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Preface 

The fundamentals of radar polarimetry were built on a long history of research 
in optics. However, the fact that the radar is an active instrument, allowing one 
the extra flexibility to change the polarization of the transmitted wave in 
addition to optimizing the receiving antenna polarization, opened new doors to 
more powerful analysis of scattering from different types of terrain. 

This book describes the application of polarimetric synthetic aperture radar 
to earth remote sensing based on our research at the Jet Propulsion Laboratory 
(JPL).  Many important contributions to the field of radar polarimetry have 
been made long before we joined the field. Giants in the field include 
Kennaugh, Sinclair, Huynen, Boerner and many others. Our contribution is to 
put their work to practice in the field of synthetic aperture radar (SAR), but we 
owe thanks to these pioneers for pointing the way. 

There is a vast amount of literature available on radar polarimetry. Here we 
did not try to reproduce or summarize all of these. Instead we concentrated our 
effort on compiling a subset of the knowledge into a reference that we hope 
would prove useful to both the newcomer and the expert in radar polarimetry. 
We provide a concise description of the mathematical fundamentals illustrated 
with many examples using SAR data. Our treatment of the subject is focused on 
remote sensing of the earth, and the examples are chosen to illustrate this 
application. 

We start with the basics of synthetic aperture radar to provide the basis for 
understanding how polarimetric SAR images are formed. We follow this 
introduction with the fundamentals of radar polarimetry. We next discuss some 
of the more advanced polarimetric concepts that allow one to infer more 
information about the terrain being imaged. In order to analyze data 
quantitatively, however, the signals must be calibrated carefully. We included a 
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chapter summarizing the basic calibration algorithms. We conclude our 
discussion with an example of applying polarimetric analysis to scattering from 
rough surfaces with the aim to infer soil moisture from the radar signals. 
Much still remains to be discovered about the best ways to extract all the 
information out of polarimetric SAR data. We hope that by preparing this work 
we have helped to accelerate this process by providing the next generation of 
researchers with some of the tools to make those discoveries. 

 
Jakob van Zyl and Yunjin Kim 

Pasadena, California 
December 2010 
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Chapter 1 
Synthetic Aperture Radars (SAR) 

Imaging Basics 

The word “radar” is an acronym for Radio Detection and Ranging. A radar 
measures the distance, or range, to an object by transmitting an electromagnetic 
signal to and receiving an echo reflected from the object. Since electromagnetic 
waves propagate at the speed of light, one only has to measure the time it takes 
the radar signal to propagate to the object and back to calculate the range to the 
object. The total distance traveled by the signal is twice the distance between 
the radar and the object, since the signal travels from the radar to the object and 
then back from the object to the radar after reflection. Therefore, once we 
measured the propagation time ( t ), we can easily calculate the range ( R ) as 

 
1
2

R ct= , (1-1) 

where c is the speed of light in vacuum. The factor ½ accounts for the fact that 
the radar signal actually traveled twice the distance measured: first from the 
radar to the object and then from the object to the radar. If the electric property 
of the propagation medium is different from that of vacuum, the actual 
propagation velocity has to be estimated for advanced radar techniques, such as 
Synthetic Aperture Radars (SAR) interferometry. 

Radars provide their own signals to detect the presence of objects. Therefore, 
radars are known as active, remote-sensing instruments. Because radars provide 
their own signal, they can operate during day or night. In addition, radar signals 
typically penetrate clouds and rain, which means that radar images can be 
acquired not only during day or night, but also under (almost) all weather 
conditions. For these reasons, radars are often referred to as all-weather 
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instruments. Imaging, remote-sensing radars, such as SAR, produce high-
resolution (from sub meter to a few tens of meters) images of surfaces. The 
geophysical information can be derived from these high-resolution images by 
using proper post-processing techniques. 

This book focuses on a specific class of implementation of synthetic aperture 
radar with particular emphasis on the use of polarization to infer the 
geophysical properties of the scene. As mentioned above, SAR is a way to 
achieve high-resolution images using radio waves. We shall first describe the 
basics of radar imaging. This shall be followed by a description of the synthetic 
aperture principle. Finally, we shall discuss some advanced SAR 
implementations, such as SAR polarimetry and polarimetric SAR 
interferometry. 

1.1 Basic Principles of Radar Imaging 
Imaging radars generate surface images that are at first glance very similar to 
the more familiar images produced by instruments that operate in the visible or 
infrared parts of the electromagnetic spectrum. However, the principle behind 
the image generation is fundamentally different in the two cases. Visible and 
infrared sensors use a lens or mirror system to project the radiation from the 
scene on a “two-dimensional array of detectors,” which could be an electronic 
array or, in earlier remote-sensing instruments, a film using chemical processes. 
The two-dimensionality can also be achieved using scanning systems or by 
moving a single line array of detectors. This imaging approach — an approach 
with which we are all familiar from taking photographs with a camera — 
conserves the relative angular relationships between objects in the scene and 
their images in the focal plane, as shown in Fig. 1-1. Because of this 
conservation of angular relationships, the resolution of the images depends on 
how far away the camera is from the scene it is imaging. The closer the camera, 
the higher the resolution and the smaller the details that can be recognized in 
the images. As the camera moves further away from the scene, the resolution 
degrades and only larger objects can be discerned in the image. 

Imaging radars use a quite different mechanism to generate images, with the 
result that the image characteristics are also quite different from that of visible 
and infrared images. There are two different mechanisms by which radars can 
be used to produce images; the two types of radars are broadly classified as real 
aperture and synthetic aperture radars. We shall discuss the differences between 
these two types in more detail later in this chapter. 

Radar images are typically acquired in strips as the satellite or aircraft carrying 
the radar system moves along its flight path. These strips are often referred to 
as swaths or tracks. To separate objects in the cross-track direction and the 



SAR Imaging Basics 3 

 
Fig. 1-1. Passive imaging systems conserve the angular relationships between 

objects in the scene and their images in the focal plane of the instrument. 

along-track direction within a radar image, two different methods must be 
implemented. The cross-track direction, also known as the range direction in 
radar imaging, is the direction perpendicular to the direction in which the 
imaging platform is moving. In this direction, radar echoes are separated using 
the time delay between the echoes that are back-scattered from the different 
surface elements. This is true for both real aperture and synthetic aperture radar 
imagers. The along-track direction, also known as the azimuth direction, is the 
direction parallel to the movement of the imaging platform. The angular size (in 
the case of the real aperture radar) or the Doppler history (in the case of the 
synthetic aperture radar) is used to separate surface pixels in the along-track 
dimension in the radar images. As we will see later, only the azimuth imaging 
mechanism of real aperture radars is similar to that of regular cameras. Using 
the time delay and Doppler history results, SAR images have resolutions that 
are independent of how far away the radar is from the scene it is imaging. This 
fundamental advantage enables high-resolution, spaceborne SAR without 
requiring an extremely large antenna. 

Another difference between images acquired by cameras operating in the 
visible and near infrared part of the electromagnetic spectrum and radar images 
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is the way in which they are acquired. Cameras typically look straight down, or 
at least have no fundamental limitation that prevents them from taking pictures 
looking straight down from the spacecraft or aircraft. Not so for imaging radars. 
To avoid so-called ambiguities, which we will discuss in more detail later, the 
imaging radar sensor has to use an antenna that illuminates the surface to one 
side of the flight track. Usually, the antenna has a fan beam that illuminates a 
highly elongated, elliptically shaped area on the surface, as shown in Fig. 1-2. 
The illuminated area across track generally defines the image swath. 

Within the illumination beam, the radar sensor transmits a very short effective 
pulse of electromagnetic energy. Echoes from surface points farther away along 
the cross-track coordinate will be received at proportionally later time (see 
Fig. 1-2). Thus, by dividing the receive time in increments of equal time bins, 
the surface can be sub-divided into a series of range bins. The width in the 
along-track direction of each range bin is equal to the antenna footprint along 
the track xa . As the platform moves, the sets of range bins are covered 
sequentially, thereby allowing strip mapping of the surface line by line. This is 
comparable to strip mapping with a so-called pushbroom imaging system using 
a line array in the visible and infrared part of the electromagnetic spectrum. The 
brightness associated with each image pixel in the radar image is proportional 
to the echo power contained within the corresponding time bin. As we will see 
later, the real difference between real aperture radars and synthetic aperture 
radars lies in the way in which the azimuth resolution is achieved. 

 
Fig. 1-2. Imaging geometry for a side-looking radar system. 
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This is also a good time to point out that there are two different meanings for 
the term range in radar imaging. The first is the so-called slant range and refers 
to the range along the radar line-of-sight, as shown in Fig. 1-3. Slant ranges are 
measured along the line connecting the radar and the object being imaged, often 
called the target or the scatterer. The second use of the term range is for the 
ground range, which refers to the range along a smooth surface (the ground) to 
the scatterer. The ground range is measured from the so-called nadir track, 
which represents the line described by the position directly underneath the radar 
imaging platform. One has to be careful to take topography into account when 
re-sampling radar images from slant range to ground range. This will be 
discussed in more detail in Section 1.6.2. 

Before looking at radar resolutions, let us define a few more terms commonly 
encountered in radar imaging. The look angle is defined as the angle between 
the vertical direction and the radar beam at the radar platform. The incidence 
angle is defined as the angle between the vertical direction and the radar wave 
propagation vector at the surface (as shown in Fig. 1-3). When surface 
curvature effects are neglected, the look angle is equal to the incidence angle at 
the surface when the surface is flat. In the case of space-borne systems, surface 
curvature must be taken into account; this leads to an incidence angle that is 
always larger than the look angle for flat surfaces. It is quite common in the 
literature to find authors using the terms look angle and incidence angle 
interchangeably. That is only correct for low-flying aircraft, and only when 
there is no topography present in the scene. As we will see next, if topography 
is present (i.e., if the surface is not flat), the local incidence angle might vary in 
the radar image from pixel to pixel. 

 

Depression Angle

Sensor

“Target”

Grazing Angle

Incidence Angle

Look Angle

Ground Range

Local Normal
To Surface

Fig. 1-3. Definition of some common radar imaging terms. 
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Consider the simple case of a single hill illuminated by a radar system, as is 
shown in Fig. 1-4. Also shown in the figure are the local normal to the surface 
for several positions on the hill. Relative to a flat surface, it is clear that for 
points on the hill facing the radar, the local normal tilts more towards the radar; 
therefore, the local incidence angle will be smaller than for a point at the same 
ground range, but on a flat surface. 

A term commonly encountered in military literature is depression angle. This is 
the angle between the radar beam and the horizontal at the radar platform. The 
depression angle is, therefore, related to the look angle in that one is equal to 
90 degrees minus the other. A small look angle is equivalent to a large 
depression angle, and vice versa. Similarly, one often finds the term grazing 
angle describing the angle between the horizontal at the surface and the incident 
wave in the military literature. The grazing angle is, therefore, related to the 
incidence angle in the same way that the depression angle is related to the look 
angle. In this text, we shall use look angle and incidence angle to describe the 
imaging geometry. 

1.2 Radar Resolution 
The resolution of an image is defined as that separation between the two closest 
features that can still be resolved in the final image. First, consider two point 
targets that are separated in the slant range direction by xr . Because the radar 
waves propagate at the speed of light, the corresponding echoes will be 
separated by a time difference ∆t  equal to: 

Case 1:  The local normal at the top of 
the hill is the same as that of a flat 
surface, leaving the incidence angle 
unchanged.

Case 2:  The local normal on the 
side of the hill facing the radar is 
tilted towards the radar, decreasing 
the local incidence angle.

Case 3:  On the side of the hill facing 
away from the radar, the local normal 
is tilted away form the radar, 
increasing the local incidence angle.

 
Fig. 1-4. Topographic variations in the image will cause the local incidence angle to be 

different from that expected for a flat surface with no relief. 
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 2 rt x c∆ = , (1.2-1) 

where c  is the speed of light and the factor 2 is included to account for the 
signal round trip propagation, as was previously described. Radar waves are 
usually not transmitted continuously; instead, a radar usually transmits short 
bursts of energy known as radar pulses. The two features can be discriminated 
if the leading edge of the pulse returned from the second object is received later 
than the trailing edge of the pulse received from the first feature, as shown in 
Fig. 1-5. 

Therefore, the smallest separable time difference in the radar receiver is equal 
to the effective time length τ  of the pulse. Thus, the slant range resolution of a 
radar is: 

 2
2r r
cx c x ττ= ⇒ =  (1.2-2) 

Now let us consider the case of two objects separated by a distance xg  on the 
ground. The corresponding echoes will be separated by a time difference ∆t  
equal to: 

 
Fig. 1-5. If the radar echoes from two point targets are separated in time by more 
than or equal to the length of the radar pulse, it is possible to recognize the 
echoes as those from two different scatterers, as shown in the top two panels. If 
the time difference between the echoes is less than the radar pulse length, it is 
not possible to recognize two distinct scatters, as in the case of the bottom 
panel.  
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 2 singt x cθ∆ = . (1.2-3) 

The angle θ  in Eq. (1.2-3) is the local incidence angle. (This should actually be 
called the incident angle, or angle of incidence. Since incidence angle is used 
almost universally in the literature, we shall continue to use that term to avoid 
confusion.). As in the case of the slant range discussed above, the two features 
can be discriminated if the leading edge of the pulse returned from the second 
object is received later than the trailing edge of the pulse received from the first 
feature. Therefore, the ground range resolution of the radar is given by 

 2 sin
2sing g

cx c x τθ τ
θ

= ⇒ = . (1.2-4) 

In other words, the ground range resolution is equal to half the footprint of the 
radar pulse on the surface. Note that Eq. (1.2-4) implies that the ground range 
resolution is different for different incidence angles. This also means that the 
local slopes in the images will affect the ground range resolution. For slopes 
facing the radar, the ground range resolution will be poorer than that for slopes 
facing away from the radar. 

Occasionally, the effective pulse length is described in terms of the system 
bandwidth B . As we will show in the next section, to a good approximation, 

 1 Bτ = . (1.2-5) 

A pulsed radar determines the range by measuring the round trip time by 
transmitting a pulse signal. In designing the signal pattern for a radar sensor, 
there is usually a strong requirement to have as much energy as possible in each 
pulse in order to enhance the signal-to-noise ratio. This can be done by 
increasing the transmitted peak power or by using a longer pulse. However, the 
peak power is usually strongly limited by the available power sources, 
particularly in the case of spaceborne sensors. On the other hand, an increased 
pulse length leads to a worse range resolution (see Eq. (1.2-4)). This dilemma is 
usually resolved by using modulated pulses, which have the property of a wide 
bandwidth even when the pulse is very long. After so-called pulse-compression, 
a short effective pulse length is generated, increasing the resolution. One way to 
modulate the pulse is to vary the radar signal frequency linearly while the pulse 
is being transmitted. This waveform is known as chirp. Although other ways of 
modulating pulses are occasionally used, the chirp modulation is by far the 
most common; we shall, therefore, use this scheme to illustrate how signal 
modulation can be used to enhance radar range resolution. 
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In a chirp, the signal frequency within the pulse is linearly changed as a 
function of time. If the frequency is linearly changed from f0  to f0 + ∆f , the 
effective bandwidth would be equal to: 

 ( )0 0B f f f f= + ∆ − = ∆ , (1.2-6) 

which is independent of the pulse lengthτ p . Thus, a pulse with long duration 
(i.e., high energy) and wide bandwidth (i.e., high range resolution) can be 
constructed. The instantaneous frequency for such a signal is given by: 

 ( ) 0 for 2 2p p
p

Bf t f t tτ τ
τ

= + − ≤ ≤ . (1.2-7) 

The corresponding signal amplitude is:  

 ( ) ( ){ } 2
0~ exp 2 cos 2

2 p

BA t i f t dt f t tπ π
τ

  
   ℜ − = +       

∫ , (1.2-8) 

where ℜ(x) means the real part of x . Note that the instantaneous frequency is 
the derivative of the instantaneous phase. A pulse signal such as shown in 
equation (1.2-8) has a physical pulse length τ p  and a bandwidth B . The 

product τ pB  is known as the time bandwidth product of the radar system. In 
typical radar systems time bandwidth products of several hundred are used.  

At first glance, it might seem that using a pulse of the form shown in 
Eq. (1.2-8) cannot be used to separate targets that are closer than the projected 
physical length of the pulse (as shown in the previous section). It is, indeed, 
true that the echoes from two neighboring targets that are separated in the range 
direction by much less than the physical length of the signal pulse will overlap 
in time. If the modulated pulse and, therefore, the echoes have a constant 
frequency, it will not be possible to resolve the two targets. However, if the 
frequency is modulated as described in Eq. (1.2-7), the echoes from the two 
targets will have different frequencies at any instant of time and, therefore, can 
be separated by frequency filtering. 

In actual radar systems, a matched filter is used to compress the returns from 
the different targets. Consider an example where we transmit a signal of the 
form described in Eq. (1.2-8). The signal received from a single point scatterer 
at a range R is a scaled replica of the transmitted signal delayed by a time 
t = 2R c . The output of the matched filter for such a point scatterer is 
mathematically described as the convolution of the returned signal with a 
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replica of the transmitted signal. Being careful about the limits of the 
integration, one finds that for large time-bandwidth products, 

 ( ) ( ) ( ) ( )( )
( )

sin 2
exp exp 4

2o p r
B t R c

V t E i t i R
B t R c
π

τ ω π λ
π

−
= −

−
 (1.2-9) 

where 

02 fω π=  

and 

Er  = electric field received by radar from a point source. 

This compressed pulse has a half power width of approximately 1 B  and its 
peak position occurs at time 2R c . Therefore, the achievable range resolution 
using a modulated pulse of the kind described in Eq. (1.2-8) is a function of the 
chirp bandwidth and not the physical pulse length. In typical spaceborne and 
airborne SAR systems, physical pulse lengths of several tens of micro-seconds 
are used, while bandwidths of several tens of megahertz are no longer 
uncommon for spaceborne systems, and several hundreds of megahertz are 
common in airborne systems. 

So far, we have seen the first major difference between radar imaging and that 
used in passive imaging systems. The cross-track resolution in the radar case is 
independent of the distance between the scene and the radar instrument and is a 
function of the system bandwidth. Before looking at the imaging mechanisms 
in the along-track direction, we will examine the general expression for the 
amount of reflected power that the radar receiver would measure. This is 
described through the so-called radar equation, which we will examine in the 
next section. 

1.3 Radar Equation 
One of the key factors that determine the quality of the radar imagery is the 
corresponding signal-to-noise ratio (SNR), commonly called SNR. This is the 
equivalent of the brightness of a scene being photographed with a camera 
versus the sensitivity of the film or detector. Here, we consider the effect of 
thermal noise on the sensitivity of radar imaging systems. The derivation of the 
radar equation is graphically shown in Fig. 1-6. 

In addition to the target echo, the received signal also contains noise, which 
results from the fact that all objects at temperatures higher than absolute zero 
emit radiation across the whole electromagnetic spectrum. The noise 
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Fig. 1-6. Schematic of the derivation of the radar equation. 

component that is within the spectral bandwidth B  of the sensor is passed 
through with the signal. The receiver electronics also generates noise that 
contaminates the signal. The thermal noise power is given by: 

 NP kTB= , (1.3-1) 

where k  is Boltzmann’s constant ( k =1.6×10  W/K/Hz) and T  is the total 
equivalent noise temperature in kelvin. The resulting SNR is then: 

23−

 r NSNR P P= . (1.3-2) 

Notice that the noise bandwidth is usually larger than the transmit bandwidth, 
due to the hardware limitation. 

One common way of characterizing an imaging radar sensor is to determine the 
surface backscatter cross section σN , which gives an SNR =1. This is called 
the noise equivalent backscatter cross section. It defines the weakest surface 
return that can be detected and, therefore, identifies the range of surface units 
that can be imaged. 
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1.4 Real Aperture Radar 
The real aperture imaging radar sensor also uses an antenna that illuminates the 
surface to one side of the flight track. As mentioned before, the antenna usually 
has a fan beam that illuminates a highly elongated elliptical shaped area on the 
surface (see Fig. 1-2). As shown in Fig. 1-2, the illuminated area across track 
defines the image swath. For an antenna of width W  operating at a wavelength 
λ , the beam angular width in the range plane is given by: 

 r Wθ λ≈  (1.4-1) 

and the resulting surface footprint or swath S  is given by 

 2 2cos cos
rh hS

W
θ λ
θ θ

≈ = , (1.4-2) 

where h  is the sensor height above the surface, θ  is the angle from the center 
of the illumination beam to the vertical (the look angle at the center of the 
swath), and θr  is assumed to be very small. Note that Eq. (1.4-2) ignores the 
curvature of the Earth. For spaceborne radars, this effect should not be ignored. 
If the antenna beam width is large, one needs to use the law of cosines to solve 
for the swath width. 

A real aperture radar relies on the resolution afforded by the antenna beam in 
the along-track direction for imaging. This means that the resolution of a real 
aperture radar in the along-track direction is determined by the size of the 
antenna as well as the range to the scene. Assuming an antenna length of L , 
the antenna beam width in the along-track direction is 

 a L
λθ ≈ . (1.4-3) 

At a distance R  from the antenna, this means that the antenna beam width 
illuminates an area with the along-track dimension equal to 

 
cosa a

R hx R
L L
λ λθ

θ
≈ ≈ ≈ . (1.4-4) 

To illustrate, for h  = 800 km, λ  = 23 cm, L  = 12 m and θ = 20° , then xa  = 16 
km. Even if λ  is as short as 2 cm and h  as low as 200 km, xa  will still be 
equal to about 360 meters, which is considered to be a relatively poor 
resolution, even for remote sensing. This has led to very limited use of the real-
aperture technique for surface imaging, especially from space. A real aperture 
radar uses the same imaging mechanism as a passive optical system for the 
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along-track direction. However, because of the small value of λ  (about 1 µm), 
resolutions of a few meters can be achieved from orbital altitudes with an 
aperture only a few tens of centimeters in size. From aircraft altitudes, however, 
reasonable azimuth resolutions can be achieved if higher frequencies (typically 
X-band or higher) are used. For this reason, real aperture radars are not 
commonly used in spaceborne remote sensing (except in the case of 
scatterometers and altimeters that do not need high-resolution data). 

In terms of the radar equation, the area responsible for reflecting the power 
back to the radar is given by the physical size of the antenna illumination in the 
along-track direction and the projection of the pulse on the ground in the cross-
track direction. This is shown in Fig. 1-2 for the pulses in the radar swath. The 
along-track dimension of the antenna pattern is given by Eq. (1.4-4). If the 
pulse has a length pτ  in time, and the signal is incident on the ground at an 
angle iθ  the projected length of the pulse on the ground is 

 
2sin

p
g

i

c
l

τ
θ

= . (1.4-5) 

Therefore, the radar equation in the case of a real aperture radar becomes 

 
( )

2

03 4 2sin4
pt t r

r
i

cPG G RP
LR

τλ λ σ
θπ

= . (1.4-6) 

The normalized backscattering cross section (σ0 ) is defined as 

 
22

0 20

4lim r

i

ER
A ER

πσ =
→∞

 (1.4-7) 

where A0  is the illuminated surface area, Er  is the reflected electric field, and 
Ei  is the incident electric field. 

This shows that when a real aperture radar images an extended area, the 
received power decreases as the range to the third power. In terms of the 
physical antenna sizes, we can rewrite this expression as 

 
2

0
38 sin

t p
r

i

PW Lc
P

R

τ σ

πλ θ
= . (1.4-8) 
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This is the radar equation for a so-called distributed target for the real aperture 
radar case. From Eq. (1.4-7), it is clear that the received power increases as the 
square of the width of the antenna. However, increasing the antenna width also 
decreases the swath width. The received power only increases linearly with an 
increase in antenna length. Increasing the antenna length also improves the 
along-track resolution of the real aperture radar. For this reason, real aperture 
radars usually operate with antennas that are the longest that could be 
practically accommodated. 

In summary, a real aperture radar uses the same imaging mechanism as passive 
imaging systems to achieve along-track resolution. The practically achievable 
resolutions are usually poorer than what is generally required for remote 
sensing applications. Real aperture radars are, therefore, not commonly used for 
remote sensing applications. 

1.5 Synthetic Aperture Radar 
Synthetic aperture radar refers to a particular implementation of an imaging 
radar system that utilizes the movement of the radar platform and specialized 
signal processing to generate high-resolution images. Prior to the discovery of 
synthetic aperture radar, principle imaging radars operated using the real-
aperture principle and were known as side-looking aperture radars (SLAR). 

Carl Wiley of the Goodyear Aircraft Corporation is generally credited as being 
the first person to describe the use of Doppler frequency analysis of signals 
from a moving coherent radar to improve along-track resolution. He noted that 
two targets at different along-track positions will be at different angles relative 
to the aircraft velocity vector, resulting in different Doppler frequencies. (The 
Doppler effect is the well-known phenomenon that causes a change in the pitch 
of a car horn as it travels past a stationary observer.) Using this effect, targets 
can be separated in the along-track direction on the basis of their different 
Doppler frequencies. This technique was originally known as Doppler beam 
sharpening, but later became known as synthetic aperture radar (SAR). 

The main difference between real and synthetic aperture radars is, therefore, in 
the way in which the azimuth resolution is achieved. The range resolution and 
radar equation derived previously for a real aperture radar is still valid here. 
The along-track imaging mechanism and the resulting along-track resolution is, 
however, quite different for the real and synthetic aperture radar case. 

As the radar moves along the flight path, it transmits pulses of energy and 
records the reflected signals, as shown in Fig. 1-2. When the radar data are 
processed, the position of the radar platform is taken into account when adding 
the signals to integrate the energy for the along-track direction. Consider the 
geometry shown in Fig. 1-7. As the radar moves along the flight path, the 
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Antenna beam
when scatterer 

exits beam

Antenna beam
when scatterer 

enters beam

Scatterer

0R
aθ

Fig. 1-7. The synthetic aperture radar integrates the signal from the 
scatter for as long as the scatterer remains in the antenna beam.  

distance between the radar and the scatterer changes, with the minimum 
distance occurring when the scatterer is directly broadside of the radar platform. 
The phase of the radar signal is given by −4π λR s( ) . The changing distance 
between the radar and the scatterer means that after range compression, the 
phase of the signal will be different for the different positions along the flight 
path. 

This changing distance can be written as 

 ( ) 2 2 2
0R s R v s= + , (1.5-1) 

where R0  is the range at closest approach to the scatterer, v  is the velocity of 
the radar platform, and s  is the time along the flight path (so-called slow time) 
with zero time at the time of closest approach. To a good approximation for 
remote sensing radars, we can assume that vs << R0 . (This might not be true 
for very-high-resolution radars; however, the basic principle remains the same.) 
In this case, we can approximate the range as a function of slow time as 

 ( )
2

2
0

02
vR s R s
R

≈ + . (1.5-2) 
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The phase of the signal after range compression, as shown in the second 
exponential in Eq. (1.2-9), then becomes 

 ( ) ( ) 2
20

0

4 4 2R s R vs s
R

π π πφ
λ λ λ

= − ≈ − − . (1.5-3) 

The instantaneous frequency of this signal is 

 ( ) ( ) 2

0

1 2
2

s vf s s
s R

φ
π λ
∂

= = −
∂

. (1.5-4) 

This is the expression of a linear frequency chirp. To find the bandwidth of this 
signal, we have to find the maximum time that we can use in the signal 
integration. This maximum “integration time” is given by the amount of time 
that the scatterer will be in the antenna beam. For an antenna with a physical 
length L , the half-power horizontal beam width is θ λa = L , so that the 
scatterer at the range of closest approach R0  is illuminated for a time 

 0
tot

Rs
Lv
λ

= . (1.5-5) 

Half of this time occurs when the radar is approaching the range of closest 
approach and half of it is spent traveling away from the range of closest 
approach. Therefore, the bandwidth of the signal shown in Eq. (1.5-4), which is 
the Doppler bandwidth of the SAR signal, is 

 
2

D
vB

L
= . (1.5-6) 

If this signal is filtered using a matched filter, as described earlier under signal 
modulation, the resulting compressed signal will have a width in time of 1 BD . 
Since the radar platform moves at a speed of v , this leads to an along-track 
resolution of 

 
2a

D

v L
B

∆ = = . (1.5-7) 

This result shows that the azimuth (or along-track) surface resolution for a 
synthetic aperture radar is equal to half the size of the physical antenna and is 
independent of the distance between the sensor and the surface! At first glance, 
this result seems most unusual: it shows that a smaller antenna gives better 
resolution. This can be explained in the following way: the smaller the physical 
antenna is, the larger its footprint. This allows a longer observation time for 
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each point on the surface (i.e., a longer array can be synthesized). This longer 
synthetic array allows a larger Doppler bandwidth and, hence, a finer surface 
resolution. Similarly, if the range between the sensor and surface increases, the 
physical footprint increases, leading to a longer observation time and larger 
Doppler bandwidth, which counter balances the increase in the range. 

As mentioned earlier, the imaging radar transmits a series of pulsed 
electromagnetic waves. Thus, the Doppler history from a scatterer is not 
measured continuously but sampled on a repetitive basis. To get an accurate 
record of the Doppler history, the Nyquist sampling criterion requires that 
sampling occurs at least at twice the highest frequency in the Doppler 
bandwidth. Thus, the pulse repetition frequency, usually called PRF, must be 
larger than 

 22
2
DB vPRF

L
 ≥ = 
 

. (1.5-8) 

Note that we used half the Doppler bandwidth as the highest frequency in the 
Doppler signal in Eq. (1.5-8). The reason for this is that the Doppler frequency 
varies linearly from −BD 2  to +BD 2 . Therefore, even though the total 
bandwidth of the signal is BD , the highest frequency in the bandwidth is only 
BD 2 . 

Eq. (1.5-8) means that at least one sample (i.e., one pulse) should be taken 
every time the sensor moves by half an antenna length. As an example, for a 
spaceborne imaging system moving at a speed of 7 km/sec and using an 
antenna 10 meters in length, the corresponding minimum PRF is 1.4 kHz. As 
we will see in the next section, the requirement to cover a certain swath size 
provides and upper bound on the PRF. Interpreted in a different way, the 
requirement to adequately sample the signal bandwidth limits the size of the 
swath that could be imaged. 

1.6 Radar Image Artifacts and Noise 
Radar images could contain a number of anomalies that result from the way 
imaging radars generate the image. Some of these are similar to what is 
encountered in optical systems, such as blurring due to defocusing or scene 
motion, and some (such as range and azimuth ambiguities) are unique to radar 
systems. This section summarizes the anomalies that are most commonly 
encountered in radar images. 
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1.6.1 Range and Azimuth Ambiguities 
As mentioned earlier (see Fig. 1-2), a radar images a surface by recording the 
echoes line by line with successive pulses. The leading edge of each echo 
corresponds to the near edge of the image scene; the tail end of the echo 
corresponds to the far edge of the scene. The length of the echo (i.e., swath 
width of the scene imaged) is determined by the antenna beam width or the size 
of the data window used in the recording of the signal. The exact timing of the 
echo reception depends on the range between the sensor and the surface being 
imaged. If the timing of the pulses or the extent of the echoes is such that the 
leading edge of one echo overlaps with the tail end of the previous one, then the 
far edge of the scene is folded over the near edge of the scene. This is called 
range ambiguity. The temporal extent of the echo is equal to: 

 2
sin2 tan 2

cos
e r

R hT
c cW

λ θθ θ
θ

≈ =  (1.6-1) 

To avoid overlapping echoes, this time extent should be shorter than the time 
separating two pulses (i.e., 1 / PRF ). Thus, we must have 

 
2cos

2 sin
cWPRF
h

θ
λ θ

<  (1.6-2) 

In addition, the sensor parameters, specifically the PRF, should be selected such 
that the echo is completely within an interpulse period (i.e., no echoes should 
be received during the time that a pulse is being transmitted). The above 
equation gives an upper limit for the PRF as mentioned before. The SAR 
designers have to trade off system parameters to maximize the swath, while at 
the same time transmitting a high enough PRF to adequately sample the signal 
Doppler spectrum. 

Another kind of ambiguity present in SAR imagery also results from the fact 
that the target’s return in the azimuth direction is sampled at the PRF. This 
means that the azimuth spectrum of the target return repeats itself in the 
frequency domain at multiples of the PRF. In general, the azimuth spectrum is 
not a band limited signal; instead, the spectrum is weighted by the antenna 
pattern in the azimuth direction. This means that parts of the azimuth spectrum 
might be aliased and high-frequency data will actually appear in the low-
frequency part of the spectrum. In actual images, these azimuth ambiguities 
appear as ghost images of a target repeated at some distance in the azimuth 
direction, as shown in Fig. 1-8. To reduce the azimuth ambiguities, the PRF of 
a SAR has to exceed the lower limit given by Eq. (1.5-8). 
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Fig. 1-8. Azimuth ambiguities result when the radar pulse repetition frequency is too low to 
sample the azimuth spectrum of the data adequately. In this case, the edges of the azimuth 
spectrum fold over themselves, creating ghost images, as shown in this figure. 

To reduce both range and azimuth ambiguities, the PRF must, therefore, satisfy 
both the conditions expressed by Eq. (1.5-8) and Eq. (1.6-2). Therefore, we 
must insist that 
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2cos 2

2 sin
cW v
h L

θ
λ θ

> , (1.6-3) 

from which we derive a lower limit for the antenna size as 

 2
4 sin

cos
vhLW
c
λ θ

θ
> . (1.6-4) 

A word of caution about the use of Eq. (1.6-4): This expression is derived 
assuming the SAR processor uses the full Doppler bandwidth in the processing 
and a swath that covers the full antenna beam width is imaged. This might not 
always be the case. For many reasons, SAR images are sometimes processed to 
only a fraction of the achievable resolution, or the swath width might be limited 
artificially by recording only that section of the returned echo that falls in a so-
called data window. When either of these conditions is used, it is not 
appropriate to limit the antenna size as given by Eq. (1.6-4). In fact, in the case 
where both the swath is artificially limited and the resolution is decreased, 
antennas significantly smaller that that given by Eq. (1.6-4) may be used with 
perfectly good results. 

Another type of artifact in radar images results when a very bright surface 
target is surrounded by a dark area. As the image is being formed, some spill 
over from the bright target, although weak, could exceed the background and 
become visible. It should be pointed out that this type of artifact is not unique to 
radar systems. They are common in optical systems, where they are known as 
the side lobes of the point spread function. The difference is that in optical 
systems, the side lobe characteristics are determined by the characteristics of 
the imaging optics (i.e., the hardware). Conversely, in the case of a SAR, the 
side lobe characteristics are determined mainly by the characteristics of the 
processing filters. In the radar case, the side lobes might, therefore, be reduced 
by suitable weighting of the signal spectra during matched filter compression. 
The equivalent procedure in optical systems is called apodization of the 
telescope aperture. 

The vast majority of these artifacts and ambiguities can be avoided with proper 
selection of the sensor and processor parameters. However, the interpreter 
should be aware of their occurrence, because in some situations they might be 
difficult, if not impossible, to suppress. 

1.6.2 Geometric Effects and Projections 
The time delay/Doppler history basis of SAR image generation leads to an 
image projection different than in the case of optical sensors. Even though at 
first look radar images seem very similar to optical images, close examination 
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quickly shows that geometric shapes and patterns are projected in a different 
fashion by the two sensors. This difference is particularly acute in rugged 
terrain. If the topography is known, a radar image can be re-projected into a 
format identical to an optical image, thus allowing image pixel registration. In 
extremely rugged terrain, however, the nature of the radar image projection 
leads to distortions that sometimes cannot be corrected without knowledge of 
the terrain elevations. 

In the radar image, two neighboring pixels in the range dimension correspond 
to two areas in the scene with slightly different range to the sensor. This has the 
effect of projecting the scene in a cylindrical geometry on the image plane, 
which leads to distortions (as shown in Fig. 1-9). Areas that slope toward the 
sensor look shorter in the image, while areas that slope away from the sensor 
look longer in the image than horizontal areas. This effect is called 
foreshortening. In the extreme case where the slope is larger than the incidence 
angle, layover occurs. In this case, a hill would look as if it is projected over the 
region in front of it. Layover cannot be corrected and can only be avoided by 
having an incidence angle at the surface larger than any expected surface 
slopes. When the slope facing away from the radar is steep enough such that the 
radar waves do not illuminate it, shadowing occurs and the area on that slope is 
not imaged. Note that in the radar images, shadowing is always away from the 
sensor flight line and is not dependent on the time of data acquisition or the Sun 
angle in the sky. As in the case of optical images, shadowing can be beneficial 
for highlighting surface morphologic patterns. Fig. 1-10 contains some 
examples of foreshortening and shadowing. 

a c d f g i

b

e

b’
a’c’

d’e’

g’h’
i’

f’

Radar Image Plane

h

b’ appears closer than a’ in radar image   Layover 
d’ and e’ are closer together in radar image   Foreshortening 
h’ to i’ not illuminated by the radar   Radar shadow 

 
Fig. 1-9. Radar images are cylindrical projections of the scene onto the image plane, 

leading to characteristic distortions.  
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Fig. 1-10. This NASA/JPL AIRSAR image shows examples of foreshortening and shadowing. 
Note that since the radar provides its own illumination, radar shadowing is a function of the 
radar look direction relative to the terrain and does not depend on the Sun angle. This image 
was illuminated from the left. (Image courtesy of Jet Propulsion Laboratory.) 

1.6.3 Signal Fading and Speckle 
A close examination of a synthetic-aperture radar image shows that the 
brightness variation is not smooth but, instead, has a granular texture that is 
called speckle. Even for an imaged scene that has a constant backscatter 
property, the image will have statistical variations of the brightness on a pixel-
by-pixel basis, but with a constant mean over many pixels. This effect is 
identical to when a scene is observed optically under laser illumination. It is a 
result of the coherent nature (or very narrow spectral width) of the illuminating 
signal. 

Rigorous mathematical analysis shows that the noise-like radar signal has well 
defined statistical properties. The measured signal amplitude has a Rayleigh 
distribution and the signal power has an exponential distribution [1]. To narrow 
the width of these distributions (i.e., reduce the brightness fluctuations), 
successive signals or neighboring pixels can be averaged incoherently (i.e., 
their power values are added). This would lead to a more accurate radiometric 
measurement (and a more pleasing image) at the expense of degradation in the 
image resolution. 

Another approach to reducing speckle is to combine images acquired at 
neighboring frequencies. In this case, the exact interference patterns lead to 
independent signals but with the same statistical properties. Incoherent 
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averaging would then result in a smoothing effect. In fact, this is why a scene 
illuminated with white light does not show speckled image behavior. 

In most imaging SARs, the smoothing is done by averaging the brightness of 
neighboring pixels in azimuth, or range, or both. The number of statistically 
independent pixels averaged is called the number of looks N . We can show 
that the signal standard deviation SN  is related to the mean signal power P by: 

 1
NS P

N
= . (1.6-5) 

The larger the number of looks N , the better the quality of the image from the 
radiometric point of view. However, this degrades the spatial resolution of the 
image. Noted that for N  larger than about 25, large increase in N  leads to only 
a small decrease in the signal fluctuation. This small improvement in the 
radiometric resolution should be traded off against the large degradation in the 
spatial resolution. For example, if one were to average 10 resolution cells in a 
four-look image, the speckle noise will be reduced to about 0.5 dB. At the same 
time, however, the image resolution will be reduced by an order of magnitude. 
Whether this loss in resolution is worth the reduction in speckle noise depends 
on both the aim of the investigation and the kind of scene imaged. 

Fig. 1-11 shows the effect of multi-look averaging. An image acquired by the 
NASA/JPL AIRSAR system is shown displayed at one, four, sixteen, and 
thirty-two looks, respectively. This figure clearly illustrates the smoothing 
effect, as well as the decrease in resolution resulting from the multi-look 
process. In one early survey of geologists, the results showed that even though 
the optimum number of looks depended on the scene type and resolution, the 
majority of the responses preferred 2-look images. However, this survey dealt 
with images that had rather poor resolution to begin with. One may well find 
that with today’s higher-resolution systems, analysts might be asking for a 
larger number of looks. 

1.7 Summary 
In this chapter we introduced some of the terms required to understand SAR 
imaging as described in the rest of this text. For a more in-depth treatment of 
SAR imaging and system engineering, the reader is referred to the two texts in 
the bibliography [2,3]. In the rest of this text, we shall concentrate specifically 
on polarimetric SAR and its applications. 
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Chapter 2 
Basic Principles of SAR Polarimetry 

The field of synthetic aperture radar changed dramatically in the early 1980s 
with the introduction of advance radar techniques, such as polarimetry and 
interferometry. While both of these techniques had been demonstrated much 
earlier, radar polarimetry only became an operational research tool with the 
introduction of the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) 
system in the early 1980s. Radar polarimetry was proven from space with the 
two Spaceborne Imaging Radar C-band and X-band (SIR-C/X) SAR flights on 
board the space shuttle Endeavour in April and October 1994. In this chapter, 
we describe the basic principles of SAR polarimetry and, thereby, provide tools 
necessary to understand SAR polarimetry applications, such as land 
classification. 

2.1 Polarization of Electromagnetic Waves 
In SAR polarimetry, information is transmitted from an object to a sensor by 
electromagnetic waves. The information could be encoded in the frequency 
content, intensity, or polarization of the electromagnetic wave. The 
electromagnetic waves propagate at the velocity of light from the object directly 
through free space or indirectly by reflection, scattering, and radiation to the 
sensor. The interaction of electromagnetic waves with natural surfaces and 
atmospheres is strongly dependent on the frequency of the waves. 

An electromagnetic wave consists of a coupled electric and magnetic force 
field. In free space, these two fields are at right angles to each other and 
transverse to the direction of propagation. The direction and magnitude of only 
one of the fields (usually the electric field) is sufficient to completely specify 
the direction and magnitude of the other field in free space using Maxwell’s 
equations. The polarization of the electromagnetic wave is contained in the 
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elements of the vector amplitude A  of the electric field. For a transverse 
electromagnetic wave, this vector is orthogonal to the direction in which the 
wave is propagating; we can, therefore, completely describe the amplitude of 
the electric field by writing A  as a two-dimensional complex vector: 

 ˆ ˆh vi i
h va e a eδ δ= +A h v . (2.1-1) 

Here, we denote the two orthogonal basis vectors as ĥ  for horizontal and v̂  for 
vertical. Horizontal polarization is usually defined as the state where the 
electric vector is perpendicular to the plane of incidence. Vertical polarization 
is orthogonal to both horizontal polarization and the direction of propagation 
and corresponds to the case where the electric vector is in the plane of 
incidence. Any two orthogonal basis vectors could be used to describe the 
polarization; in some cases, the right- and left-handed circular basis is used. 
The amplitudes, ah  and av , and the relative phases, δh  and δ v , are real 
numbers. The polarization of the wave can be thought of as the shape that the 
tip of the electric field would trace over time at a fixed point in space. Taking 
the real part of Eq. (2.1-1), we find that the polarization figure is the locus of all 
the points in the h-v plane that have the coordinates 
Eh = ah cosδh ; E av = v cosδv . It can easily be shown that the points on the 
locus satisfy the expression 

 ( ) ( )
2 2

22 cos sinh v h v
h v h v

h v h v

E E E E
a a a a

δ δ δ δ
   

+ − − = −   
   

. (2.1-2) 

This is the expression of an ellipse (shown in Fig. 2-1). In the general case, 
therefore, electromagnetic waves are elliptically polarized. In tracing the 
ellipse, the tip of the electric field can rotate either clockwise or counter-
clockwise; this direction is denoted by the handedness of the polarization. The 
definition of handedness accepted by the Institute for Electrical and Electronics 
Engineers (IEEE) is that a wave is said to have right-handed polarization if the 
tip of the electric field vector rotates clockwise when the wave is viewed 
receding from the observer. If the tip of the electric field vector rotates counter-
clockwise when the wave is viewed in the same way, it has a left-handed 
polarization. It is worth pointing out that a different definition of handedness is 
often encountered in optics literature. Specifically, in optics literature, a wave is 
said to have a right-handed (left-handed) polarization when the wave is viewed 
approaching the observer and the tip of the electric field vector rotates in the 
clockwise (counter-clockwise) direction. 
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Fig. 2-1. A polarization ellipse. 

