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The gravitational time delay in the field of a slowly
moving body with arbitrary multipoles
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Abstract

We calculate the time delay of light in the gravitational field of a slowly moving
body with arbitrary multipoles (mass and spin multipole moments) by the Time-
Transfer-Function (TTF) formalism. The parameters we use,first introduced by
Kopeikin for a gravitational source at rest, make the integration of the TTF very
elegant and simple. Results completely coincide with expressions from the lit-
erature. The results for a moving body (with constant velocity) with complete
multipole-structure are new, according to our knowledge.
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1. Introduction

Light propagation in gravitational fields is a very important topic not only for
modern astrometry because of the high accuracies achieved in modern observa-
tions, but also for other kinds of measurements such as radarranging to spacecrafts
or planets. Gravitational fields cause a propagation-time delay and a deflection of
light-rays as well as a frequency shift of the involved photons. The first effect,
called Shapiro delay [1], has to be considered in space-techniques such as Very-
Long-Baseline Interferometry (VLBI), Lunar Laser Ranging(LLR), and etc. The
present VLBI model recommended by the IERS conventions 2010[2] (the con-
sensus model [3]) has an accuracy at the1 picosecond level; it will be improved
to 0.1 picosecond accuracy in the near future; LLR is approaching now the milli-
meter level [4]. The gravitational field of the Sun produces amaximum of about
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100 nanoseconds for the Earth bounded VLBI observations [5]and 50 nanosec-
onds (15 meters) in LLR experiments.

The light propagation delay in the gravitational field of a stationary mass-
monopole is quite easy to derive. For a body with arbitrary mass and spin mul-
tipole moments, moving with some velocity in the underlyingcoordinate system,
the treatment becomes non-trivial. People usually use the null geodesic equation
to get the light-propagation information between two events (for example, emis-
sion and reception). The solutions for a gravitating body with arbitrary multipoles
obtained in this way was first derived in [6, 7]. Bertone et al.showed that the
so called time-transfer-function (TTF) formalism can alsobe used efficiently to
get the gravitational time-delay, but they dealt with the case of mass-monopoles
only [8]. Recently, some authors discussed the light propagation in the field of a
moving axisymmetic body [9].

In this letter, we derive the TTF by means of special parameters and techniques
that were first introduced by Kopeikin [6, 7]; using this approach simplifies the
calculations drastically. Results for the Shapiro-effectfor a body with arbitrary
mass- and spin-mutipoles are obtained in a few lines. Our results completely
coincide with the ones from the literature (e.g., [6, 7]). This calculation is then
generalized in a very simple way to the case of a body moving with slow and
constant velocity in the underlying coordinate system.

In the next section, the metric of a body with arbitrary multipole-moments is
recalled; in section 3 and 4, we introduce the TTF, and calculate the light propa-
gation for the cases of arbitrary multiple moments and constant velocity. The last
section contains conclusions and discussions.

2. The Time Transfer Function

We will consider the propagation of light-signals in a first order post-Newtonian
metric of form

g00 = −1 +
2w

c2
,

g0i = − 4

c3
wi,

gij = δij

(

1 +
2w

c2

)

,

(1)

wherew andwi are the scalar- and the vector gravitational potentials respectively.
Our interest is in the gravitational time delay that can be computed from the null
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condition,ds2 = 0, along the light-ray. Writinggµν = ηµν + hµν and defining the
coordinates as(ct, x, y, z), we get

dt2 =
1

c2
dx2 +

(

h00 +
2

c
h0i

dxi

dt
+

1

c2
hij

dxi

dt

dxj

dt

)

dt2 .

