle defined as the angle
measured along the equator of the CIP between the unit vectors directed toward the
CEO and the TEO,

4. that the transformation between the ITRS and GCRS be specified by the position
of the CIP in the GCRS, the position of the CIP in the ITRS, and the Earth Rotation
Angle,

5. that the International Earth Rotation Service (IERS) take steps to implement this
by 1 January 2003, and

6. that the IERS will continue to provide users with data and algorithms for the
conventional transformations.

Note

1. The position of the CEO can be computed from the IAU 2000A model for pre-
cession and nutation of the CIP and from the current values of the offset of the CIP
from the pole of the ICRF at J2000.0 using the development provided by Capitaine
et al. (2000).

2. The position of the TEO is only slightly dependent on polar motion and can be
extrapolated as done by Capitaine et al. (2000) using the IERS data.

3. The linear relationship between the Earth’s rotation angle θ and UT1 should en-
sure the continuity in phase and rate of UT1 with the value obtained by the conven-
tional relationship between Greenwich Mean Sidereal Time (GMST) and UT1. This
is accomplished by the following relationship:

θ(UT1)=2π(0.7790572732640+1.00273781191135448×(Julian UT1 date -
2451545.0)) .

References:

Guinot, B., 1979, in D.D. McCarthy and J.D. Pilkington (eds.), Time and the Earth’s
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Rotation, D. Reidel Publ., 7-18.

Capitaine, N., Guinot, B., McCarthy, D.D., 2000, “Definition of the Celestial
Ephemeris Origin and of UT1 in the International Celestial Reference Frame", As-
tron. Astrophys., 355, 398-405.

Resolution B1.9 Re-definition of Terrestrial Time TT

The XXIVth International Astronomical Union

Considering

1. that IAU Resolution A4 (1991) has defined Terrestrial Time (TT) in its Recom-
mendation 4, and

2. that the intricacy and temporal changes inherent to the definition and realization
of the geoid are a source of uncertainty in the definition and realization of TT, which
may become, in the near future, the dominant source of uncertainty in realizing TT
from atomic clocks,

Recommends

that TT be a time scale differing from TCG by a constant rate: dTT/dTCG = 1 − LG,
where LG = 6.969290134 × 10−10 is a defining constant,

Note

LG was defined by the IAU Resolution A4 (1991) in its Recommendation 4 as equal
to UG/c2 where UG is the geopotential at the geoid. LG is now used as a defining
constant.

Resolution B2 Coordinated Universal Time

The XXIVth International Astronomical Union

Recognizing

1. that the definition of Coordinated Universal Time (UTC) relies on the astronomi-
cal observation of the UT1 time scale in order to introduce leap seconds,

2. that the unpredictable leap seconds affects modern communication and navigation
systems,

3. that astronomical observations provide an accurate estimate of the secular decel-
eration of the Earth’s rate of rotation

Recommends
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1. that the IAU establish a working group reporting to Division I at the General
Assembly in 2003 to consider the redefinition of UTC,

2. that this study discuss whether there is a requirement for leap seconds, the possi-
bility of inserting leap seconds at pre-determined intervals, and the tolerance limits
for UT1−UTC, and

3. that this study be undertaken in cooperation with the appropriate groups of the
International Union of Radio Science (URSI), the International Telecommunications
Union (ITU-R), the International Bureau for Weights and Measures (BIPM), the
International Earth Rotation Service (IERS) and relevant navigational agencies.

C.3

Text of IAU Resolutions of 2006 Adopted at the XXVI-th General Assembly,
Prague

Resolution B1 Adoption of the P03 Precession Theory and Definition of the
Ecliptic

The XXVIth International Astronomical Union General Assembly,

Noting

1. the need for a precession theory consistent with dynamical theory,

2. that, while the precession portion of the IAU 2000A precession-nutation model,
recom- mended for use beginning on 1 January 2003 by resolution B1.6 of the
XXIVth IAU General Assembly, is based on improved precession rates with respect
to the IAU 1976 precession, it is not consistent with dynamical theory, and