In the special case where the ellipse collapses to a line, which happens when 
δ δh v− = nπ  with n any integer, the wave is said to be linearly polarized. 
Another special case is encountered when the two amplitudes are the same 
(a ah v= )  and the relative phase differenceδ δh v−  is either π 2  or −π 2 . In 
this case, the wave is circularly polarized. 

The polarization ellipse (see Fig. 2-1) can also be characterized by two angles 
known as the ellipse orientation angle (ψ  in Fig. 2-1, 0 ≤ ≤ψ π ) and the 
ellipticity angle, shown as χ  ( −π 4 4≤ χ π≤ ) in Fig. 2-1. These angles can 
be calculated as follows: 

 ( ) ( )2 2 2 2
2 2

tan 2 cos ; sin 2 sinh v h v
h v h v

h v h v

a a a a
a a a a

ψ δ δ χ δ δ= − = −
− +

. (2.1-3) 

Note that linear polarizations are characterized by an ellipticity angle χ = 0 . 
Note also that two waves are orthogonally polarized: that is, the scalar product 
of the two polarization vectors will be zero if the two polarization ellipses have 
orientation angles that are 90 degrees (deg) different and the handedness of the 
two waves are opposite. 

So far, it was implied that the amplitudes and phases shown in Eq. (2.1-1) and 
Eq. (2.1-2) are constant in time. This might not always be the case. If these 
quantities vary with time, the tip of the electric field vector will not trace out a 
smooth ellipse. Instead, the figure will, in general, be a noisy version of an 
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ellipse that after some time might resemble an “average” ellipse. In this case, 
the wave is said to be partially polarized, and it can be considered that part of 
the energy has a deterministic polarization state. The radiation from some 
sources, such as the Sun, does not have any clearly defined polarization. The 
electric field assumes different directions at random as the wave is received. In 
this case, the wave is called randomly polarized or unpolarized. In the case of 
some man-made sources, such as lasers and radio/radar transmitters, the wave 
usually has a well-defined polarized state. 

Another way to describe the polarization of a wave that is particularly 
appropriate for the case of partially polarized waves is through the use of the 
Stokes parameters of the wave. For a monochromatic wave, these four 
parameters are defined as 

 
( )
( )

2 2
0

2 2
1

2

2

2 cos
2 sin

h v

h v

h v h v

h v h v

S a a

S a a
S a a
S a a

δ δ
δ δ

= +

= −
= −
= −

. (2.1-4) 

Note that for such a fully polarized wave, only three of the Stokes parameters 
are independent, since S 2 2 2 2

0 1= S + S S2 3+ . Using the relations in Eq. (2.1-3) 
between the ellipse orientation and ellipticity angles and the wave amplitudes 
and relative phases, it can be shown that the Stokes parameters can also be 
written as 

 
1 0

2 0

3 0

cos 2 cos 2
cos2 sin 2
sin 2

S S
S S
S S

χ ψ
χ ψ
χ

=
=
=

. (2.1-5) 

If two ellipse orientations differ by 90 deg and the handedness of the ellipses 
are opposite (that is, the ellipticity angles are equal but of opposite sign), it 
follows from Eq. (2.1-5) that the Stokes parameters of two orthogonally 
polarized waves are the same magnitudes, but opposite in sign. 

The relations in Eq. (2.1-5) lead to a simple geometric interpretation of 
polarization states. The Stokes parameters S1 , S2  and S3  can be regarded as 
the Cartesian coordinates of a point on a sphere, known as the Poincaré sphere, 
of radius S0  (see Fig. 2-2). There is, therefore, a unique mapping between the 
position of a point in the surface of the sphere and a polarization state. Linear 
polarizations map to points on the equator of the Poincaré sphere, while the 
circular polarizations map to the poles. Orthogonal polarizations are anti-podal 
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Fig. 2-2. Polarization represented as a point on the Poincaré sphere. 

on the Poincaré sphere, which means they lie on opposite sides of the sphere 
and the line connecting the orthogonal polarizations runs through the center of 
the sphere. See, for example, the positions of horizontally and vertically 
polarized linear polarizations or the two circular polarizations in Fig. 2-2. 

In the case of partially polarized waves, all four Stokes parameters are required 
to fully describe the polarization of the wave. In general, the Stokes parameters 
are related by S2 2 2 2

0 1≥ S S+ 2 + S3 , with equality holding only for fully polarized 
waves. In the extreme case of an unpolarized wave, the Stokes parameters are 
S0 > 0  and S S1 2= = S3 = 0 . It is always possible to describe a partially 
polarized wave by the sum of a fully polarized wave and an unpolarized wave. 

The magnitude of the polarized wave is given by S 2 2 2
1 + S S2 3+ ; the 

magnitude of the unpolarized wave is S 2 2 2
0 − S S1 + 2 3+ S . Finally, it should 

be pointed out that the Stokes parameters of an unpolarized wave can be written 
as the sum of two fully polarized waves, as follows: 
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0 00

1 1

2 2

3 3

0 1 1
0 2 2
0

S SS
S S
S S
S S

    
     −     = +
     −
    

−     

. (2.1-6) 

These two fully polarized waves have orthogonal polarizations. This important 
result shows that when an antenna with a particular polarization is used to 
receive unpolarized radiation, the amount of power received by the antenna will 
be only that half of the power in the unpolarized wave that aligns with the 
antenna polarization. The other half of the power will not be absorbed because 
its polarization is orthogonal to that of the antenna. 

2.2 Mathematical Representations of Scatterers 
If a radiated electromagnetic wave is scattered by an object and one observes 
this wave in the far-field of the scatterer, the scattered wave can, again, be 
adequately described by a two-dimensional vector. In this abstract way, one can 
consider the scatterer as a mathematical operator that takes one two-
dimensional complex vector (the wave impinging upon the object) and changes 
that into another two-dimensional vector (the scattered wave). Mathematically, 
therefore, a scatterer can be characterized by a complex 2 × 2 scattering matrix: 

 [ ]hh hvsc tr tr

vh vv

S S
S S

 
= = 
 

E E S E  (2.2-1) 

where Etr  is the electric field vector that was transmitted by the radar antenna, 
[S]  is the 2 × 2 complex scattering matrix that describes how the scatterer 

modified the incident electric field vector, and Esc is the electric field vector 
that is incident on the radar receiving antenna. This scattering matrix is also a 
function of the radar frequency and the viewing geometry. The scatterer can, 
therefore, be thought of as a polarization transformer, with the transformation 
given by the scattering matrix. Once the complete scattering matrix is known 
and calibrated, one can synthesize the radar cross-section for any arbitrary 
combination of transmit and receive polarizations.  

Fig. 2-3 shows a number of such synthesized images for the San Francisco Bay 
area in California. The data were acquired with the NASA/JPL AIRSAR 
system. 
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To specify the polarization vectors and electric field vectors, we need to define 
the radar coordinate system. In this book, we will use the backscatter alignment 
coordinate system as shown in Fig. 2-4; this is the coordinate system in which 
radar measurements are performed. (See Ulaby and Elachi, [1], Chapter 2, for a 
more detailed discussion of coordinate systems.) 

The voltage measured by the radar system is proportional to the scalar product 
of the radar antenna polarization and the incident wave electric field, i.e.: 

 [ ]rec tr
aV c= ⋅p S p , (2.2-2) 

where ptr  and prec  are the normalized polarization vectors describing the 
transmitting and receiving radar antennas expressed in the backscatter 
alignment coordinate system, and ca  is a factor that includes the transmitting 
antenna gain, the receiving antenna effective area and the distance to the 
scatterer (see the derivation of the radar equation in Chapter 1). For our 
purposes here, we are interested in the properties of the scatterer, so we shall 

ˆ
rk

ˆ
th

ˆ tv

ˆ
tk

ˆ rv
ˆ

rhẑ

ŷ

x̂

iφ

sφ

sθ
iθ

 
Fig. 2-4. A backscatter alignment coordinate system. Notice that the transmitting 
and receiving polarizations coincide for the backscattering case where the 
transmitting and receiving antennas are located at the same place. 
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ignore ca  in the rest of the discussion. The power received by the radar is the 
magnitude of the voltage squared (Kennaugh [2]; Kostinski and Boerner [3]; 
van Zyl et al. [4]; Zebker et al. [5]: 

 [ ]
2* rec trP VV= = ⋅p S p . (2.2-3) 

Expanding the expression inside the magnitude sign in Eq. (2.2-3), it can be 
shown that the received power can also be written in terms of the scatterer 
covariance matrix, as follows: 

 ( )( ) [ ] [ ]** * * * *;P VV= = = = ⋅ =AT TA ATT A A C A C TT    ,  (2.2-4) 

where A~ = (p rec tr rec tr rec tr
h p tr p rec

h h pv pv ph pv pv ) represents the transpose of 

the antenna polarization vector elements and T~ = (Shh Shv Svh Svv )  
represents only the scatterer. The superscript * denotes complex conjugation. 
The covariance matrix characterization is particularly useful when analyzing 
multi-look radar images, since the covariance matrix of a multi-look pixel is 
simply the average covariance matrix of all the individual measurements 
contained in the multi-look pixel.   

Recall that multi-looking is performed by averaging the power from adjacent 
pixels together to reduce speckle. This averaging process can be written as 

 [ ] [ ]* *

1 1 1 1

1 1M N M N
ij ij

j i j i
P P C

MN MN= = = =
= = ⋅ = ⋅∑∑ ∑∑A A A C A , (2.2-5) 

where the two subscripts denote averaging in the range and azimuth directions, 
respectively. The angular brackets  denote this spatial averaging. 

Eq. (2.2-4) shows the covariance matrix to be a 4 × 4 complex Hermetian 
matrix. In the case of radar backscatter, reciprocity dictates that S Shv = vh  and 
the covariance matrix can, in general, be written as a 3 × 3 complex Hermetian 
matrix. Also note that it is always possible to calculate the covariance matrix 
from the scattering matrix. However, the inverse is not true: it is not always 
possible to calculate an equivalent scattering matrix from the covariance matrix. 
This follows from the fact that the off-diagonal terms in the covariance matrix 
involve cross-products of the scattering matrix elements (for example, S S*

hh hv ). 
For a single scattering matrix, there is a definite relationship between this term 
and the two diagonal terms S S*

hh hh  and S *
hvShv . However, once the covariance 
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matrix elements are averaged spatially (such as during multi-looking of an 
image), this definite relationship no longer holds and we cannot uniquely find 
an equivalent hhS  and hvS  that would satisfy all three cross-products 

*
hh hvS S , *

hh hhS S , and *
hv hvS S . 

The power expression shown in Eq. (2.2-3) can also be written in terms of the 
antenna Stokes vectors. First, consider the following form of the power 
equation (van Zyl [6]; van Zyl et al. [7]): 

 

( )( )
( )( )
( )( ) ( )( )
( )( ) ( )( )

*

*

* * * *

* * * *

*

*

*

*

rec sc rec sc

rec sc rec sc rec sc rec sc
h h v v h h v v

rec rec sc sc rec rec sc sc
h h h h v v v v

rec rec sc sc rec rec sc sc
h v h v v h v h

rec rec
h h
rec rec
v v
rec rec
h v
rec rec
v h

P

p E p E p E p E

p p E E p p E E

p p E E p p E E

p p

p p

p p

p p

= ⋅ ⋅

= + +

= +

+ +

 
 
 

= 


 

p E p E

*

*

*

*

sc sc
h h
sc sc
v v
sc sc
h v
sc sc
v h

rec

E E

E E

E E

E E

 
 
 
⋅  
  
    
 

= ⋅g X

. (2.2-6) 

Here, the vector X in Eq. (2.2-6) is a function of the transmit antenna 
parameters and the scattering matrix elements. Using the fact that [ ]sc tr=E S p , 

it can be shown that [ ] tr=X W g , where 

 [ ]

* * * *

* * * *

* * * *

* * * *

hh hh hv hv hh hv hv hh

vh vh vv vv vh vv vv vh

hh vh hv vv hh vv hv vh

vh hh vv hv vh hv vv hh

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

 
 
 

=  
 
  
 

W . (2.2-7) 

Therefore, the measured power can be expressed as 

 [ ]rec trP = ⋅g W g . (2.2-8) 
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The Stokes vector of a wave can be written as 

 [ ]

* * *

* * *

* * *

* * *

1 1 0 0
1 1 0 0
0 0 1 1
0 0( )

h h v v h h

h h v v v v

h v h v h v

h v h v h v

p p p p p p

p p p p p p

p p p p p p
i ii p p p p p p

   +     
    − − = = =   
    +     −    − −   

S R g . (2.2-9) 

From Eq. (2.2-9), [ ] 1−=g R S . Then, after straightforward calculations, it can 
be shown that 

 [ ]rec trP = ⋅S M S . (2.2-10) 

The matrix [ ]M  is known as the Stokes scattering operator and is given by 

 [ ] [ ] [ ][ ]1 1T− − =   
M R W R , (2.2-11) 

where the superscript T indicates the transpose of the matrix. Note that, like the 
covariance matrix, the average power can be written in terms of the average 
Stokes scattering operator. 

2.3 Implementation of a Radar Polarimeter 
Polarimetric radars must measure the full scattering matrix to preserve the 
information regarding the scatterer. From Eq. (2.2-2), it can be seen that setting 
one transmit vector element equal to zero allows us to measure two components 
of the scattering matrix at a time. Mathematically, this operation is expressed as 

 
1 0

;
0 1

tr tr
hh hh hv hv hh hv

vh vh vv vv vh vv

S S S S S S
S S S S S S

          
= =          

          
. (2.3-1) 

Eq. (2.3-1) represents the typical implementation of a radar polarimeter: that is, 
a radar polarimeter transmits a wave of one polarization and receiving echoes in 
two orthogonal polarizations simultaneously. This is followed by transmitting a 
wave with a second polarization and, again, receiving echoes with both 
polarizations simultaneously (as is shown in Fig. 2-5). In this way, all four 
elements of the scattering matrix are measured. This implementation means that 
the transmitter is in slightly different positions when measuring the two 
columns of the scattering matrix, but this distance between the two positions is 
typically small compared to a synthetic aperture and, therefore, does not lead to 
a significant decorrelation of the signals. The more important aspect of this 
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Fig. 2-5. A polarimetric radar is implemented by alternatively transmitting signals out of 
horizontally and vertically polarized antennas and receiving at both polarizations 
simultaneously. Two pulses are needed to measure all the elements in the scattering matrix. 

implementation is that the pulse repetition frequency (PRF) must be high 
enough to ensure that each polarimetric channel is sampled adequately. 
Therefore, each channel must independently satisfy the minimum PRF 
requirement. Since we are interleaving two measurements, this means that the 
master PRF for a polarimetric system runs twice the rate of a single-channel 
SAR. The NASA/JPL AIRSAR system pioneered this implementation for SAR 
systems. Subsequently, the same implementation was used in the SIR-C part of 
the SIR-C/X-SAR radars. 

A polarimetric SAR implemented in this fashion actually acquires four images: 
one each for the horizontal-horizontal (HH), horizontal-vertical (HV), vertical-
horizontal (VH), and vertical-vertical (VV) combinations. The basic 
measurement for each pixel in the highest resolution image is, therefore, a 
complete scattering matrix, or four complex numbers. If the SAR operates in 
the backscatter mode, reciprocity dictates that hv vhS S=  and that there are only 
three independent images. In practice, the HV and VH measurements are made 
at different times and through different receivers, so thermal noise in the system 
will cause these numbers to be different. Once the channels are properly 
calibrated, any remaining differences are due to thermal noise. Therefore, one 
could, in fact, average these two channels together coherently to increase the 
signal-to-noise ratio in the cross-polarized image. After this operation, one is 
left with three independent complex numbers per pixel. 

As discussed in the previous chapter, all SAR images suffer from speckle noise, 
which is the result of coherent interference from individual scatterers that might 
be present inside a pixel. To reduce this speckle noise, the power from adjacent 
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pixels are averaged; this process is known as multi-looking. We have shown in 
Eq. (2.2-5) that all the polarimetric information can be retained by performing 
this multi-looking operation by averaging the covariance matrices of adjacent 
pixels. A similar operation follows from Eq. (2.2-10) for the Stokes scattering 
operator case, as follows: 

 [ ] [ ]
1 1 1 1

1 1M N M N
rec tr rec tr

m ij ij
j i j i

P P P
MN MN= = = =

= = = ⋅ = ⋅∑∑ ∑∑S M S S M S . (2.3-2) 

This multi-looking operation can be done once; all subsequent analyses would 
then be performed on the multi-looked data set. In fact, the polarimetric data 
from the NASA/JPL AIRSAR system is distributed in a multi-looked format 
with some special compression formatting to reduce the data volume further. 
The multi-looked polarimetric data from the SIR-C radar was distributed as 
cross-products of the scattering matrix, which are the elements of the 
covariance matrix. 

Polarimetric SAR systems place additional restrictions on the pulse repetition 
frequency (PRF) used to operate the radar. Each transmit polarization channel 
must satisfy the normal constraints imposed on SAR systems using a single 
transmit polarization. The result is that polarimetric systems operate with a 
master PRF that runs twice as fast as that of a single transmit channel SAR. 
Additionally, the range ambiguities of a polarimetric SAR system are more 
complicated than those of a single channel SAR. In the HV channel, for 
example, one would measure ambiguous signals from the next and the previous 
pulses (in fact, at all odd numbers of ambiguous pulses) at HH. Given that HV 
is usually much smaller than HH to begin with, we then have to place even 
more stringent requirements on the overall ambiguity levels to measure HV 
accurately in the presence of the ambiguities. This severely limits the useful 
swath width that can be achieved with polarimetric SAR systems from space. 

One way to achieve much of the desirable information from a polarimetric 
measurement with reduced requirements on the PRF and the ambiguity level is 
to use so-called compact polarimetry (Souyris et al. [8]). Compact polarimetry 
essentially is a special, dual-polarization mode in which one polarization only is 
transmitted and two orthogonal polarizations are used to measure the return. In 
the original mode proposed by Souyris et al. [8], a 45 deg linear polarization 
signal is transmitted and horizontal and vertical polarizations are used to 
receive the signal. In this case, the received signal is simply 

 ( ) ( )1 1;
2 2h hh hv v vh vvV S S V S S= + = + . (2.3-3) 

The average covariance matrix is then 
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* * * *

* * * *
1
2

hh hh hv hv hh vv hv hv
p

vv hh hv hv hv hv vv vv

S S S S S S S S
C

S S S S S S S S

 + +   ≈   
+ + 

 

. (2.3-4) 

In deriving this covariance matrix, we have assumed that the terrain exhibits 
reflection symmetry. Compact polarimetry allows us to relax the requirements 
on the PRF to be the same as that of a conventional SAR system. Compact 
polarimetry also balances the ambiguity levels better than that of a regular 
polarimetric system. The drawback, of course, is that we no longer have “pure” 
measurements of co-polarized and cross-polarized terms. Instead, we have 
mixtures of co- and cross-polarized terms in all components of the covariance 
matrix. 

Following the original proposed compact polarimetry mode, Raney [9] 
suggested transmitting circular polarization to be more advantageous in the 
presence of Faraday rotation. The basic expressions are similar to those derived 
above, however, and will not be repeated here. 

2.4 Polarization Response 
Once the scattering matrix, the covariance matrix, or the Stokes matrix is 
known, one can synthesize the received power for any transmit and receive 
antenna polarizations using the power equations ((Eq. (2.2-3), Eq. (2.2-4), and 
Eq. (2.2-10)). This is known as polarization synthesis and is discussed in more 
detail in Chapter 2 of Ulaby and Elachi [1]. Note that if we allow the 
polarization of the transmit and receive antennas to be varied independently, the 
polarization response of the scene would be a four-dimensional space. This is 
most easily understood by representing each of the two polarizations by the 
orientation and ellipticity angles of the respective polarization ellipses. The 
polarization response is, therefore, a function of these four angles. Visualizing 
such a four-dimensional response is not easy. To simplify the visualization, the 
so-called polarization response (van Zyl [6]; Agrawal and Boerner [10]; Ulaby 
and Elachi [1]) was introduced. The polarization response is displayed as a 
three-dimensional figure, and the transmit and receive polarizations are either 
the same (the co-polarized response) or they are orthogonal (the cross-polarized 
response). One can also display the maximum or minimum received power as a 
function of transmit polarization or the polarized and unpolarized component of 
the power using this same display. Agrawal and Boerner [10] also used this 
method to display the relative phase of the received signal as a function of 
polarization. 

We shall introduce the polarization response through the example of a trihedral 
corner reflector that has been used extensively for the polarimetric radar 
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Fig. 2-6. (a) A trihedral corner reflector is being deployed at the calibration site.  
(b) The trihedral corner reflector geometry.  

calibration. A picture of a trihedral corner reflector is shown in Fig. 2-6. The 
scattering matrix of a trihedral corner reflector is given by 

 [ ] 1
1 0
0 1

c  
=  

 
S , (2.4-1) 

k l2
where c 0

1 = . From Eq. (2.4-1), the characteristics of a trihedral corner 
12π

reflector are: 

1. No cross polarization components are generated (HV = VH = 0) for the 
linear polarization case. 

2. Horizontal and vertical backscattering cross sections are identical  
(HH = VV). 

3. Horizontal and vertical co-polarized components are in phase. 

These are the desired properties of a calibration target to balance the co-
polarized elements (i.e., the diagonal terms) of the scattering matrix. In 
addition, trihedral corner reflectors provide relatively large radar cross sections 
with a large, 3-dB beamwidth independent of the radar wavelength and the 
corner reflector size. 

From Eq. (2.4-1), Eq. (2.2-4), and Eq. (2.2-11), we can calculate the covariance 
matrix and the Stokes scattering operator as 
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 [ ] 2
1

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

c

 
 
 =
 
 
 

C  (2.4-2) 

and 

 [ ] 2
1

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

c

 
 
 =
 
 

− 

M . (2.4-3) 

Using Eq. (2.2-10) and Eq. (2.4-3), the received power can be calculated 
explicitly, as shown in Eq. (2.4-4) for the case of co-polarized and cross-
polarized antennas: 
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24
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ψ χ ψ χ χ
π

χ χ
π

χ
π

= ± ±

 = ± − 

= ±



, (2.4-4) 

where the top sign is for the co-polarization case and the bottom sign is for the 
cross-polarization case. (Recall that orthogonally polarized waves are anti-
podal on the Poincaré sphere.) The ellipse orientation and ellipticity angles 
refer to those of the transmitting antenna. It is immediately apparent that the 
received power is independent of the ellipticity angle. Taking the derivative 
with respect to the ellipse orientation angle, it is easily shown that for the co-
polarized response, the maximum is found when χ = 0  (linear polarizations) 
and the minimum occurs at χ = 45°  (circular polarizations). The locations of 
the maxima and minima are reversed in the case of the cross-polarized 
response. This behavior is explained by the fact that the reflected waves have 
the opposite handedness than the transmitted ones when analyzed in the 
backscatter alignment coordinate system. Therefore, if either circular 
polarization is transmitted, the reflected wave is polarized orthogonally to the 
transmitted wave, leading to maximum reception in the cross-polarized and 
minimum reception in the co-polarized case. 
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The co- and cross-polarized responses are shown in Fig. 2-7. These three-
dimensional displays show the normalized radar cross-section (power) in the 
vertical direction plotted as a function of the transmitting antenna ellipse 
orientation and ellipticity angles. For co-polarized responses, the receiving 
antenna has the same polarization as that of the transmitting antenna. The left-
hand figure in Fig. 2-7 shows the positions of some of the more common 
antenna combinations for this type of display. For the cross-polarized response, 
the receiving antenna polarization is orthogonal to that of the transmitting 
antenna. Some of the common combinations are shown on the right in Fig. 2-7. 
Note that the displays in Fig. 2-7 confirm what we already discussed using 
Eq. (2.4-4). First, the received power is not a function of the ellipse orientation 
angle, as seen by the constant value of the radar cross-section in Fig. 2-7 for 
changing ellipse orientation. The maximum of the co-polarization signature 
occurs for the linear polarizations, and the minima at the circular polarizations. 
For the cross-polarization response, the maxima occur at the circular 
polarizations, while the minima occur at the linear polarizations. 

A slightly different display of the polarization response involves displaying the 
normalized radar cross-section in spherical coordinates using the Poincaré 
sphere. The polarization is defined by the angles as shown in Fig. 2-2, but the 
radius is plotted as the normalized received power. This three-dimensional 
version of the polarization responses for the trihedral corner reflector is shown 
in Fig. 2-8. The co-polarized response clearly shows the nulls at the circular 
polarizations; the cross-polarized response shows the corresponding maximum 
for the circular polarizations. 

The second example of polarization responses is that of a dihedral corner 
reflector, shown in Fig. 2-9. The scattering matrix of a dihedral corner reflector 

 
Fig. 2-7. The polarization response of a trihedral corner reflector. Two responses are 
displayed: (right) identical transmit and receive polarizations (co-polarized) and (left) 
orthogonal transmit and receive polarizations (cross-polarized). 
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Fig. 2-8. Three-dimensional polarization response of a trihedral corner reflector. 

 
Fig. 2-9. A dihedral corner reflector. 

 
is given by 

 [ ] 2
1 0
0 1

c  
=  − 

S , (2.4-5) 

k
where 0abc2 = . From Eq. (2.4-5), we find the following characteristics for a 

π
dihedral corner reflector: 

1. No cross polarization components are generated (HV = VH = 0) when it is 
illuminated by a purely horizontal or vertical radar signal. 

2. Horizontal and vertical backscattering cross sections are identical  
(HH = VV). 

3. Horizontal and vertical co-polarization components are out of phase. 
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From Eq. (2.4-5), we can calculate the covariance matrix and the Stokes 
scattering operator as 

 [ ] 2
2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

c

− 
 
 =
 
 
− 

C  (2.4-6) 

and 

 [ ] 2
2

1 0 0 0
0 1 0 01
0 0 1 02
0 0 0 1

c

 
 
 =
 −
 
 

M . (2.4-7) 

The received power from a dihedral corner reflector for the co- and cross-
polarized cases can be written as 

 ( ) ( ) ( ) ( ) ( ){ }
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
. (2.4-8) 

Taking the derivatives of this expression, one finds that the co-polarized 
maxima occur at horizontal linear, vertical linear, and the circular polarizations. 
The co-polarized minima occur at 45 deg and 135 deg linear polarizations. The 
cross-polarized maxima occur at the same polarizations as the co-polarized 
minima. The cross-polarized minima occur at the same polarizations as the co-
polarized maxima. This information allows us to conclude that the minima 
observed in these responses occur because the polarization of the received wave 
is orthogonal to that of the transmitting antenna. 

Figure 2-10 shows the co- and cross-polarized responses of the dihedral corner 
reflector. Note that the minima in one figure correspond to the maxima in the 
other. While not obvious when comparing Fig. 2-7 and the top row in Fig. 2-10, 
a comparison of Fig. 2-8 and the bottom row of Fig. 2-10 clearly shows that the 
polarization responses of the dihedral and trihedral corner reflectors are rotated 
versions of each other in the Poincaré space. In fact, the responses of the 
dihedral corner reflector are exactly those of the trihedral rotated 90 deg about 
the S1  axis. In that sense, we can consider these responses as “orthogonal” to 
each other. 



48  Chapter 2 

 
Fig. 2-10. Standard (top row) and three-dimensional (bottom row) polarization responses  

of a dihedral corner reflector. 

Next, consider the case of a dihedral corner reflector, such as the one showed in 
Fig. 2-9; for this case, however, we rotate the base of the corner reflector 45 
deg relative to the horizontal axis. Consequently, the scattering matrix becomes 

 [ ] 2
0 1
1 0

c  
=  

 
S , (2.4-9) 

k0ab
where c2 = , as before. The covariance matrix and the Stokes scattering 

π
operator are 
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 
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and 
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 
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M . (2.4-11) 

The received power from a rotated dihedral corner reflector for the co- and 
cross-polarized cases can be written as 
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. (2.4-12) 

The polarization responses for this rotated dihedral corner reflector are shown 
in Fig. 2-11. Note that the cross-polarized maxima are now at HV and VH, with 
corresponding zeros at HH and VV. The three-dimensional signature in 
Fig. 2-11 shows that the responses of this rotated dihedral are the same shape as 
those of the trihedral, but rotated by 90 deg about the S2  axis. They are in some 
sense “orthogonal” to the responses of both the trihedral and the non-rotated 
dihedral. 

The scattering from vegetation is often modeled using a combination of 
randomly oriented cylinders. For the short, thin, vertical-conducting cylinder 
shown in Fig. 2-12, the scattering matrix is given by 

 [ ] 3
0 0
0 1

c  
=  

 
S , (2.4-13) 

k l2 3
where c 0

3 =  and a is the radius of a cylinder. 
6  −  ln (4l a/ ) 1

From Eq. (2.4-13), we can calculate the covariance matrix and the Stokes 
scattering operator as  
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Fig. 2-11. Standard (top row) and three-dimensional (bottom row) polarization responses of  
a dihedral corner reflector rotated by an angle of 45 deg relative to the horizontal direction. 

 [ ] 2
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0 0 0 0
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0 0 0 0
0 0 0 1

c
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and 
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M . (2.4-15) 
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Fig. 2-12. A short, thin vertical 
conducting cylinder. The length of a 
cylinder is l. 

The corresponding polarization responses are shown in Fig. 2-13. Note that 
both the co-polarized response is zero for HH polarization and the cross-
polarized response is zero for VH polarization. This is the first example where 
both the co- and cross-polarized responses are zero for a given transmit 
polarization (horizontal polarization in this case). The reason for this is that 
when we transmit a horizontally polarized wave at this scatterer, there is no 
coupling to the cylinder and no scattered wave. Contrast this with the case of 
Fig. 2-11 for a horizontally polarized wave. The co-polarized response is zero, 
but the cross-polarized response is a not. This means that the scattered wave is 
non zero, but polarized orthogonally to the transmitted wave, and, hence, the 
maximum in the cross-polarized response. 

Next, let us consider the case of a short, thin cylinder oriented at 45 deg from 
the vertical direction shown in Fig. 2-14. In this case, the scattering matrix is 
given by 

 [ ] 3 1 1
1 12

c − 
=  − 

S , (2.4-16) 

k l2 3
where c3 =

0  and a is the radius of a cylinder. 
6 ln (4l a/ ) −  1

From Eq. (2.4-16), we can calculate the covariance matrix and the Stokes 
scattering operator as 
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Fig. 2-13. The polarization responses of a short, thin, vertically oriented 

 conducting cylinder. 
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 
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M . (2.4-18) 

The corresponding polarization response is shown in Fig. 2-15. Note that the 
position of the maximum in the co-polarized responses has shifted to be at 45 
deg linear polarization. This indicates that the polarization response is sensitive 
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Fig. 2-14. A short, thin conducting 
cylinder oriented at 45 deg from the  
vertical direction. The length of a 
cylinder is l. 

to the orientation of the short cylinder; we will exploit this fact when analyzing 
scattering from vegetation. Also, note that the cross-polarized response in 
Fig. 2-15 has the same shape as the co-polarized response in Fig. 2-10. This 
illustrates an important point: these polarization responses are not unique. In 
fact, these responses represent only a subset of the entire polarization space, 
and it is possible that more than one type of scatterer might have the same 
response. It would, therefore, be a mistake to consider the polarization 
responses as a unique way of identifying a specific type of scatterer. 

Thus far, we have discussed only cases where the scatterer is characterized by a 
unique, single scattering matrix. In those cases, we have shown theoretically 
(we shall discuss this in more detail later) that the co-polarized and cross-
polarized responses will each have at least one polarization for which the 
measured power goes to zero. When we analyze multi-looked data, however, 
we are working with the average power received from a collection of pixels. 
The composite polarization response can be thought of as the (properly 
normalized) sum of the individual polarization responses representing 
individual pixels. Unless all the individual responses have their null responses 
at exactly the same polarization, the composite signal will no longer have a null 
polarization. Instead, there might be some polarization for which the composite 
radar return is a minimum, but not zero. 

To illustrate this further, let us consider the case of randomly oriented 
cylinders. This model has been used to describe scattering from randomly 
oriented tree branches that are thin compared to the radar wavelength. We shall 
start with a thin, conducting cylinder oriented at an angle α  with respect to the 
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. (2.4-20) 

 
Fig. 2-15. The polarization response of a short, thin conducting cylinder oriented at 45 deg 
from the vertical direction. Note the difference between the responses in this figure and the 
responses shown in Fig. 2-13 for the vertically oriented cylinder. 

vertical axis. The scattering matrix can be calculated by considering the rotation 
of the local coordinate axes defining the cylinder orientation, resulting in 

 3
cos sin 0 0 cos sin
sin cos 0 1 sin cos

hh hv

vh vv

S S
c

S S
α α α α
α α α α

−       
=       −      

. (2.4-19) 

Here we assume that the cylinder lies in a plane that is orthogonal to the 
direction in which the radar waves travel. After straightforward matrix 
multiplications, the scattering matrix can be written as 
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3 2
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To illustrate the affect of randomness on the polarization response, we shall 
now analyze two different cases. In the first case, we assume that the cylinders 
are oriented uniformly randomly; i.e., we assume that α  to be a random 
variable with a uniform distribution over [0,2π]. In this case, we find that 
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The covariance matrix for this case is 

 [ ] 2
3

3 8 0 0 1 8
0 1 8 1 8 0
0 1 8 1 8 0

1 8 0 0 3 8

c

 
 
 =
 
 
 

C . (2.4-22) 

The Stokes scattering operator is 

 [ ] 2
3

1 4 0 0 0
0 1 8 0 0
0 0 1 8 0
0 0 0 0

c

 
 
 =
 
 
 

M . (2.4-23) 

The polarization responses for this cloud of randomly oriented cylinders are 
shown in Fig. 2-16. Comparing these responses to those of the trihedral corner 
reflector, it is clear that they are similar except for the addition of a “pedestal” 
on which the responses sit. This “pedestal height” can be defined as the ratio of 
the minimum power in the response to the maximum power in the response. 
Using this definition, the pedestal height of a single scatterer will be zero, while 
the pedestal height for this example of the randomly oriented cylinders will be a 
non-zero value between 0 and 1. Therefore, the pedestal height can be used to 
infer the amount of randomness exhibited by multi-looked pixels. 

To illustrate this point further, let us look at a second example involving the 
thin cylinders. Instead of assuming a uniform distribution in the angle α , we 
shall assume that the cylinders are mostly vertically oriented in a plane 
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Fig. 2-16. Polarization responses of a cloud of thin conducting cylinders that are oriented 
uniformly randomly in a plane orthogonal to the radar look direction. Note that these shapes 
are similar to those shown for the trihedral corner reflector, except that the nulls in the 
responses have been replaced by non-zero minima. 

orthogonal to the direction in which the radar signal is propagating. We shall 
assume the following probability density function for the cylinders: 

 ( ) 21 cos ; 0 2p α α α π
π

= ≤ ≤ . (2.4-24) 

This distribution has been used to describe scattering from vegetation, such as 
grass or wheat, which grows mostly vertically. Performing the averaging, we 
find 
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The covariance matrix for this case is 

 [ ] 2
3

1 8 0 0 1 8
0 1 8 1 8 0
0 1 8 1 8 0

1 8 0 0 5 8

c

 
 
 =
 
 
 

C . (2.4-26) 

The Stokes scattering operator is 

 [ ] 2
3

1 4 1 8 0 0
1 8 1 8 0 0

0 0 1 8 0
0 0 0 0

c

− 
 − =
 
 
 

M
. (2.4-27) 

The polarization responses for this cloud of randomly oriented cylinders are 
shown in Fig. 2-17. Compare the co-polarized response in the top left to that of 
a single, vertically oriented cylinder as shown in Fig. 2-13. These two 
responses are quite similar, with the exception that the response in Fig. 2-17 has 
a pedestal added to it. The relative height of this pedestal in the co-polarized 
response in Fig. 2-17 is 20 percent; however, the pedestal in Fig. 2-16 is 66 
percent, clearly indicating the relationship between pedestal height and 
randomness. 

So far, we have assumed that all the matrices are measured without any noise 
added to the measurements. In reality, of course, this is not the case. Before 
looking at the effect of system thermal noise on these responses, however, let 
us first examine the case of noise only. As mentioned in the previous section, 
scattering matrices are measured using two transmit pulses and two 
independent receiver channels. 

Because measurements in a particular receiver are made at different times, and 
because the pulse repetition frequency is low enough so that the time between 
pulses (i.e., measurements) is much longer than the noise coherence time, the 
noise measurements in the four images corresponding to the scattering matrix 
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Fig. 2-17. Polarization responses for a cloud of dipoles with orientations according to the 
statistical distribution shown in Eq. (2.4-24). Note the similarity with the responses of a 
single, vertically oriented cylinder shown in Fig. 2-13, except for the addition of a pedestal. 
Also note the relative size of the pedestal in this figure, as compared to that of a uniform 
random orientation distribution shown in Fig. 2-16. 

elements can be considered statistically independent. We shall further assume 
that the data, including the noise-only data, are well calibrated such that the 
channels are properly balanced in amplitude. In the absence of a return signal, 
after averaging, the covariance matrix will be an identity matrix, and the 
corresponding Stokes scattering operator will be 

 [ ]

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

nP

 
 
 =
 
 
 

M . (2.4-28) 

This means, as expected, that the polarization response of a noise-only 
measurement is a constant value, independent of the transmit or receive 
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polarization. These polarization responses are shown in Fig. 2-18. Note that, in 
this case, the pedestal height is 100 percent. 

In the backscatter case, reciprocity dictates that the two cross-polarized 
measurements should be identical. In practice, they differ because of the 
additive thermal noise in the receiver channels. As mentioned in the previous 
section, we can exploit the fact that the two cross-polarized measurements are 
made through different receivers and at different times, resulting in 
uncorrelated noise. If we average these two measurements before multi-
looking, the noise power is effectively halved. Assuming that the noise power 
in each channel is Pn , the resulting noise power in the averaged cross-polarized 
channel will be 

 
Fig. 2-18. The polarization responses of noise-only measurements when the noise power is 
identical in the two receiver channels. It is assumed that the cross-polarized channels are 
not averaged to increase the signal-to-noise ratio. 
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The superscript m is added to indicate individual noise measurements. The 
second and third terms are zero because the noise in the two channels is 
uncorrelated. In this case, the covariance matrix is 

 [ ]

1 0 0 0
0 1 2 1 2 0
0 1 2 1 2 0
0 0 0 1

nN P

 
 
 =
 
 
 

C  (2.4-30) 

and the Stokes scattering operator is 

 [ ]

3 4 0 0 0
0 1 4 0 0
0 0 1 4 0
0 0 0 1 4

nN P

 
 
 =
 
 
 

M . (2.4-31) 

The polarization responses of this case are shown in Fig. 2-19. Note that the 
pedestal is still 100 percent, but the cross-polarized responses are now less than 
the co-polarized ones. 

To illustrate the effect of system noise on the polarization signatures, we note 
that the thermal noise and the radar signal are uncorrelated. The measured 
scattering matrix for each pixel can be written as 

 [ ] [ ] [ ]m = +S S N . (2.4-32) 

The first term on the right is the actual scattering matrix; the second term 
represents thermal noise in the system. Since the signal and noise are 
uncorrelated, the multi-looked covariance matrix is 

 [ ] [ ] [ ]m N= +C C C  (2.4-33) 
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Fig. 2-19. Polarization responses of noise-only measurements when the cross-polarized 
channels are averaged before multi-looking to increase the signal-to-noise ratio in those 
channels. 

and the multi-looked Stokes scattering operator is 

 [ ] [ ] [ ]m N= +M M M . (2.4-34) 

The noise matrices are the same as those in Eq. (2.4-30) and Eq. (2.4-31). The 
composite polarization response in the presence of noise will, therefore, be the 
sum of the actual scatterer response and that of the system noise. Since the 
system noise response is just a pedestal, the presence of the system noise will 
simply add a pedestal to the scatterer response. This is illustrated for the case of 
a vertically oriented thin cylinder with different amounts of thermal noise 
present in Fig. 2-20. 
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Fig. 2-20. Co-polarized responses of a thin conducting cylinder with various signal-to-noise 
ratios. Note the similarity of the SNR = 6dB response to that of the cosine squared random 
orientation shown in Fig. 2-17. 

Note the similarity of the polarization response in the bottom left of Fig. 2-20 to 
that of the cloud of thin cylinders with a cosine squared distribution around the 
vertical direction. These figures illustrate an important point: the presence of a 
pedestal implies randomness, but the randomness can be due to many different 
causes. Care should, therefore, be exercised not to assume that the presence of a 
pedestal implies random orientation of scatterers without first verifying that 
there is an adequate signal-to-noise ratio (SNR) for this interpretation. 

2.5 Optimum Polarizations 
In the previous section, we introduced the concept of polarization responses as 
a way of visualizing the response of a scatterer, or a collection of scatterers 
after multi-looking. We shall now look at how to determine which polarization 
combination would optimize (i.e., either maximize or minimize) the received 
power from such a scatterer or collection of scatterers. We shall use the Stokes 
scattering operator representation of the scatterer for two reasons. First, it can 
be used to represent both a single scatterer or the ensemble average, or multi-
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looked data. Second, it provides a simple, intuitive way of understanding how 
to optimize the received power by changing either the transmit or receive 
polarization. In the rest of this section, the matrix [ ]M  will be used to mean 
either a single scatterer or a multi-looked average. 

2.5.1 General (Bistatic) Case 
This problem was first analyzed by Ioannidids and Hammers [11] in the context 
of maximizing radar signal strength in the presence of unwanted clutter. From 
Eq. (2.2-10) and Eq. (2.3-2), the received power can be written as 

 [ ]rec trP = ⋅S M S , (2.5-1) 

where Srec  and Str  are the Stokes vectors representing the fully polarized 
waves of the receiving and transmitting antennas, respectively. Because these 
vectors represent fully polarized waves, each of these vectors has to satisfy Eq. 
(2.1-5). Therefore, 

 

1 0 0 0
0 1 0 0

0
0 0 1 0
0 0 0 1

 
 − ⋅ =
 −
 − 

S S . (2.5-2) 

We can also write the Stokes scattering operator in the following form: 

 [ ] m 
=  
 

u
M

v Q
 , (2.5-3) 

with u  and v  three-dimensional real vectors and Q  a 3 × 3 real matrix. The ~ 
sign indicates the transpose of the vector or matrix. Note that in the backscatter 
case, u v=  and Q  is a symmetrical matrix. Now let us write the Stokes vectors 
of the antennas as 

 
1 1

; ; 1; 1rec tr   
= = ⋅ = ⋅ =   
   

S S x x y y
y x

. (2.5-4) 

Note that these vectors satisfy Eq. (2.5-2). Using Eq. (2.5-4) and Eq. (2.5-3) in 
Eq. (2.5-1), we find that 

 P m= + ⋅ + ⋅ + ⋅u x v y y Qx . (2.5-5) 

This is the quantity we need to optimize, but subject to the constraints in 
Eq. (2.5-4). In the special case of co- and cross-polarized responses, either 



64  Chapter 2 

y x=  or y x= − . To find the optima of P subject to the constraints in Eq. (2.5-
4), we use the Lagrange multiplier method and construct the function 

 ( ) ( )1 1
2 2

yxF m
λλ

= + ⋅ + ⋅ + ⋅ + − ⋅ + − ⋅u x v y y Qx x x y y . (2.5-6) 

Let us first look at the receiving antenna polarization. The optimum 
polarizations are found by taking the derivatives of F: 
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∇ = ⇒ = +
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x u Qy
y v Qx


. (2.5-7) 

The value of the Lagrange multiplier λy  is found from the constraint in 
Eq. (2.5-4) that the magnitude of the vectors y  and x  must be 1. Using this 
constraint for the receiving antenna and the first equation in Eq. (2.5-7), we find 
that the optimum receive antenna polarization is given by 

 
( ) ( )

+
= ±

+ ⋅ +

v Qxy
v Qx v Qx

. (2.5-8) 

Let us examine this equation in more detail. The vector on the right is simply 
the polarized part of the vector that is the product of the Stokes scattering 
operator and the polarized part of the Stokes vector representing the 
transmitting antenna. Therefore, Eq. (2.5-8) simply states that the optimum 
receiving polarization is that Stokes vector that is either aligned with this vector 
or anti-podal to this vector on the Poincaré sphere. Further recall from our 
earlier discussion that orthogonal polarizations are anti-podal on the Poincaré 
sphere. Therefore, Eq. (2.5-8) simply states that the optimum receive 
polarizations for a given transmit polarization are those that either match the 
polarization of the incoming wave or are orthogonal to the polarization of the 
incoming wave. 