Considering|hµν | ≪ 1, to first order Taylor expansion, the above equation be-
comes

dt ≈ |dx|
c

+
|dx|
2c

(hµνn
µnν) , (2)

where we have inserteddxi/dt = cni from the unperturbed light-ray equation,
x(t) = x0 + nc(t − t0) andnµ ≡ (1,n). For our metric (1), the Time Transfer
Function (TTF),T (t0,x0;x) ≡ t− t0 with ds = |dx| reads

T (t0,x0;x) =
R

c
+

1

2c

∫ s

s0

(hµνn
µnν)ds =

R

c
+

2

c3

∫ s

s0

(

w − 2

c
w · n

)

ds , (3)

whereR is the Euclid distance fromx0 (where a light signal is send at timet0)
to an observer atx (the reception time ist). The TTF allows the computation of
t if t0,x0 andx are given. In one word, TTF is just propagation time of light in
gravitational field. Becauset is coordinate time, the TTF as well as the time delay
should be a coordinate-dependent quantity.

3. A single gravitating body at rest

We consider first a single body at rest at the origin of our coordinate system.
Space-time outside of the body is assumed to be stationary. Then the metric po-
tentials outside the body take the form [10]

w = G
∑

l≥0

(−1)l

l!
ML∂L

(

1

r

)

, (4)

wi = −G
∑

l≥1

(−1)l

l!

l

l + 1
εijkSkL−1∂jL−1

(

1

r

)

, (5)

whereML andSL is the mass and spin multipole moment respectively.L is a
Cartesian multi-index,L ≡ i1 . . . il and each individual Cartesian indexij runs
over 1, 2, 3 or x, y, z. Correspondingly, the multi-indexL − 1 indicatesl − 1
different Cartesian indices. Andr ≡ (x2+ y2+ z2)1/2 is the Euclid distance from
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the center of mass to the field point. We now use the Kopeikin-parametrization of
the unperturbed light-ray (see Kopeikin [7])

xs = d+ n · s (6)

with d · n = 0, i.e.d = n × (x × n) = n × (x0 × n) is the vector that points
from the origin to the point of closest approach of the unperturbed light-ray. We
then haves = n · xs andrs ≡ |xs| =

√
d2 + s2. Following [7] we can now split

the partial derivative with respect toxi in the form

∂i = ∂⊥
i + ∂

‖
i (7)

with

∂⊥
i ≡ ∂

∂di
, ∂

‖
i ≡ ni ∂

∂s
, (8)

Then, from Eq. (24) in [7]:

∂L =
l
∑

p=0

l!

p!(l − p)!
nP∂⊥

L−P∂
p
s , (9)

wherenP = ni1 . . . nip and∂p
s = ∂p/∂sp. Inserting this into expression (3) and

decomposingT asTM + TS we get

TM =
2G

c3

∞
∑

l=0

l
∑

p=0

(−1)l

l!

l!

p!(l − p)!
MLn

P∂⊥
L−P

[

∂p
s ln

s+ r

s0 + r0

−
(

∂p
s ln

s+ r

s0 + r0

)

∣

∣

∣

s=s0

]

(10)

for the time delay induced by the mass multipole momentsML and

TS =
4G

c4

∞
∑

l=1

l
∑

p=0

(−1)l

l!

l!

p!(l − p)!

l

l + 1
ǫijkn

iSkL−1n
P∂⊥

jL−P−1

×
[

∂p
s ln

s+ r

s0 + r0
−
(

∂p
s ln

s+ r

s0 + r0

)

∣

∣

∣

s=s0

]

(11)

for the time delay induced by the spin multipole momentsSL, since
∫ s

s0

ds

rs
= ln

s+ r

s0 + r0
. (12)

These results are in agreement with the ones found by Kopeikin [7].
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4. The TTF for a body slowly moving with constant velocity

Let us now consider the situation where the gravitating body(called A) moves
with a constant slow velocityvA; we will neglect terms of orderv2