3. that resolution B1.6 of the XXIVth General Assembly also encourages the
development of new expressions for precession consistent with the IAU 2000A
precession-nutation model, and

Recognizing

1. that the gravitational attraction of the planets make a significant contribution to the
motion of the Earth’s equator, making the terms lunisolar precession and planetary
precession misleading,

2. the need for a definition of the ecliptic for both astronomical and civil purposes,
and

3. that in the past, the ecliptic has been defined both with respect to an observer situ-
ated in inertial space (inertial definition) and an observer comoving with the ecliptic
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(rotating definition),

Accepts

the conclusions of the IAU Division I Working Group on Precession and the Ecliptic
published in Hilton et al. (2006, Celest. Mech. 94, 351), and

Recommends

1. that the terms lunisolar precession and planetary precession be replaced by pre-
cession of the equator and precession of the ecliptic, respectively,

2. that, beginning on 1 January 2009, the precession component of the IAU 2000A
precession-nutation model be replaced by the P03 precession theory, of Capitaine
et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs. 37) and
the precession of the ecliptic (Eqs. 38); the same paper provides the polynomial
developments for the P03 primary angles and a number of derived quantities for use
in both the equinox based and CIO based paradigms,

3. that the choice of precession parameters be left to the user, and

4. that the ecliptic pole should be explicitly defined by the mean orbital angular mo-
mentum vector of the Earth-Moon barycenter in the Barycentric Celestial Reference
System (BCRS), and this definition should be explicitly stated to avoid confusion
with other, older definitions.

Notes

1. Formulas for constructing the precession matrix using various parameterizations
are given in Eqs. 1, 6, 7, 11, 12 and 22 of Hilton et al. (2006). The recommended
polynomial developments for the various parameters are given in Table 1 of the same
paper, including the P03 expressions set out in expressions (37) to (41) of Capitaine
et al. (2003) and Tables 3-5 of Capitaine et al. (2005).

2. The time rate of change in the dynamical form factor in P03 is
dJ2/dt = −3.001 × 10−9century−1.

References

Capitaine, N., Wallace, P.T., & Chapront, J. 2003, A&A, 412, 567
Capitaine, N., Wallace, P.T., & Chapront, J. 2005, A&A, 432, 355
Hilton, J.L., Capitaine, N., Chapront, J., Ferrandiz, J.M., Fienga, A., Fukushima,
T., Getino, J., Mathews, P., Simon, J.-L., Soffel, M., Vondrak, J., Wallace, P., &
Williams, J. 2006, Celest. Mech., 94, 351

Actions to be taken by the General Secretary upon adoption of the Resolution
Adoption of the P03 Precession Theory and Definition of the Ecliptic.
The following institutions should receive formal notification of the action:
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Her Majesty’s Nautical Almanac Office, Institute de mécanique céleste et de cal-
cul des éphémérides, Institute of Applied Astronomy of the Russian Academy of
Sciences, International Association of Geodesy, (IAG), International Earth Rotation
and Reference Systems Service (IERS), International Union of Geodesy and Geo-
physics (IUGG), International VLBI Service for Geodesy and Astrometry (IVS),
Japan Coast Guard (JCG), National Astronomical Observatory of Japan (NAOJ),
Nautical Almanac Office of the United States Naval Observatory.

Resolution B2 Supplement to the IAU 2000 Resolutions on reference systems

RECOMMENDATION 1.Harmonizing the name of the pole and origin to “interme-
diate”

The XXVIth International Astronomical Union General Assembly,

Noting

1. the adoption of resolutions IAU B1.1 through B1.9 by the IAU General Assembly
of 2000,

2. that the International Earth Rotation and Reference Systems Service (IERS) and
the Standards Of Fundamental Astronomy (SOFA) activity have made available the
models, procedures, data and software to implement these resolutions operationally,
and that the Almanac Offices have begun to implement them beginning with their
2006 editions, and

3. the recommendations of the IAU Working Group on “Nomenclature for Funda-
mental Astronomy” (IAU Transactions XXVIA, 2005), and