From Eq. (2.5-7), we can now derive the following two expressions for the 
optimum transmit and receive antenna polarizations: 

 
( ) ( )
( ) ( )

x y y

x y y

λ λ λ

λ λ λ

− = − +

− = − +

QQ I x u Qv

QQ I y v Qu

 


. (2.5-9) 

We can solve for the values of λx  and λy  using the constraint in Eq. (2.5-4) 
that the magnitude of the vectors y  and x  must be 1. This gives the following 
two expressions 
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. (2.5-10) 

Once the values for xλ  and yλ  are known, we can use Eq. (2.5-9) to find the 
optimum polarization vectors. 

These non-linear equations are not easy to solve explicitly. In practice, it is 
easier (and faster computationally) to use Eq. (2.5-8) in Eq. (2.5-5) to write the 
received power in the following form 

 ( ) ( )P m= + ⋅ ± + ⋅ +u x v Qx v Qx  (2.5-11) 

and to solve for the maxima or minima of Eq. (2.5-11) numerically, because the 
polarization response is a slowly varying function, as can be seen from the 
figures in the previous section. Once the optimum transmit polarizations have 
been identified, the optimum receive polarizations can be calculated using 
Eq. (2.5-8). 

2.5.2 Backscatter (Monostatic) Case 
So far, we have made no assumptions on the form of the Stokes scattering 
operator. In the special case of a monostatic radar, reciprocity dictates that the 
scattering matrix be symmetrical. In that case, the Stokes scattering operator is 
also symmetrical; i.e., 

 ;= =u v Q Q . (2.5-12) 

For this special case, the two expressions in Eq. (2.5-9) are identical, implying 
that the optimum receive polarization is related to the optimum transmit 
polarization by 

 = ±y x . (2.5-13) 

In other words, the optimum values of the received power are found using co-
polarized or cross-polarized antennas. We can then rewrite the power 
expression in Eq. (2.5-5) as follows 

 
2c

x

P m
P m

= + ⋅ + ⋅

= − ⋅

u x x Qx
x Qx

, (2.5-14) 

where the subscripts c and x refer to the co-polarized power and the cross-
polarized power, respectively. We shall analyze the two cases separately. First, 
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consider the cross-polarized case. Solving for the optimum polarization vector 
subject to the constraint that the magnitude of this vector should be 1, gives the 
following expression 

 λ=Qx x . (2.5-15) 

In other words, the optimum polarizations for the cross-polarized case are the 
normalized eigenvectors of the matrix Q and the optimum cross-polarized 
power values are 

 xP m λ= − , (2.5-16) 

where λ  represents the eigenvalues of the matrix Q . Since Q  is a symmetrical 
real matrix, all the eigenvectors are orthogonal to each other. This means that 
the optimum cross-polarized vectors are orthogonal when plotted on the 
Poincaré sphere. Note that the Stokes vectors, not the electric field vectors, are 
orthogonal. 

The case of the co-polarized power is a bit more complicated. Taking the 
derivatives of the first equation in Eq. (2.5-14) subject to the constraint that the 
magnitude of the polarization vector should be 1 and setting the result equal to 
zero gives the following result 

 ( )υ− = −Q I x u . (2.5-17) 

As long as υ  is not an eigenvalue of Q , this equation has a unique solution: 

 ( ) 1υ −= − −x Q I u . (2.5-18) 

In the special case where u  is the null vector, the solutions to Eq. (2.5-17) are 
the normalized eigenvectors of Q . In general, however, the optimum vectors x  
will not be eigenvectors of Q . The values of υ  are found from the constraint 
that the magnitude of x  must be 1. The most intuitive solution is to write both 
x  and u  in the basis formed by the normalized eigenvectors of the matrix Q . 
Since Q  is a symmetrical matrix, these normalized eigenvectors are orthogonal 
and can be used as a basis to express these vectors. If we write u  as 

 1 1 2 2 3 3ˆ ˆ ˆb b b= + +u e e e , (2.5-19) 

with êi ; i =1,2,3  representing the normalized eigenvectors, we can solve for x  
from Eq. (2.5-17). The result is 
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( ) ( ) ( )

31 2
1 2 3

1 2 3
ˆ ˆ ˆbb b

υ λ υ λ υ λ
= + +

− − −
x e e e , (2.5-20) 

where λi ; i =1,2,3  are the eigenvalues of Q . The magnitude of this vector is 

 
( ) ( ) ( )

22 2
31 2

2 2 2
1 2 3

bb b

υ λ υ λ υ λ
= + +

− − −
x . (2.5-21) 

The values of υ  are found by requiring that this magnitude be equal to 1. 
Solving for υ  from this equation results in a sixth order polynomial in υ  (van 
Zyl et al. [4]). The real valued roots of this polynomial are the optimum values 
of υ . The polynomial is 

 6 5 4 3 2
1 2 3 4 5 6 0d d d d d dυ υ υ υ υ υ+ + + + + + = , (2.5-22) 

with 
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. (2.5-23) 

So how do we know that the polynomial in Eq. (2.5-22) has any real-valued 
roots? We can show that, in general, it will have at least two real-valued roots. 
This follows from the behavior of x  as a function of υ , which is easiest seen 
from Eq. (2.5-21). As the value of υ  approaches both ±∞ , it is clear that 
x → 0 . On the other hand, as the value of υ  approaches any of the real-

valued eigenvalues of the symmetrical matrix Q , x →∞ . Therefore, there 
must be at least one value of υ  between −∞  and the smallest eigenvalue of Q  
for which x =1. Likewise, there must be at least one value of υ  between the 
largest eigenvalue of Q  and ±∞  and for which x =1. This proves that there 
will always be at least two real-valued roots to the polynomial in Eq. (2.5-22). 
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The one root will be less than the smallest eigenvalue of Q , and the other will 
be larger than the largest eigenvalue of Q . 

2.5.3 Special Case: Single Scatterer in Backscatter (Monostatic) 
Case 

Now let us consider the special case of the return from a single scatterer 
measured in the backscatter configuration. In this case, the scattering matrix S  
is symmetrical and there is a definite relationship between the elements of the 
matrix Q . In fact, straightforward but tedious algebra shows that in this case, 
Q  has three eigenvalues 

 ( )( )
( )( )

1

2

3

0

0

m

m m

m m

λ

λ

λ

=

= − + ≥

= − − + ≤

u u

u u

. (2.5-24) 

The normalized eigenvector corresponding to the first eigenvalue is ±u u . 
Using this eigenvalue in Eq. (2.5-14) shows that the vector ±u u  corresponds 
to a cross-polarized null. It also is a solution to Eq. (2.5-17) with 

 mυ = ± u . (2.5-25) 

Using these in the top equation in Eq. (2.5-14) gives the two co-polarized 
powers of 

 ( )2cP m= ± u . (2.5-26) 

The plus sign corresponds to the maximum co-polarized power. Therefore, the 
polarization vector that maximizes the co-polarized power also results in a 
cross-polarized null. Also note from Eq. (2.5-26) that 

 ( )2 0csP m m= − ≥ ⇒ ≥u u . (2.5-27) 

As we shall see shortly, this co-polarized power represents the saddle point in 
the co-polarized response. 

To find the vectors corresponding to the co-polarized minima, we define a 
normalized vector 

 1 3ˆ ˆa b= +x e e , (2.5-28) 
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where ê1 = −u u  and ê3  are normalized eigenvectors of the matrix Q  and a  
and b  are real numbers. Since Q  is a symmetrical matrix, these eigenvectors 
are orthogonal. Since x  must have unit amplitude, it follows that we must 
require that 

 2 2 1a b+ = . (2.5-29) 

The vector x  must also be a solution to Eq. (2.5-17). If we use Eq. (2.5-28) in 
Eq. (2.5-17), we arrive at the following two equations: 

 

( )
a

m

υ λ

λ

=

=
−
u . (2.5-30) 

Here, λ  is the eigenvalue corresponding to ê3 . Combining the bottom line of 
Eq. (2.5-30) with Eq. (2.5-29) allows us to derive the value of b  as 

 
( )

2

21b
m λ

= ± −
−

u
. (2.5-31) 

Using x  with these values of a  and b  in the expression for the co-polarized 
power shows that the received power will be zero if λ  corresponds to either 
λ2  or λ3  as given in Eq. (2.5-24). To decide which of the eigenvectors should 
be used in Eq. (2.5-28), we note that we can use Eq. (2.5-17) in the top line of 
Eq. (2.5-14) to write the co-polarized power as 

 0cnP m mλ λ= + ⋅ + = ⇒ = − − ⋅u x u x . (2.5-32) 

However, 

 3
1 0
2 csm m P λ λ− − ⋅ ≤ − + = − ≤ ⇒ =u x u . (2.5-33) 

Therefore, we have two solutions that would lead to zero co-polarized power. 
These two are 

 2 2
1 3 1 3ˆ ˆ1 ; 1n na a a a= − + − = − − −

u ux e x e
u u

, (2.5-34) 
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where 

 
( )( )

a
m m m

=
+ − +

u

u u
. (2.5-35) 

Equation (2.5-34) shows that the two co-polarized nulls and the co-polarized 
maximum and saddle point all lie in the same plane. Furthermore, the two co-
polarized nulls are equal distances from the co-polarized saddle. This is easily 
proven by taking the dot products 

 1 2 cosn n a α− ⋅ = − ⋅ = =
u ux x
u u

. (2.5-36) 

This is the famous polarization fork originally proven by Huynen in his 
landmark thesis (Huynen [12]). 

Note that while the cross-polarized null polarization correspond to the co-
polarized maximum polarization, the same is not true for the co-polarized null 
and the cross-polarized maximum. The co-polarized null polarizations are given 
in Eq. (2.5-34) and the cross-polarized maximum polarization vector is ±ê3 . 
The value of the maximum cross-polarized power is 

 ( )( )xmP m m m= + − +u u . (2.5-37) 

Figure 2-21 shows these optimum polarizations on the Poincaré sphere.  

2.5.4 Special Case: Multiple Scatterers with Reflection Symmetry 
Here we shall consider the special case of the return from a group of scatterers 
with a special orientation distribution measured in the backscatter 
configuration. The orientation distribution is such that it is symmetrical about 
the vertical direction. In this case, it can be shown that 

 * * 0hv hh hv vvS S S S= = . (2.5-38) 
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Fig. 2-21. The optimum polarizations plotted on the Poincaré sphere. 
The vectors corresponding to the co-polarized maximum, saddle 
point, and minima form the Huynen polarization fork. All these 
vectors lie in the same plane. 

This leads to a special form of the Stokes scattering operator; 

{ }

{ }

2 2 2

2 2
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1 0
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0

2 0 0
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4
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hh vv hv

hv hh vv hh vv

hh vv hv hh vv

m S S S

S S

S S S

Q S S S S S

S S S S S

= + +

 
 = −  
  

 + − 
 
 = +
 
 

−  

u

, 

where x  means the ensemble average of x . In this case, Q  has three 
eigenvalues 
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2 *
2

2 *
3

1
2
1
2

hv

hv hh vv

hv hh vv

Q m S

S S S

S S S

λ

λ

λ

= = −

 = +  

 = −  

. (2.5-39) 

The normalized eigenvector corresponding to the first eigenvalue is ±u u . 
Using this eigenvalue in Eq. (2.5-14) shows that the vector u u  corresponds to 

2a cross-polarized power value equal to Shv . It also is a solution to  

Eq. (2.5-17) with 

 2
hvm Sυ = − ± u . (2.5-40) 

Using these in the top equation in Eq. (2.5-14) gives the two co-polarized 
powers of 

 2 2;c hh vvP S S= . (2.5-41) 

To find the vectors corresponding to the co-polarized minima, we follow the 
same procedure as in the previous section and define a normalized vector 

 1 3ˆ ˆa b= +x e e , (2.5-42) 

where ê1 = −u u  and ê3  are normalized eigenvectors of the matrix Q  and a  
and b  are real numbers. Since Q  is a symmetrical matrix, these eigenvectors 
are orthogonal. In fact, the two eigenvectors corresponding to the second and 
third eigenvalues lie entirely in the plane containing the S2  and S3  axes of the 

Poincaré sphere. If Im S S*
hh vv = 0 , these eigenvectors coincide with the S2  

and S3  axes. Since x  must have unit amplitude, it follows that we have to 
require that 

 2 2 1a b+ = . (2.5-43) 

The vector x  must also be a solution to Eq. (2.5-17). If we use Eq. (2.5-28) in 
Eq. (2.5-17), we arrive at the following two equations: 
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( )2
hv

a
m S

υ λ

λ

=

=
− −

u . (2.5-44) 

Here, λ  is the eigenvalue corresponding to ê3 . Combining the bottom line of 
Eq. (2.5-30) with Eq. (2.5-29) allows us to derive the value of b  as 

 

( )
2

22
1

hv

b
m S λ

= ± −
− −

u
. (2.5-45) 

Using x  with these values of a  and b  in the expression for the co-polarized 
power shows that the received power will be 

 
( )

2

2c
hv

P m
m S

λ
λ

= + −
− −

u
. (2.5-46) 

The three values of the cross-polarized power are 

 { }2 2 *1;
2x hv hv hh vvP S m S S S= − ± . (2.5-47) 

Two of these values lie in the plane containing the S2  and S3  axes of the 
Poincaré sphere and one lies on the S1  axis. 

2.5.5 A Numerical Example 
As an example of optimizing the power using independent transmit and receive 
antenna polarizations, let us consider the case of the randomly oriented 
cylinders from the previous section with a cosine squared distribution around 
the vertical direction. From Eq. (2.4-27), the normalized Stokes scattering 
operator have the following values 
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( )
1

1 2 0 0

1 2 0 0
0 1 2 0
0 0 0

m =

= −

=

 
 =  
 
 

u
v u

Q



. (2.5-48) 

In this case, the three eigenvalues of the matrix Q  are 0, 1/2, and 1/2. The 
maximum cross-polarized return occurs for the polarization corresponding to 
the smallest eigenvalue; i.e., for circular polarizations. The minimum cross-
polarized return occurs for the eigenvector corresponding to the largest 
eigenvalue, which, in this case, is any polarization that lies in the S1 - S2  plane 
of the Poincaré sphere; i.e., any linear polarization. 

The co-polarized solutions are simply the HH and VV returns, with the 
maximum occurring for VV and the minimum for HH. Note that for the case of 
λ = 0 , we find from Eq. (2.5-45) and Eq. (2.5-48) that b = 0 , which means that 
the minimum co-polarized power also coincides with the saddle point. 

In this section, we concentrated on those polarization combinations that 
optimize (either maximizes or minimizes) the received power from a particular 
scatter or ensemble of scatterers. However, maximizing or minimizing the 
power from a single pixel, or even an area in an image, is of limited utility. This 
is best illustrated using the polarimetric L-band image of San Francisco 
acquired with the NASA/JPL AIRSAR system that we discussed earlier. 
Figure 2-22 shows the total power image (the trace of the covariance matrix, or 
the M11  element of the Stokes scattering operator) of this image with three co-
polarized signatures of the ocean (top), an urban area (middle), and an area in 
Golden Gate Park (bottom). The maximum for the ocean occurs near VV. The 
other two signatures have their maxima near HH polarization. These two 
images are shown in Fig. 2-23. The HH image shows that the urban areas and 
park are bright relative to the ocean. The VV image shows the ocean to be 
bright relative to the urban areas. In image analysis, it is more common to 
require the contrast between two different areas to be maximized so as to be 
able to clearly identify similar areas. One of the earliest papers on this topic is 
the one by Ioannidis and Hammers [11] that reported on the optimum 
polarization to discriminate a target in the presence of clutter. We shall look at 
this problem in the next section. 
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Fig. 2-22. An L-band total power image of San Francisco acquired with the NASA/JPL 
AIRSAR system. The three co-polarized signatures for the ocean, urban area, and Golden 
Gate Park are shown on the left. 

 
Fig. 2-23. HH polarized image (left) and VV polarized image (right) of San Francisco. The 
image on the left maximizes the power from the urban and park areas. The image on the 
right maximizes the power from the ocean. Note, however, that even though the power from 
the ocean is maximized in the image on the right, the contrast between the ocean and the 
urban areas is larger on the left. 
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2.6 Contrast Enhancement 
Suppose we want to maximize or minimize the contrast between two areas in 
an image. We shall assume that each area is represented by an average Stokes 
scattering operator. The contrast can be written as 

 1 1 1 1 1 1

2 2 2 2 22

rec tr

E rec tr
P mC
P m

⋅ + ⋅ + ⋅ + ⋅
= = =

+ ⋅ + ⋅ + ⋅⋅

S M S u x v y y Q x
u x v y y Q xS M S

, (2.6-1) 

where the subscripts 1 and 2 refer to the two areas. We now have to optimize 
this quantity subject to the constraints that the Stokes vectors have unit 
amplitude as shown in Eq. (2.5-4). To find the optimum values of the contrast 
function, we again use the Lagrange multiplier method as before and calculate 
the gradient with respect to x  and y . The optimum values are those for which 
the gradient is zero. This leads to the following two coupled equations: 
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+ − +

v Q x v Q x
y

v Q x v Q x

u Q y u Q y
x

u Q y u Q y

 

 

. (2.6-2) 

The solution to these equations is a set of two non-linear equations in either x  
or y  that is quite complex to solve. To provide more insight into the solution, a 
simpler approach is to consider the problem in two steps. First, we fix the 
transmit polarization and then derive the receive polarization that would 
optimize the contrast for that particular transmit polarization x . For this, we 
introduce the shorthand notations: 

 

01 1 1

1 1 1

02 2 2

2 2 2

S m

S m

= + ⋅

= +
= + ⋅

= +

u x
s v Q x

u x
s v Q x

. (2.6-3) 

It is then clear from the top line in Eq. (2.6-2) that we can write 

 
( ) ( )

1 2

1 2 1 2

E

E E

C
C C

−
=

− ⋅ −

s sy
s s s s

. (2.6-4) 

Using this expression in the original expression for the contrast gives 
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The only unknown in this expression is the contrast ratio CE . Rearranging 
terms leads to the following quadratic expression for this ratio 

 ( ) ( ) ( )2 2 2
02 2 2 01 02 1 2 01 1 12 0E EC S C S S S− ⋅ − − ⋅ + − ⋅ =s s s s s s . (2.6-6) 

The optimum contrast ratios are then 

 ( )
2 2
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 (2.6-7) 

and 

 ( )
2 2

01 02 1 2 01 02 1 2 01 1 1
min 2 2 2
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S S S

 − ⋅ − ⋅ − ⋅
= − −  − ⋅ − ⋅ − ⋅ 
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. (2.6-8) 

These expressions are still quite complex to solve analytically for the x  that 
optimizes either the maximum or minimum contrast ratio. A simpler approach, 
proposed by Dubois and van Zyl (1989) [13], is to solve for the maximum of 
Eq. (2.6-8) over all x  numerically. Once this maximum ratio is found, the 
optimum receive polarization follows from the top equation in Eq. (2.6-2) to be 

 1 2

1 2

opt

opt

C

C

−
=

−

s s
y

s s
. (2.6-9) 

Note that these expressions turn out to be this complicated because we are 
insisting that the resulting Stokes vectors represent fully polarized waves; i.e., 
those of actual antennas. This, of course would be necessary if one wanted to 
implement a real radar system that operated with the optimum polarization 
combinations. However, for pure signal processing applications after data 
collection, one might want to relax this limitation. This approach was first 
reported by Swartz et al. [14] using the covariance approach for the backscatter 
case. 

To illustrate the difference, let us assume that the two vectors recS  and trS  in 
Eq. (2.6-1) are simply 4-dimensional vectors. In that case, we solve for the 
optimum contrast by introducing (following Swartz et al. [14]) an artificial, but 
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general, constraint that the denominator of Eq. (2.6-1) should be equal to 1. The 
solution in this case then becomes 

 1 2

1 2

tr tr
tr

rec rec
rec

λ

λ

=

=

M S M S

M S M S 
, (2.6-10) 

where trλ  and recλ  are the Lagrange multipliers. If the inverse of 2M  exists, 
these expressions can be written as 
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2 1
1

2 1

tr tr
tr

rec rec
rec

λ

λ

−

−

=

=

M M S S

M M S S 
, (2.6-11) 

Therefore, if we relax the requirement that the two vectors recS  and trS  
represent fully polarized Stokes vectors, the solutions simply are the 
eigenvectors of 1

2 1
−M M  and 1

2 1
−M M  . Note that, in the backscatter case, the 

Stokes scattering operators are symmetrical matrices and these two expressions 
become identical. This is also true for the solution to Eq. (2.6-2). If the inverse 
of 2M  does not exist, we can rewrite Eq. (2.6-10) in a form that has the 
solution similar to Eq. (2.6-11), but with the roles of 1M  and 2M  
interchanged. 

2.6.1 Numerical Example 
Consider the case of maximizing the contrast between the return from a 
dihedral corner reflector and that of a randomly oriented cloud of thin cylinders. 
In this case, the normalized Stokes scattering operators are 

 1 2

1 0 0 0 1 0 0 0
0 1 0 0 0 1 2 0 0

;
0 0 1 0 0 0 1 2 0
0 0 0 1 0 0 0 0

   
   
   = =
   −
   
   

M M . (2.6-12) 

First we look at the case where we insist that the Stokes vectors represent fully 
polarized waves. Fig. 2-24 shows graphically the maximum and minimum 
contrast ratios for each transmit polarization. In each case, we performed the 
calculations that follow. For each of the transmit polarizations shown, we 
calculated the contrast ratio for all possible receive polarizations. We then 
found the maximum and minimum values and plotted those two values for that 
particular transmit polarization in these two figures. From Fig. 2-24 we see that 
the maximum contrast occurs for linear transmit polarizations that have 
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orientations of either 45 deg or 135 deg. The corresponding maximum contrast 
ratio is 4. Using this information, Eq. (2.6-9) gives the optimum receive 
polarization as either the co-polarized companion to the transmit polarization 
(in which case the contrast ratio is 0 [minimum]) or the cross-polarized 
companion (in which case the contrast ratio is 4, or a maximum). 

This result is not unexpected. We know (see Fig. 2-10 and Fig. 2-16) that a 
dihedral corner reflector has its maximum cross-polarized return at 45 deg or 
135 deg linear polarizations. At the same time, the linear polarizations are 
where the randomly oriented cylinders have their minimum in their cross-
polarized return. This combination argues that the maximum contrast should 
then be at the 45 deg or 135 deg linear cross-polarized pair. 

Next, let us consider the case where we do not insist that the solutions only be 
Stokes vectors representing fully polarized waves. In this case, the inverse of 

2M  does not exist. However, we can rewrite Eq. (2.6-10) by multiplying both 
sides by the inverse of 1M  to give 

 1
1 2

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

λ−

 
 
 = =
 −
 
 

M M S S S . (2.6-13) 

The eigenvalues are 2, 1, 0, and -2, and the corresponding four eigenvectors are 
the four principal dimensions of the vector S . The Notice that this type of 
solution allows not only vectors that are not Stokes vectors, but also allows 
negative contrast ratios. The vector ( )0 1 0 0=S  corresponds to the largest 
eigenvalue, but the largest contrast is actually achieved with the eigenvector 

( )0 0 0 1= ±S  because, in this case, the denominator of the contrast is 

 
Fig. 2.24. The maximum (left) and minimum (right) contrast ratios calculated as a function of 
the transmit polarization orientation and ellipticity angles. The maximum contrast is 
achieved using a linear transmit polarization with an orientation of either 45 deg or 135 deg. 
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zero, theoretically allowing the contrast to approach infinity. Of course, in 
general, if there is any polarization combination that would zero out the power 
from the denominator, one could argue that the contrast ratio would be 
maximized. The problem with this approach is that the exact polarization 
combination at which the zero occurs might vary from one pixel in an image to 
the next, causing the result to be quite noisy. 

2.6.2 Image Example 
In the late 1980s, two different groups investigated the optimum polarizations 
to maximize the contrast between man-made structures (such as buildings) and 
natural terrain. Swartz et al. [14] used data from an area in the city of San 
Francisco to represent man-made structures and data from an area in Golden 
Gate Park for natural terrain. They found that the optimum polarizations were a 
transmitting antenna with parameters ( ) ( ), 41.3 , 6.44t tψ χ = − ° − °  and a 
receiving antenna with parameters ( ) ( ), 60.3 ,3.51r rψ χ = ° ° . Notice that these 
antennas are very nearly orthogonally polarized and close to the combination 
we derived in the previous section. 

Dubois and van Zyl (1989) [13] made a more systematic study of the same 
problem, choosing many different pairs of areas and repeating the experiment at 
different incidence angles. They concluded that the optimum polarization varies 
little with the change in incidence angles and that a 45 deg cross-polarized pair 
provides the optimum contrast. They defined the polarization enhancement as 
the contrast calculated with normalized Stokes scattering operators and found 
the enhancement factor to be about 3 dB independent of the incidence angle and 
of the size of the image area used to characterize either class of scatterer. 
Furthermore, they found the same results if they used bare surfaces as the 
natural terrain. 

Figure 2-25 illustrates this using the data from the NASA/JPL AIRSAR system 
that are shown in Fig. 2-23. Notice the excellent contrast between the urban 
areas and the vegetated Golden Gate Park, as well as the contrast between the 
urban areas and the ocean. Comparing to the image on the left in Fig. 2-23, we 
note some improvement in contrast between the urban area and the park. In 
fact, Swartz et al. [14] found that among the canonical polarization 
combinations, HH provided the best contrast, but was still about 2 dB less than 
what can be achieved with the optimum polarization combination. 

Figure 2-26 shows the “image” using the non-physical polarization that 
theoretically zeros the power from a cloud of randomly oriented thin cylinders, 
as discussed in the previous section. This image, which is the 44M  element of 
the Stokes scattering operator, shows the areas that are dominated by double 
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reflections to be very bright, areas that are vegetated medium gray, and areas 
that have near specular scattering as very dark. To understand why this is the 
case, recall that for specular reflection the scattering matrix is the identity 
matrix. In that case, the  element of the normalized Stokes scattering 
operator is -1. The same element is zero for a randomly oriented cloud of thin 
cylinders and +1 for double reflections from a dihedral corner reflector.  

Note, however, that this image is quite noisy, making it less useful than, for 
example, Fig. 2-25, for image-photo-interpretation purposes. It does, however, 
provide a simple check on whether a bright point in an image is so because it 
represents specular scattering or because it represents a double reflection 
resembling a dihedral corner reflector. 

44M

 
Fig. 2-25. Image of San Francisco, California, synthesized using a 45-deg linearly polarized 
antenna to transmit the signals and a 135-deg linearly polarized antenna to receive. Notice 
the increased contrast between the urban areas and the vegetated Golden Gate Park, as well 
as the contrast between the urban areas and the ocean. 
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Fig. 2-26. “Image” of the M44 element of the Stokes scattering operator of San Francisco, 
California. Bright areas represent double reflections, while dark areas represent near-
specular scattering. The image is quite noisy, reducing it utility for image-photo 
interpretation. 

2.7 Summary 
In this chapter, we introduced the basic principles of radar polarimetry. We 
introduced the important concepts of the various mathematical representations 
of scatterers and briefly reviewed the implementation of a radar polarimeter. 
We also discussed the concept of the polarization responses, and provided 
many examples illustrating this concept of visualizing the information 
contained in the polarization properties of a scatterer. Next, we looked at how 
to optimize the power received from a particular scatterer or group of scatterers 
by varying the polarization. We concluded with the case of using polarization 
to optimize the contrast between scatterers. 
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The discussion and examples presented in this chapter show the utility of 
polarization to extract more information regarding the properties of scatterers. 
In the rest of this book, we shall build upon these concepts and discuss more 
sophisticated analysis techniques to extract detailed geophysical information 
from polarimetric radar data.  
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Chapter 3 
Advanced Polarimetric Concepts 

Since the introduction of polarimetric radar data in the 1980s, many different 
analysis techniques have been investigated. Many of these are application 
specific. In this chapter we shall discuss the theoretical background for many of 
these techniques and compare the information that is provided by the different 
approaches. As we shall see, many of these techniques provide very similar 
information, with the result that the choice of analysis technique becomes more 
one of personal preference. 

3.1 Vector-Matrix Duality of Scatterer Representation 
In the previous Chapter we demonstrated that the received power can be written 
in terms of the scatterer covariance matrix, as follows: 

 [ ] [ ]* *;P = ⋅ =A C A C TT  (3.1-1) 

The superscript * denotes complex conjugation and ~ denotes the transpose 
operation. The vector T  contains the same information as the original 
scattering matrix. 

If we restrict ourselves to the backscatter direction where S Shv = vh , the usual 
forms for the antenna and scatterer vectors are 

 { }( )1 2rec tr rec tr rec tr rec tr
h h h v v h v vp p p p p p p p= +A  

and 

( )2hh hv vvS S S=T . 
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The covariance matrix as defined in this expression is a positive semi-definite 
Hermetian matrix. This means that all the eigenvalues are real and that the 
eigenvectors are orthogonal. To prove that the eigenvalues have to be non-
negative, recall that we can diagonalize the covariance matrix using a unitary 
transformation, as follows 

 [ ] [ ] [ ][ ]1−=Λ U C U . (3.1-2) 

In this equation, [Λ]  is a 3 × 3 diagonal matrix containing the non-negative 
real eigenvalues of the covariance matrix and [U]  is a 3 × 3 complex matrix 
with columns equal to the normalized eigenvectors of the covariance matrix. 
Because the covariance matrix is Hermitian, however, the matrix [U]  also 
satisfies 

 [ ] [ ] [ ] [ ] [ ]† † 1−= ⇒ =U U I U U , (3.1-3) 

where the †  sign denotes the adjoint (complex conjugate transpose) of the 
matrix. The normalized eigenvectors (or their complex conjugates) form an 
orthonormal basis; we can, therefore, write any antenna vector as a linear 
combination of these vectors. Specifically, 

 [ ]** * *
1 1 2 2 3 3ˆ ˆ ˆb b b= + + =A e e e U B . (3.1-4) 

Using Eq. (3.1-4) in Eq. (3.1-1), we find the following expression for the power 

    [ ] [ ][ ] [ ] [ ][ ]* 1 22 2* *
1 1 2 2 3 3 0P b b bλ λ λ−= ⋅ = ⋅ = + + ≥U B C U B B U C U B . (3.1-5) 

The received power must be non-negative for all antenna vectors, which means 
that all the eigenvalues must be non-negative. 

In the case where the covariance matrix represents a single scatterer (that is, it 
was calculated from a scattering matrix, as shown in Eq. (3.1-1)), it is easy to 
show that the eigenvalues are 

 * * *
1 2 32 , 0hh hh vv vv hv hvS S S S S Sλ λ λ= + + = = . (3.1-6) 

In this case, two of the three eigenvalues are zero. This, in fact, is the test of 
whether one could calculate an equivalent scattering matrix from any given 
covariance matrix. 

The covariance matrix characterization is particularly useful when analyzing 
multi-look radar images, since the covariance matrix of a multi-look pixel is 
simply the average covariance matrix of all the individual measurements 
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contained in the multi-look pixel. Recall that multi-looking is performed by 
averaging the power from adjacent pixels together in order to reduce speckle. 
This averaging process can be written as 

 [ ] [ ]* *

1 1 1 1

1 1M N M N
ij ij

j i j i
P P C

MN MN= = = =
= = ⋅ = ⋅∑∑ ∑∑A A A C A , (3.1-7) 

where the two subscripts denote averaging in the range and azimuth directions, 
respectively. The angular brackets denote this spatial averaging. In general, 
this average covariance matrix will have more than one non-zero eigenvalue. 
All eigenvalues must, however, still be non-negative. 

Cloude (1992) [1] was the first to use the orthonormality of the eigenvectors of 
the covariance matrix (in the context of radar polarimetry) to propose the 
decomposition of the covariance matrix in terms of its eigenvalues and 
eigenvectors. Specifically: 

 [ ]
3

†

1
ˆ ˆi i i

i
C λ

=
=∑ e e . (3.1-8) 

The decomposition proposed by Cloude [1], as shown in Eq. (3.1-8), is unique. 
That is, since the eigenvectors of the covariance matrix are orthogonal, they 
form a natural basis in which to express the scattering. In some sense, this 
breaks the covariance matrix into orthogonal components, as one would 
normally do for a vector. However, as a vector can be expressed in many 
different coordinate systems, so too can a covariance matrix. For example, we 
could also choose to write the average covariance matrix in the following form 

 [ ]
3

†

1
ˆ ˆi i i

i
C w

=
=∑ p p , (3.1-9) 

where the vectors p̂i  form an orthonormal set. An example of such a set is the 
vectors representing the Pauli spin matrices:  

 1 2 3

1 1 0
1 1ˆ ˆ ˆ0 ; 0 ; 1
2 21 1 0

     
     = = =     
     −     

p p p . (3.1-10) 

Note that any set of orthonormal vectors can be used when decomposing the 
averaged covariance matrix. Just as in the vector case, the choice of coordinate 
system depends on the application. In the case of the covariance matrix, this 
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choice is often dictated by the fact that we are trying to interpret the total 
scattering in terms of known models or scattering mechanisms. For example, 
the three Pauli vectors represent scattering from a metallic trihedral corner 
reflector, a metallic dihedral corner reflector, and a metallic dihedral corner 
reflector rotated by 45 degrees (deg) about the line of sight, respectively, as 
discussed in Chapter 2. 

The Cloude eigenvector decomposition is a special case of the general 
decomposition. While it is mathematically unique, its interpretation is not 
necessarily straightforward. The reason for this is that there is no guarantee that 
the eigenvectors will represent any known physical scattering mechanism 
directly. An additional complication comes from the fact that if this 
decomposition is done on every pixel in a multi-looked image, the eigenvectors 
that form the coordinate system for this decomposition might be different from 
pixel to pixel. This means that the coordinate system generally varies from 
pixel-to-pixel unless all the covariance matrices have identical eigenvectors. 
Therefore, the value of any eigenvalue might vary from pixel to pixel, and it is 
not easy to tell if the variation is due to the strength of the scattering or to the 
fact that the eigenvectors are different. One common way to reduce this 
problem is to express the scattering vector in the Pauli basis and then calculate 
the equivalent covariance matrix and perform the decomposition in this basis. 
This does not, however, actually overcome the fundamental issue of the 
coordinate system varying from pixel to pixel; instead, this approach facilitates 
interpreting the eigenvectors in terms of Pauli vectors. 

Many authors have proposed so-called target decomposition schemes in which 
a covariance matrix is decomposed into separate matrices on the basis of simple 
models. In those cases, care must be taken to ensure that the individual matrices 
that are used in the decomposition all satisfy the condition that their individual 
eigenvalues must be non-negative. We shall discuss this further in a later 
section. 

Whether one thinks of a scatterer in terms of a covariance matrix or a set of 
scattering vectors is a matter of personal choice. In the rest of this chapter we 
shall explore various interpretations of the average scattering based on different 
applications. Before doing so, we shall discuss a number of polarimetric 
parameters that are often encountered in the literature. 

3.2 Eigenvalue and Eigenvector-Based Polarimetric 
Parameters 

Cloude (1992) [1] and, later, Cloude and Pottier (1995) [2] introduced a number 
of polarimetric parameters that are derived from the eigenvalues and 
eigenvectors that are commonly used today. In this section, we shall discuss 
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these parameters, as well as others that are commonly encountered in the 
literature. 

3.2.1 Parameters Used to Describe Randomness in Scattering 
One such parameter, intended to measure target randomness, is the entropy, 
which defined as 

 
3

3
1 2 31

log ; i
T i i i

i
H P P P λ

λ λ λ=
= − =

+ +∑ . (3.2-1) 

As pointed out by Cloude [1], the target entropy is a measure of target disorder, 
with 1TH =  for random targets with three equal eigenvalues and 0TH =  for 
simple (single, non-random) targets. 

Recall from the discussion of polarization responses in Chapter 2 that the 
amount of variation (that is, randomness) in the scattering properties manifests 
itself in the form of a “pedestal” in the polarization response. While we 
normally refer to the pedestal height in the context of the co-polarized response, 
Durden et al. (1990) [3] showed that measuring the pedestal height is 
equivalent to measuring the ratio of the minimum eigenvalue to the maximum 
eigenvalue; that is 

 1 2 3

1 2 3

min( , , )
max( , , )

Pedestal Height λ λ λ
λ λ λ

= . (3.2-2) 

In reality, this ratio over-estimates the total variation in the observed radar 
cross-section as a function of polarization. The reason for this is that in order 
for this minimum and maximum to be realized, both eigenvectors 
corresponding to those eigenvalues must be valid antenna vectors (see 
(Eq. 3.1-5)). This is not necessarily the case, possibly resulting in a smaller 
ratio. Nevertheless, this definition of the pedestal height is a useful measure of 
the randomness of the scattering process. 

Using the model of randomly oriented thin cylinders (we will discuss this in 
more detail later), Kim and van Zyl (2001) [4] introduced the so-called radar 
thin vegetation index (RVI): 

 
( )1 2 3

1 2 3

4min , , 8
2

hv

hh vv hv
RVI

λ λ λ σ
λ λ λ σ σ σ

= =
+ + + +

. (3.2-3) 

(The equation of the right is true for media with reflection symmetry.) This 
parameter, which is also a measure of the randomness in the scattering, 
generally varies between 0 and 1. This ratio decreases as the cylinders become 
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thick compared the radar wavelength. In the limiting case where the cylinders 
are very thick compared to the radar wavelength, this ratio approaches zero. 
The factor 4 in Eq. (3.2-3) is arbitrary: it was chosen so that the RVI for a cloud 
of randomly oriented thin cylinders would be equal to 1. 

To illustrate the similarity between these parameters with real image data, we 
shall first consider the image of San Francisco we discussed in Chapter 2. From 
the signatures shown in Fig. 2-22, we expect little randomness for the ocean 
scattering, and significant randomness for the vegetation scattering in the 
Golden Gate Park area. The urban area should show intermediate randomness. 
Figure 3-1 shows the comparison of the three measures of randomness 
introduced above. What is immediately obvious is that these three images 
convey the same basic information. The only real difference is the scaling from 
the bare ocean surface to the vegetated areas. The entropy image shows a more 
compressed scale with less variation in color than the other two. The pedestal 
height image based on the ratio of the eigenvalues shows the largest dynamic 
range. Overall, however, there is little reason to prefer one display over the 
other. 

Note how both the entropy and the thin vegetation index show an increase in 
randomness in the ocean from left to right in the image. Recall that the radar 
illumination is from the left and that the angle of incidence increases from left 
to right. The observed increase in randomness in the ocean is due to the 
decrease in signal-to-noise ratio as the angle of incidence increases. Also, note 
that not all urban areas show the same amount of randomness. This can be 

   (Entropy)              (Pedestal Height)            (RVI) 

 
Fig. 3-1. L-band randomness images of San Francisco acquired with the NASA/JPL AIRSAR 
system. The Golden Gate Bridge is visible in the top center of the image linking the Presidio 
of San Francisco to the Golden Gate National Recreational Area north of the entrance to San 
Francisco Bay. Golden Gate Park is the rectangular feature in the lower half of the image in 
the left portion of the city. The image on the left shows the entropy scaled from 0 to 1. The 
middle image shows the pedestal height scaled from 0 to 0.5. The image on the right shows 
the RVI scaled from 0 to 1.   
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explained by the orientation of the buildings relative to the radar look direction. 
If a building is oriented such that it presents a large face to the radar, in general, 
the dominant scattering mechanism is a double reflection off the street onto the 
face of the building and back to the radar. This is the case above and below 
Golden Gate Park in the image. If the building is turned slightly, however, such 
that the front face of the building no longer is orthogonal to the direction in 
which the radar waves propagate, this double reflection signal no longer travels 
back to the radar. The result is that other direct reflections from the street and, 
possibly, the roofs of the buildings begin to dominate, and the signals appear 
more random. This effect is visible in the middle right portion of the image. 

As a second example, we consider an image of a portion of the Black Forest in 
Germany acquired with the NASA/JPL AIRSAR system during the summer of 
1991. The L-band image is shown for reference in Fig. 3-2. The bright feature 
in the left portion of the image is the town of Vilingen. The brighter right-hand 
portion of the image is a mixed forest consisting of spruce (Picea abies), pine 
(Pinus sylvestris), and fir (Abies alba) trees. The dry weight biomass ranges up 
to 50 kilograms per square meter (kg/m2). The darker areas in the upper portion 

 
Fig. 3-2. L-band total power image of a portion of the Black Forest in Germany acquired 

with the NASA/JPL AIRSAR system in the summer of 1991. 
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and to the left in the image are mostly agricultural fields with varying amounts 
of biomass, depending on the crop type and maturity of the plants. 

Figure 3-3 shows the three parameters calculated from the L-band data. In all 
cases, the forested areas show significant randomness, and the urban areas 
show little randomness. The agricultural areas show variations consistent with 
the amount of vegetation present on a field scale. 

Figure 3-4 compares the radar vegetation index for the three frequencies (C-
band, L-band, and P-band) that the AIRSAR system uses to acquire images. 
The C-band images shows much more detail in the agricultural areas because 
the shorter wavelength is more sensitive to the smaller biomass in these fields. 
The P-band image, on the other hand, shows a large variation in the forested 
area. This is due to the increased penetration through the canopy at the longer 
wavelength with a resulting increase in double reflections from the ground to 
the trunks of the trees and back to the radar. The variation in RVI is due to the 
effect that the underlying topography has on the resulting mixture of scattering 
mechanisms, as discussed by van Zyl (1993) [5]. 

3.2.2 Alpha Angle 
Cloude and Pottier (1996) [6] proposed the following description for the 
eigenvectors of the covariance matrix: 

 ( )cos sin cos sin sini ie eδ γα α β α β=e  (3.2-4) 

 (Entropy) (Pedestal Height) (RVI) 

 
Fig. 3-3. L-band randomness images of the area shown in Fig. 3-2. Forested areas show the 

highest amount of randomness. 
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. (3.2-7) 

 (C-Band) (L-Band) (P-Band 

 
Fig. 3-4. Radar vegetation index images of the area shown in Fig. 3-2 for different 

frequencies. See the text for a discussion of the images. 

in a basis formed by the Pauli matrices. The average angles are then calculated 
using 

 
3

1
i i

i
Pα α

=
=∑ , (3.2-5) 

where Pi  is defined in Eq. (3.2-1). The α  angle in particular has received 
significant attention, and, together with the entropy, has been proposed as a 
way to perform an unsupervised classification of polarimetric SAR images. To 
investigate the meaning of these angles a bit further, consider that the 
normalized eigenvector (expressed in Pauli basis) can be written as follows 

 
( )

( ) ( )( )2
2 2

i
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hh vv hh vv hv
hh vv hv

e S S S S e S e
q q q

ϕ
δ γ− −= + −

+ +
e , (3.2-6) 

where q *
xy = SxySxy  and the phase angle ϕ  represents the phase of S Shh + vv . 

A comparison of Eq. (3.2-6) and Eq. (3.2-4) now shows that the angle δ  is the 
relative phase between S Shh − vv  and S Shh + vv . Similarly, the angle γ  is the 
relative phase between Shv  and S Shh + vv . Next, notice that 
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The angle β  is, therefore, a function of the ratio of the cross-polarized term to 
the co-polarized VV term in the scattering matrix, as well as the ratio of the two 
co-polarized terms. The angle α  can similarly be written as 

 
2 21 4

tan
1
co x

co

R R
R

α
− +

=
+

. (3.2-8) 

At this point, it is useful to compare these parameters for a few canonical cases. 
These are summarized in Table 3-1. 