A
in the fol-

lowing. Let us denote a canonical coordinate system moving with body A,Xα =
(cT,Xa) (see e.g., [11]) and the corresponding metric potentials byW andW a.
The metric tensor in the co-moving system is of the form (1) with potentials
W,W a given by Eq. (4) and (5), but written in terms of co-moving coordinates.
E.g., the quantityr in (4) and (5) has to be replaced byR ≡ |X|, and the spatial
derivatives are now with respect toXa. Under our conditions the transformation
from co-moving coordinatesXα to xµ is a linear Lorentz-transformation of the
form (βA ≡ vA/c):

xµ = zµ
A
(T ) + Λµ

αX
α (13)

with zµ
A
≡ (0, zA(T )) andΛ0

0
= 1,Λ0

a = βa
A
,Λi

0
= βi

A
,Λi

a = δia. wherezA is the
global coordinate position vector of body A. A transformation of the co-moving
metric to the rest-system then yields (see also [11])

w = W +
4

c
βA ·W

wi = WviA +Wi . (14)

One can show (e.g, Zschocke & Soffel [12]) thatR = rA(t) + O(v2
A
). Further-

more,

∂a =
∂

∂Xa
= Λµ

a

∂

∂xµ
= δai∂i +O(v2

A
) , (15)

so that the metric potentialW expressed in terms of(t,x) (to first order in the
velocity) takes the form

W (t,x) = G
∑

l≥0

(−1)l

l!
ML∂L

(

1

rA(t)

)

(16)

whereML∂L = Mi1...il∂i1...il and every spatial derivative is with respect toxk.
Similarly, for the gravito-magnetic potentialW i one finds

Wi(t,x) = −G
∑

l≥1

(−1)l

l!

l

l + 1
εijkSkL−1∂jL−1

(

1

rA(t)

)

, (17)

and the TTF is given by expression (3) with (14) - (17).
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With zA(t) = zA
A
+ vA(t − tA) we get along the unperturbed light-ray with

x(t) = x0 + nc(t− t0)

rA(t) = x0 − zA(t0) + (n− βA)c(t− t0) , (18)

i.e., due to first order aberration, the unit vector along theunperturbed light-ray,
as seen from the moving body A, is given by

nβ ≡
gβ

gβ
(19)

with
gβ ≡ n− βA . (20)

We can then write the TTF in the form

T (t0,x0;x) =
R

c
+

2

c3

∫ s

s0

[

W · (1− 2βA · n)− 2

c
(n− 2βA) ·W

]

ds

=
R

c
+

2gβ
c3

∫ s′

s′
0

W (s′)ds′ − 4

c4
nβ ·

∫ s′

s′
0

W(s′) ds′

+
4

c4
βA ·

∫ s′

s′
0

W(s′) ds′ , (21)

wheres′ = gβs.
We now parametrize the unperturbed light-ray in the form

xσ = zA + dβ + nβσ , (22)

wheredβ = nβ × (rA × nβ) is perpendicular tonβ so thatrA(t) =
√

d2β + σ2

andσ = rA ·nβ. Similar to the case of a body at rest we split the spatial derivative
into to two parts,∂i = ∂⊥

i + ∂
‖
i , with

∂⊥
i =

∂

∂diβ
, ∂

‖
i = ni

β

∂

∂σ
. (23)

The TTF therefore takes the form

TM =
2gβG

c3

∞
∑

l=0

l
∑

p=0

(−1)l

l!

l!

p!(l − p)!
MLn

P
β ∂

⊥
L−P

[

∂p
σ ln

rA + σ

r0
A
+ σ0

−
(

∂p
σ ln

rA + σ

r0
A
+ σ0

)

∣

∣

∣

σ=σ0

]

(24)

6



for the gravitational time-delay due to the mass-multipolemoments of the moving
body and

TS =
4G

c4

∑

l≥1

l
∑

p=0

(−1)l

l!

l!

p!(l − p)!

l

l + 1
ǫijk(n

i
β − βi

A)SkL−1n
P
β ∂

⊥
jL−P−1

×
[

∂p
σ ln

rA + σ

r0
A
+ σ0

−
(

∂p
σ ln

rA + σ

r0
A
+ σ0

)

∣

∣

∣

σ=σ0

]

(25)

for the gravitational time-delay due to the moving spin multipoles, wherenP
β =

ni1
β · · ·nip

β and all the terms proportional toβ2

A
should be dropped. In this work the

moving multipoles are time-independent. For the case of arbitrary time-dependent
(but non-moving) multipoles, see [13].