Recognizing

1. that using the designation “intermediate” to refer to both the pole and the origin
of the new systems linked to the Celestial Intermediate Pole and the Celestial or
Terrestrial Ephemeris origins, defined in Resolutions B1.7 and B1.8, respectively
would improve the consistency of the nomenclature, and

2. that the name “Conventional International Origin” with the potentially conflicting
acronym CIO is no longer commonly used to refer to the reference pole for measur-
ing polar motion as it was in the past by the International Latitude Service,

Recommends

1. that, the designation “intermediate” be used to describe the moving celestial and
terrestrial reference systems defined in the 2000 IAU Resolutions and the various
related entities, and

2. that the terminology “Celestial Intermediate Origin” (CIO) and “Terrestrial In-
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termediate Origin” (TIO) be used in place of the previously introduced “Celestial
Ephemeris Origin” (CEO) and “Terrestrial Ephemeris Origin” (TEO), and

3. that authors carefully define acronyms used to designate entities of astronomical
reference systems to avoid possible confusion.

RECOMMENDATION 2. Default orientation of the Barycentric Celestial Reference
System (BCRS) and Geocentric Celestial Reference System (GCRS)

The XXVIth International Astronomical Union General Assembly,

Noting

1. the adoption of resolutions IAU B1.1 through B1.9 by the IAU General Assembly
of 2000,

2. that the International Earth Rotation and Reference Systems Service (IERS) and
the Standards Of Fundamental Astronomy (SOFA) activity have made available the
models, procedures, data and software to implement these resolutions operationally,
and that the Almanac Offices have begun to implement them beginning with their
2006 editions,

3. that, in particular, the systems of spacetime coordinates defined by IAU 2000
Resolution B1.3 for (a) the solar system (called the Barycentric Celestial Reference
System, BCRS) and (b) the Earth (called the Geocentric Celestial Reference System,
GCRS) have begun to come into use,

4. the recommendations of the IAU Working Group on Nomenclature for Funda-
mental Astronomy (IAU Transactions XXVIA, 2005), and

5. a recommendation from the IAU Working Group on Relativity in Celestial Me-
chanics, Astrometry and Metrology,

Recognizing

1. that the BCRS definition does not determine the orientation of the spatial coordi-
nates,

2. that the natural choice of orientation for typical applications is that of the ICRS,
and

3. that the GCRS is defined such that its spatial coordinates are kinematically non-
rotating with respect to those of the BCRS,

Recommends

that the BCRS definition is completed with the following: “For all practical applica-
tions, unless otherwise stated, the BCRS is assumed to be oriented according to the
ICRS axes. The orientation of the GCRS is derived from the ICRS-oriented BCRS.”
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Resolution B3 Re-definition of Barycentric Dynamical Time, TDB

The XXVIth International Astronomical Union General Assembly,

Noting

1. that IAU Recommendation 5 of Commissions 4, 8 and 31 (1976) intro-
duced, as a replacement for Ephemeris Time (ET), a family of dynamical time
scales for barycentric ephemerides and a unique time scale for apparent geocentric
ephemerides,

2. that IAU Resolution 5 of Commissions 4, 19 and 31 (1979) designated these
time scales as Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time
(TDT) respectively, the latter subsequently renamed Terrestrial Time (TT), in IAU
Resolution A4, 1991,

3. that the difference between TDB and TDT was stipulated to comprise only peri-
odic terms, and

4. that Recommendations III and V of IAU Resolution A4 (1991) (i) introduced the
coordinate time scale Barycentric Coordinate Time (TCB) to supersede TDB, (ii)
recognized that TDB was a linear transformation of TCB, and (iii) acknowledged
that, where discontinuity with previous work was deemed to be undesirable, TDB
could be used, and

Recognizing

1. that TCB is the coordinate time scale for use in the Barycentric Celestial Refer-
ence System,

2. the possibility of multiple realizations of TDB as defined currently,

3. the practical utility of an unambiguously defined coordinate time scale that has a
linear relationship with TCB chosen so that at the geocenter the difference between
this coordinate time scale and Terrestrial Time (TT) remains small for an extended
time span,