The results in Table 3-1 show that the angle α  varies from zero deg for 
trihedral scattering to π 2  for dihedral scattering. Dipole scattering represents 
an intermediate case where α =π 4.  Note that this value of α  for dipole 
scattering does not depend on the physical orientation of the dipole. The angle 
β  is near zero for all cases where the cross-polarized return is small compared 
to the co-polarized returns. For the case of a single dipole, the β  angle is 
related to the physical orientation of the dipole. 

Also note that when the cross-polarized term is small compared to the co-
polarized ones, the angle α  is basically dependent on the co-polarized ratio. 
For example, in the case of a bare slightly rough surface, this ratio is a function 

Table 3-1. Comparison of α  and β  angles for canonical scatterers. 
Scatterer Matrix Elements coR  xR  α  β  

Vertical 
Dipole 0; 0,vv hh hvS S S≠ = =  0 0 4π  0 

Horizontal 
Dipole 0; 0,hh vv hvS S S≠ = =  ∞  0 4π  0 

Trihedral 1, 0hh vv hvS S S= = =  1 0 0 0 

Dihedral 1, 0hh vv hvS S S= − = =  -1 0 2π  0 
Dipole 
oriented at 
angle ψ  
w.r.t. 
horizontal 
direction 

2coshhS ψ=  
2sinvvS ψ=  

sin coshvS ψ ψ=  

2tan ψ  tanψ  4π  2ψ  

Slightly 
Rough 
Surface 

; 1vv hh xS S R≥ 
 0 1coR≤ ≤  1xR 

 1 1
tan

1
co

co

R
R

−  −
≈   + 

 0≈  

Dielectric 
Double 
Bounce 

; 1vv hh xS S R≤ 
 0 1coR≥ ≥ −  1xR 

 1 1
tan

1
co

co

R
R

−  −
≈   + 

 0≈  
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of the surface dielectric constant. Therefore, for such a surface, α  would be a 
function of the dielectric constant. For wet surfaces at high incidence angles, 
dipole scattering. Figure 3-5 shows the alpha angle for different dielectric 
constants and different incidence angles. Note that as the surface dielectric 
constant increases, the alpha angle increases as discussed above. Also, because 
of the change in the co-polarized ratio, as the angle of incidence increases, so 
does the alpha angle. 

In the case of double reflections from dielectric surfaces, the co-polarized ratio 
will approach infinity at the Brewster angle. For that case, the angle α  will also 
approach π/4. Figure 3-6 illustrates this point further. The figure illustrates an 
example where we calculated the alpha angle for a dielectric dihedral reflection 
assuming that both surfaces have the same dielectric constant. When the 
dielectric constant becomes very large, the alpha angle approaches π/2, which is 
the expected value for a metallic dihedral. For low dielectric constants, 
however, the alpha angle is closer to 45 deg. Note that for some dielectric 
constants and angle-of-incidence ranges the alpha angle can actually be less 
than π/4. This will mostly happen for low dielectric constant values at larger 
angles of incidence. These examples illustrate that care must be exercised when 
interpreting the values of α . 

 
Fig. 3-5. Alpha angle as a function of dielectric constant for a slightly rough dielectric 
surface for three different incidence angles. Note that as the incidence angle and the 
dielectric constant increases, the alpha angle also increases. At very large dielectric 
constants and incidence angles, the alpha angle will approach 45 deg.  
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To illustrate the meaning of the alpha angle in image data, Fig. 3.7 shows the L-
band alpha angle image for San Francisco. The alpha angle for the ocean is 
mostly less than 45 deg, consistent with the expectation for a slightly rough 
surface. Note the increase in the alpha angle with increasing angle of incidence 
(the angle of incidence increases from left to right across the image) in the 
ocean, consistent with the predictions shown in Fig. 3-5. The vegetated areas all 
show alpha angles near 45 deg, consistent with dipole scattering. The urban 
areas consistently show alpha angles larger than 45 deg, consistent with the 
expectations for a double-reflection signal from a non-metallic surface. 

Figure 3-8 shows the alpha angles at different frequencies for the Black Forest 
image. As in the case of San Francisco, the urban areas consistently show alpha 
angles larger than 45 deg. We also see the effect of frequency very clearly in 
the agricultural areas. At C-band, the alpha angle is mostly near 45 deg, while 
at L- and P-band, the values are closer to zero, indicating bare (or nearly bare) 
surfaces. The forested areas at L- and P-band show alpha angles either near 45 
deg (especially at L-Band) or larger than 45 deg where there is an appreciable 
amount of double reflection signal. The C-band image, interestingly, shows the 
alpha angle in the forested areas to be less than 45 deg and generally less than 
the values observed in the agricultural areas where there is vegetation. The  
 

Fig. 3-6. Alpha angle as a function of angle of incidence for a double reflection from two 
dielectric surfaces with the same dielectric constant (epsilon). At angles of incidence equal 
to the Brewster angle of the dielectric surfaces, the alpha angle will be 45 deg.  
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explanation for this lies in the size of the branches relative to the radar 
wavelength. When we used the term “dipole” before, we could have substituted 
“cylinder that is thin compared to the radar wavelength.” Let us consider such a 
cylinder that is oriented vertically. In the thin cylinder limit, we will observe 
the scattering shown in Table 3-1. As the cylinder becomes thicker compared to 
the radar wavelength, we observe an increase in the HH term relative to the VV 
term. In fact, in the thick cylinder limit, the HH term will approach the VV 
term. As the cylinder radius increase relative to the radar wavelength, therefore, 
the co-polarized ratio will increase from zero to 1 in the limit of a thick 
cylinder. Equation (3.2-8) predicts that this will cause the alpha angle to 
decrease from the 45-deg range as the cylinders increase in thickness relative to 

Fig. 3-7. Alpha angle for the San Francisco image. See the text for discussion.  
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Fig. 3-8. Multi-frequency alpha angle for the Black Forest image. See the text for discussion. 

the radar wavelength. In these images, the cylinders are of fixed size, but the  
radar wavelength changes. At C-band, the radius of a given cylinder will be 
larger relative to the radar wavelength than at L-band. We would, therefore, 
expect to see a lower alpha angle at C-band than at L-band. 

3.3 Decomposition of Polarimetric Scattering 
Earlier in this chapter we discussed the duality between representing a scatterer 
by its scattering matrix or by an equivalent vector containing the elements of 
the scattering matrix. In this section, we shall explore this concept in greater 
detail. 

First, let us consider the case of a single scatterer that can be represented by its 
scattering matrix. We shall further restrict our discussion to the backscatter case 
where reciprocity is assumed to hold. If we assume that the scattering matrix 
was measured in the linear basis, we can write 
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0 0 1 0 0 1
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or, in the equivalent vector form, 
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. (3.3-2) 

In writing the scattering matrix in vector form, we used an orthogonal basis to 
express the elements of the scattering vector. It should be immediately obvious 



Advanced Polarimetric Concepts 99 

that there are an infinite number of such orthogonal bases that one could choose 
to represent the scattering vector. Any combination of the form 

 1 2 3a a a= + +1 2 3S p p p  (3.3-3) 

would be permissible as long as 

 
0 if
1 ifi j

i j
i j
≠

⋅ =  =
p p . (3.3-4) 

The logical question is then: Is any basis (other than the one used to make the 
measurement to begin with) that should be considered for such decomposition? 
The answer depends on the specific application, but the basis derived from the 
Pauli spin matrices has a nice intuitive interpretation. This basis is shown in 
Eq. (3.1-10) in vector form. In matrix form, the basis is 
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0 1 0 1 1 02 2

hh hv

hv vv

S S a b c
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. (3.3-5) 

This decomposition was also used by Krogager (1993) [7] in his thesis. The 
first two terms involve only the co-polarized elements of the scattering matrix 
and can be interpreted as scattering by an odd number of reflections from a 
metallic structure and an even number of reflections from a metallic structure, 
respectively. The first matrix represents, therefore, scattering from a flat plate, a 
sphere, or a metallic trihedral corner reflector. The second matrix represent 
scattering from a metallic dihedral corner reflector. 

The third matrix can be interpreted in different ways. Since it only involves the 
cross-polarized component of the scattering matrix, it is usually interpreted as 
indicating the amount of random scattering. While this interpretation certainly 
has some merit in the practical sense that scattering from vegetated areas 
usually shows a large amount of cross-polarized return, it is not strictly correct 
from a theoretical point of view. The third matrix, as was pointed out in 
Chapter 2, is also the scattering matrix of a dihedral corner reflector rotated by 
45 deg about the line of sight. The resulting scattered energy is fully polarized, 
but the polarization vector has been rotated. Admittedly, this is a special case. 
In most practical applications, a large cross-polarized component is also 
typically associated with significant depolarization of the scattered energy. 

To illustrate the usefulness of this approach for interpreting scattering, we 
display a color image of San Francisco in Fig. 3-9 in which we assigned the 
blue color as the magnitude of a in Eq. (3.3-5), the red color as the magnitude 
of b, and the green color as the magnitude of c. This image shows that the urban 
area shows a large fraction of the scattering in the red color, which corresponds 
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to the dihedral component. On the other hand, the ocean shows much more blue 
on the left, consistent with the single scattering mechanism. The vegetated 
areas, on the other hand, show significant cross-polarized return. Note the 
interesting change in color in the ocean from the left to the right in the image, 
where there is significantly more red visible in the ocean. The explanation for 
this lies in the fact that for a dielectric surface like the ocean, the co-
polarization ratio is a function of both the dielectric constant and the angle of 
incidence. Figure 3-10 shows the expected co-polarization ratio for a surface 
with a dielectric constant of 81. The figure also shows the co-polarized ratio to 
be less than 1, especially at the larger angles of incidence. The Pauli basis, 
however, forces the HH and VV terms to be equal. Therefore, if the co-
polarized ratio is less than 1, a dihedral component is needed to explain the 
difference between the HH and VV terms. 

 
Fig. 3-9. Color overlay of San Francisco displaying S Shh + vv  in blue, S Shh − vv  in red, 

and Shv  in green. These three colors are the magnitudes of the scattering matrix elements 
when they are expressed in the Pauli basis. 
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The smaller the co-polarization ratio, the stronger the dihedral component 
required to explain the difference. This is shown as the dashed curve in 
Fig. 3-10. 

It is important to appreciate that the first-order small perturbation model only 
includes single scattering terms. The fact that the ocean scattering is interpreted 
to have a significant amount of double reflections occurs only because of the 
basis under which we have chosen to interpret the scattering. This basis forces 
the HH and VV components to be the same for the “single scattering” term, 
leading to this interpretation. This is a fundamental issue with many of the 
target decomposition schemes proposed in the literature. All of these schemes 
try to interpret scattering based on an assumption of an underlying basis. If the 
scattering fits the basis, the interpretation is obviously appropriate. If the basis 
is not consistent with the actual scattering, however, the interpretation should 
be modified to take this fact into account. Nevertheless, the Pauli basis provides 
a good general purpose framework for interpreting polarimetric radar images 
(as the San Francisco example shows). 

Figure 3-11 shows the three-frequency Pauli decompositions for the Black 
Forest image. These images show a consistent interpretation of the scattering 
from what we discussed before. The scattering from the randomly oriented 

 
Fig. 3-10. Expected co-polarization ratio and the ratio of double reflection scattering to 
single reflection scattering as a function of the angle of incidence for a surface with a 
dielectric constant of 81. The values were calculated using the first-order small 
perturbation model and assuming the Pauli basis to calculate double and single reflection 
components.  
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vegetation is relatively strong in the cross-polarized return. The urban areas, on 
the other hand, are dominated by dihedral-type reflections at all wavelengths. 
The increased amount of penetration at P-band shows, relatively speaking, a 
stronger double reflection signal in much of the forest. The C-band signals 
interact more with the shorter agricultural crops than the longer wavelengths, 
resulting in increased cross-polarized returns in those areas. 

The discussion so far was concerned with the decomposition of the scattering 
matrix, or its associated vector form, into orthogonal components. As pointed 
out before, there is potentially an infinite set of bases we can use for this 
decomposition. A more important question is the following: What about the 
case where we have an average covariance matrix? What is the most 
appropriate way to decompose this observed scattering into simpler parts? We 
shall discuss this in detail in the next section. 

3.3.1 Scattering Decomposition in the Incoherent Case Using 
Orthonormal Bases 

As mentioned in the beginning of this chapter, after multi-looking to reduce 
speckle, we can write the average covariance matrix as 

 [ ] [ ]
1 1

1 M N

ij
j iMN = =

= ∑∑C C , (3.3-6) 

where the two sums indicate averaging in the range and azimuth directions, 
respectively. We shall restrict our discussion to the backscatter case, where the 
individual covariance matrices are defined as 

 
Fig. 3-11. Pauli basis color overlays for the Black Forest image. The color scheme is the 
same as that in Fig. 3-9. The C-band image is on the left, the L-Band in the middle, and the 
P-Band on the right. 
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 [ ] ( )
* * *

* * * *

* * *

2

2 2 2 2 2

2

hh hh hh hv hh vvhh

hv hh hv vv hv hh hv hv hv vv

vv vv hh vv hv vv vv

S S S S S SS

S S S S S S S S S S
S S S S S S S

       = =         

C . (3.3-7) 

The covariance matrix is Hermitian. The matrix, therefore, contains, at most, 
three independent complex numbers and three real numbers, for a total of nine 
real numbers. The scattering matrix, on the other hand, contains, at most, three 
complex numbers. If we remove an absolute phase number from one of the 
elements of the scattering matrix, we would be left with one real and two 
complex numbers (a total of five real numbers). There must, therefore, be at 
least four relations between the elements of the covariance matrix of a single 
scatterer. These are 

 

* * * *
00 11 01 10

* * * *
00 22 02 20

* * * *
11 22 12 21

* * * * * *
00 11 22 01 02 12

2 2 2 0

0

2 2 2 0

2 2

hh hh hv hv hh hv hv hh

hh hh vv vv hh vv vv hh

hv hv vv vv hv vv vv hv

hh hh hv hv vv vv hh hv vv hh

C C C C S S S S S S S S

C C C C S S S S S S S S

C C C C S S S S S S S S

C C C C C C S S S S S S S S S S

− = − =

− = − =

− = − =

− = − *2 0hv vvS S =

. (3.3-8) 

Once we perform the averaging process shown in Eq. (3.3-6) during the multi-
looking process, these relations will no longer hold. Instead, the equal signs 
should be replaced with greater than or equal to signs. In fact, that is simply a 
statement of the Cauchy-Schwarz inequality applied to complex numbers. 
Therefore, in general, 

 

00 11 01 10

00 22 02 20

11 22 12 21
*

00 11 22 01 02 12

0
0

0

0

C C C C
C C C C
C C C C

C C C C C C

− ≥
− ≥
− ≥

− ≥

. (3.3-9) 

Unless equality holds in each of the four cases, we cannot find an equivalent 
scattering matrix to fully represent the scattering described by the covariance 
matrix as shown in Eq. (3.3-7). A reasonable question then is whether we can 
find a set of scattering matrices that, when transformed to their covariance 
matrices, could be added to fully describe the observed covariance matrix. To 
answer this question, consider the decomposition proposed by Cloude 
(1992) [1]: 

 [ ]
3

†

1
ˆ ˆi i i

i
λ

=
=∑C e e . (3.3-10) 
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This decomposition is unique. That is, since the eigenvectors of the covariance 
matrix are orthogonal, they form a natural basis in which to express the 
scattering. There is one potential problem with this decomposition. Since the 
decomposition is performed for each covariance matrix (that is, on a pixel-by-
pixel basis in an image), the resulting basis for the decomposition changes from 
pixel to pixel. This could make it more difficult to compare the meaning of a 
given eigenvalue in different areas without also looking at the associated 
eigenvectors that form the basis. To illustrate what we mean, consider the 
special case of the covariance matrix of terrain with reflection symmetry. In 
that case, the covariance matrix has the special form (Borgeaud et al., 1985) 
[8]: 

 [ ]
*

0
0 0

0

ξ ρ
η

ρ ζ

 
 

=  
 
 

C , (3.3-11) 

where 

 

*

*

*

*

2

hh hh

hh vv

hv hv

vv vv

S S

S S

S S

S S

ξ

ρ

η

ζ

=

=

=

=

. (3.3-12) 

The parameters ξ η, , ζ and ρ  all depend on the size, shape, and electrical 
properties of the scatterers, as well as their statistical distribution. It is easily 
shown that the eigenvalues of [C]  are 

 

( )

( )

22
1

22
2

3

1 4
2
1 4
2

λ ξ ζ ξ ζ ρ

λ ξ ζ ξ ζ ρ

λ η

 = + + − + 
 
 = + − − + 
 

=

. (3.3-13) 

All these are real numbers, as expected for a Hermitian matrix. It follows from 
inspection that the first and third eigenvalues are positive. To show that the 
second eigenvalue is also positive, note that, from the second relationship in 
Eq. (3.3-10), 
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 ( ) ( )2 22 24ξζ ρ ξ ζ ρ ξ ζ≥ ⇒ − + ≤ + . (3.3-14) 

Hence, the second eigenvalue is also positive. 

The corresponding three eigenvectors are 

 

2

1 2 2

2

2 2 2

3

2

0
4 1

2

0
4 1

0
1
0

ρ ζ ξ
ζ ξ

ζ ξ ρ

ρ ζ ξ
ζ ξ

ζ ξ ρ

  − + ∆   − + ∆   =
  − + ∆ +   
 
  − − ∆   − − ∆   =
  − − ∆ +   
 

 
 =  
 
 

k

k

k

. (3.3-15) 

In these expressions, we used the shorthand notation 

 ( ) 22 4ζ ξ ρ∆ = − + . (3.3-16) 

We note that ∆  is always positive. Also note that we can write the ratio of the 
first elements of the first two eigenvectors as 

 
2 2 2 2

11
22 2 221

4

44

k
k

ζ ξ ζ ξ ρ ζ ξ

ρζ ξ ζ ξ ρ

     − + ∆ − − ∆ +    − − ∆       = −
     − − ∆ − + ∆ +       

, (3.3-17) 

which is always negative. This means that the first two eigenvectors represent 
scattering matrices that can be interpreted in terms of odd and even numbers of 
reflections. Without looking explicitly at the eigenvectors, however, we will not 
know which eigenvalue to associate with which scattering mechanism. 

Figure 3-12 illustrates this with an example. On the left, we display the image 
of San Francisco previously discussed with the three eigenvalues as defined in 
Eq. (3.3-13) colored blue for the first eigenvalue, red for the second, and green 
for the third. Note that the third eigenvalue and eigenvector are identical to the 
third Pauli element encountered before. The ocean is dominated by a blue color, 
indicating that the scattering is dominated by whatever scattering mechanism 
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Fig. 3-12. Two color overlays for the image of San Francisco. In the image on the left, colors 
are assigned to the three eigenvalues without further examining the eigenvectors. The first 
eigenvalue is colored blue, the second red, and the third green. In the image on the right, the 
co-polarized phase of the first eigenvector is used to determine the color of the first 
eigenvalue. If the phase is more consistent with odd numbers of reflections, the eigenvalue 
is colored blue. Otherwise it is colored red. The color of the second eigenvector is 
determined using the fact that the two co-polarized phases of the first two eigenvectors are 
180 deg different. 

the first eigenvector represents. The urban areas, however, are also dominated 
by a blue color, indicating the same. Vegetated areas consistently show a green 
color, indicating that depolarization is, relatively speaking, high. On the right 
panel of Fig. 3-12, we show the same image, but this time we examined the 
eigenvectors for each pixel. If the co-polarized phase is in the range [-90°;90°], 
we assign a blue color to the eigenvalue corresponding to that eigenvector. If 
the co-polarized phase is in the range [90°;270°], we assign a red color. We 
already showed that the phase difference between the first two eigenvectors is 
180 deg; once we identified the color for the first eigenvector, therefore, the 
color for the second is automatically determined. This image on the right is 
quite different from the one on the left. In particular, the urban area in the 
image on the right is now dominated by red, indicating scattering more 
consistent with double reflections. 

Comparing the results on the right in Fig. 3-12 with those in Fig. 3-9, we note 
many similarities between the Pauli basis display and the eigenvalue display. 
The main difference is that the eigenvalue display colors appear more pure. 
Also, note that the gradient from blue to red in the ocean is not as pronounced 
in the image on the right in Fig. 3-12. The reason is that while the Pauli basis 
insists that the co-polarized terms have the same amplitude, the eigenvectors do 
not (see Eq. (3.3-15)). 
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A natural question is then: Is there a preferred basis in which to do the 
decomposition? In general, we could also choose to write the average 
covariance matrix in the following form 

 
[ ]

3
†

1

† 1 if
0 if

i i i
i

i j

w

i j
i j

=
=

=
=  ≠

∑C p p

p p

. (3.3-18) 

The Pauli and the eigenvalue bases are two special cases of this decomposition. 
The answer to this question is not obvious. It depends largely on the goal of the 
analysis. As our discussion shows, the decomposition is not the hard part; 
interpreting the results is. This desire to be able to interpret the results of such 
decomposition is what led many researchers to propose decompositions based 
on specific models, rather than orthogonal bases as discussed so far. We shall 
look at this in more detail in the next section. 

3.3.2 Model Based Scattering Decomposition in the Incoherent 
Case 

The basic idea behind model-based decompositions is to hypothesize that the 
measured covariance matrix can be modeled as the combination of a number of 
individual matrices representing scattering as predicted by models. In this 
section we shall examine a number of different model-based decomposition 
schemes in more detail. 

3.3.2.1 Freeman-Durden Three-Component Scattering Decomposition. For 
vegetated terrain, we could hypothesize that the dominant scattering 
mechanisms might be direct scattering from randomly oriented branches, plus 
double reflections from the ground/trunk combination, plus direct (although 
attenuated) scattering from the underlying ground surface. This is the basic idea 
behind the three-component scattering decomposition proposed by Freeman 
and Durden (1998) [9]. This decomposition can be written as follows 

 [ ] [ ]s ground d trunk ground v branchesf f f−   = + +   C C C C , (3.3-19) 

with 
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 
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 
 =  
 
 

C

C

C

. (3.3-20) 

The matrix representing branch scattering assumes that the branches are thin 
compared to the radar wavelength and that the branches are uniformly 
randomly oriented. We previously discussed this case in Chapter 2. From 
Eq. (3.3-19) one can then derive the following four equations: 

 

2 2 2

2

2

*

3

3

hh s d v

vv s d v

hv v

hh vv s d v

S f f f

S f f f

S f

S S f f f

β α

β α

= + +

= + +

=

= + +

. (3.3-21) 

Freeman and Durden (1998) [9] point out that there are four equations and five 
unknowns. They then make the following crucial suggestion: since neither the 
ground reflection nor the double reflection terms add to the predicted cross-
polarized return, they can use the measured cross-polarized return to solve for 
the parameter fv . They continue to suggest that the volume contribution can 
then be subtracted from the measured matrix before solving for the other terms. 
In other words, we can write Eq. (3.3-19) as 

 
[ ]

2 2

2

2 2

3 0

0 2 0

0 3

hv hv

hv s ground d trunk ground

hv hv

S S

S f f

S S

−

 
 
 
     − = +    
 
 
 

C C C
. (3.3-22) 
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Once the subtraction has been done, there are three remaining equations in four 
unknowns, as follows: 

 

2 2 2

2

*

hh s d

vv s d

hh vv s d

S f f

S f f

S S f f

β α

β α

′
= +

′
= +

′
= +

. (3.3-23) 

The primes on the left serve to remind us that these are the quantities after the 
volume-scattering contribution have been subtracted. The phase of the 
remaining co-polarized component is then used to fix either α  or β . The 
argument is that if the residual co-polarized phase is closer to zero than to π , 
surface scattering dominates and we should solve for β  explicitly. Therefore, 
we set α = −1  (indicating a double reflection) and solve for the remaining 
parameters. On the other hand, if the residual co-polarized phase is closer to π  
than to zero, double reflection scattering dominates and we should solve for α  
explicitly. In this case, we set β =1  (indicating a single reflection) and solve 
for the remaining parameters. 

Figure 3-13 shows a color overlay image of the three contributions calculated 
using the Freeman and Durden (1998) [9] model for the image of the Black 
Forest at L-band. The image on the left shows the relative strength of the three 
scattering mechanisms in the color code indicated. Overall, the image clearly 
shows volume scattering to dominate in the vegetated areas, double reflections 
to dominate in the urban areas, and some of the agricultural areas to show 
surface scattering. At this qualitative level, the results appear consistent with 
our expectations. The image is also similar to the Pauli basis image shown in 
the middle of Fig. 3-11.  

However, a deeper examination shows a significant flaw in this decomposition. 
The image on the right shows the results of an analysis of the eigenvalues of the 
matrix on the left in Eq. (3.3-22) after we subtracted the vegetation contribution 
from the original data. If any of the eigenvalues are negative, we blanked out 
the pixel in the image on the right in Fig. 3-13. This surprising result shows that 
the majority of the pixels in the vegetated area end up with negative 
eigenvalues after we subtracted the scattering from the vegetation, as suggested 
by Freeman and Durden (1998) [9]. However, this is exactly where we expect 
the scattering model for scattering from the vegetation to be most applicable! 
We shall show later that this surprising result is the consequence of assigning 
all the cross-polarized return to the vegetation scattering. 
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. (3.3-25) 

 
Fig. 3-13. Two color overlays displaying the results of the Freeman and Durden 
decomposition applied to the L-band image of the Black Forest. The image on the left 
displays the surface contribution in blue, the double reflection contribution in red, and the 
vegetation contribution in green. The image on the right shows only those pixels with non-
negative eigenvalues once the vegetation contribution has been subtracted. See the text for 
more discussion. 

3.3.2.2 Four-Component Model Proposed by Yamaguchi et al. The three-
component model described above assumes that the terrain has reflection 
symmetry by ignoring the terms in the covariance matrix that involves products 
of co-polarized and cross-polarized terms. While this assumption seems to be 
valid for most types of terrain in the sense that these components of the 
covariance matrix are much smaller than the others, one cannot always assume 
that reflection symmetry will hold. Yamaguchi et al. (2005) [10] recognized 
this fact and proposed an extension of the three-component model to include a 
term that would account for the non-zero products of co-polarized and cross-
polarized terms. Their decomposition is written as 

 [ ] [ ] [ ]s ground d trunk ground v branches c helixf f f f−   = + + +   C C C C C , (3.3-24) 

with the matrix representing the helix scattering taking one of the following two 
forms: 

 [ ] [ ]
1 2 1 1 2 1

1 12 2 2 ; 2 2 2
4 4

1 2 1 1 2 1
r helix l helix

j j

j j j j

j j
− −

   − − −
   

= − = −   
      − − −   

C C
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*Note that these two matrices both predict the cross products S Shh hv  and 

S *
hvSvv  to be purely imaginary numbers. This might not be the case in 

observed data. To get around this, Yamaguchi et al. (2005) [10] recommend 
using only the imaginary portion of the observed cross-products in the 
decomposition. Furthermore, the model matrices predict that 

S * *
hhShv = S Shv vv . Again, this might not be exactly what is observed. 

Therefore, they recommend using 

 { }* *1 Im
4 2
c

hh hv hv vv
f S S S S= +  . (3.3-26) 

Finally, to decide which matrix in Eq. (3.3-25) to use, they propose 
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 + > ⇒

 + < ⇒


C

C
. (3.3-27) 

Assuming a uniformly oriented canopy, and writing out the covariance matrices 
in Eq. (3.3-24), we find the following five equations with six unknowns: 
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8 4
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8 4
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S f f f f

S S f f f f

fS S S S
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. (3.3-28) 

The unknown quantities are α β, , f fs d, , fv  and fc .  To solve for these 
unknowns, note that the last expression allows us to find fc  as follows 

 { }* *2 Imc hh hv hv vvf S S S S= + . (3.3-29) 

We can then use the second equation in Eq. (3.3-28) to find vf , as follows: 
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 28
4
c

v hv
ff S = − 

 
. (3.3-30) 

Once these two unknowns are determined, the contributions of the helix 
scattering and the volume scattering can be subtracted from the observed 
covariance matrix. Solving for the remaining unknowns then follows the same 
procedure as outlined by Freeman and Durden (1998) [9] as discussed in the 
previous section. Specifically, 

   
[ ]

1 2 13 0 1
0 2 0 2 2 2

8 4
1 0 3 1 2 1

v c
s ground d trunk ground

j
f ff f j j

j
−

 ± −       + = − − ±          −   

C C C 



. (3.3-31) 

Yamaguchi et al. (2005) [10] went one step further than the Freeman and 
Durden (1998) [9] decomposition in that they recognized that not all vegetated 
terrains are well represented by a uniformly oriented canopy. In some cases, the 
orientations are preferentially vertical, while in others it might be preferentially 
horizontal. For these cases, Yamaguchi et al. [10] propose to use cosine-
squared distributions around either vertical or horizontal directions, which leads 
to the following covariance matrices 

 _ _

8 0 2 3 0 2
1 10 4 0 ; 0 4 0

15 15
2 0 3 2 0 8

branches h branches v

   
      = =      
   
   

C C . (3.3-32) 

In their decomposition algorithm, Yamaguchi et al. [10] use the ratio of the VV 
to HH cross-sections to decide which canopy model to use. If the ratio of VV to 
HH power is less than –2 dB, they use the cosine-squared distribution around 
the horizontal direction. If the ratio is between - 2 dB and + 2 dB, they use the 
uniform distribution. When the ratio is larger than +2 dB, they use the cosine-
squared distribution around the vertical direction. In the case where we use a 
distribution that is preferentially horizontal, the expressions in Eq. (3.3-28) 
need to be modified as follows: 
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. (3.3-33) 

The helix component is still determined by Eq. (3.3-29), but we now have to 
modify how we determine the volume component, as follows: 

 215
2 4

c
v hv

ff S = − 
 

. (3.3-34) 

The surface and double reflection components are then determined using the 
Freeman and Durden (1998) [9] approach after the following subtraction 

   

[ ]
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j
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j
−
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

. (3.3-35) 

In the case where the ratio of VV to HH is larger than +2 dB, we assume a 
preferentially vertical orientation, the helix component is determined as before, 
and the volume component is determined by Eq. (3.3-34). The surface and 
double reflection components are determined after the following subtraction 

   

[ ]
1 2 13 0 2

0 4 0 2 2 2
15 4

2 0 8 1 2 1

v c
s ground d trunk ground

j
f ff f j j

j
−
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C C C 



. (3.3-36) 

The Yamaguchi et al. (2005) [10] algorithm can be summarized as follows: 

1) Estimate the helix scattering component using Eq. (3.3-29). 

2) Depending on the ratio of VV to HH, use Eq. (3.3-30) (-2 dB < VV/HH  
< 2 dB) or Eq. (3.3-34) (VV/HH < - 2 dB or VV/HH > + 2 dB) to estimate 
the volume component. 
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3) Subtract the helix and volume components from the observation using  
Eq. (3.3-31) when - 2 dB < VV/HH < 2 dB, Eq. (3.3-35) when VV/HH  
< –2 dB or Eq. (3.3-35) when VV/HH > +2 dB. 

4) Use Eq. (3.3-23) and the process described by Freeman and Durden (1998) 
[9] to estimate the strength of the surface and double reflection scattering 
terms. 

Figure 3-14 shows the results of applying the Yamaguchi et al. (2005) [10] 
decomposition to the L-band image of the Black Forest. The image on the left 
shows the relative strength of the volume, double bounce, and surface 
scattering with the same color scheme that we used for the Freeman and Durden 
(1998) [9] decomposition in Fig. 3-13. Also shown in the figure on the right are 
the pixels with negative eigenvalues after the helix and volume components 
have been subtracted. Comparing Fig. 3-14 and Fig. 3-13, we note that the 
qualitative results of the decompositions are very similar. This is not surprising, 
since the helix components are typically much smaller than the others. The 
major difference between the two decomposition methods lies in the number of 
pixels with negative eigenvalues. The Yamaguchi et al. (2005) [10] 
decomposition results show significantly fewer pixels with negative 
eigenvalues. It should be pointed out that Yamaguchi et al. (2005) [10] 

 
Fig. 3-14. Two color overlays displaying the results of the Yamaguchi et al. [10] 
decomposition applied to the L-band image of the Black Forest. The image on the left 
displays the surface contribution in blue, the double reflection contribution in red, and the 
vegetation contribution in green. The image on the right shows only those pixels with non-
negative eigenvalues once the vegetation contribution has been subtracted. See the text for 
more discussion. 
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recognized that areas where the HV returns exceed approximately half that of 
HH or VV could lead to negative powers in the decomposition. Their solution 
was to apply a slightly different algorithm to pixels that show this high relative 
value of HV. In the next section we shall describe a systematic way of 
determining the level of the volume scattering while still ensuring that no 
negative powers will result. 

Figure 3-15 shows the relative strength of the helix term in the Yamaguchi et 
al. [10] decomposition. Notice that the helix terms are stronger in the vegetated 
areas, but overall still relatively small, rarely exceeding 10 percent of the 
scattering. The image in the right shows the strength of the helix term when it is 
not normalized by the total power. It is interesting to note that the areas 
indicated by the arrows show modulations that appear to be consistent with the 
along-track slopes caused by the local topography. This image was analyzed by 
van Zyl (1993) [5] who showed that the scattering mechanisms at P-band are 
strongly modulated by the topographic slopes in the range direction. The fact 
that the strength of the helix term might be influenced by the along-track slopes 
should not be a surprise because it is well known that along-track tilts lead to 

 
Fig. 3-15. The image on the left displays the relative strength of the helix term in the 
Yamaguchi et al. [10] decomposition as a fraction of the total power. While the helix term is 
slightly stronger in the vegetated areas, it is relatively small compared to the overall 
scattering. The image on the right shows the strength of the helix term when it is not 
normalized. The arrows indicate areas where the strength of the helix term is modulated by 
the topographic slopes in the along-track direction. Images were calculated at L-band. 
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non-zero correlations between co- and cross-polarized components of the 
scattering matrix (Shuler et al., 1996 [11]; Lee et al., 2000 [12]), even for 
terrains that otherwise would exhibit reflection symmetry. 

To better understand how azimuth slopes affect the co- and cross-polarized 
correlation, consider the analysis shown in Appendix A for a tilted surface. We 
show that the scattering matrix of the tilted surface  (θ S ) can be written as a 
transformation of the scattering matrix of the surface without tilts  l (θ S l ) , as 
follows 

 S (θ θ) =  

 T SR l l( )[TR ] . (3.3-37) 

The angles refer to the angle of incidence in either the global coordinate system 
(θ ) or the local coordinate system (θl ) for the surface. For details, please see 
the appendix. The transformation matrix takes the form of a coordinate rotation 

 [ ] cos sin
; tan ; sin cos

sin cos
y

R x
h

u h
u

ϕ ϕ
ϕ θ θ

ϕ ϕ
 

= = = − − 
T , (3.3-38) 

where hx  and hy  are the surface slopes in the range (cross-track) and azimuth 
(along-track) directions, respectively. Note that these expressions are 
completely general; no assumptions are made about the form of the scattering 
matrix. In the special case where the range slopes are small, the rotation is 
directly proportional to the azimuth slope. Performing the transformation, we 
find that 
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. (3.3-39) 

If the terrain exhibits reflection symmetry, the second and third terms are zero 
and this quantity becomes a real number. In that case, the estimate of the helix 
component as given by Eq. (3.3-29) will be zero. If the terrain does not exhibit 
reflection symmetry or if we only average over a relatively small number of 
pixels (recall that reflection symmetry only says that in the average the co-cross 
product will be zero) the estimate of the helix component will be 

 ( ) ( ) ( ) ( ){ }
( )( ) ( )( ){ }

* *

* * * *

2 Im
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. (3.3-40) 
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This quantity is clearly modulated by the along-track slopes, so the results in 
the image on the right in Fig. 3-15 are not surprising. 

3.3.2.3 The Non-Negative Eigenvalue Decomposition (NNED). The results in the 
previous two sections show a significant flaw in these decompositions; some 
negative powers might result after subtraction of the volume components from 
the observation. This is clearly a non-physical result. If the hypothesis is that 
the observed radar cross-section is the linear sum of radar cross-sections 
representing different types of scattering mechanisms, a crucial requirement is 
that each scattering mechanism must represent a physically realizable scatterer 
or collection of scatterers. This must also mean that the radar cross-section 
representing each scattering mechanism must be zero or positive for all 
polarization combinations. As shown in Eq. (3.1-5), this implies that all 
eigenvalues of the matrices representing the individual scattering processes 
must be non-negative. A decomposition method that takes this property into 
account was proposed by van Zyl et al. (2008) [13] and van Zyl et al. 
(2010) [14], which we shall call the non-negative eigenvalue decomposition 
(NNED). 

To introduce the NNED technique, let us take a more generic decomposition 
where we want to express the scattering as follows  

 [ ] [ ] [ ]model remaindera= +C C C . (3.3-41) 

Here, the first term on the right represents the covariance matrix predicted by 
some model, such as randomly oriented branches. Recognizing that the form of 
this covariance matrix might be different from the measured matrix, we add the 
second term, which will contain whatever is in the measured matrix that is not 
consistent with the model matrix. The question now is what value of a to use in 
Eq. (3.3-41). To answer this question, we need to recognize that all matrices in 
Eq. (3.3-41) must represent physically realizable covariance matrices. That is, if 
we look at each matrix by itself, it should satisfy all the restrictions that we 
expect for a measured covariance matrix. In particular, we need to insist that the 
eigenvalues for each matrix are real and greater than or equal to zero. Let us 
rewrite Eq. (3.3-41) in the form 

 [ ] [ ] [ ]remainder modela= −C C C . (3.3-42) 

The matrix on the left must have eigenvalues that are real and are larger than or 
equal to zero. This requirement allows us to derive a limit on the values of a. 
The largest value of a that still ensures that all three eigenvalues of the matrix 
on the left would be greater than or equal to zero is the maximum value of a 
that we could use in Eq. (3.3-41). 
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To derive the general expressions limiting the values of a, we start with the 
average covariance matrix for terrain with reflection symmetry as given in  
Eq. (3.3-11) and write the model covariance matrix as 

 [ ]
*

0
0 0

0

a a

model a

a a

ξ ρ
η

ρ ζ

 
 

=  
  
 

C . (3.3-43) 

Then Eq. (3.3-42) becomes 
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C . (3.3-44) 

The eigenvalues for this matrix are the roots of the following equation 
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. (3.3-46) 

Since λ λ1 2≥ , the maximum value of a is found when either λ2 = 0  or when 
λ3 = 0 . To find the value of a that would make λ2 = 0 , we need to solve the 
equation 
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. (3.3-47) 

This quadratic has two roots that are both positive. The smaller of the two is 

         ( ) ( ){

( ) ( )( )

* *
2

2 2 2* *

1

2

4

a a a a
a a a

a a a a a a a

a ξζ ζξ ρρ ρ ρ
ξ ζ ρ

ξζ ζξ ρρ ρ ρ ξ ζ ρ ξζ ρ

= + − −
−

 − + − − − − −   

. (3.3-48) 

The case of λ3 = 0  is straightforward. The resulting maximum a is, therefore, 
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. (3.3-49) 

It should be pointed out that in the general form for the model matrix we 
assumed in Eq. (3.3-43), we have explicitly assumed that the model matrix 
represents an average scattering process for terrain with reflection symmetry. It 
also includes cases of a single scatterer with no cross-polarized component, 
such as a pure dihedral or first-order scattering from a slightly rough surface. It 
does not, however, include scattering from terrain that does not exhibit 
reflection symmetry or single scatterers with cross-polarized components. For 
those cases, the expressions become significantly more complicated, with the 
eigenvalues being the roots to a cubic polynomial. However, most observed 
scattering seems to approximate reflections symmetry well, as evidenced by the 
relatively small values of the helix component in the Yamaguchi et al. 
(2005) [10] decomposition discussed in the previous section; therefore, we do 
not believe the current analysis to be too severely limited by these assumptions. 
In any case, the fundamental approach remains the same. We always insist that 
no eigenvalue be negative. 

We note that if the model represents a single scatterer with no cross-polarized 
2return, ξ ζa a = ρa  and we can simplify the expressions in Eq. (3.3-49) to 
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. (3.3-50) 

Let’s illustrate this process with an example. For the model, we shall assume a 
uniformly random oriented cloud of thin cylinders. The expression for the 
average covariance matrix for this model was derived in Chapter 2 and for the 
backscatter case is given by 

 
3 8 0 1 8
0 2 8 0

1 8 0 3 8
cylinders

 
   =   
 
 

C . (3.3-51) 

Putting these together in Eq. (3.3-49), we find the resulting maximum a is, 
therefore, 
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. (3.3-52) 

To illustrate this process with a numerical example, consider the case of a 
covariance matrix extracted from the Black Forest image at L-band. The 
normalized matrix is 

 [ ]
0.472 0.008 0.010 0.056 0.029

0.008 0.010 0.235 0.003 0.002
0.056 0.029 0.003 0.002 0.293

i i
i i
i i

+ − 
 = − − 
 + + 

C . (3.3-53) 

Note that this matrix is not the same as the one we assumed in Eq. (3.3-11), but 
the terms assumed to be zero in Eq. (3.3-11) are indeed much smaller than the 
others. We shall, therefore, ignore those terms and effectively set them equal to 
zero, consistent with what Freeman and Durden (1998) [9] assumed. Using Eq. 
(3.3-52), we find that 

 ( )max min 0.940,0.752 0.752a = = . (3.3-54) 

Simply setting the strength of the returns from the randomly oriented cylinders 
based on the cross-polarized return will force us to use the value 0.940 for a. 
Clearly, this is much larger than the allowable value of 0.752. Using this 
maximum value of a, we find that the decomposition would be 
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0.008 0.010 0.235 0.003 0.002
0.056 0.029 0.003 0.002 0.293
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. (3.3-55) 

Figure 3-16 shows a comparison of the fraction of the scattering assigned to the 
randomly oriented canopy by using the approach suggested by Freeman and 
Durden (1998) [9] and that using the maximum value of a as we have described 
above. The fraction is expressed as the total power of the scattering from the 
randomly oriented cloud of cylinders as compared to the total power in the 
measured covariance matrix. In the case of the Freeman and Durden (1998) [9] 
decomposition, this ratio is simply the thin vegetation index, as defined in 
Eq. (3.2-3). We note from this figure that the fraction of scattering that should 
be assigned to the vegetation is generally quite a bit lower than if we simply 
assume that all the cross-polarized scattering comes from the randomly oriented 
branches. In fact, on the average, the maximum amount of scattering from the 
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branches is between 10 and 20 percent lower if we insist that the eigenvalues 
remain positive. Nevertheless, the random scattering clearly still dominates in 
the vegetated areas; this correction would not change the qualitative 
interpretation of the scattering for this scene significantly. 

It is important to remember that the image on the right in Fig. 3-16 represents 
the maximum amount of scattering we can assign to the randomly oriented 
cylinders. We are, of course, free to assign less than that, and we would not 
violate our requirement that the eigenvalues of the remainder not be negative. 
This result points to one of the difficulties with model-based decompositions: 
How are we to decide how much of the scattering to assign to the randomly 
oriented cylinders? Unfortunately, there is no simple answer to this question. A 
reasonable suggestion is to use the amount of power in the left-over matrix (that 
is, the one labeled “remainder” in Eq. (3.3-41)) as a guide. One could make the 
argument that the best value of a to use would be that value of a that results in 
the minimum amount of power in the remainder matrix. We can then simply 
compare the total power in the remainder matrix to that in the original 
measurement and select that value of a that minimizes this ratio. For the single-

 
Fig. 3-16. These images display the fraction of the observed total power that can be 
attributed to scattering from a uniformly randomly oriented layer of cylinders. The image on 
the left follows the calculation proposed by Freeman and Durden (1998) [9]. The image on 
the right is calculated by requiring that the remaining eigenvalues not be negative. On the 
average, the image on the right shows about 10-20 percent lower values for the forested 
areas than the one on the left. 
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model case discussed so far, this simply leads to picking the maximum value 
of a. 