Let
Φ(σ,d) ≡ ln(σ +

√
d2 + σ2) , (26)

then the first derivatives appearing in (24) and (25) (withn andd being replaced
bynβ anddβ) read:

∂σΦ =
1

r
(27)

∂2

σΦ = − σ

r3
(28)

∂⊥
i Φ =

di

r(r + s)
(29)

∂⊥∂sΦ = −di

r3
(30)

∂⊥
<ij>Φ = − (s+ 2r)

(r + s)2r3
didj − ninj

r(r + s)
, (31)

where the last term results from the fact that [7]:

∂⊥
j d

i = δij − ninj . (32)

Considering e.g., the mass-monopole term we have

TM,l=0 = 2
GMA

c3
gβ ln

rA + σ

r0
A
+ σ0

and sinceσ = nβ · rA = gβ · rA/gβ, we obtain

TM,l=0 =
2GMA

c3
gβ ln

(

gβ · rA + gβrA

gβ · r0
A
+ gβr0A

)

(33)
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in accordance with the results from the literature (e.g., [5], [8] ).

For the mass-quadrupole in uniform motion we get

TM,l=2 =
G

c3
gβMijIij (34)

with

Iij = (ni
βn

j
β∂

2

σ + 2ni
β∂σ∂

⊥
j + ∂⊥

ij )Φ|s0

= −ni
βn

j
β

(

σ

r3
+

1

r(r + σ)

)

− 2nidj

r3
− didj(σ + 2r)

(r + σ)2r3
. (35)

Taking the integral expression forTM,l=2 one gets the same form as in (34) but
with Iij being replaced by

I ′ij = 3

∫ σ

σ0

(diβ + ni
βσ)(d

j
β + nj

βσ)

(d2β + σ2)5/2
dσ

=

(

σ3

r3
ni
βn

j
β

d2β
−

2ni
βd

j
β

r3
+

3σd2β + 2σ3

r3
diβd

j
β

d4β

)

∣

∣

∣

∣

σ

σ0

. (36)

With some re-writing, usingd2β = r2 − σ2, one finds thatI ′ij = Iij + const..
Expression (34) agrees with the one given by Klioner [5] whenv = 0.

The contribution from the spin-dipole can be written in the form

TS,l=1 = −2G

c4
ǫijk(n

i
β − βi

A
)IjSk (37)

with

Ij = ∂j

∫

dσ

rσ
A

= (∂⊥
j + nj

β∂σ) ln
rA + σ

r0
A
+ σ0

(38)

or

I =
1

rA

(

nβ −
dβ σ

d2β

)

− 1

r0
A

(

nβ −
dβ σ0

d2β

)

. (39)

A result for the gravitational time delay caused by a moving spin-dipole has al-
ready been published by Kopeikin & Mashhoon [14]. They have actually used
the same expression (3) for the gravitational time delay andit has been shown in
[12] that their metric is in agreement with the one used in this paper, so the results
must agree, though Kopeikin & Mashhoon used retarded quantities throughout.

8



5. Conclusions

In this letter, the Time-Transfer-Function as derived fromthe null condition of
light in vacuum, is used to derive the gravitational time delay.

The use of the Kopeikin-decomposition of spatial derivatives makes this method
especially elegant for gravitational bodies with arbitrary (time independent) mul-
tipole moments. By introducing the first order aberration, we extend our results to
a moving body with constant velocity and also arbitrary multipole moments.

This work was done in the frame of our efforts to formulate an exhaustive
documentation of a relativistic VLBI model that could be adopted by international
panels.
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