4. the desirability for consistency with the Teph time scales used in the Jet Propulsion
Laboratory (JPL) solar-system ephemerides and existing TDB implementations such
as that of Fairhead & Bretagnon (A&A 229, 240, 1990), and

5. the 2006 recommendations of the IAU Working Group on “Nomenclature for
Fundamental Astronomy” (IAU Transactions XXVIB, 2006),

Recommends

that, in situations calling for the use of a coordinate time scale that is linearly related
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to Barycentric Coordinate Time (TCB) and, at the geocenter, remains close to Ter-
restrial Time (TT) for an extended time span, TDB be defined as the following linear
transformation of TCB:

TDB = TCB − LB × (JDTCB − T0) × 86400 + TDB0 ,

where T0 = 2443144.5003725, and LB = 1.550519768 × 10−8 and TDB0 = −6.55 ×
10−5 s are defining constants.

Notes

1. JDTCB is the TCB Julian date. Its value is T0 = 2443144.5003725 for the event
1977 January 1 00h 00m 00s TAI at the geocenter, and it increases by one for each
86400s of TCB.

2. The fixed value that this definition assigns to LB is a current estimate of LC +

LG − LC × LG, where LG is given in IAU Resolution B1.9 (2000) and LC has been
determined (Irwin & Fukushima, 1999, A&A 348, 642) using the JPL ephemeris
DE405. When using the JPL Planetary Ephemeris DE405, the defining LB value
effectively eliminates a linear drift between TDB and TT, evaluated at the geocenter.
When realizing TCB using other ephemerides, the difference between TDB and TT,
evaluated at the geocenter, may include some linear drift, not expected to exceed 1
ns per year.

3. The difference between TDB and TT, evaluated at the surface of the Earth, remains
under 2 ms for several millennia around the present epoch.

4. The independent time argument of the JPL ephemeris DE405, which is called Teph

(Standish, A&A, 336, 381, 1998), is for practical purposes the same as TDB defined
in this Resolution.

5. The constant term TDB0 is chosen to provide reasonable consistency with the
widely used TDB - TT formula of Fairhead & Bretagnon (1990).
n.b. The presence of TDB0 means that TDB is not synchronized with TT, TCG and
TCB at 1977 Jan 1.0 TAI at the geocenter.

6. For solar system ephemerides development the use of TCB is encouraged.
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C.4

Text of IAU Resolutions of 2009 Adopted at the XXVII-th General Assembly, Rio
de Janeiro

Resolution B2 IAU 2009 Astronomical Constants

The XXVII General Assembly of International Astronomical Union,

Considering

1. the need for a self-consistent set of accurate numerical standards for use in astron-
omy,

2. that improved values of astronomical constants have been derived from recent
observations and published in refereed journals, and

3. that conventional values have been adopted by IAU GA 2000 and IAU GA 2006
resolutions for a number of astronomical quantities,

Recognizing

1. the continuing need for a set of Current Best Estimates (CBEs) of astronomical
numerical constants, and

2. the need for an operational service to the astronomical community to maintain the
CBEs

Recommends

1. that the list of previously published constants compiled in the report of
the Working Group on Numerical Standards of Fundamental Astronomy (see
http://maia.usno.navy.mil/NSFA/CBE.html) be adopted as the IAU (2009) System
of Astronomical Constants.

2. that Current Best Estimates of Astronomical Constants be permanently main-
tained as an electronic document,

3. that, in order to ensure the integrity of the CBEs, IAU Division I develop a formal
procedure to adopt new values and archive older versions of the CBEs, and

4. that the IAU establish within IAU Division I a permanent body to maintain the
CBEs for fundamental astronomy.