The question now is whether there is a way to pick the “best” solution for a 
generic model-based decomposition for vegetation scattering. We shall assume, 
like Freeman and Durden (1998) [9], that the scattering from vegetated terrain 
consists of three major components: scattering from the canopy, double 
reflection scattering, and single reflections from the underlying ground surface. 
We then propose a hybrid approach that combines model-based decomposition 
and eigenvalue decomposition. In the case of the Freeman and Durden (1998) 
[9] decomposition, they must artificially decide whether to explicitly solve for 
the double-reflection or the single-reflection parameters by examining the phase 
difference between HH and VV. As we showed before (van Zyl, 1992 [15]), the 
eigenvalue decomposition itself can be interpreted in terms of single (or odd 
numbers of) reflections, double (or even numbers of) reflections, and a diffuse 
part. Our hybrid approach then is as follows. We first subtract a covariance 
matrix representing a model for canopy scattering from the observed covariance 
matrix. We pick that multiplicative parameter that minimizes the power in the 
remainder matrix. We then perform an eigenvalue decomposition on the 
remainder matrix. Mathematically this translates to 

 [ ] [ ] [ ]c canopy d double s single r remainderf λ λ λ   = + + +   C C C C C . (3.3-56) 

Here, λr  is the “diffuse” part of the covariance matrix that is left once we 
subtracted the canopy contribution to the observed scattering. It is clear that if 
we want to minimize the power in the last matrix on the right, we need to 
maximize the value of fc . This is done using the expressions in Eq. (3.3-49), 
where the subscript a in that expression is substituted for the canopy model 
covariance matrix. 

This decomposition needs only one assumption: that of the model to use to 
represent the canopy scattering. We no longer have to artificially make 
assumptions about the ratio of the HH to VV scattering strength for the double-
reflection or single-reflection terms. These are determined by the eigenvectors 
of the matrix that is left over once the canopy contribution is subtracted. 

Figure 3-17 shows a comparison of the Freeman and Durden (1998) [9] 
decomposition and NNED using uniformly randomly oriented thin cylinders as 
the model for the canopy scattering like Freeman and Durden. In our display of 
the NNED, we use the green color to show the canopy strength, blue to show 
the single scattering term, and red to show the double reflection term. We do 
not include the last term on the right in Eq. (3.3-56) in our display. At first look, 
these images are qualitatively very similar. A closer examination, however, 
shows that the details in the forested area are quite different. For example, there 
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Fig. 3-17. These L-band images show a comparison between a three-component 
decomposition as proposed by Freeman and Durden (left image) [9] and a modified version 
that ensures non-negative powers after the vegetation scattering has been subtracted (right 
image). Note the increased double reflections in the forested areas in the image on the right. 

are significantly more double reflections in much of the forest in the modified 
three-component analysis (NNED) than in the original Freeman and Durden 
decomposition. This is to be expected, since we have now assigned less of the 
scattered power to the randomly oriented cylinders. Therefore, while the results 
are qualitatively the same, these images are quite different. This could be quite 
significant if one were to use these decomposed signals in further analysis to 
infer geophysical parameters. 

Figure 3-18 shows a similar result calculated using the C-band images. The 
differences in the forest are now even more evident between the standard 
Freeman-Durden (1998) [9] decomposition and the modified version that 
ensures that all eigenvalues remain non-negative. In this case, there is 
significantly more scattering assigned to the single reflection model, especially 
in the older, higher biomass parts of the forest. This should not, however, be 
interpreted that there is more direct scattering observed from the ground surface 
under the forest. In fact, this increase is due to the fact that the thin cylinder 
model is less appropriate at C-band because most of the branches are no longer 
much thinner than the radar wavelength. When this happens, the random 
cylinder model matrix becomes more like scattering from a flat plate or a 
sphere. In the limiting case where the branches become much thicker than the 
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Fig. 3-18. Comparison between a three-component decomposition as proposed by Freeman 
and Durden (left image) and the modified version that ensures non-negative powers after the 
vegetation scattering has been subtracted (right image) at C-band. Note the increased single 
reflections in the forested areas in the image on the right. See the text for a discussion. 

radar wavelength, the scattering from the randomly oriented thick branches 
would be indistinguishable from the scattering from a sphere or a flat plate. 

Figure 3-19 shows the comparison at P-band. The modified decomposition 
shows significantly less random scattering and increased double reflections 
when compared to the Freeman-Durden (1998) [9] decomposition. This shows 
again how assigning all the cross-polarized return to the canopy scattering tends 
to overestimate the contribution from the canopy scattering. Also note that the 
scattering near the top of the image (the portion where the angle of incidence is 
quite steep) has a more bluish tint in the image on the right, implying more 
single scattering from the underlying ground surface. This is consistent with the 
expectation that at steeper angles of incidence the attenuation loss through the 
canopy will be lower, increasing the strength of the reflection from the 
underlying ground surface. 

In all the discussion thus far we have implicitly assumed that the covariance 
matrix terms that involve cross-products of co-polarized returns and cross-
polarized returns are negligibly small. The usual argument in favor of this 
assumption is that natural terrain tends to exhibit reflection symmetry over 
large scales. Yamaguchi et al. (2005) [10] point out that this is not always the 
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Fig. 3-19. Comparison between a three-component decomposition as proposed by Freeman 
and Durden (left image) and the modified version that ensures non-negative powers after the 
vegetation scattering has been subtracted (right image) at P-band. Note the increased 
double reflections (red color) in the forested areas in the image on the right. 

case. In fact, they show examples of urban areas where these terms are not 
negligible. Their solution is to add a fourth model to the decomposition that 
includes scattering by helices to account for the observed correlation between 
the co-polarized and cross-polarized returns. They then proceed to first remove 
this helix component that is calculated based on the observed correlation. Note 
that our proposed hybrid decomposition as shown in Eq. (3.3-56) explicitly 
includes any potential observed cross-correlation between the co-polarized and 
cross-polarized components. The matrices that are calculated using the 
eigenvalue decomposition are formed from the eigenvectors of the covariance 
matrix that results from the subtraction of the assumed canopy model from the 
observed covariance matrix. Any correlation between the cross-polarized and 
co-polarized returns will result in these eigenvectors not being “pure” single, 
double, or diffuse scattering covariance matrices. The advantage of the NNED 
approach is that we do not have to assume a specific scattering mechanism that 
accounts for these observed correlations. 

3.3.2.4 Adaptive Model-Based Decomposition. In the previous section, we laid 
out a method for performing a model-based decomposition that ensures that all 
the individual matrices have non-negative eigenvalues. We shall now show 
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how this same idea can be used to determine which canopy model is the “best” 
fit to the observations. 

As we pointed out before, the idea is to minimize the amount of power in the 
matrix that is left once we subtract the canopy scattering. This provides a 
simple way to compare different canopy models. We simply calculate the 
amount of power that would be in the remainder matrix once we subtract each 
canopy model contribution. The model with the smallest amount of power left 
over is then assumed to be the best fit to the observation. In fact, Yamaguchi et 
al. (2005) [10] pointed out that the uniformly randomly oriented cloud of thin 
cylinders might not always be the appropriate model for canopy scattering. As 
part of their four-component scattering decomposition, they included a test to 
apply different canopy models. 

As an illustration of the idea, let us first look at an example where we will use a 
limited number of different canopy models to find the best fit for the L-band 
data of the Black Forest image we have been analyzing so far. In doing the test, 
we assume three different models: a uniformly randomly oriented cloud of thin 
cylinders, a cloud of thin cylinders oriented around the horizontal direction with 
a cosine squared distribution, and a cloud of thin cylinders oriented around the 
vertical direction with a cosine squared distribution. For each pixel in the 
image, we then calculate the relative amount of power in the remainder matrix 
if we subtracted the maximum contribution assuming each of these models. 
Figure 3-20 shows the result for the three cases at L-band. At the global scale of 
the image, it appears that the best fit model at L-band might be the cosine 

 
Fig. 3-20. Comparison of different canopy models at L-band. The images show the relative 
amount of power in the remainder matrix after the canopy contribution has been subtracted 
from the observation. The results show that the cosine squared distribution around the 
horizontal orientation provides the best fit over the majority of the image. 
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squared distribution around the horizontal orientation. Most of the image is, in 
fact, coniferous trees with branches that are closer to horizontal orientation than 
uniformly randomly oriented; this result is, therefore, not unexpected. 

It should be pointed out that this result cannot be taken as conclusive proof that 
the canopy contains branches that have orientations that are closer to horizontal. 
In drawing such conclusions, one has to remember that this result shows the 
best fit of a canopy model to the observation by first subtracting the canopy 
contribution. In some sense, this means we assume that the scattering is 
dominated by the canopy contribution. If, for example, we had the case of a 
pure double reflection (for which HH is larger than VV) with a small 
contribution from a uniformly oriented canopy, the resulting covariance matrix 
would have HH larger than VV. In that case, we might find that the best fit 
canopy model is a cosine squared around the horizontal orientation because that 
model predicts that HH will be larger than VV. 

We can now extend this concept by adaptively performing the decomposition 
on each pixel to find the best canopy model for that pixel. The process is the 
same as we described above, except it is performed for each pixel separately. 
For each pixel, we now compare the remainders for the set of models and pick 
the model that leaves the smallest relative amount of power in the remainder 
after we subtract the canopy contribution. We shall first introduce this concept 
with just the three models described above (the same three used by Yamagichi 
et al. (2005) [10]) and later generalize the concept. Figure 3-21 shows the 
results for the Black Forest image at C-band, L-band, and P-band. At C-band, 

 
Fig. 3-21. Adaptive non-negative eigenvalue decompositions at different frequencies with 
three canopy scattering models. At the longer wavelengths, the scattering is best modeled 
by a cosine squared distribution around the horizontal orientation. At C-band, a uniformly 
random orientation provides the best fit. See the text for more discussion. 
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the uniformly randomly oriented model is the best fit, consistent with scattering 
from the needles in the coniferous trees. At L-band and P-band, we see that 
most of the pixels are better represented by a model with a cosine-squared 
distribution around the horizontal orientation. At L-band this result is likely 
because of the primary branch orientation. At P-band, however, this is probably 
more indicative that double-bounce scattering from the ground surface and tree 
trunks likely dominates. 

Figure 3-22 shows the L-band comparison of the adaptive decomposition using 
three models compared to the Yamaguchi et al. (2005) [10] choice of model 
based on their simplified selection criteria involving the ratio of HH to VV 
power. We have blanked out pixels for which either the single reflections or the 
double reflections are stronger than the canopy component since, for those 
pixels, our original assumption that the canopy scattering dominates clearly 
does not hold. First, we notice a difference in the number of pixels that are 
blanked out between the adaptive decomposition and the Yamaguchi et al. 
decomposition. This is primarily related to the amount of power assigned to the 
canopy component and the fact that for our adaptive decomposition we insist 
that all eigenvalues be non-negative. This will typically assign less power to the 
canopy component. Apart from this difference, however, it is obvious that the 
two adaptive techniques give very similar results. 

Building on these initial results, Arii et al. (2010) [16] and Arii (2009) [17] 
extended the adaptive decomposition technique to include a generalized canopy 

 
Fig. 3-22. This figure shows a comparison of the optimum model indicated by the color 
schemes for the adaptive NNED and Yamaguchi et al. models using the L-band image. We 
have blanked out those pixels for which the canopy scattering is not the strongest 
component. Note the great similarity between the NNED and Yamaguchi results in terms 
of which models best represents the canopy scattering. 
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component that selects the best fit to the canopy scattering over different 
amounts of randomness and different mean orientations of the canopy. Their 
characterization of the canopy scattering starts with the scattering matrix of a 
vertically oriented thin cylinder, which apart from a multiplicative constant that 
depends on the cylinder length and dielectric constant, can be written as 

 
0 0

.
0 1cylS    ∝     

 (3.3-57) 

They then allow this cylinder to be rotated by an angle θ  with respect to the 
vertical direction about the line of sight, with positive values of θ  indicating a 
clockwise rotation. The resulting covariance matrix is found to be 
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They write this as the sum of three matrices: 
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. (3.3-59) 

The next step is then to calculate the average covariance matrix for a given 
probability distribution of the cylinder orientation angles. The resulting average 
covariance matrix is 

 [ ] ( ) ( )
2

0
vol cylC C p d

π
θ θ θ =  ∫ , (3.3-60) 

where p (θ )  describes the probability density function of the cylinder 
orientation angles. In the discussion above, we have used three cases: uniform 
distribution for which 

 1
2uniformp
π

=  (3.3-61) 
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and cosine-squared distributions around the vertical and horizontal directions 
are as follows 

 ( )

( )

2
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cos_ 2
2

0
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cos

cos
sqp

d
π

θ θ

θ θ θ

−
=

−∫
. (3.3-62) 

For the distribution peaking around vertical, θ0 = 0; while for the horizontal 
case, θ π0 = 2.  The uniform distribution represents the most random 
orientation. In the other extreme, the delta function around a fixed angle 

 ( ) ( ){ }0 0
1
2deltap δ θ θ δ θ θ π= − + − −  (3.3-63) 

represents the least amount of randomness. Arii (2009) [17] and Arii et al. 
(2010) [18] suggested that all these cases can be approximated by a generalized 
n-th power cosine squared distribution, as follows: 
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. (3.3-64) 

When n = 0, this distribution becomes exactly the same as the uniform 
distribution; specifically, it approximates the delta function distribution with 
infinitely large n. 

The average covariance matrix for the generalized probability density function 
can be written as 
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with 
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To derive expressions for these, we note that we can write 
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Using the series expansion in Eq. (3.3-67), we find 
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Also, note that 
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It is easily shown that 
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Next, we note that 
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We easily find that 
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After considerable algebra, we find 
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Using Eq. (3.3-73), Eq. (3.3-72), Eq. (3.3-70), and Eq. (3.3-68) in Eq. (3.3-65), 
we find 
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Note that we have derived this expression assuming that n is an integer. We 
have also verified this expression numerically for values of n that are not 
integers (Arii et al., 2010 [18]). For the three cases we have used so far, we find 

 

[ ]

( ) [ ]

( ) [ ]

cos_
0

0 2

uniform
vol

sq
vol

delta
vol

C C

C C C

C C C C

α

α β

α β γ

θ

θ

  = 

   = +   

     = + +    

. (3.3-75) 

The eigenvalues of the covariance matrix in Eq. (3.3-74) only depend on the 
value of the power of the cosine squared function and not on the mean 
orientation angle. The eigenvalues are: 
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Figure 3-23 shows the three eigenvalues as a function of the power of the 
cosine-squared function. Note that for all values of n, λ2 ≤ ≤λ λ3 1.  This figure 
shows that there is little practical difference for distributions for values of 
n > 20.  To illustrate this, we show the entropy and the RVI of the resulting 
average covariance matrix as a function of n in Fig. 3-24. The results confirm 
that especially the RVI varies very little for values of n > 20.  
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Fig. 3-23. This figure shows the relative strength of the eigenvalues of the covariance 
matrix representing the generalized volume scattering model. For all values of n, we find 
that 2 3 1.λ λ λ≤ ≤ . 

With this theoretical framework in hand, we can now describe the proposed 
adaptive model-based decomposition. In fact, it differs from the previously 
described NNED only in the first step of the decomposition. Instead of 
choosing a specific model for the canopy scattering, the adaptive 
decomposition calculates the best fit over all powers n and all mean orientation 
angles θ0.  We decide which pair of parameters represent the best fit by 
selecting that pair that results in the least amount of power in the “remainder” 
matrix: 

 [ ] [ ] [ ] ( )
( )( )

12
1 1 2remainder v

n nnC C f C C C
n n nα β γ

 −    ′ = − + +    + + +  
. (3.3-77) 

Note that the canopy distribution function as used here does not assume 
reflection symmetry. In fact, reflection symmetry only results for special mean 
orientation angles. As such, Eq. (3.3-77) describes a general decomposition; we 
do not need to resort to adding special scatterers to generate non-zero 
correlations between the cross- and co-polarized terms in the covariance matrix. 
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Fig. 3-24. Two charts showing the relative strength of the eigenvalues of the covariance 
matrix representing the generalized volume-scattering model. The top chart is a plot of 
entropy, and the bottom is a plot of RVI. 
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We first illustrate our results with a numerical example. For our comparison, 
we extracted the average covariance matrix in the forest portion of the Black 
Forest image at all three frequencies. The resulting matrices are 
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We shall illustrate the use of this model by assuming the canopy scattering 
dominates and that we can consider the canopy as a collection of randomly 
oriented dipoles. This is equivalent to assuming that the scattering is from a 
collection of randomly oriented cylinders, but that the cylinders are much 
thinner than the radar wavelength. 

In fitting our observations to the model, we use the methodology described 
above. The results are: 
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. (3.3-79) 

These results show a decrease in randomness with an increase in wavelength. 
Also, the longer wavelengths sense a mean orientation angle that is close to 
horizontal (recall the angles are measured with respect to the orientation angle 
of a vertically oriented dipole). Since the longer wavelengths interact 
preferentially with the larger branches, which for the type of trees present in 
this data set are oriented closer to the horizontal direction, the results appear 
reasonable. The C-band results indicate more randomness, consistent with 
interactions with more vertically oriented needles that are also more randomly 
oriented than the larger branches. 

Next we show the results of applying the adaptive decomposition to the Black 
Forest image. First we show the randomness results in Fig. 3-25. A significant 
difference is observed in the forested area as a function of wavelength, 
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consistent with the numerical example as reported in van Zyl et al. (2010) [14]. 
Randomness values close to that of the uniform distribution are found over the 
C-band image; conversely, the P-band image shows values with less 
randomness than cosine-squared distribution. From a physical point of view, 
this is reasonable considering the orientation distributions of needles, branches, 
and trunks. The shorter wavelength mainly interacts with the needles, which 
have higher variance than trunks and branches. Also, the P-band can penetrate 
needles and branches so that trunks having much lower variance become 
dominant. Some of the areas of increased randomness visible at P-band have 
previously been shown to be areas where the trunk scattering is reduced due to 
topographic effects (van Zyl, 1993 [5]). The L-band result lies in between these 
two cases; this corresponds mainly to the branch distribution. 

Next, we show the mean orientation angle for all three frequencies in Fig. 3-26. 
Pixels with horizontal orientation are widely distributed in the forested area of 
the L- and P-band images. Before continuing with the interpretation, it is 
necessary to look at the decomposition results of all three scattering 
mechanisms, as in Fig. 3-27. Here, we display each scattering mechanism 
separately, and the value for each pixel is normalized by the total power. Since 
the scattering in the forested area at the L-band is mostly contributed by the 
volume component, the inferred horizontal orientation in the L-band image in 
Fig. 3-26 should be indicative of scattering by branches. However, the 
horizontal orientation in the P-band image is not related to the physical 
orientation of scatterers in the volume layer. It is well-known that the double-
bounce scattering raises the HH contribution due to the Fresnel reflections at 

 
Fig. 3-25. Randomness maps derived from the C-band (left), L-band (center), and P-band 
(right) AIRSAR images in the Black Forest. As in the numerical example, the randomness 
decreases for the longer wavelengths (Arii et al., 2009 [16]). 
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Fig. 3-26. Mean orientation angle maps derived from the C-band (left), L-band (center), and 

P-band (right) AIRSAR images in the Black Forest (Arii et al., 2009 [16]). 

the trunk and ground surface. Since the algorithm subtracts the volume 
component first and then infers the other scattering mechanisms, strong double-
bounce contribution misleads us to interpret a horizontally oriented volume 
component. One must pay particular attention to interpret the mean orientation 
angle map when double-bounce scattering contribution is dominant. The 
C-band mean orientation angle map indicates scattering from more vertically 
oriented scatterers. Given that the shorter C-band wavelength mostly interacts 
with the needles and mostly with those needles near the top of the canopy 
(scattering lower down in the canopy is expected to be attenuated), this result is 
reasonable. 

A clear contrast exists along the river and road in the P-band in Fig. 3-27. The 
scattering from the forested area is basically contributed by both volume and 
double-bounce terms. However, the volume component is significant along the 
river and road, whereas the double-bounce is considerably smaller. This result 
is due to the local topography, as pointed out by van Zyl [5], where the double-
bounce contribution is drastically reduced because the Fresnel reflections no 
longer dominate when the forest floor is tilted. 
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Fig. 3-27. Volume (left), double-bounce (center), and surface (right) components of the 
adaptive algorithm for the C-band (top), L-band (middle), and P-band (bottom) Black Forest 
images. Each pixel is normalized by total power. Dotted lines in red indicate river (upper) 
and road (lower), respectively (Arii et al., 2009 [16]). 
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3.4 Image Classification 
Classification of images involves using a set of rules to decide whether 
different pixels in an image have similar characteristics. These rules in effect 
divide the total data space into subsets separated by so-called decision 
boundaries. All pixels that fall within a volume surrounded by such decision 
boundaries are then labeled as belonging to a single class.  

Two major approaches are used in classifying images; supervised and 
unsupervised classifications. In the case of supervised classification, a user will 
specify so-called feature vectors to be used in the comparison process. These 
vectors can be thought of as defining the centroids of the decision volumes that 
are separated by the decision boundaries. These feature vectors can be extracted 
from the image to be classified, or could come from a library of radar signatures 
either measured in the laboratory or in the field. In the case of unsupervised 
classification, the computer is allowed to find the feature vectors without help 
from an image analyst. In the simplest form, known as the K-means algorithm, 
K feature vectors are typically selected at random from the data space.  

A different way to look at classification approaches is whether they are based 
purely on the data available in the image, or whether the analyst is adding 
information based on physics. The former is often referred to as a statistical 
approach, or more correctly, a data driven approach. The analyst relies purely 
on the data and the statistics associated with the data to segment the image into 
classes. In the physics-based approach, the analyst compares the data in the 
image to known characteristics based on physics. For example, one might be 
interested in knowing which parts of a scene are covered with vegetation. Based 
on the physics of vegetation scattering models, one might conclude that such 
areas would exhibit relatively large entropy or RVI values, and use those 
parameter with some threshold value to decide whether a pixel should be 
labeled as vegetated or not.  

3.4.1 Supervised Classification 
The most popular supervised classification technique is the Bayes classifier. 
The basic principle of the Bayes classifier can be described using Eqs. (3.4-1) 
and (3.4-2). If a land class is denoted by iϖ  where i = 1, 2, …., N classes, a 
pixel A  can be classified as  

 iA ϖ∈   if  ( | ) ( | )i jP A P Aϖ ϖ> . (3.4-1) 

However, it is much easier to evaluate ( | )iP A ϖ than ( | )iP Aϖ using ground-
truth data. Therefore, we transform Eq. (3.4-1) using the Bayes theorem as  
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 iA ϖ∈   if  ( | ) ( ) ( | ) ( )i i j jP A P P A Pϖ ϖ ϖ ϖ> . (3.4-2) 

It is convenient to transform Eq. (3.4-2) using a distance measure d Ai ( )  as  

 iA ϖ∈   if  ( )id A  < ( )jd A . (3.4-3) 

where, typically  

 ( ) ln ( | ) ( )i i id A P A Pϖ ϖ= − . (3.4-4) 

Using Eqs. (3.4-3) and (3.4-4), pixel A  is classified to be ϖ i  if the distance 
measure of ϖ i  ( = − ln P A( |ϖ ϖi i)P( ) ) is the shortest among all possible 
classes. As the simplest example, if the conditional probability density function 
(PDF) derived from the ground truth data is given by the normal distribution as 

 ( )2 21( | ) exp / 2
2i i i

i
P A A s

s
ϖ µ

π
 = − −  

. (3.4-5) 

where µi  and si  are the mean value and the standard deviation of the 
conditional PDF of the class ϖ i . The distance measure can be calculated as  

 ( )
2

( ) / 2 ln( ) ln ( )i i i i id A A s s Pµ ϖ = − + −  . (3.4-6) 

The most challenging step of evaluating Eq. (3.4-6) is to estimate P( )ϖ i  for all 
classes before we apply a classification method to polarimetric SAR data. One 
commonly used assumption is that an equal probability is assigned to all 
classes. Then, Eq. (3.4-6) can be simplified as  

 ( )
2

( ) / 2 ln( )i i i id A A s sµ = − +  . (3.4-7) 

From Eq. (3.4-7), the distance measure becomes smaller if the distance 
(normalized by the standard deviation of PDF) between the measured pixel 
value and the PDF mean value is smaller.  

For the fully polarimetric SAR case, Lim et al. (1989) [19] calculated the 
distance measure as  

 [ ] [ ]1( ) ln ln ( )i ii id P ϖ−+= + −X X C X C . (3.4-8) 

where the complex vector X is given by  
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Here [C]  is the covariance matrix of the assumed class feature for the ith i
class. The conditional PDF is given by  
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The complex Gaussian distribution given in Eq. (3.4-10) is a good 
approximation for single-look polarimetric data. Lee et al. [20] showed that for 
multi-look polarimetric SAR data, the complex Wishart distribution is a better 
approximation. Using this distribution, Lee et al. derived the following distance 
measure  

 [ ] ( )1( ) ln ln ( )i i iid n Tr P ϖ− = + −  
Z C C Z . (3.4-11) 

Here Z represents the covariance matrix of the pixel being classified, and n is 
the number of looks in the image.  

To implement Eq. (3.4-8) or (3.4-11), one must evaluate all P( )ϖ i or assume 
equal a priori probabilities for all the classes. In the absence of any additional 
information equal a priori probabilities are often assumed. Figure 3-28 shows 
an example of a supervised Bayesian classification of the Black Forest image 
we analyzed earlier in the chapter. Here we selected three training sets, one in 
the agricultural area (displayed in blue), one in the urban area (displayed in 
red), and one in the forested area (displayed in green). The image on the left in 
Fig. 3-28 shows the result using the full covariance matrix, including the 
absolute radar cross-section assuming equal a-priori probabilities. The results 
show that most of the agricultural area is in fact identified as similar to that 
training area, and similarly for the other two classes. A closer look at the top 
right-hand corner of the image on the left shows a diagonal line of red pixels, 
meaning these pixels were classified as being similar to the urban training area. 
The scattering in this area is not similar to double reflects, however. These 
pixels were placed in this class mainly because of their large absolute cross-
sections. 

The image on the right in Fig. 3-28 repeats the calculation, but this time using 
the normalized covariance matrices. In other words, all brightness information 
was discarded, and the classification is done purely on the relative strength of 
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Fig. 3-28. Bayesian classifications of the L-band Black Forest image using training areas in 
the agricultural area (blue), urban area (red) and the forest (green). The image on the left 
uses the absolute brightness, while the one on the right uses normalized covariance 
matrices. See the text for a discussion.  

the polarimetric information. Overall, the general results between the two 
images are similar. However, closer examination of the image on the right 
shows that several areas, particularly in the agricultural areas, are classified 
differently. Since the polarimetric information is more directly related to the 
scattering mechanisms, we expect the image on the right to show more details 
about the scattering mechanisms. For example, the diagonal line of red pixels in 
the upper right is now correctly identified as similar to the forest training area. 
Note, however, that the classification on the right appears noisier than the left.  

In calculating the result shown in Fig. 3-28, we assumed equal a-priori 
probabilities for each of the classes. In the absence of additional information, 
this is a reasonable assumption. Van Zyl and Burnette (1992) [21] proposed an 
iterative method to evaluate P( )ϖ i . First, they assume equal probabilities for 
all P( )ϖ i . Then, the results from the first classification (equal probability 
assumption) are used to estimate all P( )ϖ i . This is done by calculating the 
number of pixels in a pre-determined box that was placed in each class, divided 
by the total number of pixels in the box. The successive iteration improves the 
accuracy of the classification. Rignot and Chellappa (1992) [22] proposed a 
maximum a posteriori (MAP) estimate to segment polarimetric SAR data. The 
segmentation results using MAP showed a 10–20 percent improvement when 
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they are compared with the results using the maximum likelihood (ML) method 
under the equal probability assumption.  

Figure 3-29 shows the result of applying the iterative scheme proposed by van 
Zyl and Burnette to estimate the probabilities for each class. On the left is the 
original Bayes classification with equal a-priori probabilities. On the right is 
the result after a single iteration using a 5 × 5 box to calculate the probability of 
finding a specific class in a given pixel. The result is a dramatic decrease in the 
apparent noise in the classification. Van Zyl and Burnette found that in general 
very few iterations are needed for the classification to converge [21].  

In order to improve the classification accuracy, SAR images are often filtered to 
suppress speckle noise. Lee at el. (1999) [23] proposed a technique to preserve 
polarimetric properties without degrading the image quality. To avoid the 
crosstalk between polarimetric channels, each element of the covariance matrix 
was filtered independently. The filtering was performed by averaging the 
covariance matrix of neighboring pixels without deficiency of smearing the 
edges. To preserve the edge sharpness, the filtering was adaptively applied to a 
homogeneous area from selected neighboring pixels using edge-aligned 
windows [23]. Using this filtering, Lee at el. (1999) [23] reported that the 
classification accuracy was approximately doubled for five classes out of the 

 
Fig. 3-29. The image on the left was classified using equal a-priori probabilities for all 
classes, and normalized covariance matrices. The image on the right illustrates the result of 
using adaptive a-priori probabilities as proposed by van Zyl and Burnette to perform the 
classification. The image on the left is used with a 5 × 5 box centered on each pixel to 
calculate the probability of finding a specific class in that pixel. The image on the right is the 
result of a single iteration. 
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total of seven classes when the results were compared with the ones using the 
data without any filtering.  

3.4.2 Physics-Based Unsupervised Classification 
Supervised classifications allow the analyst to select feature vectors from the 
image itself and then use them on the Bayesian algorithm to identify which 
pixels in the image are the closest to the selected features. One difficulty with 
this approach is that the results are dependent on how well the person picks the 
class training areas. If the selected areas are not very homogeneous, the results 
may not be very satisfying. A different type of approach relies on physics to 
segment a polarimetric image into different classes of scattering. This approach 
is completely unsupervised, and does not rely on a human to pick areas to use 
as the class centroids.  

One of the earliest polarimetric unsupervised classification schemes was 
suggested by van Zyl [24]. Pixels in an image are compared to three scattering 
mechanisms, odd numbers of reflections, even numbers of reflections, and 
diffuse scattering based on the expected scattering parameters predicted by 
simple models. The results showed that bare surfaces are usually similar to the 
odd number of reflections model, while urban areas typically scatter consistent 
with an even-number-of-reflections model. Vegetated areas mostly exhibit 
diffuse scattering, particularly at longer wavelengths. This interpretation is 
confirmed by the results shown in Fig. 3-30.  

This idea was taken further by Cloude and Pottier [25] using the entropy and 
average alpha angle discussed earlier to divide the data space into nine different 
regions. They showed that of these nine regions, eight are commonly found in 
polarimetric radar data. Based on this division of the data space, one can then 
segment the image based on which region in the data space each pixel falls into. 
As in the case of van Zyl, this algorithm requires no user input, and the 
segmentation is done automatically. Results show that the two classes with the 
largest entropy are similar to the diffuse scattering class defined by van Zyl 
[24]. The alpha-entropy classification further segments van Zyl’s odd numbers 
of reflections and even number of reflections classes into several classes based 
on the amount of randomness in the scattering as measured by the entropy. See 
Fig. 3-30 for the results of this algorithm when applied to the L-band Black 
Forest image. 
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Fig. 3-30. Unsupervised classifications of the L-band image of the Black Forest using the 
algorithm by van Zyl [24] (left) and the alpha-entropy algorithm (right). The alpha-entropy 
image further divides the original three classes using the entropy information.  

3.4.3 Combined Unsupervised and Bayes Classification Algorithms 
As mentioned above, it is difficult to find reliable training data sets to estimate 
the statistical parameters required for the maximum likelihood classification. 
To overcome this difficulty, some authors have proposed using an unsupervised 
classification technique to produce initial training data sets. Lee at el. (1999) 
[26] proposed an unsupervised classification technique that combines a 
polarimetric decomposition method (unsupervised) and the complex Wishart 
classifier [20] (supervised). The “alpha-entropy” algorithm [25, 27] based on 
the polarimetric decomposition technique was used to provide the initial 
training data set for the eight zones defined by the alpha angle and the entropy. 
This training data set was used as an input for the Wishart classifier. The 
classification result was improved by iteration of this process. When the 
iteration process satisfies some pre-determined termination criteria, the 
classification result is finalized.  

More recently, Lee at el. (2004) [27] proposed a different approach to combine 
both unsupervised and supervised classification techniques. In this approach, 
they applied the model-based decomposition algorithm by Freeman and Durden 
[9] to the polarimetric SAR data to provide the classification result for three 
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categories: surface, double bounce, and volume scattering mechanisms. This 
division was accomplished based on the dominant power associate with each 
scattering mechanism. Lee et al. (2004) [27] divided each category into 30 
clusters based on the backscattering power of their dominant scattering 
mechanism. The initial clusters were merged based on the between-cluster 
Wishart distance [27] to form the classes. The Wishart classification method 
was applied to the polarimetric data iteratively until this process converged. 
These combined classification approaches usually provide more accurate 
classification results than unsupervised approach can without requiring the 
ground truth data.  

Figure 3-31 illustrates the idea behind a combined unsupervised and Bayesian 
classification algorithm. In this example, we used three model-derived 
covariance matrices to perform the initial unsupervised classification. The three 

 
Fig. 3-31. Results using three model-derived covariance 
matrices to perform an unsupervised classification of the 
L-band Black Forest data. Pixels displayed in red are 
similar to a double reflection expected from two dielectric 
surfaces, those in blue are similar to a bare rough surface, 
and those in green are similar to a cloud of uniformly 
randomly oriented thin dielectric cylinders. 
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models are that of a rough bare surface, a dihedral corner reflector with 
dielectric surfaces, and a uniformly randomly oriented cloud of thin cylinders. 
These three model covariance matrices are used in an unsupervised 
classification using normalized covariance matrices. Once the initial 
classification is performed, the average covariance matrix for each class is 
calculated and used in the next step. This process is iterated until the 
classification converges in the sense that less than .001 percent of the pixels 
still change class.  

We note that there is great similarity between this unsupervised classification 
and the supervised classification using normalized covariance matrices shown 
on the right in Fig. 3-28. The main difference is that more areas in the 
agricultural areas are classified as being more similar to the dielectric dihedral 
reflection.  

One drawback of all classification algorithms is that they force a pixel to 
belong to one class only. The decision is based on which class most closely 
resembles the observed scatter. Unfortunately, scattering is seldom purely one 
mechanism. As we shall see in Chapter 5, scattering from vegetated areas often 
is a mixture of many different scattering mechanisms. Forcing a pixel to belong 
to one class ignores this reality. We therefore believe that classification results 
should be interpreted with care. Our personal preference is to use techniques 
that preserve the relative fractions of different scattering mechanisms, such as 
the Pauli matrix decomposition or one of the model-based decompositions.  

3.5 Polarimetric SAR Interferometry 
SAR interferometry refers to a class of techniques where additional information 
is extracted from SAR images that are acquired from different vantage points, 
or at different times. Various implementations allow three types of information 
to be extracted: 1) topography, 2) surface velocity, and 3) surface deformation. 
If two SAR images are acquired from slightly different viewing geometries, 
information about the topography of the surface can be inferred. Conversely, if 
images are taken at slightly different times, a map of surface velocities can be 
produced. Finally, if sets of interferometric images are combined, subtle 
changes in the scene can be measured with extremely high accuracy. These 
techniques are summarized in more detail in several references [28, 29, 30].  

SAR interferometry was first demonstrated by Graham (1974) [31], who 
demonstrated a pattern of nulls or interference fringes by vectorally adding the 
signals received from two SAR antennas; one physically situated above the 
other. Later, Zebker and Goldstein (1986) [32] demonstrated that these 
interference fringes can be formed after SAR processing of the individual 
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images if both the amplitude and the phase of the radar images are preserved 
during the processing.  

The basic principles of interferometry can be explained using the geometry 
shown in Fig. 3-32. Two radar return signals ( E A( )1  and E A( )2 ) are recorded 
by the two interferometric antennas ( A1 and A2  shown in Fig. 3-32) separated 
by the baseline B . A 2x2 Hermitian matrix can be formed using E A( )1  and 
E A( )2  as 

 [ ] ( ) ( )
( ) ( ) ( ) ( )
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. 

  (3.5-1) 

The diagonal components represent two conventional SAR images collected by 
the interferometric SAR system. The interferometric SAR information can be 

( *extracted from the off diagonal component E A1 2)E (A ) . The phase of this 

term (known as interferogram) is defined as 

 
Fig. 3-32.  Basic interferometric radar geometry. The path 
length difference between the signals measured at each of the 
two antennas is a function of the elevation of the scatterer. 
(From Elachi and van Zyl (2006) [28]) 
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1 2argI E A E Aφ = . (3.5-2) 

Radar interferometry can be implemented in two different ways. In so-called 
single-pass interferometers, the two antennas are physically separated, but on 
the same platform. In the case of airborne SAR systems, the two interferometric 
antennas might be mounted in different places on the fuselage, or under the 
wings of the aircraft. In the case of the Shuttle Radar Topography Mission 
(SRTM) that was flown on the Space Shuttle Endeavour in 2000, a 60 meter 
(m) long boom was used to separate the two antennas. Single-pass 
interferometers acquire the images from both ends of the baseline at the same 
time.  

An alternative way to implement radar interferometry is to use images from 
different orbits in the case of spaceborne systems, or in the case of airborne 
systems, from different flight lines. This implementation is known as repeat-
track interferometry. In this case, images at each end of the baseline are 
acquired at different times, with time separations varying from minutes in the 
case of airborne systems to days to even years in the case of spaceborne 
systems. A slight variation of the repeat-track implementation is to use two 
satellites that follow each other in slightly different orbits. This is knows as 
tandem interferometry. The time difference for acquiring images is typically 
seconds to minutes, depending on how far apart the two satellites are 
positioned.  

The scattering center of a pixel can be located using the law of cosines on the 
triangle formed by the two antennas and the scattering center of a pixel as 

 ( ) ( )2 2 2 2 cos 2R R R B BR πδ θ α+ = + − − + . (3.5-3) 

The variables in Eq. (3.5-3) are shown in Fig. 3-32. If we assume that R B>> , 
(a very good assumption for most interferometers) one finds that  

 ( )sinR Bδ θ α≈ − − . (3.5-4) 

The radar system does not measure the path length difference explicitly, 
however. Instead, what is measured, is an interferometric phase difference that 
is related to the path length difference through  

 ( )2 22 sinT I
a aN R Bπ πφ φ π δ θ α
λ λ

= + = = − − . (3.5-5) 

where a =1 for the case where signals are transmitted out of one antenna and 
received through both at the same time, and a = 2  for the case where the signal 



150  Chapter 3 

is alternately transmitted and received through one of the two antennas only. In 
order to reconstruct the topography, the integer N  must be determined using a 
phase unwrapping technique [33, 34].  

From Fig. 3-32, it also follows that the elevation of the point being imaged is 
given by 

 1( ) cos cos sin
2

Tz y h R h R
a B
λφ

θ α
π

−  = − = − −   
  

. (3.5-6) 

with h  denoting the height of the reference antenna above the reference plane 
with respect to which elevations are quoted. As shown in Eq. (3.5-6), the 
interferometric phase (φT ) provides the information on the location of the 
scattering center. Since the return signals from two interferometric antennas are 
collected in a different geometry, there is decorrelation between two signals. 
This decorrelation can provide the additional information on scattering objects 
to be imaged. 

The interferometric coherence is defined as  

 
( ) ( )

( ) ( ) ( ) ( )

*
1 2

* *
1 1 2 2
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E A E A

E A E A E A E A
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The interferometric decorrelation is composed of three contributions: 1) 
additive noise, 2) slightly different imaging geometry of two antennas, and 3) 
temporal changes of scattering objects. As shown in Eq. (3.5-7), γ SNR  includes 
decorrelation due to additive noise. If both interferometric channels have the 
same SNR, γ SNR  can be written as  

 
1

11
SNR

SNR

γ =
+

. (3.5-8) 

The temporal correlation (γT ) represents the scattering geometry change in 
time [35]. If the interferometric signals are collected at the same time, γT =1. 
The baseline decorrelation (1- γB ) is due to the speckle difference due to the 
fact that two interferometric signals are collected in a slight different imaging 
geometry. This term (γB ) includes the information on scattering objects. If the 
scattering object is a point target, there is no baseline decorrelation. The 
baseline decorrelation is a key parameter to understand the scattering 
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characteristic of each pixel. The baseline correlation (γB ) can be estimated 
from the measured correlation coefficient (γ ) after removing the effect of 

SNRγ  and Tγ  as shown in (3.5-7). The expression for the baseline correlation 
to estimate the scattering characteristic of each pixel can be found in [29].  

Electromagnetic wave propagation is by nature a vector phenomenon. 
Therefore, in order to capture the complete information about the scattering 
process, interferometric measurements should really be made in the full 
polarimetric implementation of a radar system. In this case, there are really 
three different measurements being made at the same time. First, there are the 
two polarimetric radar measurements at each end of the baseline, represented 
below by the two covariance matrices [ ]11C  and [ ]22C . Since the baseline is 
generally short compared to the distance to the scene, these two measurements 
can be expected to be nearly identical, except for the very small change in the 
angle of incidence from one end of the baseline to the other. The third 
measurement, of course, is the full vector interferogram as opposed to the scalar 
implementation described earlier.  

The vector interferogram, which is the complex cross-correlation of the signal 
from one end of the baseline with that from the other end of the baseline, can be 
described as  

 [ ]* * * *
1 2 1 1 2 2 1 12 2V V = = ⋅A T T A A C A  . (3.5-9) 

The antenna ( A ) and scatterer ( T ) vectors are given in Eq. (3.1-1). The 
complex correlation of the two signals after averaging is  
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Notice that the interferometric phase is a function of the antenna polarization 
vectors as shown in Eq. (3.5-9).  

 [ ]( )*
int 1 12 2argϕ = ⋅A C A . (3.5-11) 

Notice that the interferometric phase will be used to locate the scattering center 
of different antenna polarization combinations. In addition, the polarimetric 
correlation coefficient can be used to estimate the scattering characteristics of 
each pixel. Using this formulation, Cloude and Papathanassiou (1998) [36] 
showed, using repeat-track SIR-C interferometric data, that polarization 
diversity can be used successfully to optimize the correlation between images. 
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They also showed significant differences in the measured elevation in forested 
areas when using polarization optimization. At present, polarimetric 
interferometry is a very active research area [37, 38, 39, 40, 41, 42]. 
Unfortunately, progress is hampered severely by lack of availability of well-
calibrated data, as only a hand-full of radar systems have been upgraded to full 
polarimetric interferometry capability.  

To illustrate the information content of polarimetric interferometry, we used 
data acquired in the repeat-track interferometry mode using the SIR-C system 
when it flew on the Space Shuttle in October 1994. The data we use were 
acquired over the Mahantango Watershed near Harrisburg, Pennsylvania. An L-
band total power image of part of the area is shown in Fig. 3-33. The 
Mahantango watershed is part of the Valley and Ridge Physiographic Province 
of eastern Pennsylvania. The area is characterized by forested ridge tops, while 

 
Fig. 3-33. L-band total power image of a portion of the Mahantango watershed in 
Pennsylvania. The darker areas are agricultural fields, and the brighter grey tones are 
forested ridge tops. 
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the valley areas are typically used for agriculture. Approximately 55 percent of 
the area is forested, and about 45 percent of the area is used for cropland.  

To illustrate the additional information contained in the polarimetric data, we 
choose to display differential interferograms using the image on the left in 
Fig. 3-34. The differential interferograms are constructed as follows. First we 
construct the HH interferogram as the reference. We then construct 
interferograms that are effectively the phase of each of the covariance matrix 
elements in Eq. (3.5-9). We then subtract the HH interferogram phase from 
each of these to form nine differential interferograms. These are shown in 
Fig. 3-34.  

 
Fig. 3-34.  Differential interferograms constructed using the polarimetric information 
acquired over the Mahantango watershed. The top row represent HH polarization on pass 
one, and HH on pass two (left), HV on pass two (middle) and VV on pass two (right). The 
second row is the same, except for HV on pass one, and the third row represents VV on 
pass one. See the text for how these were generated. Images across the upper left lower 
right diagonal are the complex conjugates of each other, hence the different colors.  
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The most striking is the image in the upper right in Fig. 3-34, which displays 
the differential phase of using HH polarization at one antenna and VV 
polarization at the other. The image shows that the agricultural areas in general 
have almost zero phase (which means they have the same phase in the VV and 
the HH interferogram). The forested areas, however, shows a significant phase 
angle, in this case near 90 deg.  

3.6 Summary 
In this chapter we introduced several more advanced polarimetric concepts. The 
vector-matrix duality allows us to understand decomposition algorithms in 
more detail. We also discussed several parameters based on the eigenvalues of 
the covariance matrix. These parameters provide useful information concerning 
the amount of randomness in the observed scatter, as well as potentially what 
the actual scattering mechanisms might be. 

Finally, we examined different approaches for interpreting the scattering 
mechanisms in an image. Using orthogonal bases, we can derive unique 
decompositions. These decompositions, while unique, are not straightforward 
to interpret. In particular, the decomposition based on the eigenvectors of the 
covariance matrix suffers from the fact that the basis in which the 
decomposition is done varies from pixel to pixel in the image. This further 
complicates the interpretation. At the other end of the spectrum are model-
based decompositions. These are not unique, and picking the appropriate 
solution is not obvious, but their interpretation is more straightforward. We 
showed that some of the popular model-based decompositions suffer from 
serious limitations imposed by the assumptions of how the observations are to 
be decomposed; these assumptions lead to results that are non-physical in the 
sense that negative powers could be generated. We showed that this limitation 
can easily be removed using a simple check based on the eigenvalues of the 
covariance matrix. A simple hybrid approach can be implemented that corrects 
these limitations. This approach is then easily extended to show a simple way to 
find the best model to fit the observed canopy scattering. 

It is important to remember that all these decomposition techniques are simply 
tools to make interpretation of the observed scattering easier. The strength of 
the pure eigenvalue and eigenvector approaches is that the answers are unique, 
and no assumptions are required to perform the decomposition. The 
interpretation of the results, however, requires an interpretation of the basis 
vectors in terms of scattering mechanisms, which might not be unique. The 
model-based decompositions provide an easy interpretation. But this easy 
interpretation assumes that the models are indeed applicable to the 
observations, which might not be the case. Furthermore, the results are not 
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unique in the sense that many different model combinations could be used. In 
the final analysis, which tool is used depends on personal preference. 
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Chapter 4 
Polarimetric SAR Calibration 

A polarimetric radar system measures the scattered power from the terrain 
being imaged. Before these measurements are useful for further quantitative 
analysis and comparison to models, the measured power values must be 
converted to normalized radar cross-sections. Polarimetric radar measurements 
require additional corrections: not only the amplitudes, but the relative phases 
between channels must also be calibrated. In this Chapter, we shall examine the 
steps required to calibrate polarimetric radar measurements in detail. 

4.1 Polarimetric Radar System Model 
To better understand the corrections we need to apply to a radar image during 
the calibration process, let us first discuss the implementation of such a radar 
system in the context of potential error sources. Figure 4-1 shows the block 
diagram of a typical polarimetric radar system. 

In reality, the radar system is not perfect. For example, rather than transmitting 
the signals through an antenna with a single, pure polarization, there might be 
some leakage into the orthogonal polarization channel. To take this into 
account, we can write the actual transmitted electric field as 

 ( ) ( )
( ) ( )

1

2

1 t
t t
actual t idealt

t
K

f

δ γ
γ

δ γ γ

 
 =
 
 

E E . (4.1-1) 

In this equation, γ  is the radar look angle that defines through which part of the 
antenna radiation pattern the signal is transmitted. During synthetic aperture 
radar (SAR) data calibration, a flat (airborne case) or spherical (spaceborne 
case) Earth is usually assumed for purposes of calculating the radar look angle. 
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Fig. 4-1. Calibration of polarimetric radar. A polarimetric radar is implemented by 
alternatively transmitting signals out of horizontally and vertically polarized antennas and 
receiving at both polarizations simultaneously. Two pulses are needed to measure all the 
elements in the scattering matrix. 

It is then assumed that the radar platform was at an altitude h above the Earth 
reference surface, as shown in Fig. 4-2. Under this flat-Earth assumption in the 
airborne case, the look angle γ  and the incidence angle  for a given pixel are 
the same, as shown in Fig. 4-2. In the spaceborne case, the look angle and the 
incidence angle are not the same, but are related by 

 

η

sin sint sR Rη γ= , (4.1-2) 

with Rs  and Rt  the magnitude of the spacecraft and target position vectors 
relative to the center of the Earth, respectively. 

The slant range R  to the scattering area is measured through the time delay 
between the transmission of the pulse and the receipt of the scattered power. To 
know the slant range accurately, however, we must calibrate possible time 
delays in the radar system, such as the delay between the transmit event as 
issued by the timing system and the actual transmit event. One could calibrate 
the slant range by imaging a calibration site with a number of point targets 
(discussed in more detail below) of accurately surveyed positions. From the 
relative positions of these objects in the image, one can accurately calculate the 
absolute slant range to each, from which the system delays can be estimated. 
The time interval between these calibrations depends on how stable the radar 
system is in time. For most radar systems, this measurement is only performed 
a few times per year. 
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Fig. 4-2. Airborne (left) and spaceborne (right) imaging geometry usually assumed in SAR 
processing. In both cases, the radar platform is assumed to be at an elevation h above the 
reference plane. 

Unless the radar is operated in an interferometric mode, however, the look 
angle γ  is not measured directly and must be inferred indirectly. In most SAR 
processors, including the National Aeronautics and Space Administration/Jet 
Propulsion Laboratory (NASA/JPL) Airborne Synthetic Aperture Radar 
(AIRSAR) processors, this angle is calculated using the altitude of the radar 
platform, h, above the reference plane, the slant range R , and assuming a flat 
Earth. From Fig. 4-2 it follows that if this assumption is correct, one can write 

 ( )1cos h Rγ −= . (4.1-3) 

The equivalent expression for the spaceborne case assuming a spherical Earth is 
as follows: 

 
2 2 2

1cos
2

s t

s

R R R
RR

γ −  + −
=   

 
. (4.1-4) 

The antenna radiation pattern that is of interest here is the so-called elevation 
pattern. This is measured in a plane that is orthogonal to the direction in which 
the radar is traveling. Returning to Eq. (4.1-1), we note that the cross-talk 
coefficients denoted by the δ  are not only a function of the actual antenna; that 
is, if the radar platform flies with a pitch that is not zero, the antenna 
coordinates are rotated by the pitch angle. This will then appear as a cross-talk 
in the transmitted signal. 

The quantity ft  in Eq. (4.1-1) is the result of differences in antenna patterns for 
the two polarizations, as well as potential gain and path length differences in 
the two transmit paths, including the polarization switch. The latter effects 
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result in an overall complex constant multiplier ft , that is a function of the 
look angle. 

This transmitted signal now propagates to the terrain being imaged. Unless the 
signal propagates through a plasma, we can consider this propagation to be 
represented by an identity matrix. In the case of a plasma, the signal will suffer 
Faraday rotation, which we can represent by a rotation matrix. For now, we 
shall assume no rotation. After reflection from the terrain, the signal propagates 
back to the radar. This reflection is represented by the complex scattering 
matrix. Upon reception, the system might again introduce distortions similar to 
those shown in Eq. (4.1-1). Putting all these together and ignoring Faraday 
rotation, the measured scattering matrix is then 

 ( )[ ] [ ]hh hv hh hv

vh vv hv vvmeasured actual

S S S S
K

S S S S
γ

   
=   

   
R T , (4.1-5) 

with 
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 
 =
 
 
 
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 
 

R

T

. (4.1-6) 

The quantity fr  in Eq. (4.1-6) includes not only differences in the antenna 
patterns for the two polarizations but also gain and path length differences in 
the two receiver chains. 

Note that we can write the transmit and receive system distortion matrices as 
the product of two matrices 
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       = = =        
         = = =         

=

R R R

T R T
. (4.1-7) 

Following the nomenclature used by Quegan (1994) [1], we introduce the 
following symbols: 
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Therefore, using Eq. (4.1-7) in Eq. (4.1-5), we can write 

 ( )[ ][ ] [ ][ ]hh hv hh hv
x c c x

vh vv hv vvmeasured actual

S S S S
K

S S S S
γ

   
=   

   
R R R T . (4.1-9) 

Strictly speaking, we should also add a noise matrix to the right-hand side of 
Eq. (4.1-9) to account for thermal system noise; we shall, however, ignore that 
term for now. This system model was derived in slightly different forms by 
Klein and Freeman (1991) [2] and by Quegan (1994) [1]. Ignoring the additive 
noise, this is the most general form of the system model to include system 
distortions in the measurements. 

The scattering matrix for linear, reciprocal media is symmetrical. The vast 
majority of cases encountered in practical remote sensing fall in this category. 
Recognizing this, Raney (1988) [3] suggested that one could gain 3 decibels 
(dB) in signal-to-noise ratio (SNR) in the cross-polarized channel by coherently 
averaging the two measured cross-polarized terms in the scattering matrix. The 
3-dB increase results from the fact that the cross-polarized signals add 
coherently, but the noise in the two channels add incoherently because these 
measurements are made at different times and through different channels. We 
can write this symmetrized matrix as 

 
[ ]{ }
( ) [ ]{ } [ ]{ }

1
2

1
2

hh hv T
measured measuredhv vv sym

hh hvT T

hv vv actual

S S
S S

S S
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γ

   = +    

    = + +     

S S

R T T R

. (4.1-10) 

In this equation, the superscript T refers to the transpose of the matrix. A close 
examination of this equation shows that we can write this as  

 ( ) [ ]hh hv hh hvT
c

hv vv hv vvsym actual

S S S S
K

S S S S
γ

    =       
D D  (4.1-11) 

and we can write the distortion matrix D  in the form [ ]
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 [ ] ( )
( ) ( )

1

2

1
f
δ γ

δ γ γ
 

=  
 

D . (4.1-12) 

It is important to realize that once we have symmetrized the matrix to take 
advantage of the increase in SNR, we do not need to know the individual 
components of the transmit-and-receive system distortion matrices. It is 
sufficient to estimate the elements of the equivalent distortion matrix in Eq. 
(4.1-12) to calibrate the elements of the scattering matrix. 

The system model in Eq. (4.1-11) can also be written in a form similar to Eq. 
(4.1-9) as follows 

 ( ) [ ][ ]hh hv hh hvT T
c x c c x

hv vv hv vvsym actual

S S S S
K

S S S S
γ

      =         
D D D D , (4.1-13) 

with 
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( ) ( ) [ ][ ]1 1
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1 01 1
0 1 c xff f

δ γ δ γ
γδ γ γ δ γ γ

    
= = =    

    
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The system model in Eq. (4.1-13) was derived by van Zyl (1990) [4] and 
applied to the calibration of the NASA/JPL AIRSAR polarimetric data. This 
model is only applicable to data that have been symmetrized and is, therefore, 
less general than the model in Eq. (4.1-9). On the other hand, studies (for 
example, Cordey, 1993 [5]) has shown that this algorithm is applicable to most 
terrain types. The only exceptions found were certain man-made structures, 
including villages and one agricultural field. This conclusion is not surprising; 
the derivation of Eq. (4.1-13) follows directly from Eq. (4.1-9) and only relies 
on reciprocity of the scattering process. 

Before discussing in detail how to calibrate polarimetric radars using the 
system models discussed so far, let us look at a few examples of the effects of 
these errors. We shall use the polarization responses of a trihedral corner 
reflector to illustrate the effects of various errors. To simplify our discussion, 
we shall use the system model in Eq. (4.1-11). Figure 4-3 shows the effects of 
different amounts of amplitude errors in the co-polarized channel imbalance. 

It is also instructive to look at these figures using the three-dimensional display 
of the polarization responses we introduced in Chapter 2. These are shown in 
Fig. 4-4. From Fig. 4-4 it is clear that the co-polarized channel amplitude 
imbalance causes the original figure to be distorted by moving the maximum 
along the S1  axis on the Poincaré sphere. Values of f ( )γ >1  move the 
maximum to the −S1  axis, while values of f ( )γ <1 move the maximum to the 
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Fig. 4-3. Examples of polarization responses of a trihedral corner reflector. The top left 
image shows the theoretical response with no calibration errors. The top right image has a 
co-polarized channel imbalance error of +0.5 dB. The bottom image has an error of  
-0.5 dB. 

+S1  axis. The further the value of f ( )γ  is from 1, the more distorted the figure 
becomes.  

The responses in Fig. 4-3 and Fig. 4-4 were calculated assuming that the phase 
of ( )f γ is zero. Fig. 4-5 and Fig. 4-6 show the responses assuming that 

( ) 1f γ = ; we will now vary the phase angle of ( )f γ . These figures, 
particularly the three-dimensional displays, show that the main effect of a 
phase-angle error in the co-polarized channels is to rotate the polarization 
response about the 1S  axis.  

Finally, Fig. 4-7 and Fig. 4-8 show the effects of the cross-talk errors. When the 
phase angle of the cross-talk parameter is near zero or 180 deg, the main effect 
is to distort the three-dimensional figure by shifting along the 2S  axis. This can 
be seen in the images on the right in Fig. 4-8. The standard co-polarized 
signatures for these cases look like a co-polarized amplitude imbalance, but the 
maximum in these figures are shifted from either vertical or horizontal (see the 
two signatures on the right in Fig. 4-7 compared to the top right signature in 



166  Chapter 4 

 
Fig. 4-4. The same polarization responses as in Fig. 4-3, but displayed as three- 

dimension images as explained in Chapter 2. 

Fig. 4-3). In fact, the magnitude of this shift is related to the strength of the 
cross-talk parameter. When the phase of the cross-talk parameter is different 
than zero or 180 deg, however, the distortion is more complicated (as indicated 
in the figures). 

With this background, we now return to the process of calibrating polarimetric 
radar image data. The general calibration process follows the following steps:  

1. First, the cross-talk parameters are estimated and corrected. 

2. Then the relative co-polarized phase and amplitude are estimated and 
corrected. 

3. Finally, the absolute radiometric factor is estimated to turn the measured 
powers into normalized radar cross-sections. 

In the next few sections we shall discuss these steps in detail. 
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Fig. 4-5. Examples of polarization responses of a trihedral corner reflector with different 
amounts of co-polarization phase errors. The top left image shows the theoretical response 
with no calibration errors. The top right image has a phase error of 90 deg. The bottom left 
image has a phase error of 180 deg. The bottom right image has a phase error of 270 deg. 
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Fig. 4-6. The same polarization responses as in Fig. 4-5, but displayed as three-dimensional 

images as explained in Chapter 2. 
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Fig. 4-7. Examples of polarization responses of a trihedral corner reflector with different 
amounts of cross-talk errors. The top left image shows the theoretical response with no 
calibration errors. In the other three cases, we assumed that the magnitude of the cross-talk 
error is –20 dB, and that δ δ1 = 2 . The top right image has a phase error of 0 deg. The 
bottom left image has a phase error of 90 deg. The bottom right image has a phase error of 
180 deg. 
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Fig. 4-8. The same polarization responses as in Fig. 4-7, but displayed as three-dimensional 

images as explained in Chapter 2. 

4.2 Cross-Talk Estimation and Removal 
The first step in the calibration is to estimate the cross-talk parameters. To do 
this, we rewrite Eq. (4.1-9) in vector form, as follows 

 ( )

2 0 0
0 0

1
0 0 1

1

hh
hh

vh
hv

hv
vv actual

vv measured

S v w vw
k S

S u v
K k S

S z w
S

S uz u z

α α
α α

γ
α
α α

+             =               +  

, (4.2-1) 

which is of the form 
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Forming the covariance matrix of the measured vector in Eq. (4.2-2), we find 

 [ ] ( ) [ ][ ][ ]2 † †
measured actualK γ    =    C X Q C Q X . (4.2-3) 

The superscript †  denotes the adjoint (transpose complex conjugate) of the 

matrix. To estimate the distortion matrices, particularly the matrix [X] , we 
make the crucial assumption that the terrain being imaged exhibits reflection 
symmetry. This idea was first introduced in the context of calibration by van 
Zyl [4] and used by Klein and Freeman [2] and Quegan [1]. Under this 
assumption, the averaged actual covariance matrix is of the form (Borgeaud et 
al., 1987 [6]; Nghiem et al., 1992 [7]) 
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In this expression, the angular brackets  denote spatial averaging of the 
image data. Performing the inner multiplications in Eq. (4.2-3), we find that we 
can write 
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This matrix still has the same basic form as the original actual covariance 
matrix in the sense that several of the matrix elements are zero. To estimate the 
cross-talk parameters, we perform the multiplication 

 [ ] [ ][ ] † =  T X O X . (4.2-6) 
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In doing so, however, we neglect those terms that are of second order compared 
to the other terms in the same element. The results are 
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. (4.2-7) 

From these expressions, we can form the following four simplified expressions 
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. (4.2-8) 

In this expression, we used the fact that [T]  is a Hermitian matrix. From these 
four expressions, we can solve for u, v, z, and w as follows 

 21 31 11 41

24 34 14 44

T T T T u z
T T T T v w

α α
α α

− −    
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. (4.2-9) 

From which we find 
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v w T T T T T T T T T T T T T T T T

α α

α α

− = − − − − −

− = − − − − −
. (4.2-10) 

Simple inspection shows that 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

44 21 41 24 11 44 14 41

11 24 21 14 11 44 14 41

44 31 41 34 11 44 14 41

11 34 31 14 11 44 14 41

u T T T T T T T T

v T T T T T T T T

w T T T T T T T T

z T T T T T T T T

= − −

= − −

= − −

= − −

. (4.2-11) 

Note that knowing these four parameters does not yet allow us to recover [O]  

from [T] . We also need to know the value of α . We can solve for α  by 
writing 

 
* * * *

32 11 41 14 44 22
2 2* *

33 11 41 14 44 22

T u zT u wT zv T wv T O

T z T z wT zw T w T O

α= + + + +

= + + + +
. (4.2-12) 

Combining these two equations, we find 

 ( ) ( )
( ) ( )

* *
32 11 41 14 44

* *
33 11 41 14 44

T u zT wT v zT wT

T z zT wT w zT wT
α

− + − +
=

− + − +
. (4.2-13) 

With the values in Eq. (4.2-11) and Eq. (4.2-13), we can now construct the 
matrix [X]  in Eq. (4.2-6), which can then be used to solve for an estimate of 

the matrix [O] , as follows: 

 [ ][ ]
1 1† † †ˆ − −

       =       O X X X T X X X . (4.2-14) 

If we started with scattering matrix data, the equivalent solution is 

 

2
1† †

hh
hh

vh
hv

hv
vv actual vv measured

S
k S

S
kS

S
S

S

−

          =              

X X X . (4.2-15) 

We still need to estimate the channel imbalance to recover the actual scattering 
matrix. We shall discuss this process in the next section. Before we do that, 
however, let us also look at the case where the measured scattering matrix was 
symmetrized to gain the extra 3 dB in SNR in the cross-polarized channel. 
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Once we symmetrized the scattering matrix to gain the 3 dB in SNR in the 
cross-polarized channel, the system model can be written as pointed out by van 
Zyl (1990) [4] and derived in Eq. (4.1-13): 

 ( )
1 1 0 1 0 1

1 0 0 1
hh hv hh hv

c
hv vv hv vvsym actual

S S S Sb a
K

S S S Sa f f b
γ

        
=        

        
. (4.2-16) 

Performing the multiplications, we find that we can write 

 

( )

2

2

2

1 2
1

2 1

1 0 0
0 0

0 0

hh hh

hv hv

vv vvsym

hh hh

hv c hv

vv vv actual

S b b W
S a ab b W
S Wa a

W S
W f K S
W Sf

γ

        = +    
         

    
    =     
    

    

. (4.2-17) 

In this way, we have separated the cross-talk corrections from the co-polarized 
channel imbalance and absolute radiometric calibrations. Forming the 
covariance matrices, we define 

 [ ] ( )

*2 2

*

2 2

1 2 1
1 2 1 2

2 1 1

hh

hv hh hv vv

vv

b b W a a
a ab b W W W W b ab a

Wa a b b

        = + +    
           

T . (4.2-18) 

Next, we make the assumption that the covariance matrix of the terrain satisfies 
Eq. (4.2-4) as introduced in the context of calibration by van Zyl (1990) [4]. 
Under this assumption, we find 

 

*
11

* * *
21

*
31

2 2* * * * * * *
22

* * * * *
32

*
33

2

2

hh hh

hh hh vv hh hv hv

vv hh

hv hv hh hh vv vv hh vv vv hh

vv hh vv vv hv hv

vv vv

T W W

T a W W b W W b W W

T W W

T W W a W W b W W ab W W a b W W

T a W W b W W a W W

T W W

≈

≈ + +

≈

≈ + + + +

≈ + +

≈

. (4.2-19) 

Therefore, we can write 
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* *
21 11 31

* *
23 13 33

2

2

hv hv

hv hv

T aT bT b W W

T aT bT a W W

≈ + +

≈ + +
. (4.2-20) 

We can now solve for the two complex cross-talk parameters. First, from the 
second equation in Eq. (4.2-20) we find 

 * *
33 23 13 2 hv hvbT T aT a W W= − − . (4.2-21) 

Multiplying the first expression in Eq. (4.2-20) by 33T , we find 

 

( ) ( )

* *
21 33 11 33 31 33 33

** * * * *
11 33 31 23 13 23 13

2

2 2 2

hv hv

hv hv hv hv hv hv

T T aT T bT T b T W W

aT T T T aT a W W W W T aT a W W

= + +

= + − − + − −

, (4.2-22) 

where we have now made use of (4.2-21) in the second line of this expression. 
Gathering terms, we can write this expression as 

 2* * * * *
11 33 31 13 31 21 33 31 23 234 4hv hv hv hv hv hva T T T T W W a T W W T T T T T W W 

− − − = − − 
 

. (4.2-23) 

To solve for a from this expression, we write the real and imaginary parts of 
this expression and then solve for the real and imaginary parts of a. The result 
is 

 

* *
31

22 *
13 31

* *
21 33 31 23 23

2*
11 33 31 13

4

16

2

4

hv hv

hv hv

hv hv

hv hv

P P T W W
a

T T W W

P T T T T T W W

T T T T W W

∆ +
=
∆ −

= − −

∆ = − −

. (4.2-24) 

In a similar way, we can solve for b to find 

 

* *
13

22 *
13 31

* *
11 23 13 21 21

4

16

2

hv hv

hv hv

hv hv

Q Q T W W
b

T T W W

Q T T T T T W W

∆ +
=
∆ −

= − −

. (4.2-25) 
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Note that the original equations in van Zyl (1990) [4] contain algebraic errors, 
as pointed out by Cordey (1993) [5]. The expressions reported here have been 
corrected. Note that Cordey’s expressions contain a typographical error, where 
the square was left off the W W *

hv hv  term in the second term of the 

denominators. 

Once we know the cross-talk parameters, their effect can be removed by 
inverting Eq. (4.2-18), as follows: 

 ( ) [ ]

1 * 12 2

*

2 2

1 2 1
1 2 1 2

2 1 1

hh

hv hh hv vv

vv

W b b a a
W W W W a ab b b ab a
W a a b b

− −
          = + +    
             

T . (4.2-26) 

The expressions for a and b cannot be solved in a simple way; specifically, to 
solve for the cross-talk parameters, we need to know the cross-polarized return 

W W *
hv hv . Note that this quantity is the cross-polarized return after the cross-

talk effects have been removed. To solve this dilemma, van Zyl (1990) [4] 
proposed an iterative scheme. First, use Eq. (4.2-26) with a = b = 0 to estimate 
an initial guess of W W *

hv hv , which is then used to estimate an initial guess for 

the cross-talk parameters using Eqs. (4.2-24) and (4.2-25). This initial guess is 
then used to improve our estimate of W W *

hv hv  using Eq. (4.2-26). This 

improved estimate of W W *
hv hv  is then used to improve our estimate of the 

cross-talk parameters. This procedure is repeated until the values of W W *
hv hv , 

a, and b have reached stable solutions. 

These estimations all rely on calculating average values for the measured 
covariance matrix. A natural question is as follow: How many values need to be 
averaged to estimate these parameters? The practical answer ties back to the 
fundamental assumption about the actual covariance matrix as stated in 
Eq. (4.2-4). At this point, it is instructive to discuss a subtle but important point 
behind this assumption. The form of the covariance matrix as expressed in 
Eq. (4.2-4) assumes reflection symmetry, as is shown in the references cited 
earlier. One way this reflection symmetry can be broken is if there are local tilts 
in the azimuth direction. This can be modeled as a local rotation of the 
polarization basis 
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2

cos sin cos sin
sin cos sin cos

1 tan 1 tan
cos

tan 1 tan 1

hh hv hh hv

hv vv hv vvtilt actual

hh hv

hv vv actual

S S S S
S S S S

S S
S S

β β β β
β β β β

β β
β

β β

−      
=      −      

−    
=     −    

. (4.2-27) 

Comparing this expression with Eq. (4.2-16), it is clear that the effect of the tilt 
will appear as a cross-talk with a = − =b − tan β . Recognizing this, Schuler et 
al. (1996) [8] have proposed an algorithm to use the observed correlation 
between co- and cross-polarized returns to estimate azimuthal slopes in 
polarimetric radar images. To avoid situations where preferentially tilted 
surfaces are present in the images, care should be exercised when estimating the 
cross-talk parameters.  

In practice, the cross-talk parameters are functions of the antenna angle, which 
translates to different values of the slant range. Therefore, the cross-talk 
parameters are estimated by averaging the covariance matrix of an entire line of 
constant slant range. In this way, local tilts in the azimuth direction are usually 
averaged out, and a better estimate for the cross-talk parameters is obtained. 

4.3 Co-Polarized Channel Imbalance Calibration 
The second step in the polarimetric calibration process is to correct for any co-
polarized channel imbalances, both in amplitude and phase, that might exist. 
There a number of different ways to accomplish this step; each requires 
deployment of some external calibration devices and, potentially, the use of 
some calibration signals internal to the radar system. If the radar hardware is 
very stable over time, one could rely more on the internal signal to perform the 
calibration. In that case, the external devices will be used only periodically to 
verify the calibration of the system. Conversely, if there are no internal signals, 
or if the hardware stability is only short term, one must rely on external devices 
to perform the calibration. 

The ideal calibration device for this purpose is a trihedral corner reflector. In 
Chapter 2 we showed that these devices have the following scattering matrix 

 [ ]
2

0 1 0
0 112

k l
π
 

=  
 

S . (4.3-1) 

In this equation, the parameter l is the length of one of the sides of the corner 
reflector, as shown in Fig. 4-9. From a calibration point of view, the desirable 
characteristics of a trihedral corner reflector are: 
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Fig. 4-9. Trihedral corner reflectors are excellent calibration targets 
for polarimetric radar systems. This photograph shows one of the 
authors measuring the orientation of a trihedral corner reflector 
used for calibration. Wooden supports are used to lift the base of 
the corner reflector so that the boresight points at the expected 
flight elevation of the radar. The front edge of the corner reflector 
is placed parallel to the expected flight track of the radar. 

1. No cross polarization components are generated (σ σhv = vh = 0 ) for the 
linear polarization case. 

2. Horizontal and vertical backscattering cross sections are identical 
(σ σhh = vv ). 

3. Horizontal and vertical co-polarized components are in phase. 

4. The device is entirely passive; that is, it requires no power to operate in the 
field. 

These devices are easy to manufacture and subsequently deploy in the field. 
The basic construction uses three identical flat triangular panels, typically 
constructed using an aluminum frame and covered with an aluminum mesh to 
reduce weight. These panels are bolted together at the calibration site to form 
the trihedral corner reflector. The device is then oriented such that the front 
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edge of the base is parallel to the expected radar flight direction. The base is 
tilted to place the boresight of the corner reflector reflection pattern as close to 
the radar direction as possible. Exact orientation is nearly impossible, so careful 
measurements must be made of the orientations so as to allow later corrections 
for the pointing of the reflector relative to the radar look direction. These will 
be discussed in the next section. 

Since the co-polarized channel imbalance might be a function of the radar look 
direction, we typically deploy several of these devices in any image to be 
calibrated spaced relatively uniformly through the image at different positions 
across the radar track. Since we have to estimate the radar cross-sections of 
these devices from the radar image data, we typically look for smooth bare 
surfaces on which to place the corner reflectors, thereby keeping the 
background radar signals as low as possible in the immediate vicinity of the 
calibration devices. 

During routine polarimetric SAR processing, the images are formed and the 
antenna pattern and range corrections described in the next section are applied. 
The next step is usually to estimate and remove the cross-talk as described in 
the previous section. Now we are ready to calibrate the co-polarized channel 
imbalance. Typically, this is done in two steps: correct the phase, then correct 
the amplitude. 

To understand the co-polarized phase calibration, we consider the system 
model shown in Fig. 4-10, which is based on Lou and van Zyl (1992) [9] (note 
that “Pol. Switch” stands for Polarization Switch). This model includes a 
calibration signal to help measure some of the path delays in the system. We 
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Fig. 4-10. The system model used for co-polarized phase calibration. The instrumentally 

induced phase paths for the different paths are indicated with dashed lines. 



180  Chapter 4 

shall first discuss the use of this signal to calibrate the phase difference because 
it has the advantage that we do not need to make any assumptions about the 
scattering in the image itself. We shall later discuss the case where this signal is 
not present. 

After cross-talk removal, we can write the scattering matrix as 

 [ ]
{ } { }
{ } { }2

exp ( 2 ) exp ( )

exp ( ) exp ( 2 )
hh Th Ah Rh hv Tv Ah Av Rh

hv Th Ah Av Rv vv Tv Av Rv

S i f S i

f S i f S i

φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

 + + + + +
 =
 + + + + + 

R . (4.3-2)  

Remember that f f= ( )γ as shown in Eq. (4.1-12). In each case, terms such as 
φTh  refer to the phase of the signal because of the path along the dotted line 
labeled Th  in Fig. 4-10. For example, in the case of Rhh  the signal travels 
along the path Th  from the transmitter to the circulator then along path Ah  
between the circulator and the antenna before being radiated. Upon reception, 
the signal again travels along path Ah , now from the antenna to the circulator, 
and then along path Rh  between the circulator and the rest of the horizontal 
channel receiving chain. We can rewrite Eq. (4.3-2) by extracting an overall 
absolute phase as follows 

 [ ] { }
{ } { }

{ } 2

exp ( 2 ) exp ( )
exp ( 2 )

exp ( )
hh T A R hv A R

Tv Av Rv
hv T A vv

S i f S i
i

f S i f S

φ φ φ φ φ
φ φ φ

φ φ

 + + +
 = + +
 + 

R , (4.3-3) 

where φT = φTh − =φTv ; ;φ φA Ah −φAv φ φR = Rh −φRv . The absolute phase 
outside of the matrix in Eq. (4.3-3) is of little importance in polarimetry; this 
information is lost when the various cross-products are formed in the 
covariance matrix. The elements of the covariance matrix are 
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{ }

{ }

{ }

{ }

* *

2* * *

4* *

2* *

2* *

2* *

2* *

3* *

exp ( )

exp ( )

exp ( 2 )

exp ( )

exp (

hh hh hh hh

hv hv vh vh hv hv

vv vv vv vv

hh hv hh hv T A

hh vh hh hv R A

hh vv hh vv T A R

hv vh hv hv R T

hv vv hv vv R A

R R S S

R R R R f S S

R R f S S

R R f S S i

R R f S S i

R R f S S i

R R f S S i

R R f S S i

φ φ

φ φ

φ φ φ

φ φ

φ φ

=

= =

=

= +

= +

= + +

= −

= +{ }

{ }3* *

)

exp ( )vh vv hv vv T AR R f S S i φ φ= +

. (4.3-4) 

There are three unknown phases to calibrate: φT , φA  and φR . We can measure 
the antenna path phase difference φA  when the radar system is assembled on 
the spacecraft or aircraft. This path involves only cables (or possibly 
waveguides) and the antennas and should remain stable over long periods of 
time as long as the antennas and cables are not disturbed. To measure the 
receiver path phase difference, we use the calibration tone that is injected into 
the two channels via a switch network. This tone has a common source. 
Therefore, any phase difference measured at the output of the receiver chains 
(for example, φcal ) is related to the differences in path length that the common 
signal traveled through the system. Referring to Fig. 4-10, we can write this 

 φcal =φ φR + ⇒C φR =φcal −φC . (4.3-5) 

The term φC  can be minimized by careful design and φC  should stay stable 
over long periods because it involves path length differences through cables, 
splitters, and couplers. We can measure this after radar installation; it should 
then remain stable as long as these devices are not changed or disturbed. We 
can, therefore, recover the receiver path length phase difference from  
Eq. (4.3-5) by monitoring the phase difference between the calibration signals 
in the two receiver chains. 

There is now only one path length phase difference that is not known: φT  This 
phase difference can be recovered by using the fact that reciprocity dictates that 
S Shv = vh . From Eq. (4.3-4), we find that 
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 { }2* exp ( )hv vh hv R TR R fS i φ φ−= . (4.3-6) 

The phase of the complex product R R*
hv vh  will vary slightly for each pixel in 

the image due to system noise. To get a good estimate of φ φR T− , therefore, we 
can average this complex product over the entire scene. We can then recover 
the transmit path length phase difference from 

 { }*argT R hv vhR Rφ φ= − . (4.3-7) 

With these relative phases known, the scattering matrix elements can be 
calibrated. This discussion makes only one assumption about the scattering: 
that reciprocity holds. No further assumptions are necessary. 

But what if we do not have a calibration tone built into the radar system? We 
shall now show that with a relatively simple assumption about the scattering, 
we can still calibrate that relative co-polarization phase, as discussed by Zebker 
and Lou (1990) [10]. The basic assumption is that there is some extended area 
in the image that we know what the co-polarized phase difference should be. 
Let us denote this expected phase difference by φ̂co . From the image data for 
the area where we expect to know the co-polarized phase difference we extract 
the measured co-polarized phase as 

 { }* ˆ ˆarg 2 2hh vv T A R co T R co AR R φ φ φ φ φ φ φ φ= + + = ⇒ + = − . (4.3-8) 

Using Eq. (4.3-7) and Eq. (4.3-8) we can now solve for the values of φT  and 
φR . So what type of surfaces can be used with this method to calibrate the 
phases? Models of scattering from slightly rough surfaces predict an average 
co-polarized phase that is near zero. Of course, if there are trihedral corner 
reflectors in the image, one could use their measured co-polarized phases in the 
same way. 

Once the phases have been calibrated, we need to correct the effects of the 
co-polarized amplitude imbalance. For this, we use the measured image power 
from trihedral corner reflectors. Recall that for these devices we expect the 
co-polarized responses to be identical. After phase calibration, we end with 
covariance matrix elements that are 
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* * *

2* * * *

4* * *

2* * *
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φ φ

φ φ φ

= =

= = =

= =
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= − + =
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{ }

{ }
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2* * *

3* * *

3* * *

exp ( )

exp ( )

exp ( )

vh hv vh R T hv hv

hv vv hv vv R A hv vv

vh vv vh vv T A hv vv

R R i f S S

W W R R i f S S

W W R R i f S S

φ φ

φ φ

φ φ

= − − =

= − + =

= − + =

. (4.3-9) 

We measure the co-polarized channel amplitude imbalance by extracting the 
horizontal-horizontal (HH) and vertical-vertical (VV) image power in a small 
box centered on the corner reflector. Generally, we add the power in this small 
box so as to find the integrated power under the point response of the corner 
reflector. This method is less sensitive to processor focusing than using the 
peak value in the point response. For co-polarized channel imbalance, the 
absolute value of this integrated power is not important; only the relative values 
in the HH and VV images matter. 

The square root of the square root of the measured ratios of the power in the 
HH and VV images as a function of angle of incidence is then used to derive a 
correction curve to apply to the images. This curve represents the magnitude of 
the quantity f (γ )  in Eq. (4.1-14) or fr (γ )  in Eq. (4.1-7). From the curve we 
can then calculate a value of the co-polarized amplitude correction for each 
range line. Once we apply this correction to the data, we have calibrated all the 
polarimetric channels relative to each other. What remains is to perform an 
absolute calibration, which will enable us to compare the measured image radar 
cross-sections to theoretical models. We shall discuss this process next. 

4.4 Absolute Radiometric Calibration 
To understand the absolute radiometric corrections performed during SAR 
processing, let us examine the radar equation we first encountered in Chapter 1 
(see Fig. 1-6). The received power from a scattering area A  is given by  
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( ) ( )

( )

2

02 24 4
t t r

r
PG G

P A
R R

γ λ γ
σ

π π
= , (4.4-1) 

Where 

 Pt  = transmitted power 

 λ  = radar wavelength  

 R  = distance to scattering area (4.4-2) 

 Gt (γ )  = transmit antenna gain at angle γ  

 Gr (γ )  = radar look angle γ  

 σ0  = normalized radar cross-section for area A  

Note here that A  is the area on the ground responsible for the scattering. 

Since the radar signals are sampled in the time domain, which corresponds to 
distances in the line-of-sight (the slant range) direction, the following 
approximation is usually made during SAR calibration when calculating the 
scattering area 

 
sin

r aA δ δ
η

= . (4.4-3) 

Here δr and δa  are the slant range (cross-track) and azimuth (along-track) 
pixel spacings, respectively. Note that the scattering area is determined by the 
pixel spacing; that is the way in which the radar signals are sampled, not the 
resolution of the radar. Typically, the radar pixel spacing is smaller than the 
radar resolution so that a point target typically occupies more than one pixel in 
a radar image. 

The goal of SAR imaging is to measure σ0  for each pixel. Rewriting 
Eq. (4.4-1), one finds that 

 ( )0 ,K R Aσ γ= , (4.4-4) 

Where 

 ( ) ( )
( ) ( )

3 4

2
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, r

t t r

RPK R
P G G

π
γ

λ γ γ
= . (4.4-5) 
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We note that, apart from the measured transmit and received power levels, two 
parameters, R  and γ , must be estimated to determine K R( ,γ ) . We have 
already discussed how these parameters are estimated for the airborne and 
spaceborne cases. For each line of constant range in the data, one can estimate 
the corresponding slant range and look angle. The look angle is then used to 
determine the value of the antenna gain to apply for that line. These gains, 
together with the other parameters in Eq. (4.4-5), are then used to determine the 
value of K R( ,γ )  for that particular line. 

In most SAR processors, the look angle is determined assuming a reference 
surface that contains no relief. In reality the local topography raises or lowers 
the pixel so that the actual look angle is different from the one calculated from a 
reference surface. If the topography is known in digital form, one can actually 
take this effect into account during processing to provide more accurate 
calibration of the data. Radar interferometry is especially useful in this regard: 
the interferometer provides the topography that is needed to more accurately 
calibrate the data. 

Finally, to complete the calibration, one has to remove the scattering area A . 
Here again most SAR post-processors use the flat or spherical Earth 
assumptions and approximate the area A  by Eq. (4.4-3). We note that, as in the 
case of the look angle, the incidence angle is not measured directly and must be 
inferred indirectly. If digital topographic data are available, one could estimate 
the actual scattering area much more accurately and perform a more accurate 
calibration. We shall discuss this in more detail later. 

Even with excellent knowledge of antenna-gain patterns and system 
parameters, the absolute calibration of the image is best achieved using external 
calibration targets placed in an image to verify the overall calibration. Trihedral 
corner reflectors are excellent devices to use for this purpose. The basic idea is 
to deploy the corner reflectors so that they are spaced across the image swath, 
covering most of the range extent of the image. For a corner reflector 
constructed with triangular panels, such as the one shown in Fig. 4-9, the radar 
cross-section is, per Ruck et al. (1970) [11], as follows 

 ( ) ( ) ( )

24

2
4 2, cos sin sin cos

cos sin sin cos
lπσ θ φ θ θ φ φ

θ θ φ φλ

 
= + + − 

+ +  
. (4.4-6) 

The angles θ  and φ  are shown in Fig. 4-11. The peak of the response happens 
for θ = 54.74°;φ = 45°,  and the half-power response is approximately a cone of 
40 deg centered on this axis of symmetry. Therefore, if the corner reflector is 
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Fig. 4-11. Diagram showing the spherical angles 
relative to the panels of the trihedral corner reflector. 
The bottom panel is in the x-y plane. 

placed in that portion of the image where the angle of incidence is 54.74 deg, 
the radar signal will be reflected with maximum intensity. 

To use the corner reflector as a calibration device, we try to point it such that 
the radar signal will be reflected optimally. This means that if the expected 
angle of incidence is θi ≤ 54.74 deg,  we need to raise the bottom panel by an 
angle αCR = 54.74 deg − θi . At the same time, we need to ensure that the front 
edge of the bottom panel is parallel to the expected flight line. Careful 
measurements of the final orientation angles must be made for later use in the 
calibration process. These angles are typically measured as close in time to the 
actual overflight as possible. Figure 4-9 shows one of the authors measuring the 
angles of such a corner reflector deployed for calibration purposes. To ensure 
accuracy of the measurements, the corner reflector signal must be much 
brighter than the background in the image. This is accomplished by placing the 
corner reflectors on as smooth a surface as possible, preferably with no 
vegetation cover. Corner reflectors on the order of 2.4-m panels are typically 
sufficient for L-band calibration; for C-band the typical size is about 1 m. 

To find the absolute calibration factor to apply to the radar image, we compare 
the measured corner reflector signal in the image to the theoretical value, 
keeping in mind that radar images are reported as normalized radar cross-
sections (that is, the power is divided by the scattering area). During this step, 
we take into account the actual orientation angles as measured for each 
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individual corner reflector. To get a more accurate measurement, we typically 
deploy as many corner reflectors at the calibration site as is practical. The 
individual measurements are then averaged together to arrive at the final 
calibration value. The overall normalized radar cross-section of each pixel in 
the image is then scaled by this value to ensure that the average of the corner 
reflector values will be the correct theoretical value. Figure 4-12 shows such a 
calibration site in California used to calibrate the NASA/JPL AIRSAR system. 
The corner reflectors are spaced across the Rosamond dry lake to cover as 
much of the imaging swath as possible. 

For most SAR processors, this will conclude the calibration process. In the next 
two sections, we shall examine a bit more closely some of the assumptions 
made during the calibration process. In particular, we shall look at the accuracy 
of approximating the scattering area by a flat facet. We shall follow that 
discussion by looking at the effect of local topography on antenna pattern 
correction when the antenna look angle is calculated assuming a flat or 
spherical reference plane. 

4.4.1 Effect of Topography on the Scattering Area 
Figure 4-13 shows a surface tilted in an arbitrary direction being illuminated by 
a plane wave. It follows from simple geometry that the pixel area δ δr a  is the 
projection of the actual surface area A′  on the image plane. Therefore, 

 
Fig. 4-12. Image of the Rosamond dry lake in California showing the array of corner 
reflectors used to calibrate the NASA/JPL AIRSAR system. The dry lake bed is the large dark 
feature forming most of the image. The corner reflectors are visible as the line of bright 
objects near the bottom edge of the lake. The image is an L-band total-power image, and the 
radar illumination is from the left in the image. The corner reflectors are spaced to cover as 
much of the range swath as possible. 