Resolution B3 Second Realization of the International Celestial Reference
Frame
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The International Astronomical Union XXVII General Assembly,

noting

1. that Resolution B2 of the XXIII General Assembly (1997) resolved “That, as
from 1 January 1998, the IAU celestial reference system shall be the International
Celestial Reference System (ICRS)”,

2. that Resolution B2 of the XXIII General Assembly (1997) resolved that the
“fundamental reference frame shall be the International Celestial Reference Frame
(ICRF) constructed by the IAU Working Group on Reference Frames”,

3. that Resolution B2 of the XXIII General Assembly (1997) resolved “That IERS
should take appropriate measures, in conjunction with the IAU Working Group on
reference frames, to maintain the ICRF and its ties to the reference frames at other
wavelengths”,

4. that Resolution B7 of the XXIII General Assembly (1997) recommended “that
high-precision astronomical observing programs be organized in such a way that
astronomical reference systems can be maintained at the highest possible accuracy
for both northern and southern hemispheres”,

5. that Resolution B1.1 of the XXIV General Assembly (2000) recognized “the
importance of continuing operational observations made with Very Long Baseline
Interferometry (VLBI) to maintain the ICRF”,

recognizing

1. that since the establishment of the ICRF, continued VLBI observations of ICRF
sources have more than tripled the number of source observations,

2. that since the establishment of the ICRF, continued VLBI observations of extra-
galactic sources have significantly increased the number of sources whose positions
are known with a high degree of accuracy,

3. that since the establishment of the ICRF, improved instrumentation, observation
strategies, and application of state-of-the-art astrophysical and geophysical models
have significantly improved both the data quality and analysis of the entire relevant
astrometric and geodetic VLBI data set.,

4. that a working group on the ICRF formed by the International Earth Rotation and
Reference Systems Service (IERS) and the International VLBI Service for Geodesy
and Astrometry (IVS), in conjunction with the IAU Division I Working Group on
the Second Realization of the International Celestial Reference Frame has finalized
a prospective second realization of the ICRF in a coordinate frame aligned to that of
the ICRF to within the tolerance of the errors in the latter (see note 1),

5. that the prospective second realization of the ICRF as presented by the IAU Work-
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ing Group on the Second Realization of the International Celestial Reference Frame
represents a significant improvement in terms of source selection, coordinate accu-
racy, and total number of sources, and thus represents a significant improvement in
the fundamental reference frame realization of the ICRS beyond the ICRF adopted
by the XXIII General Assembly (1997),

resolves

1. that from 01 January 2010 the fundamental astrometric realization of the Inter-
national Celestial Reference System (ICRS) shall be the Second Realization of the
International Celestial Reference Frame (ICRF2) as constructed by the IERS/IVS
working group on the ICRF in conjunction with the IAU Division I Working Group
on the Second Realization of the International Celestial Reference Frame (see note
1),

2. that the organizations responsible for astrometric and geodetic VLBI observ-
ing programs (e.g. IERS, IVS) take appropriate measures to continue existing and
develop improved VLBI observing and analysis programs to both maintain and im-
prove ICRF2,

3. that the IERS, together with other relevant organizations continue efforts to im-
prove and densify high accuracy reference frames defined at other wavelengths and
continue to improve ties between these reference frames and ICRF2.

Note 1: The Second Realization of the International Celestial Reference Frame
by Very Long Baseline Interferometry, Presented on behalf of the IERS /

IVS Working Group, Alan Fey and David Gordon (eds.). (IERS Tech-
nical Note 35) Frankfurt am Main: Verlag des Bundesamts für Kartogra-
phie und Geodäsie, 2009. See http://www.iers.org/nn_11216/IERS/EN/
Publications/TechnicalNotes/tn35.html or http://hpiers.obspm.fr/
icrs-pc/.

http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn35.html
http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn35.html
http://hpiers.obspm.fr/icrs-pc/
http://hpiers.obspm.fr/icrs-pc/
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the law of impulse, 8
Thomas precession, 120, 163
tidal force, 23
tidal potential, 23
time
– absolute , 696
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UTC, 704, 707, 710–714, 716

variational derivative, 316, 318–320, 323
variational principle, 314, 376, 489
vector, 124
– isotropic, 111
– norm, 109
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Very Large Array, 731
Very Long Baseline Array, 731
Very Long Baseline Interferometry, 726
very long baseline interferometry, 695
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