188  Chapter 4 

 
x

r

sn

z

y

η sθ

sϕ

Tilted surface
element

 
Fig. 4-13. Diagram of a tilted ground element in 
relation to the image plane that is defined by the x 
axis (assumed to be the azimuth direction) and the 
unit vector that points in the slant range direction. 

 cosr a Aδ δ ψ′= , (4.4-7) 

where ψ  is the angle between the actual surface normal and the image plane 
normal. Using spherical coordinates for the surface slope tilt angle θs  and the 
slope aspect angle ϕs , we can write the surface normal as 

 sin cos sin sin coss s s s s sθ ϕ θ ϕ θ= + +n x y z . (4.4-8) 

Here it is assumed that the unit vector x  points in the along-track direction. 
Denoting the radar line of site direction by the unit vector r , the normal to the 
image plane is 

 cos sini η η= × = +n x r y z . (4.4-9) 

Therefore, 

 cos sin cos cos sin sins i s s sψ η θ η θ ϕ= ⋅ = +n n . (4.4-10) 

The actual scattering area is, therefore, 

 
sin cos cos sin sin

r a

s s s
A δ δ

η θ η θ ϕ
′ =

+
. (4.4-11) 

This expression reduces to Eq. (4.4-3) if the surface is not tilted (that is, 0sθ = ). 
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To quantify the errors introduced by using Eq. (4.4-3) instead of Eq. (4.4-11) 
for the actual scattering area, we calculate the ratio of the two areas: 

 ( ) 0sin
10log 10log

sin cos cos sin sins s s

AError dB
A

η
η θ η θ ϕ

 ′ = =    +   
. (4.4-12) 

We used η0  in the numerator of Eq. (4.4-12) as a reminder that this angle 
represents the angle of incidence calculated for a reference plane, either a flat 
surface for airborne cases or a spherical surface for spaceborne SARs. Due to 
local relief, this angle might be different than the local angle of incidence for an 
elevated but untilted surface element. This local angle of incidence can be 
calculated from the slant range R , the height of the radar platform h , and the 
elevation of the image pixel hp  above the reference plane, respectively. These 
expressions are 

 ( ){ }1cos ph h Rη γ −= = −  (4.4-13) 

for the airborne case and 

 ( ){ }1sin sins t pR R hη γ−= +  (4.4-14) 

for the spaceborne case. In this expression  

 
( )22 2

1cos
2

s t p

s

R R R h

RR
γ −

 + − + =  
 
 

. (4.4-15) 

Note that under the flat or spherical Earth assumption for the reference plane 
hp  is assumed to be zero, or at least the same value for all pixels in the image. 

Also, in Eq. (4.4-13) - (4.4-15) a positive value of hp  means that the pixel is 
above the reference plane. 

Figure 4-14 shows the magnitude of the calibration error introduced by making 
the assumption shown in Eq. (4.4-3) when calibrating the effect of the 
scattering area. The results are shown for different values of the angle of 
incidence and assume that the radar altitude above the reference plane and the 
pixel elevation are accurately known. 

These results show the following important points: 
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Fig. 4-14. These graphs show the calibration error that could be introduced if 
local surface elements are tilted as a result of topographical variations in 
elevation. The graph on top assumes that the tilts are only in the range 
direction, with positive slopes towards the radar. The errors are plotted for 
different values of the radar look angle. The graph on the bottom shows the 
effect of purely azimuthal tilts. In this case, the results are independent of the 
angle of incidence and the errors are significantly smaller than the case of 
tilts in the range direction. 
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1. The error due to the scattering area is largest when the slope of the surface 
is such that the range slope equals the angle of incidence. When this 
happens, the local angle of incidence approaches zero deg. 

2. The smaller the look angle, the larger the errors due to the surface slope. In 
these cases, a smaller surface tilt leads to the situation described in 1. 

3. The effects of azimuth tilts are much smaller than those of range tilts. 

To better quantify what magnitude errors can be expected in practice, van Zyl 
et al. (1992) [12] calculated, using digital elevation model (DEM) data, the 
distribution of surface slopes for a moderate relief area near Tombstone, 
Arizona, and a high-relief area near Oetztal in Austrian Alps. In both cases, 
DEM data were used to calculate the slope in two orthogonal directions using 
the difference in height of two adjacent pixels and dividing by the horizontal 
separation. Using the information in the slope images, they calculated the 
expected errors for each area for an airborne case (using the nominal 
parameters of the NASA/JPL AIRSAR system flown on the NASA DC-8 
aircraft) and a spaceborne case (using Earth Resource Satellite 1 [ERS-1] 
parameters). In the airborne case, the flat-Earth incidence angle typically varies 
between approximately 15 deg and 60 deg, while for the spaceborne case, the 
incidence angle at the center of the image is assumed to be 23 deg. For the 
moderate relief area, it was found that the airborne case shows relatively small 
errors, although some leading slopes of the hills exhibit errors exceeding 3 dB. 
The errors in the spaceborne case are larger, mainly because of the smaller 
incidence angle. Most of the errors were less than 1 dB, even in the spaceborne 
case. It was found, however, that the situation for the high-relief area was 
dramatically different. In that case, most of the leading slopes show errors on 
the order of 5 dB or larger, even in the airborne case. In the spaceborne 
example of the Oetztal area, most of the errors exceed 1 dB, with large areas 
showing errors exceeding 5 dB in magnitude. 

It also follows from Eq. (4.4-11) that the calibration error will be influenced by 
how accurately the angle of incidence is inferred. In the airborne case, one has 
to rely on some measurement of the platform altitude to calculate the incidence 
angle as shown in Eq. (4.4-13). It is important to note (see Fig. 4-15) that even 
if one could measure the altitude of the plane above the terrain directly 
underneath it very accurately, it still does not mean that the angle of incidence 
is calculated correctly in the swath to the side of the plane. This, of course, is a 
consequence of the changing topography. As an example, a 500-m error in the 
estimation of h h− p  will lead to an additional error of about 2 dB at a 30-deg 

look angle in the case of a plane with nominal h h− p  of 8000 m. Note that the 
500-m number is not the accuracy with which the radar altitude can be 
measured. It is the difference in elevation of the terrain directly underneath the 
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Fig. 4-15. Imaging geometry where the elevation of the terrain being imaged varies. 
Not taking the varying topography into account will result in the incorrect look angle 
being used during antenna pattern removal. 

plane and that of the area being imaged off to the side. In our experience with 
the NASA/JPL AIRSAR system flying on a DC-8 plane, we often image terrain 
in which we have more than 500-m variation in elevation. Of course, this error 
can be minimized by a proper choice of the radar platform altitude during 
processing. In the spaceborne case, the terrain variations are much smaller than 
the platform altitude, which means that the additional errors introduced by 
misestimating the angle of incidence are negligible. 

In summary, we have shown in this section that the error due to the flat surface 
approximation when calculating the scattering area is significant in both 
airborne and spaceborne SAR data. 

4.4.2 Effect of Topography on Antenna Pattern Corrections 
In removing the antenna patterns during radiometric calibration, one has to 
estimate where in the antenna beam the pixel was during data collection. 
Typically the antenna is mounted on the platform such that the boresight of the 
antenna points at a specific look angle. For electronically or mechanically 
steerable antennas, this boresight angle can be changed for each data collection. 
To remove the antenna gain pattern from the image, therefore, we need to know 
the radar look angle as well as the roll angle of the radar platform. If the radar 
platform roll stays constant, the only remaining unknown is the radar look 
angle for each pixel. In most cases, the radar platform roll changes with time. 
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Typically three-axis gyroscopes are used to measure radar platform attitude. If 
the accuracy of these measurements is not sufficient, other techniques, such as 
those discussed by Curlander and McDonough (1991) [13], may be employed 
to estimate platform roll more accurately. 

To evaluate the effect of the topography on the antenna pattern removal, let us 
assume that the roll angle is known and discuss only the additional effect of 
varying topography. Key to antenna pattern removal is the estimation of the 
actual radar look angle γ  for each pixel. In the spaceborne case, the look angle 
in the presence of varying terrain is given by Eq. (4.4-15). Typically hp  is 
much smaller than the other quantities in this expression, meaning that the 
effect of the varying topography on the estimation of the look angle can be 
neglected. The limiting factor in the spaceborne case is much more likely to be 
knowledge of the antenna pointing. 

In the airborne case, the local terrain variation might be a significant fraction of 
the plane altitude, as illustrated in Fig. 4-15. Suppose the height of the radar 
platform above some reference plane is h . If now the elevation of the terrain 
directly underneath the plane with respect to the same reference plane is H  
and the elevation of the pixel being imaged is hp , it follows that the actual 
look angle is given by Eq. (4.4-13) (see Fig. 4-14). If one uses the measured 
plane elevation above the terrain directly underneath it, the incorrectly inferred 
look angle will be given by 

 ( ){ }1cos ph H h Rη γ −= = − − . (4.4-16) 

The error introduced in the antenna pattern removal can be written  
[see Eq. (4.4-5)] as 

 ( )
( )

( ) ( )
( ) ( )

0

0 0

,
,

t r

t r

K R G G
K R G G

γ γ γ
γ γ γ

= . (4.4-17) 

Clearly, the magnitude of the error depends on the exact values of the antenna 
patterns Gt  and Gr . From Fig. 4-14, however, it is clear that if the terrain 
elevation is a significant fraction of the altitude at which the plane flies, the 
actual and assumed look angles might be significantly different, even if we use 
the correct altitude for the plane. 

These errors were quantified by van Zyl et al. (1993) [12]. They used the 
C-band antenna patterns for the NASA/JPL AIRSAR system and evaluated the 
antenna pattern removal errors for a high-relief area in the Austrian Alps. Their 
calculations show that extremely large errors, some much larger than 10 dB, 
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can be expected in the near range. In the case of the AIRSAR system, the 
antenna boresight points at a 50-deg look angle. The near range of the image, 
typically less than 20-deg look angle, is imaged by that part of the antenna 
pattern where the gain changes rapidly with angle, Therefore, a relatively small 
error in look angle can cause a significant error in antenna pattern correction. 
Their result indicates that one can expect that any time the SAR system 
acquires data over that portion of the antenna beam where the gain changes 
rapidly with angle away from boresight, the effect of topography might lead to 
significant calibration errors. 

There is another subtle point to realize regarding the antenna pattern correction 
errors discussed here. Since the antenna gain patterns for the different 
polarizations are typically slightly different, the errors due to the topography 
might be different for the different polarizations. This, in turn, means that the 
polarimetric calibration (that is, the relative calibration between the different 
polarization channels) will be affected by the topography. This is especially 
important for those geophysical algorithms that are designed to use polarization 
ratios to infer some geophysical parameter from the radar data. Note, however, 
that this error results from using the wrong look angle in the calibration; that is, 
it is an antenna pattern removal error. As argued before, this type of error is not 
expected to be a major problem for spaceborne SAR systems. 

4.4.3 AIRSAR Image Example 
Figure 4-16 shows an example of an image acquired with the NASA/JPL 
AIRSAR system at C-band calibrated with and without taking the topography 
into account. This image was acquired of over the Tennessee Valley area of 
Marin County near San Francisco in California. The radar was operated in the 
TOPSAR interferometric mode; consequently, a co-registered digital elevation 
model was available from this mode with which to correct the SAR image data.  

The image calibrated assuming a flat-Earth reference plane shows distinct 
variations in radar cross-section associated with the topography. Slopes facing 
the radar (at the top of the image) are consistently brighter than those facing 
away from the radar. This effect gives the image a three-dimensional 
appearance. This effect was exploited by Guindon (1990) [14] to develop an 
algorithm to estimate topography from the brightness variations in radar 
images. When the calibration is properly done taking into account the 
topography, however, the image on the left shows very little of these effects 
and appears much flatter in brightness. 
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Fig. 4-16. Two images showing the effects of taking the topography into account when 
calibrating SAR data acquired over terrain with varying topography. The image on the left 
was calibrated taking topographical effects into account, while the image in the right was 
calibrated using the standard smooth (flat) Earth approximation. The radar illumination is 
from the top. Note that the image on the left appears to have much less variation in 
brightness that can be attributed to the topography. 

These images strikingly show the differences between calibrations that take the 
topography into account and calibrations assuming a flat reference plane. It is 
clear that extra care must be taken when attempting to derive quantitative 
information from SAR data acquired in areas with significant relief, especially 
with airborne systems, if the calibration does not take the topographical effects 
into account. 

4.5 Faraday Rotation 
Radar signals transmitted from most orbiting spacecraft have to propagate 
through the ionosphere before on their way to the surface of the earth and again 
after being scattered by the surface. Linearly polarized electromagnetic waves 
suffer a rotation of the polarization, known as Faraday rotation, when 
propagating through a plasma like the ionosphere. This rotation, of course, 
could introduce significant errors into the measured scattering matrix if not 
removed properly during calibration.  

The amount of rotation that an electromagnetic wave polarization suffers as a 
result of Faraday rotation is proportional to the total electron content (TEC) of 
the ionosphere [15]. Therefore, this effect varies with solar activity, reaching its 
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maximum during solar maximum. The amount of rotation is also inversely 
proportional to the square of the frequency, which means that low frequency 
radars will be affected more than higher frequencies. At solar maximum,  
L-band radars could see as much as 40 deg of rotation [16], while a P-band 
radar could see as much as 321 deg of rotation. For C-band and higher 
frequencies, the rotation is generally negligible. It should be pointed out that 
these numbers are the maximum expected. Rignot [17], for example, estimated 
that a Faraday rotation of approximately 30 deg would explain some anomalous 
scattering observed with HH polarization using the Japanese JERS-1 SAR 
system. In a different study, Wright et al. [18] argue that the upper limit on the 
Faraday rotation at L-band is on the order of 30 deg. 

The major effect of Faraday rotation, since it involves a rotation of a linear 
polarization, is to create an artificial correlation between the co- and cross-
polarized elements of the scattering matrix. As discussed previously in  
Section 4.2, polarimetric cross-talk removal algorithms use the fact that for 
terrain with reflection symmetry there should be no correlation between these 
terms. Any inferred correlation is then estimated as cross-talk in the antennas 
and removed. In the presence of Faraday rotation, this additional artificial 
correlation would lead to large errors in the estimation of the cross-talk. Recent 
experience with spaceborne SAR systems, however, shows that antennas can be 
implemented with adequate cross-talk performance, so that the effect of the 
antenna cross-talk is generally negligible. In that case, the perceived correlation 
between co- and cross-polarized terms in the scattering matrix can be attributed 
to Faraday rotation only. 

The problem of estimating Faraday rotation directly from polarimetric data has 
received considerable attention recently [16, 18, 19, 20, 21]. In the presence of 
Faraday rotation, the radar system model given in Eq. (4.1-9) needs to be 
modified in the following way 

( )[ ][ ][ ] [ ][ ][ ]hh hv hh hv
x c c x

vh vv hv vvmeasured actual

S S S S
K

S S S S
γ Ω Ω

   
=   
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R R F F R T  

  (4.5-1) 

Where 

 [ ] cos sin
sin cosΩ
Ω Ω 

=  − Ω Ω 
F  (4.5-2) 

represents the one-way Faraday rotation through the ionosphere given by an 
angle Ω . In writing Eq. (4.5-1), we have neglected the effects of thermal noise 
in the system, which will be additive. Freeman [16] shows various ways to 
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estimate the amount of Faraday rotation. If we can assume that the radar system 
is well calibrated, except for the Faraday rotation, we can write the measured 
scattering matrix as [19, 21] as  

 
cos sin cos sin
sin cos sin cos

hh hv hh hv

hv vv hv vv

M M S S
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Ω Ω Ω Ω      
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 (4.5-3) 

Here we assumed that reciprocity holds for the scattering matrix. Bickel and 
Bates [22] actually proposed an estimator of the Faraday rotation angle derived 
from expressing the measured scattering matrix in a circular polarization basis:  

 ( )*
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21 12   2( )vh hvZ Z M M= + − . Expanding Eq. (4.5-3), we find 
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Note that when Faraday rotation is present, hv vhM M≠ , even if the scattering 
matrix satisfies reciprocity. From this expression, we find  
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Using these relations, Freeman [16] showed that one can estimate the Faraday 
rotation angle via  

 11ˆ tan
2

vh hv

hh vv

M M
M M

−  −
Ω =  

+ 
 (4.5-7) 

While this estimator appears straightforward to implement, Freeman [16] points 
out that if applied on a single pixel basis, this estimator could result in large 
errors. Instead, he proposes to use an averaged estimator given by  
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Freeman [16] reports that in the presence of residual calibration errors, the 
estimator given in Eq. (4.5-4) performs better than the one in Eq. (4.5-8). 

4.6 Summary 
As discussed in this chapter, polarimetric radars are significantly more 
challenging to calibrate than single-channel radars. However, the techniques 
discussed here have been tested thoroughly calibrating a wide range of airborne 
and spaceborne SAR systems. It is safe to say that these techniques have proven 
so successful that calibrated polarimetric data are now routinely available from 
all modern SAR sensors. 

The estimation and removal of Faraday rotation is a significant topic for lower 
frequency radar systems. This topic will be especially important for lower 
frequency radars (L-band and particularly P-band) proposed to study the 
Earth’s ecosystems. It seems, however, that when the techniques discussed in 
the previous section are applied to L-band data, reasonable results are obtained. 
This removes a major obstacle towards implementing future low-frequency 
radar systems. 
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Chapter 5 
Applications: Measurement of 

Surface Soil Moisture 

Soil moisture is a key parameter in numerous environmental studies, including 
hydrology, meteorology, and agriculture. Soil moisture plays an important role 
in the interaction between the land surface and the atmosphere, as well as in the 
partitioning of precipitation into runoff and ground water storage. In spite of its 
importance, soil moisture has not found a widespread application in the 
modeling of hydrological and biogeochemical processes and related ecosystem 
dynamics, in part because soil moisture is a difficult parameter to measure on a 
large-area, cost-effective, and routine basis. 

It is well known that return signals from synthetic aperture radar (SAR) are 
affected by surface characteristics, such as the roughness, the correlation length, 
and the dielectric constant of the soil. Some earlier studies (Wang, et al., 1986 
[1]; Dobson and Ulaby, 1986 [2]) using single frequency and single 
polarization Shuttle Imaging Radar-B (SIR-B) imagery could only describe the 
dependence of backscattering coefficient σ0  on these surface parameters 
separately. Estimation of surface soil wetness was usually obtained by 
employing an empirical relationship to convert the measured σ0  into 
volumetric soil moisture mv  (Jackson, 1993 [3]). Several research groups have, 
for example, reported a linear relationship between the observed radar 
backscatter expressed in decibels (dB) and the volumetric soil moisture of the 
surface (Schneider and Oppelt, 1998 [4]; Quesney et al., 2000 [5]). It is 
commonly reported that the slope of this linear relationship is a function of the 
vegetation cover, with decreasing slopes as the amount of vegetation increases 
indicating decreasing sensitivity to soil moisture in the presence of increasing 
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amounts of vegetation. As an aside, it is often found that the offset in the linear 
relationship is correlated with the surface roughness. 

The inversion of soil moisture information from radar backscatter became more 
rigorous after the availability of polarimetric radar data. Basically, the 
additional measurements allow us to separate the effects of surface roughness 
and soil moisture on the observed radar backscatter. Several algorithms have 
been developed for measuring bare surface soil moisture quantitatively using 
dual-polarization L-band SAR image data (Dubois et al., 1995 [6]; Shi et al., 
1997 [7]) or three-polarization SAR measurements (Oh et al., 1992 [8]). 

The algorithm proposed by Oh et al. (1992) [8] was derived empirically from 
data measured with a truck-mounted scatterometer and the algorithm involves 
ratios of various polarization combinations. Dubois et al. (1995) [6] used the 
same data, plus data from truck-mounted scatterometers measured by the 
University of Berne (Wegmuller, 1993 [9]) over bare surfaces with a wide 
range of surface roughnesses to derive an empirical algorithm that uses 
horizontal-horizontal (HH) and vertical-vertical (VV) polarization 
combinations at L-band. Shi et al. (1997) [7] generated a synthetic data set 
using the Integral Equation Method (IEM) model (Fung et al.,1992 [10]) and 
then derived a set of coefficients to parameterize their synthetic data set. These 
parameters were then used to invert Airborne Synthetic Aperture Radar 
(AIRSAR) and SIR-C data. As in the case of Dubois et al., (1995) [6], the 
algorithm proposed by Shi et al. (1997) [7] uses a pair of measured radar cross-
sections to estimate the surface dielectric constant and a roughness parameter. 
Both these algorithms have been applied to data acquired from space during the 
SIR-C mission and have shown accuracies on the order of 4 percent when 
estimating volumetric soil moisture from SAR data. 

Since these early studies, many more results have been reported. We will 
discuss these results in more detail in this chapter. This chapter will also 
include a detailed of examination of the related algorithms. The chapter also 
includes a discussion of the algorithm proposed by Kim and van Zyl 
(2009) [11] that utilizes time series data to track changes in soil moisture. 
Finally, we shall look at the effects of vegetation on these algorithms and show 
that the time series algorithm shows some promise in providing the capability 
to measure soil moisture even in the presence of vegetation. 

5.1 Surface Electrical and Geometrical Properties 
Before describing the details of the individual models and their performance, 
we briefly review the properties, both electrical and geometrical, of rough 
surfaces. For the moment, we shall focus our attention on bare surfaces. The 
case of vegetated surfaces will be discussed later in the chapter. 
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5.1.1 Geometrical Properties 
We can describe the local surface height of any rough surface by a two-
dimensional function ξ (x, y) , where x and y  represent the horizontal 
coordinates of the surface. It is typically assumed that the statistical distribution 
of the surface height is Gaussian with zero mean. The so-called surface 
roughness, or root mean square (rms) height of the surface, h  is defined as 

 ( )2 2 ,h x yξ= , (5.1-1) 

where x  means the average of x  Simply knowing the rms height of the 
surface is not yet a complete description of the geometrical properties of the 
surface. One also has to know how the surface height at one point on the 
surface is related to the surface height at a different point. This is described by 
the surface-height correlation function. For an isotropically rough surface, the 
surface-height correlation function is a function only of the separation between 
the two points on the surface, r.  The surface-height correlation function is 
mathematically described by 

 ( )
( ) ( )

2
, ,x y x y

r
h

ξ ξ
ρ

′ ′
= . (5.1-2) 

The two most commonly used surface-height correlation functions are the 
Gaussian and exponential correlation functions. The Gaussian correlation 
function for an isotropically rough surface is 

 ( )
2 2r l

g r eρ −= . (5.1-3) 

The quantity l  is known as the surface correlation length. The exponential 
surface-height correlation function is given by 

 ( ) r l
e r eρ −= . (5.1-4) 

Instead of the correlation function, surfaces are often characterized in terms of 
their roughness spectral density, or roughness spectrum. This function is the 
Fourier transform of the surface autocorrelation function. For isotropically 
rough surfaces, the roughness spectrum is 

 ( ) ( ) ( )0
2,x y oW k k r r J kr drρ
π

∞
= ∫ . (5.1-5) 
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The roughness spectrum functions for the Gaussian and the exponential 
correlation functions are 

 ( ) ( )2 2 22
, exp

4
x y

g x y
k k llW k k

π

 − +
 =  
  

 (5.1-6) 

and 
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( )
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2,
1

e x y

x y

lW k k
k k lπ

=
 + +  

. (5.1-7) 

To understand the difference between surfaces with these different correlation 
functions, we show a comparison of the correlation functions in Fig. 5-1. We 
note that the Gaussian correlation function is larger for small separations than 
the exponential function, but rapidly decreases to become smaller than the 
exponential correlation function for larger values of r l . This means that one 
would expect a surface with an exponential correlation function to appear to 
have larger slopes at the micro scale than a surface with an equivalent 

 
Fig. 5-1. Comparison between the Gaussian and the exponential correlation functions. 
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correlation length and a Gaussian correlation function. Looking at the slopes of 
the two types of surfaces, we note that the total mean-square slope of a surface 
with a Gaussian correlation function is 

 
22 2

2
2

4
g

hs
x y l
ξ ξ ∂ ∂ = + =  ∂ ∂   

. (5.1-8) 

The surface with the exponential correlation function, on the other hand, has 
surface slopes and all higher surface derivatives that are infinite; that is, 

 2
es = ∞ . (5.1-9) 

To illustrate the differences between these two surface types more graphically, 
Figs. 5-2 and 5-3 represent two such synthetic surfaces with the same rms 
height and correlation length. The surface with Gaussian correlation function 
(shown in Fig. 5-2) appears to have less high frequency roughness than the 
surface with the exponential correlation function (shown in Fig. 5-3). 
Figures 5-3 and 5-4 show the effect of the surface correlation length on the 
appearance of the rough surface. Not surprisingly, the surface with the shorter 
correlation length appears to have more high-frequency roughness than the one 
with the longer correlation length. 

 
Fig. 5-2. Synthetic rough surface generated using a Gaussian surface height correlation 
function. Note the smooth appearance of the surface compared to that generated with the 
exponential surface height correlation function shown in Fig. 5-3. 
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Fig. 5-3. Synthetic rough surface generated with an exponential surface height correlation 
function. The surface has the same rms height and correlation length as the surface 
generated with a Gaussian correlation functions shown in Fig. 5-2. 

 
Fig. 5-4. Synthetic rough surface generated with an exponential surface height correlation 

function. The surface has half the correlation length of the surface shown in Fig. 5-3. 
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Several researchers have measured profiles of micro-topography in order to 
better describe the roughness characteristics of natural surfaces. The profiles of 
micro-topography are measured using various approaches. The simplest 
approach utilizes a large board with a grid painted on it. The board is then 
pushed into the surface to the lowest point on the surface, and a photograph is 
taken of the board covered with the surface profile. The profile is subsequently 
digitized from the photograph. The advantages offered by this approach are that 
it is easy to make the measurement and the equipment is relatively cheap and 
easily operated in the field. Disadvantages include the fact that only relatively 
short profiles can be measured (typically a meter or two at best) and that the 
soil has to be soft enough to permit insertion of the board. 

A second approach utilizes a horizontal bar with an array of vertical rods of 
equal length that are dropped to the surface. The heights of the top of the rods 
above a known level surface are then measured and recorded. While relatively 
easier to operate than the boards described above, especially over rocky or hard 
surfaces, the disadvantage of this method is the limited length of the profiles 
that can be measured with one instrument; consequently, a large amount of time 
is required to make measurements of reasonably large areas, especially in areas 
with difficult access. 

Laser profilers are also sometimes used to measure micro-topography. In this 
case, a laser is mounted on a frame that allows the laser to translate in a raster 
pattern. Measurements are typically taken every centimeter or so along a 
particular profile. These instruments obviously require power to operate, 
limiting their utility to easily accessible areas. An additional drawback is that 
the size of the frame usually limits the area that can be measured to a meter or 
so square. Another method is to operate lasers from low-flying aircraft; using 
this method, however, the measurement density is inadequate for micro-
topography studies. 

Stereo photography, either close-range or from specially equipped helicopters, 
seems to provide the best balance between accuracy and coverage. As part of 
this method, the photographs are digitized and then correlated against each 
other to reconstruct the micro-topography using the same kind of software 
developed to construct large-scale, digital-elevation models from stereo 
cameras flown on either aircraft or satellites. While more expensive to acquire, 
the full three-dimensional surface can be reconstructed over a relatively large 
area, providing excellent statistics. 

Using stereo photographs acquired from a helicopter, Farr (1992) [12] studied 
the roughness characteristics of several lava flows in the Mojave Desert in 
southern California. He found that the power spectra of these natural surfaces 
exhibit the general form 
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 ( ) mW k bk= , (5.1-10) 

with the value of the exponent m  between –2 and –3, consistent with known 
behavior of topography at larger scales. His measurements showed values 
closer to –2 and that the magnitude of m  first seems to increase with lava flow 
age, but then decreases for surfaces between 0.14 and 0.85 million years old. 
For surfaces older than 0.85 million years, the magnitude of m  seems to 
increase again. 

Shi et al. (1997) [7] reports a different approach to their analysis of surface 
roughness characteristics. Using 117 roughness profiles measured over various 
fields in the Washita watershed, they fitted the correlation function of the 
measured profiles with a general correlation function of the form 

 ( ) ( )( )exp nr r lρ = − . (5.1-11) 

Values of n =1  correspond to an exponential correlation function; n = 2  
corresponds to a Gaussian. Their results indicate that 76 percent of the surfaces 
could be fitted with values of n ≤1.4 , leading to the conclusion that the 
exponential correlation function is the more appropriate description of the 
surface correlation function. 

We note that for values of kl >>1,  the roughness spectrum of the exponential 
correlation function behaves like Eq. (5.1-10) with an exponent –3. The results 
from the Shi et al. (1997) [7] study seem to indicate that agriculture and pasture 
fields have roughness spectra that contain more energy at the longer spatial 
scales than the natural lava flow surfaces studied by Farr [12].  

5.1.2 Electrical Properties 
The electrical properties of a rough surface are described by the complex 
dielectric constant, or relative permittivity, of the soil, which is a strong 
function of the soil moisture. This is the result of the fact that the dielectric 
resonance of both pure and saline water lies in the microwave portion of the 
electromagnetic spectrum. Dry soil surfaces have dielectric constants on the 
order of 2 - 3; water has a dielectric constant of approximately 80 at microwave 
frequencies. Therefore, adding a relatively small amount of water to the soil 
drastically changes the value of the dielectric constant. 

A wet bare soil consists of a mixture of soil particles, air, and liquid water. 
Usually, the water contained in the soil is further divided into two parts: so-
called bound water and free water. Due to the influence of matric and osmotic 
forces, the water molecules contained within the first few molecular layers 
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surrounding the soil particles are tightly held by the soil particles; hence, the 
term bound water. The amount of bound water is directly proportional to the 
surface area of the soil particles, which, in turn, is a function of the soil texture 
and mineralogy. Because of the relatively strong forces acting on it, bound 
water exhibits an electromagnetic spectrum that is different from that of regular 
liquid water. Since the matric forces acting on a water molecule decrease 
rapidly with distance away from the soil particle, water molecules located more 
than a few molecular layers away from the soil particles are able to move 
throughout the soil with relative ease; for this reason, this water is known as 
free water. The complex dielectric constant of both bound and free water is a 
function of frequency, temperature, and salinity of the soil. 

In general, there is a nonlinear relationship between dielectric constant and 
volumetric soil moisture. Wang and Schmugge (1980) [13] present an empirical 
soil dielectric mixing model based on various measurements at 1.4 and 5 
gigahertz (GHz). If one is concerned only with the real part of the dielectric 
constant, one can write the expressions as follows: 

 

( )

276.3
3.25 2.2

3.25 76.3 1 78.5

T v
v v T

T

T T v v T

E mm for m M
M

M E m for m M
ε


+ + ≤

= 
 + − + >

, (5.1-12) 

where mv  is the volumetric soil moisture (units cm3 3cm ) 0 1≤ ≤mv  and MT  

is a transition moisture level (units cm3 3cm ), which is given by 

 M WT P= 0.49 + 0.165 . (5.1-13) 

WP  is the wilting point, (in units of cubic centimeter per cubic centimeter 

( )cm3 3cm ), which is a function of the soil texture, and is given by 

 0.06774 0.00064 0.00478PW S C= − + . (5.1-14) 

In Eq. (5.1-14), S  and C  represent the percentages of sand and clay, 
respectively, in the soil. Finally, ET  in Eq. (5.1-12) is an empirical fit 
coefficient, which is 

 0.481 0.57T PE W= − . (5.1-15) 

For a typical loam soil: 

 0.1; 0.22; 0.4P T TW M E= = = . (5.1-16) 
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Hallikainen et al. (1985) [14] report the results of extensive measurements of 
soil dielectric constants. Hallikainen et al. also found that the dielectric constant 
can be described as a quadratic function of volumetric soil moisture. Their 
results show the coefficients of the polynomial to be a function of the soil 
texture, and the polynomial is of the general form: 

 ( ) ( ) ( ) 2
0 1 2 0 1 2 0 1 2v va a S a C b b S b C m c c S c C mε = + + + + + + + + . (5.1-17) 

This form is applicable to both the real and imaginary parts of the dielectric 
constant. The coefficients are functions of frequency, with values reported from 
1.4 GHz to 18 GHz. At 1.4 GHz, the values for the real part of the dielectric 
constant are: 

 
0 1 2

0 1 2

0 1 2

2.862 0.012 0.001
3.803 0.462 0.341

119.006 0.500 0.633

a a a
b b b

c c c

= = − =
= = = −
= = − =

. (5.1-18) 

For the imaginary part of the dielectric constant, the values are 

 
0 1 2

0 1 2

0 1 2

0.356 0.003 0.008
5.507 0.044 0.002

17.753 0.313 0.206

a a a
b b b
c c c

= = − = −
= = = −
= = − =

. (5.1-19) 

For a typical loam soil, Eq. (5.1-17) becomes 

 22.2575 22.9925 101.8015v vm mε = + +  (5.1-20) 

for the real part of the dielectric constant. 

It should be pointed out that more recent work by Brisco et al. (1992) [15] 
concluded that soil texture has no effect on the results, and that a single cubic 
polynomial with constant coefficients could be used to link soil moisture and 
the measured surface dielectric constant, as follows: 

 2 30.0278 0.0280 0.000586 0.00000503vm ε ε ε= − + − + . (5.1-21) 

Other work (Dobson et al., 1985) [16] derived a semi-empirical relationship 
between the real part of the dielectric constant and the volumetric soil moisture 
of the form. 
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1 b
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m m

αα β αρ
ε ε ε
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, (5.1-22) 
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where α = 0.65 , ρ 2.66 / 3
s = g cm , εs  is the dielectric constant of the solid 

soil (typical value ≈ 4.7 ), ρb  is the bulk density of the soil (on the order of 

1.1 g / cm3  for sandy loam soils), and β  is a parameter that is a function of the 
soil texture 

 1.2748 0.00519 0.00152S Cβ = − − . (5.1-23) 

As before, S  and C  are the percentage of sand and clay in the soil, 
respectively. The dielectric constant of free water is a function of temperature 
and frequency and is given by 

 
( )
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w w
fw w

wf

ε ε
ε ε

π τ
∞

∞
−

= +
+

. (5.1-24) 

In Eq. (5.1-24), τw  is the relaxation time for water, εw0  is the static dielectric 
constant for water, εw∞ = 4.9  is the high frequency limit of the real part of the 
dielectric constant for water, and f  is the frequency. Both τw  and εw0  are 
functions of temperature (Ulaby et al., 1986 [17]). At 20°C, the values are 
2πτ 0.58 10−10

w = ×  seconds and εw0 = 80.1 . 

A comparison of the results of the models described above is shown in Fig. 5-5 
for the case of a sandy loam soil at 1.4 GHz. All models show the non-linear 
relationship between the soil dielectric constant and volumetric soil moisture, 
especially at low moisture values. 

5.1.3 Penetration Depth 
The question of how deep a particular radar senses the surface moisture often 
arises. The answer to this question is unfortunately not straightforward.  

Experimental results indicate that at C-band, the radar signal is well correlated 
with the moisture in the top 2 cm of the soil (Bruckler et al., 1988 [18]). At 
L-band, good correlation is typically observed with the moisture in the top 5 cm 
of the soil. 

From a theoretical point of view, the penetration depth depends on the complex 
dielectric constant ε  of the surface. This quantity can be written as 

 iε ε ε′ ′′= + , (5.1-25) 
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Fig. 5-5. Comparison of the results of several models linking surface dielectric constant 
to volumetric soil moisture. The case shown is for a sandy loam soil with 51.5 percent 
sand and 13.5 percent clay. Results are applicable to 1.4 GHz. Note the close 
comparison between the Hallikainen and Brisco curves.  

where the imaginary part corresponds to the ability of the medium to absorb the 
wave and transform its energy to another type of energy (heat, chemical, etc.). 
If we consider a wave propagating purely in the x-direction in a homogeneous 
medium, then the electric field varies as 

 0
i kxE E e ε= .  

If we can assume that , then  

 
2

i i εε ε ε ε
ε
′′

′ ′′ ′= + ≈ +
′

 (5.1-26) 

and 

 0  ax i kxE E e eα ε′−= , (5.1-27) 

where 
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2a

kε πεα
ε λ ε
′′ ′′

= =
′′

.  

The observed radar cross-section is proportional to power. The power of the 
wave as a function of x  can be written as: 

 2( ) (0) axP x P e α−= . (5.1-28) 

If αa  is also a function of x , such as when the moisture profile varies with 
depth in the soil, then the above equation will become: 

 
0

( ) (0) exp 2 ( )  
x

aP x P dα ξ ξ = − 
 ∫ . (5.1-29) 

The penetration depth Lp  is defined as the depth at which the power decreases 

to P e(0) −1 (i.e., 4.3-dB loss). Thus: 

 p
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2 2a
L λ ε

α πε
′

= =
′′

. (5.1-30) 

This can also be expressed a
(tan )δ ε= ′′ / ε ′ : 

s a function of the medium loss tangent 

 p 2   tan 
L λ

π ε δ
=

′
. (5.1-31) 

At this depth, the incident power is 4.3 dB weaker than at the surface. In the 
case of radar observation, if the interface is covered by a layer of thickness Lp , 
the attenuation due to absorption alone will be 2× 4.3 = 8.6 dB  for a normally 
incident wave. The factor 2 represents the fact that absorption affects both the 
incident and the scattered waves. 

These expressions show that the penetration depth is a function of actual value 
of the dielectric constant. Based on the discussion in the previous section, this 
means that the penetration depth of the radar signals will then be a function of 
the soil moisture, with deeper penetration into dry soils and less penetration 
into wet soils. 

Note that the penetration depth does not necessarily tell us from how deep into 
the soil most of the radar signal was received. As was pointed out above, the 
signal returned from a depth equal to the penetration depth suffered 8.6 dB of 
attenuation. Walker et al. (1997) [19] argue that it is unlikely that scattering 
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from this depth would add significantly to that arising from the soil-air 
interface. They suggest a modified depth based on a comparison of signals that 
would be received from a buried layer to that from the surface. Their results 
suggest a somewhat smaller sensing depth than what is normally quoted, with a 
reduction on the order of a factor of 2, depending on which polarization is used. 
A similar approach was used by Le Morvan et al. (2008) [20], who used a 
three-layer model to explain Advanced Synthetic Aperture Radar (ASAR) 
observation of soil moisture in France. As an aside, their results show 
significant correlations between the observed C-band backscatter and soil 
moisture measurements in a layer 2 - 5 cm beneath the surface. As is pointed 
out by these studies, however, to calculate the actual sensing depth from a 
theoretical point of view for anything but the simplest scattering geometries is a 
daunting task. For our purposes, we shall assume that, on the basis of 
observations and these studies, radars sense soil moisture in the top few 
centimeters of the soil, keeping in mind that the sensing depth is, indeed, 
shallower for wetter surfaces than for dry surfaces. 

5.1.4 Soil Moisture Profile 
When the penetration depth of a soil surface is evaluated, it is assume that the 
dielectric constant of the surface is uniform. However, soil moisture varies with 
depth [21, 22] depending upon the temperature profile, the soil type, and the 
surface evaporation. The soil moisture profile changes significantly as a soil 
surface dries after a precipitation event. The effect of the soil moisture profile 
on radar measurements can be evaluated by calculating the backscattering cross 
section from a rough surface interface on top of a layered medium with varying 
permittivity profile. 

The reflection coefficient from a layered medium with a flat interface can be 
calculated for a given permittivity profile ( ( )zε ) as [23] 

 ( )2( ) /2 ( ) 1
2 ( )

n
n n

dR d z dzi z R R
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ββ
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= − + −   

 for horizontal polarization (5.1-32) 
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 for vertical polarization (5.1-33) 

where 
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 2( ) ( ) cosz zπβ ε θ
λ

=  (5.1-34) 

Equations (5.1-32) and (5.1-33) can be solved exactly using numerical 
techniques. When the permittivity profile changes slowly, the reflection 
coefficient of the layered medium is smaller. Therefore, it is expected that the 
reflection coefficient will be smaller as the surface dries since the impedance 
changes gradually from the surface to the subsurface in addition to the lower 
surface dielectric constant. It is important to point out that the reflection 
coefficient of a soil surface with a varying moisture profile may not be the same 
as that calculated assuming a homogenous surface characterized by the average 
value of soil moisture within top 5 cm. We believe that the moisture profile 
may play an important role, especially for a dry surface. Notice that nR  in 
Eq. (5.1-32) and Eq. (5.1.33) is the specular reflection coefficient. Although the 
specular reflection coefficient is useful for calculating the effective impedance 
at the reflection interface, we must study the effects of a rough interface to 
realistically model backscatter from such a surface. 

The backscattering cross section from a layered medium with a rough interface 
has been studied in [24, 25, 26]. An analytic method was derived to calculate 
the bistatic-scattering coefficient from a layered medium (less than three layers) 
with slightly rough interfaces [24]. In [24], the electromagnetic waves in each 
layer are expressed in terms of an infinite number of angular spectral 
components. A small perturbation approach is used to calculate the scattered 
wave, which is appropriate for the scattering calculation for a low-frequency 
radar system. In addition, Kuo and Moghaddam [25] used field-collected soil 
moisture data to understand the penetration capability of a low frequency radar. 
The simulation results in [25] demonstrated that both the backscattering 
coefficient and the co-polarization phase difference are sensitive to deep soil 
moisture. The inversion of the model parameters of a two-layer dielectric 
medium was investigated using the method of simulated annealing [26]. 
Although these approximate methods [24, 25] have provided the useful results, 
more accurate results can be obtained using a finite element method (FEM) [27, 
28].  

In the previous section we showed that the penetration depth is a function of the 
wavelength. The longer wavelength signals are expected to penetrate deeper 
into the surface and, depending on the moisture profile, may then sense either a 
drier or wetter surface. Figure 5-6 shows an example of the inferred dielectric 
constant of Lunar Dry Lake in Nevada using the algorithm proposed by Dubois 
et al. which we will discuss in detail a bit later. The oval shaped feature is the 
dry lake bed, which at the time of data acquisition was dry enough on the 
surface so that the author was able to drive a truck across the lake bed. The 
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Fig. 5-6. Dielectric constant map derived from an L-Band AIRSAR image of Lunar Lake playa 
in Nevada. The oval shaped feature is a dry lake bed, which at the time of data acquisition 
was dry at the surface. The higher dielectric constant on the right portion of the lake is due 
to subsurface moisture. [6] 

radar signals penetrated deep enough into the surface to sense subsurface 
moisture on the right hand side of the lake in the picture. The moisture was the 
remnants of runoff from light rains about a week earlier that entered the lake 
surface from the top right and covered only the right portion of the lake bed. 
The water had dried away before the data collection to the point that the surface 
was completely dry. 

Figure 5-7 shows another example, this time showing the difference between 
two frequencies. The image shows a feature known as Cottonball Basin in 
Death Valley, California. Cottonball Basin is at the northern end of the larger 
Death Valley salt pan, and receives most of its inflow from groundwater. The 
southern edge of Cottonball Basin are covered with mud flats resulting from 
seeping salty water. These areas stay wet the longest after an inflow event. 

Figure 5-7 shows two dielectric constant maps, the one inferred from L-band 
data on the left, and from P-band data on the right. There are many similarities 
between the two maps. First, both show relatively large dielectric constants in 
the mudflats, and lower dielectrics in the rest of Cottonball Basin. There are 
also some important differences, however. When looking closer at the mud flat 
areas, we note that the P-band dielectric constants show higher values over 
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Fig. 5-7. Dielectric constant maps inferred from L-band (left) and P-band (right) AIRSAR data 

of Cottonball Basin in Death Valley, California. See text for discussion. 

larger areas towards the edges of the mudflats. These are the shallower areas of 
the mud flats. As the mud flats dry out, the surface of the shallower areas dry 
first, while the sub-surface in these areas can stay wetter longer. The longer 
wavelength P-band signals more than likely penetrate deeper into these surfaces 
and sense more of the wetter subsurface than the L-band signals. We also note 
the same behavior to the northern part of the Basin, next to the word “Salt 
Creek” in the image. There is an area, located in the Salt Creek, that shows a 
higher dielectric constant at P-Band. Another area is also visible further north 
following the Salt Creek further up in the image. Both these areas more than 
likely represent subsurface moisture. Unfortunately, no actual ground 
measurements were made during the data collection, so these explanations 
cannot be verified. But given that the Dubois et al. algorithm consistently infers 
higher moistures at the longer wavelength in only some areas, and similar 
values in others, supports this conjecture. 

5.2 Scattering from Bare Rough Surfaces 
Many excellent texts describing the details of scattering from rough surfaces are 
available. Here, we will summarize some of the better known models only in 
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enough detail to set the stage for a better understanding of the inversion models 
that we will describe later. We will not, however, describe the detailed 
electromagnetic modeling aspects of these models.  

Consider first the case of a perfectly smooth surface of infinite extent that is 
uniformly illuminated by a plane wave. This surface will reflect the incident 
wave into the specular direction with scattering amplitudes equal to the well-
known Fresnel reflection coefficients. In this case, no scattered energy will be 
received in any other direction. If now the surface is made finite in extent, or 
the infinite surface is illuminated by a finite extent uniform plane wave, the 
situation changes. In this case, the far-field power will decrease proportional to 
the distance squared (the well-known R-squared law). The maximum amount of 
reflected power still appears in the specular direction, but a lobe structure, 
similar to an “antenna pattern,” appears around the specular direction. The 
exact shape of the lobe structure depends on the size and shape of the finite 
illuminated area, and the pattern is adequately predicted using physical optics 
calculations. This component of the scattered power is often referred to as the 
coherent component of the scattered field. For angles far away from the 
specular direction, there will be very little scattered power in the coherent 
component. 

The next step is to add some roughness to the finite surface such that the mean-
square height of the surface is still much less than the wavelength of the 
illuminating source. The first effect is that some of the incident energy will now 
be scattered in directions other than the specular direction. The net effect of this 
scattered energy is to fill the nulls in the “antenna pattern” of the surface 
described before. The component of the scattered power that is the result of the 
presence of surface roughness is referred to as the incoherent component of the 
scattered field. At angles significantly away from the specular direction, such as 
the backscatter direction at larger incidence angles, the incoherent part of the 
scattered field usually dominates. 

As the roughness of the surface increases, less power is contained in the 
coherent component and more power is contained in the incoherent component. 
In the limit where the rms height becomes larger than the wavelength, the 
coherent component is typically no longer distinguishable, and the incoherent 
power dominates in all directions. In this limit, the strength of the scattering in 
any given direction is related to the number of surface facets that are oriented 
such that they reflect specularly in that direction. This is the same phenomenon 
that causes the shimmering of the moon on a roughened water surface. 

Several different criteria exist to decide if a surface is “smooth” or “rough.” 
The most commonly used one is the so-called Rayleigh criterion that classifies 
a surface as rough if the rms height satisfies 
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 8cosh λ θ> . (5.2-1) 

In this criterion, θ  is the angle at which the radar wave is incident on the 
surface. A more accurate approximation of surface roughness was introduced 
by Peake and Oliver (1971) [29]. According to this approximation, a surface is 
considered smooth if 

 25cosh λ θ< . (5.2-2) 

A surface is considered rough if 

 4cosh λ θ> . (5.2-3) 

Any surface that falls in between these two values is considered to have 
intermediate roughness. 

Depending on the angle of incidence, two different approaches are used to 
model radar scattering from rough surfaces. For small angles of incidence, 
scattering is dominated by reflections from appropriately oriented facets on the 
surface. In this regime, physical optics principles are used to derive the 
scattering equations. As a rule of thumb, facet scattering dominates for angles 
of incidence less than 20 - 30 degrees (deg). For the larger angles of incidence, 
scattering from the small scale roughness dominates. The best known model for 
describing this type of scattering is the small perturbation model. This model, 
as its name suggests, treats the surface roughness as a small perturbation from a 
flat surface. More recently, Fung et al. (1992) [10] proposed a model, based on 
an integral equation method (IEM) solution to the scattering problem, that 
seems to describe the scattering adequately in both limits. Some refinements to 
this IEM model have been suggested by Wu et al. (2001) [30]. 

All models of rough surface scattering assume that the average surface is 
horizontal. In practice, the scattering is modulated by the local topography; this 
assumption, therefore, is not necessarily valid. The effect of the local 
topography can be described as a local tilt to the surface. This tilt is adequately 
described by the slope of the surface in two orthogonal directions. Note that, in 
this case, we mean large scale tilts, the scale of which is larger than or equal to 
the size of the radar pixels. The effect of such a local tilt on the scattering is 
two-fold. First, the wave impinges on the surface with a different local angle of 
incidence than it would have if the surface was not tilted. Second, the local tilt 
rotates the local coordinate system of the surface element with respect to that of 
the global system in which the radar makes its measurement. This rotation will 
modify the relative strengths of the scattering coefficients at the different 
polarizations. We will look at this effect in more detail in the next section. 
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Several algorithms have been proposed to invert measured radar signals to infer 
soil moisture. In general, the radar backscatter cross-section is a function of 
both the surface roughness and the surface dielectric constant (or moisture). 
Therefore, in order to measure either of these quantities, we must be able to 
separate their effects on the measured radar backscatter cross-section. Since we 
are trying to solve for more than one unknown, it follows that more than one 
measurement is needed. Most algorithms use multi-polarization measurements 
to accomplish the goal of separating the effects of surface roughness and 
dielectric constant. The sections that follow briefly discuss several of these 
models. 

5.2.1 First-Order Small Perturbation Model 
The use of the first-order small perturbation model to describe scattering from 
slightly rough surfaces dates back to Rice (1951) [31, 32]. Rice used a 
perturbation technique to show that, to first order, the scattering cross-sections 
of a slightly rough surface can be written as 

 ( )24 2 44 cos 2 sin ;xx xxk h W k xx hh or vvσ π θ α θ= = , (5.2-4) 

where k  =  2π λ/ , is the wavenumber, λ  is the wavelength, and θ  is the local 
incidence angle at which the radar waves impinge on the surface. The 
roughness characteristics of the soil are described by two parameters: h  is the 
surface root mean square (rms) height and W (ξ ξx , y )  is the two-dimensional 
normalized surface roughness spectrum, which is the Fourier transform of the 
two-dimensional normalized surface autocorrelation function previously 
discussed in subsection 5.1.1. We note that the surface rms height should be 
calculated after local slopes have been removed from the surface profile; the 
slope of the surface changes the radar cross-section because of the change in the 
local incidence angle. Local slopes that tilt towards or away from the radar do 
not change the surface roughness; instead, they affect the local incidence angle. 
This is a frequent source of error in the interpretation of the results from 
laboratory and field experiments. 

The surface electrical properties are contained in the variable αxx , which is 
given by 
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and 
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In these equations, ε  is the dielectric constant, or relative permittivity, of the 
soil. We note that the small perturbation model as described here is applicable 
only to smooth surfaces. The usual assumptions are that the roughness is small 
compared to the wavelength (i.e., kh < 0.3 ) and that the rms slope (s) satisfies 
s < 0.3.  

5.2.2 The Integral Equation Model 
Fung et al. (1992) [10] showed that the expressions for the tangential surface 
fields on a rough dielectric surface can be written as a pair of integral equations. 
The scattered fields, in turn, are written in terms of these tangential surface 
fields. Using this formulation, and standard approximations, Fung et al. [10] 
showed that the scattered field can be interpreted as a single scattering term and 
a multiple scattering term. When the surface is smooth enough, the single 
scattering term reduces to the well-known small perturbation model described 
above and the cross-polarized terms reduce numerically to the second-order 
small perturbation result. Their results also show that in the high-frequency 
limit, only the well-known Kirchoff term described by the physical optics 
model remains significant for surfaces with small rms slopes. When the surface 
rms slopes are large, however, the multiple scattering terms are important. 

Fung et al. (1992) [10] showed that the single scattering backscatter cross-
sections can be written as 
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The term nW  is the Fourier transform of the nth power of the surface 
correlation function, which can be calculated using 

 ( ) ( ) ( )0
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π
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= ∫ , (5.2-9) 
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where J x0 ( )  is the Bessel function of the first kind and order zero. Also, 

 2 2
; ; 0

cos cos
h v

hh vv hv vh
R Rf f f f
θ θ

−
= = = = , (5.2-10) 

with Rh  and Rv  the well-known Fresnel reflection coefficients for horizontal 
and vertical polarization, respectively. Finally, 
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  (5.2-12) 

and 

 ( ) ( )sin ,0 sin ,0 0hv hvF k F kθ θ− + = , (5.2-13) 

where µ  is the relative permeability of the surface and ε  is the relative 
permittivity, or dielectric constant. Note again that the single scattering term 
does not predict any depolarization. The cross-polarized return is predicted by 
the multiple scattering term. The expressions are quite complicated and are 
given in Fung et al. (1992) [10]. 

Figure 5-8 shows the predicted backscatter cross-section as a function of 
incidence angle for different surface roughness values and different dielectric 
constants. The plot on the left shows that increasing the surface roughness 
generally causes an increase in the radar cross-sections for all polarization 
combinations. Notice how the difference between the HH and VV cross-
sections becomes smaller as the surface gets rougher. The plot on the right 
shows that increasing the dielectric constant (or soil moisture) also increases 
the radar cross-sections for all polarizations. In this case, however, increasing 
the dielectric constant also increases the difference between the HH and VV 
cross-sections. 

5.3 Example Bare Surface Soil Moisture Inversion 
Models 

In this section, we discuss some examples of previously reported soil moisture 
inversion models. All of these examples try to invert for soil moisture using  
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(a) 

(b) 

 
Fig. 5-8. The predicted radar cross-sections for a slightly rough surface, assuming an 
exponential correlation function. Chart (a) on the top shows the effect of changing 
surface roughness for constant dielectric constant; chart (b) on the bottom shows the 
effect of changing dielectric constant for constant roughness. 
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radar measurements made at one instant in time. As such, they can be 
considered to attempt to provide a “snap-shot” of soil moisture at the time the 
radar measurements were made. They commonly use only the radar 
measurements from that time instant and no other measurements from other 
times or other sensors. 

5.3.1 The First-Order Small Perturbation Model 
Returning to the expression for the small perturbation radar cross-section as 
given in Eq. (5.2-4), we note that the copolarized ratio 
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is only a function of the surface dielectric properties, and not of the surface 
roughness. Therefore, one should be able to use the measure ratio of radar 
cross-sections to infer the surface dielectric constant. Figure 5-9 shows how this 
ratio changes smoothly as the dielectric constant increases or as the incidence 
angle changes. 

 

Fig. 5-9. The ratio of σHH to σVV as predicted by the small perturbation model. This ratio 
monotonically decreases as the dielectric constant increases. It also decreases with 
increasing incidence angle.  
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If we assume the dielectric constant to be a real number, it is possible to rewrite 
this expression into a fourth-order polynomial in ε  as follows: 

 4 3 2
4 3 2 1 0 0a a a a aε ε ε ε+ + + + = , (5.3-2) 

where 
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 (5.3-3) 

and 
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R σ
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To invert the radar measurements for surface dielectric constant, one then has to 
find the roots of this fourth-order polynomial. As an example, consider the case 
of a radar wave incident at 45 deg on a surface with ε =10. The polynomial in 
this case is 

 4 3 20.240270 3.01021 6.56937 5.06918 1.26975 0ε ε ε ε− + − + = ,  

with roots 

 0.528; 0.996; 1.004; 10.000ε = .  

Solving for the roots of a fourth-order polynomial is computationally quite 
intensive. Looking again at Fig. 5-9, we note that the co-polarized ratio 
decreases monotonically as the dielectric constant increases. This type of 
function is ideally suited to be inverted using a look-up table approach. This 
approach uses a table with one row for every 1 deg in incidence angle and 
dielectric constants as integers. Once the four table entries are identified that 
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bracket the measured value in incidence angle and the dielectric constant, 
bilinear interpolation is used between these values to find the final dielectric 
constant. This method provides an increase of approximately a factor 20 in 
computational speed over solving for the roots of the polynomial with a 
negligible decrease in accuracy. 

We can relax the requirement that the dielectric constant must be real by 
performing the look-up table calculation using the soil moisture and one of the 
models that relate soil moisture to the complex dielectric constant. This 
approach would require making some assumptions about the type of soil: 
specifically, the texture and salinity. These assumptions must be made in any 
case if one wants to translate the measured dielectric constant to soil moisture. 

As pointed out before, the small perturbation model is only applicable to 
surfaces that are smooth. While this model predicts the ratio (HH/VV) of the 
co-polarized radar cross-sections to be independent of the surface roughness, 
observations show this ratio to increase with increasing roughness. Extending 
the perturbation model to include second-order terms, one finds that this ratio 
is, indeed, affected by the surface roughness and that the effect of the roughness 
is to increase this ratio; that is, to make the VV cross-section closer to that at 
HH polarization. The net effect of this is that the measured value appears to 
shift to the left on the curves shown in Fig. 5-9, with the result that a first-order 
small perturbation inversion will tend to underestimate the surface dielectric 
constant in the presence of significant roughness. (We will illustrate this more 
clearly in the next section.) As a result of this, one could argue that the actual 
dielectric constant of a rough surface will be larger than or equal to the result of 
a first-order small perturbation inversion.  

5.3.2 Algorithm Proposed by Oh et al. (1992) 
Based on the scattering behavior in limiting cases and experimental data, Oh et 
al. (1992) [8] have developed an empirical model in terms of the rms surface 
height, the wave number, and the relative dielectric constant. The key to this 
approach is the co-polarization ratio p and cross-polarization ratio q, which are 
given explicitly in terms of the roughness and the soil dielectric constant. The 
parameters p and q from the Oh’s algorithm are derived using an empirical fit 
to the data collected by their truck-mounted scatterometer system over bare 
soils of different roughness and moisture conditions. The explicit expressions 
for p and q are: 

  (5.3-5) 
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and 
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As before, k  =  2π λ/ , is the wavenumber, λ  is the wavelength, and ε  is the 
complex dielectric permittivity. 

Figure 5-10 shows how the co- and cross-polarized ratios are predicted to vary 
with changing surface roughness and dielectric constant. For large surface 
roughness, the co-polarized ratio approaches 1, independent of the surface 
dielectric constant, consistent with experimental observations. For lower 
dielectric constants, the co-polarized ratio is more sensitive to variations in 
dielectric constant than in roughness; note, however, that this is not the case for 

 
Fig. 5-10. Variation of the co- and cross-polarized ratios as a function of dielectric 
constant and surface roughness, as predicted by the model proposed by Oh et al. 
(1992) [8]. The results shown are for a 45-deg incidence angle.  
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high dielectric constant surfaces. The cross-polarized ratio is always a strong 
function of surface roughness. For rougher surfaces, this ratio is also quite 
sensitive to changes in dielectric constant and, in the limit of very rough 
surfaces, becomes a function of dielectric constant only. We also note that as 
the surface roughness increases, all the values bunch together more, meaning 
that we will have less sensitivity to moisture (or roughness) in our 
measurements, and larger uncertainties in the inferred quantities will likely 
result in the presence of measurement errors. 

To invert the expressions for the soil dielectric constant, we note that we can 
rewrite Eq. (5.3-5) and Eq. (5.3-6) in terms of only the surface dielectric 
constant as 
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Two approaches can be followed to solve this nonlinear equation in the 
dielectric constant: the first is to use an iterative scheme; the second is to use a 
look-up table approach. We found that the most efficient way (in terms of 
computational speed) to solve this expression for the dielectric constant is to 
use a look-up table inversion. 

We can derive a similar expression to solve for the surface roughness from Eq. 
(5.3-5) and Eq. (5.3-6) as 
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As in the case of the dielectric constant, a look-up table approach is used to 
solve this expression for the rms height from the measured values of the co- and 
cross-polarized ratios. 

One potential practical problem of the algorithm proposed by Oh et al. (1992) 
[8] is the fact that the cross-polarized ratio is strongly affected by the presence 
of vegetation. Several studies have shown that the cross-polarized return is 
strongly correlated with vegetation biomass; and as a result, even a relatively 
small amount of vegetation increases the cross-polarized ratio significantly over 
that of a bare surface. The presence of natural vegetation also tends to increase 
the co-polarized ratio, but to a lesser extent. The result is to artificially move 
the measurement to the upper right in Fig. 5-8, which means that the dielectric 
constant of the surface will be underestimated and the surface roughness will be 
overestimated. 
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5.3.3 Algorithm Proposed by Dubois et al. 
Partly to avoid the difficulties that the Oh et al. (1992) [8] algorithm has when 
vegetation is present, Dubois et al. (1995) [6] developed an empirical model 
that only requires measurements of σhh  and σvv  at a frequency between 1.5 
and 11 GHz to retrieve both the surface rms height h and soil dielectric constant 
ε  from bare soils. They used two sets of ground-based scatterometer data 
collected by Oh et al. (1992) [8] and by the University of Berne’s Radiometer 
Scatterometer (RASAM) (Wegmuller, 1993 [9]) system to develop two 
equations that relate the measured co-polarized cross sections to surface 
roughness and dielectric constant. Those equations are: 
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2.75 0.028 tan 1.4 0.7
5

cos10 ( ) 10 ( sin )
sin

hh khε θθσ θ λ
θ

− ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅  (5.3-10) 

and 
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vv khε θθσ θ λ
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− ⋅ ⋅= ⋅ ⋅ ⋅ ⋅ ⋅ . (5.3-11) 

Note that the wavelength used in these expressions must be in centimeters. 
These equations have been applied to a number of AIRSAR images of the Little 
Washita watershed and SIR-C measurements over a bare field by Dubois et al. 
(1995) [6], and the estimated vm  (using Hallikainen’s equations to relate 
dielectric constant and soil moisture) values were found to agree well with 
those measured by ground sampling, with a resulting rms error on the order of 
4–6 percent [6].  

We note that the expressions derived by Dubois et al. [6] predict that the co-
polarized ratio will exceed 1 in the limit of surfaces with large rms heights. 
Experimental results suggest that this ratio will asymptotically approach one, 
but will not exceed 1. This deficiency in the Dubois et al. model makes their 
results for rougher surfaces suspect. 

Figure 5-11 shows how the VV cross-section and the co-polarized ratio are 
predicted to vary with changing surface roughness and dielectric constant. In 
contrast to the model proposed by Oh et al. [8], the co-polarized ratio does not 
approach 1 for large surface roughness. As mentioned before, this represents 
one shortcoming in the Dubois et al. model, and this failure to approach 1 is a 
consequence of the linear approximation they applied to the measured data in 
the logarithmic domain. All the curves run parallel in both directions, 
suggesting that the sensitivity of the cross-sections to roughness is independent 
of the actual value of the dielectric constant and vice versa. This, again, is a 
consequence of the linear approximation assumed. 
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Fig. 5-11. Variation of the VV cross-section and the co-polarized ratio as a function of 
dielectric constant and surface roughness as predicted by the model proposed by 
Dubois et al. (1995) [6]. The results shown are for 45 deg incidence angle and  
L-band.  

The Dubois et al. [6] expressions can be rewritten by expressing the radar 
cross-sections in decibels as follows 

 ( ) 10log ( ) ;xx xx xx xxdB A B kh C xx hh or vvσ ε= + + = . (5.3-12) 

Using the expressions in Eq. (5.3-10) and Eq. (5.3-11), we find that 
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. (5.3-13) 

Equation (5.3-12) can be written in matrix form as follows 
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Inverting this expression, we find that the solution for the Dubois et al. 
algorithm [6] is 
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The explicit inversion for the dielectric constant is 
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According to Dubois et al. (1995) [6], their algorithms is applicable to surfaces 
0 0with kh < 3.0  and 30 ≤θ ≤ 70 . The range of experimental values available 

during algorithm development is what places the upper limit on the surface 
roughness. From Eq. (5.3-15), we find the inversion for the surface roughness 
to be 

 ( ) ( ) ( ) ( )
( ) ( )

10

10 10

log 0.083 0.137 1.807 0.446log cos

3.345log sin 0.375log
vv hhkh dB dBσ σ θ

θ λ
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− −
. (5.3-17) 

In the presence of vegetation, the co-polarized ratio is affected more than the 
absolute radar cross section. This means that we can expect the presence of 
vegetation to move a measurement mostly to the right in Fig. 5-11. The result is 
that the dielectric constant will be underestimated and the roughness will be 
overestimated. An obvious advantage of the Dubois et al. model is the simple 
inversion equations that are easily and efficiently implemented [6]. 

5.3.4 Algorithm Proposed by Shi et al. (1997) [7] 
A concern about the empirical approaches described so far is that these models 
do not take into account the shape of the surface power spectrum that is related 
to the surface roughness correlation function and correlation length. This is not 
consistent with theoretical surface backscattering model predictions: i.e., the 
backscattering coefficients are sensitive not only to soil moisture vm  and 
surface root mean square (rms). height h, but also to the shape of the surface 
roughness power spectrum. In addition, any empirical model developed from a 
limited number of observations might give site-specific results because of the 
nonlinear response of backscattering to the soil moisture and surface roughness 
parameters. This drawback might be reduced by using data from many different 
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sites, but it is very difficult to acquire data experimentally that would cover all 
possible types of surfaces and include the entire range of expected roughness 
and moisture conditions. 

Progress in theoretical modeling, such as the Integral Equation Method (IEM) 
(Fung et al., 1992 [10]), offers an alternative approach for the retrieval of soil 
moisture from radar data. Although the IEM model is valid for a wider range of 
surface roughness conditions when compared to other earlier theoretical 
models, the complexity of this model makes its application directly to the radar 
data to infer soil moisture and roughness parameters rather difficult. Since the 
number of independent radar measurements is usually limited, Shi et al. (1997) 
[7] developed a model by parameterizing IEM model-based numerical 
simulations for a wide range of surface roughness and soil moisture conditions. 

Shi et al. (1997) [7] examined many different combinations of polarizations of 
AIRSAR and SIR-C measurements at L-band to evaluate their effectiveness in 
the estimation of mv  and h. Several pairs of the measurements were found to be 
nearly equally effective when the AIRSAR and SIR-C quad-polarized data 
acquired over the Little Washita watershed were used. Two of these 
combinations, σ σhh vv  and σhh +σvv , provided the best fit with three 
different correlation functions used in the simulation. The following two 
equations were used to estimate soil moisture and a surface roughness 
parameter SR  from SIR-C and AIRSAR data (Shi et al., 1997 [7]): 
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and 
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In these expressions, the surface roughness parameter SR = ( )kh 2W , k is the 
wave number, and h is the surface rms height. W is the roughness spectrum of 
the surface, αhh  and αvv  are the polarization amplitudes for HH- and VV-
polarization as in the small perturbation model that depends only on the 
dielectric constant of the soil ε  and the incidence angle θ , as was previously 
demonstrated. The coefficients that are functions of the angle of incidence in 
Eq. (5.3-6) and Eq. (5.3-7) are 
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To understand the inversion of this model better, we note that it is possible to 
rewrite Eq. (5.3-19) in the following form: 
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Figure 5-12 shows the behavior of the left-hand side of Eq. (5.3-21) as a 
function of dielectric constant. 

Conceptually, the inversion algorithm for the Shi et al. algorithm [7] works as 
follows. The measured co-polarized returns are used to calculate the right side 
of Eq. (5.3-21). This value is then used in Fig. 5-12, at the appropriate 
incidence angle, to “read” the dielectric constant. We found a look-up table 
approach to be the most efficient way to invert Eq. (5.3-21) for the surface 
dielectric constant. 

 
Fig. 5-12. The relationship between dielectric constant and the left hand side of 
Eq. (5.3-9) is a monotonically increasing function. The sensitivity of the Shi et al. 
algorithm is better at larger incidence angles.  
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5.4 Comparison of the Performance of Bare Surface 
Inversion Models 

To investigate the ability of the individual algorithms to take the effect of 
surface roughness into account during the inversion, we follow this assessment 
by applying all the algorithms to the same AIRSAR L-band data set of a 
sparsely vegetated (less than 5% cover) alluvial fan in Death Valley, California, 
acquired during the summer of 1993. The moisture content of the soil is 
extremely low this time of the year, with the result that one expects similar low 
soil moisture throughout the scene. If we invert for the surface dielectric 
constant, we would expect those areas covered with more rocks to have a 
slightly higher dielectric constant and the valley floor where salt deposits 
causes the dielectric constant to be quite high (typically > 40) because of the 
increase in salinity. The L-band total power image for this data set is shown in 
Fig. 5-13.  

The large alluvial fan is the Trail Canyon fan on the west side of Death Valley. 
The older, smoother surfaces are shown as the darker features; the rougher, 

 
Fig. 5-13. L-band total power image of the Trail Canyon alluvial fan on the west side of 
Death Valley, California. The radar illumination is from the left. The bright areas on the 
left in the images are salty soils in the valley floor. The darker areas on the fan surface 
represent older, smoother fan surfaces. Active stream channels are rougher, appearing 
bright in the image. The image was acquired in summer when the surfaces are 
uniformly dry and low dielectric constants are expected.  
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younger surfaces are brighter, indicating more backscatter. The valley floor is 
covered with a rougher, salty soil and appears very bright in the image, as does 
the active stream channels that are covered with rocks and small boulders. 

Figure 5-14 shows the inversion result for the dielectric constant for the small-
perturbation algorithm described in the previous section. The first obvious 
observation is that this result does not appear uniform on the alluvial fan, as 
expected. Instead, the darker areas in the total power image, corresponding to 
the smoother surfaces, have higher dielectric constants than the brighter, 
rougher areas. As mentioned before, the ratio of the cross-sections at hh and vv 
is a function of the surface roughness. The first-order small-perturbation model 
fails to take this into account and underestimates the dielectric constant of the 
rougher surfaces. Note that we have applied the small-perturbation model to the 

 
Fig. 5-14. Inversion results using the small-perturbation model algorithm. The algorithm 
results, as expected, are affected significantly by the changes in surface roughness, and 
consistently estimates lower values of dielectric constant for the rougher surfaces. Note the 
scale difference with the other figures following.  
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entire image even if the surface is rougher than that for which the small-
perturbation model is supposed to be applicable. This was done only to 
illustrate the shortcomings of the small perturbation model in terms of not 
taking into account the effects of surface roughness on the HH/VV ratio.  

Figure 5-15 shows the inversion result for the algorithm proposed by Oh et al. 
(1992) [8]. The algorithm also estimates higher dielectric constants on the 
smoother surfaces, but the difference is somewhat less pronounced than in the 
case of the small perturbation model. The inferred dielectric constant values are 
higher than that of the small-perturbation model (note the different scales), 
indicating that the Oh et al. algorithm does a better job of taking the effects of 
surface roughness into account. However, it is clear from the results that this 
algorithm still fails to completely separate the effects of surface roughness and 
dielectric constant. 

 
Fig. 5-15. Inversion results using the algorithm proposed by Oh et al. [8]. The algorithm 
results are affected significantly by the changes in surface roughness, and consistently 
estimate lower values of dielectric constant for the rougher surfaces.  
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Figure 5-16 shows the inversion results for the Dubois et al. algorithm [6]. This 
algorithm clearly does a better job than the others at removing the effects of 
surface roughness. It also clearly shows that the saline valley floor has a higher 
dielectric constant than the dry alluvial fan surface. The values of the dielectric 
constants calculated on the alluvial fan are consistent with dry soils that are 
covered by desert pavement. Also note that, although quite noisy, the inversion 
does indicate that the dielectric constant of the active stream channels is slightly 
higher than that of the fan surface, consistent with having more rocks and 
boulders and less exposed soil present in the active stream channels.  

Figure 5-17 contains the inversion results for the algorithm proposed by Shi et 
al. (1997) [7]. Note that this algorithm, in contrast to the small-perturbation 
model, and the Oh et al. [8] algorithm, reports lower dielectric constants on the 
smoother surfaces than the rougher surfaces. It also fails to report high 

 
Fig. 5-16. Inversion results using the Dubois et al. algorithm. The algorithm does well at 
removing the effects of surface roughness. It also does better at indicating the higher 
dielectric constants of the saline valley floor on the left.  
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dielectric constants for the saline valley floor. To understand the behavior of 
this algorithm in the presence of roughness, let us consider the right-hand side 
of Eq. (5.3-21), repeated below: 
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Very rough surfaces exhibit co-polarized radar cross-sections that are equal, 
while slightly rough surfaces exhibit larger VV radar cross-sections than HH. It 
is, therefore, clear that for these two measurements to become equal, the HH 
cross-section must increase faster than the VV cross-section with increasing 
surface roughness in order for the former to "catch up" and become equal to the 
VV cross-section. This is what the empirical Dubois et al. algorithm [6] shows. 

 
Fig. 5-17. Inversion results for the Shi et al. algorithm [7]. The algorithm seems to over-
compensate for roughness, inferring lower values on the smoother surfaces than the 
rougher surfaces. 
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To help understand the results in Fig. 5-17, let us assume (as demonstrated by 
the Dubois et al. results) that 

 ( ) ( )~ ; ~ ;x y
hh vvkh kh x yσ σ ≥ .  

The right side of Eq. (5.3-21) then becomes 
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Neither x nor y are functions of the radar angle of incidence. It follows, 
therefore, that one could perhaps make the Shi et al. algorithm [7] insensitive to 
surface roughness at a particular incidence angle; however, this would not be 
the case at different incidence angles. In practice, however, ( )vhb θ  changes 
slowly with incidence angle, so the sensitivity to roughness does not vary much 
with incidence angle. If we take the values found by Dubois et al. [6] for x and 
y and use the value of ( )vhb θ  at 45 deg angle of incidence, we find 

 
( ) ( )

( ) ( )
( )

( ) ( )
1.4 1.1

0.2 0.1
0.48(1.1 1.4)2

~
vh

vv hh
b

vv hh

kh kh
kh kh

khθ
σ σ

σ σ

−
+

++
= + .  

One should, therefore, expect the Shi et al [7] results to be slightly affected by 
surface roughness. 

The next point to investigate is whether this argument results in an over-
estimation of the surface dielectric constant in the presence of increased 
roughness, as Fig. 5-17 indicates. Note that the discussion above shows that the 
right side of Eq. (5.3-21) increases with increasing surface roughness. The left 
side of Eq. (5.3-21) is a monotonically increasing function of the surface 
dielectric constant. Therefore, increasing the right side of Eq. (5.3-21) 
(artificially) in the presence of surface roughness would, indeed, cause the 
algorithm to estimate a higher dielectric constant than the actual value. 

5.5 Parameterizing Scattering Models 
Most scattering models are far too computationally intensive to use in practical 
inversion algorithms for large images. This is especially the case when the 
answers are needed on relatively short timescales, such as “near real-time” 
applications that require soil moisture values as inputs. One way to make this 
problem more tractable is to use “parameterized” versions of the scattering 
model with simpler functions that are easily inverted. 
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To illustrate this process, let us postulate that we can approximate the measured 
radar cross-section σ ij  using σ̂ ij  as follows:  

 ( ) ( )ˆ10log ; , ,ij ij ij v ijA B f m C g kh i j h vσ = + + = . (5.5-1) 

Here we use generic functions f  and g  to denote our hypothesis about the 
influence of soil moisture and surface roughness on the radar cross-section. The 
subscript ij  refers to the polarization combination used to measure (or in this 
case simulate) the radar cross-section. We should point out that the coefficients 
in this function are all functions of the angle of incidence. An example of such 
a postulate was employed by Dubois et al. (1995) [6], who used the dielectric 
constant itself as f and the logarithm for g . We typically want to minimize the 
error between the measured and the estimated radar cross-sections in a least-
squares sense. This error for n measurements is given by 
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The solution that minimizes this error is 
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, (5.5-3) 

where the angular brackets  denote averaging over all measurements. The 
question then becomes which functions f  and g  would provide the best 
results. 

As an example, we use simulated data from the integral equation method at an 
angle of incidence of 45 deg. We vary the soil moisture from 1 percent to 40 
percent and the values of h from 0.1 cm to 3 cm. At L-band, this would 
correspond to values of kh that vary from 0.026 to 0.78. We then use different 
combinations of functions to parameterize the values predicted by the integral 
equation model. 

In the first case, we use f m( )v = mv . Several other researchers have shown a 
linear relationship between the logarithm of the radar cross-section and soil 
moisture (Quesney et al., 2000 [5]). For the function g, we follow Dubois et al. 
(1995) [6] and use the logarithm of kh. Using the data described above, we find 



Applications: Measurement of Surface Soil Moisture 241 

 
( )
( )

ˆ10log 20.17 15.33 13.63log
ˆ10log 18.81 25.33 10.99log
hh v

vv v

m kh

m kh

σ

σ

= − + +

= − + +
. (5.5-4) 

Note that the HH cross-section increases faster with roughness than the VV, 
explaining why the difference between HH and VV is observed to be smaller 
for rougher surfaces than for smoother ones. Conversely, the VV cross-section 
increases faster with an increase in soil moisture, again explaining why the 
difference between HH and VV is observed to be larger for wetter surfaces than 
for drier ones. Also, note that the coefficients for the roughness are very similar 
to those determined by Dubois et al. (1995) [6], as is shown in Eq. (5.3-13), 
even though their coefficients were determined from measured data rather than 
model simulations. 

To determine how well these parameterizations approximate the model, we 
compare the accuracies of the parameterized inversions. We start with 
simulating 1000 model predictions in which both the surface roughness and the 
soil moisture are treated as random variables. We then take these 1000 pairs of 
HH and VV cross-sections and invert them for soil moisture and surface 
roughness using the expressions for the two parameterizations. We then 
compare the results of the inversions to the actual random values of soil 
moisture and surface roughness that went into the simulation. 

To invert the parameterizations, we note that (see Eq. (5.5-1)) we can write 
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We can write this in matrix form as follows 
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which has the solution 
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Figure 5-18 shows the results for the inversion. The rms error in estimating the 
surface roughness is 0.25 cm; the rms error in soil moisture is 5.1 percent. 
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(a) 

(b) 
 

 

Fig. 5-18. Inversion results for the parameterization shown in Eq. (5.5-4) for (a) surface 
roughness and (b) soil moisture. The rms error in surface roughness is 0.25 cm; the rms 
error in soil moisture is 5.1 percent. 
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Note that particularly the soil moisture is often underestimated. Many of the 
lower soil moisture cases are inferred to have negative soil moistures. This is a 
consequence of the linear approximation used for the soil moisture in this 
parameterization. In fact, the same behavior is observed for the dielectric 
constant of drier surfaces when using the Dubois et al. (1995) [6] algorithm, as 
was pointed out by Wang et al. (1995) [33]. 

As a second case, we use for the function f the logarithm of the soil moisture 
and for g the logarithm of kh. This choice for the function f is an effort to take 
into account the fact that the radar cross-section is, in fact, a non-linear function 
of the soil moisture. In this case, we find 
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The results for this case are shown in Fig. 5-19. The rms error in surface 
roughness is 0.26 cm; the rms error in soil moisture is 6.4 percent. While we 
have removed the negative inferred soil moisture values, there is in the inferred 
results a larger spread, especially for larger soil moisture values. 

These two examples illustrate the difficulty in parameterizing non-linear 
functions with simple approximations. But is there a way to use these simple 
functions (which are easy to invert) to achieve better accuracy? The answer lies 
in using smaller ranges of moisture and surface roughness when making the 
approximations. As an illustration, let us assume we want to use the first 
approximation where we use a linear approximation for the soil moisture and a 
logarithmic approximation for the surface roughness. We shall assume that we 
want to have an accuracy of 0.1 cm or better for the surface roughness and an 
accuracy of 1 percent or better for soil moisture over the ranges we assumed 
before. We can achieve these accuracies if we are willing to break the ranges up 
into smaller segments. An example is shown below. For 0.01 0.1vm≤ ≤ : 
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Fig. 5-19. Inversion results for the parameterization shown in Eq. (5.5-8) for 
(a) actual surface roughness and (b) actual soil moisture. The rms error in 
surface roughness is 0.26 cm; the rms error in soil moisture is 6.4 percent. 
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For the range 0.1 0.2vm≤ ≤ : 

 

( )
( )
( )
( )

ˆ10log 16.46 17.54 16.46log
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. (5.5-10) 

Finally, for the range 0.2 0.4vm≤ ≤ : 

 

( )
( )
( )
( )

ˆ10log 14.37 7.32 16.46log
for 0.1 0.5

ˆ10log 9.34 12.99 16.34log

ˆ10log 18.74 7.32 12.17log
for 0.5 1.5
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ˆ10log 17.32 7.32 15.73
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log
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 ≤ ≤
= − + + 

. (5.5-11) 

Note that these boundaries were not optimized; the actual segments were 
chosen to illustrate the point. The question now is how to invert the 
measurements using these nine subspaces. We simply use the original set of 
expressions in Eq. (5.5-4) as a starting point. Based on the results of the 
inversion, we then use the subspace wherein the initial inversion result fall. We 
then use the updated set of expressions to perform the inversion. We find that a 
small number of iterations are generally required to find the best results. In our 
test, fewer than 10 iterations are typically required for the result to stabilize. 
The iterations are performed using the results of the previous calculation to 
decide on which of the nine expressions to use for the next iteration. Once the 
results change less than a pre-defined amount, we stop the iterations. The 
results of this scheme are shown in Fig. 5-20. This clearly represents a 
significant improvement over the single set of expressions. 



   

  
  

  
 
 

 

(a)  

 
(b)  

 

Fig. 5-20. Inversion results for the parameterization that breaks the data 
space into nine smaller spaces showing (a) inferred surface roughness and 
(b) inferred soil moisture. The rms error in surface roughness is 0.26 mm, 
and the rms error in soil moisture is 0.67 percent. 
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The discussion in this section illustrates the difficulties with parameterizing 
complicated non-linear expressions with simpler ones. While the inversion 
might be much more efficiently performed numerically using simple 
expressions, it is not easy to find a parameterization that is valid over a large 
range of geophysical variable values. Once we start adding more expressions to 
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better approximate sub-ranges of the geophysical parameter, the advantages 
become less clear. With computer capabilities rapidly increasing, direct 
numerical inversion of the forward radar model is becoming more feasible. We 
shall explore this in more detail below. 

5.6 Inverting the IEM Model 
The discussion in the previous section illustrates the difficulty of 
parameterizing non-linear models, such as the IEM, over a large range of 
parameters, which, in our case, includes surface roughness, soil moisture, and 
the angle of incidence. The main advantage of parameterizing such a model is 
the ease and speed with which the parametrized expressions can be inverted. 
The price we pay is that the inversion is less accurate. 

As computer capabilities grow, however, it might become feasible to “invert” 
models like the IEM using some merit function to describe how different a 
simulated and observed result are and to then adjust the input parameters of the 
simulation to minimize this difference. The obvious advantage is that we no 
longer have to rely on functions that have a limited range of accuracy. The 
disadvantage is that the inversion might be much slower than a parameterized 
case. 

To illustrate, we will look at two different approaches. The first approach uses a 
simple cube of pre-calculated IEM simulations for each polarization 
combination that is stored on a computer for later use. The inversion then reads 
the cube of data and uses the values in the cube to estimate the geophysical 
parameters based on the observed radar cross-sections. The second approach 
uses the downhill simplex optimization approach to minimize the error between 
the simulated data and the observed radar cross-sections. These two approaches 
will be discussed separately below. 

For a merit function, we define the rms error between the measured and 
observed values as follows: 

 ( ) ( )2 2
hh obs hh sim vv obs vv simσ σ σ σΕ = − + − , (5.6-1) 

where the subscripts obs and sim refer to the observed and simulated values, 
respectively. The error function can be extended to include more polarization 
combinations by simply adding terms inside the square root. 

5.6.1 Using a Data Cube 
The inversion using a data cube utilizes a previously calculated cube of values 
for each of the HH and VV radar cross-sections. The three parameters making 



248  Chapter 5 

up the cube are the surface roughness, the soil moisture, and the angle of 
incidence. For our illustration, we use a constant ratio of the surface roughness 
and the surface correlation length. Of course, one could use a four-dimensional 
data set where the correlation length is explicitly included as one of the 
parameters. We only have to calculate this data cube once; we can then store 
the data in a file for later use. For our purposes, we used a cube that is 
calculated at intervals of 0.5 deg in the angle of incidence, and 512 values in 
each of the surface roughness and the soil moisture. We allowed the soil 
moisture and surface roughness values to range over the same values as in the 
previous section. 

When inverting the data, we first calculate the error for the entire data space, 
using both the HH and VV data cubes. We then select the point where the error 
is the minimum in the data cube, and interpolate the neighborhood of that point 
to a finer grid. We then find the minimum error on this finer grid, and report the 
surface parameters for this point as the inferred ones. The results are shown in 
Fig. 5-21. The rms error for the surface roughness is 0.0009 cm; and the rms 
error for the soil moisture is 0.06 percent. 

Considering the results in Fig. 5-21, we notice that the soil moisture error is 
larger for the larger absolute values of the soil moisture. This can be seen by the 
larger spread of the values in the upper left side of the figure on the right in Fig. 
5-21. This is a consequence of the fact that the radar cross-sections saturate as 
the moisture values become larger. In that case, a small error in roughness 
estimation leads to a larger error in soil moisture. Everything considered, 
however, these results are excellent. 

The results in Fig. 5-21 were calculated for a fixed angle of incidence of 40 
deg. We repeated the experiment by randomly varying the angle of incidence as 
well as the roughness and soil moisture values. When inverting the simulated 
data, we assume we know the angle of incidence. We then interpolate linearly 
between the two closest planes in the HH and VV data cubes to generate two 
data sets for that angle of incidence. These data sets are then used to invert the 
simulated data. The results are shown in Fig. 5-22. 

Very similar results are found when using the downhill simplex method to 
invert the IEM model. Both these methods provide excellent results, but they 
come at the price of increase computational complexity. Even the cube method 
takes about an order of magnitude longer to invert than the simple 
parameterized models. 
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(a) 

 
(b) 

 
Fig. 5-21. Inversion results using a data space with 512 
values for each of the (a) surface roughness and (b) soil 
moisture. The rms error in surface roughness is 0.009 mm, 
and the rms error in soil moisture is 0.06 percent. The 
results are shown for 5000 simulations, with random 
roughness and moisture values at a fixed angle of 
incidence of 40 deg.  
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(a) 

(b) 

 

Fig. 5-22. Inversion results using a data space with 512 values for 
each of the (a) surface roughness and (b) soil moisture. The rms 
error in surface roughness is 0.03 mm, and the rms error in soil 
moisture is 0.16%. The results are shown for 5000 simulations with 
random roughness and moisture values and random incidence 
angles between 10 and 60 deg. 
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5.7 Scattering from Vegetated Terrain 
Estimating soil moisture from vegetated terrain is significantly more 
complicated than the bare surface case. Unfortunately, however, much of the 
earth’s surface is covered by some vegetation, so the bare surface approach has 
limited application. Here we shall discuss briefly how models for 
backscattering from vegetated terrains are constructed, and then show how 
these models can aid in estimating soil moisture in vegetated terrain. 

Here we shall illustrate the modeling approach using a single layer vegetation 
model. This type of model would be used to describe scattering from pasture 
land, grasslands, most agriculture crops and shrubs. To model forest canopies, 
one or two more layers of vegetation would be added as described by Durden et 
al. (1989) [34]. 

The vegetation layer will be modeled assuming that there are two interfaces to 
consider (see Fig. 5-23): 1) vegetation layer, and 2) the underlying ground 
surface. The vegetation layer is comprised of primary scatterers, and possibly 
secondary scatterers. For example, the primary scatterers may be stalks in the 
case of corn, while the secondary scatterers may be the leaves. In the case of 
pasture, we will typically use only primary scatterers. 

The vegetation layer has a thickness b . Each component of the vegetation 
(primary and secondary scatterers) is characterized by a dielectric constant 
(ε εp s, ) , radius (a ap s, ) , length (l lp s, ) , density (ρ ρp s, )  and a probability 

density function ( p pp (θ φc c, ,) s (θ φc c, )  ) describing the statistical distribution 
of the orientation of the cylinders used to represent the component. The ground 
surface is characterized by a dielectric constant εg , rms. height h , correlation 

length lg . The small-scale slopes ( sl ) describe the micro-roughness of the 

 
Fig. 5-23. The vegetation is assumed to consist of a layer of randomly oriented scatterers. 
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surface and are related to the rms. height and the correlation length of the 
ground surface, which is assumed to have an exponential correlation function. 

Central to this type of modeling is the bistatic scattering matrix of a dielectric 
cylinder. Other types of scatterers often found in vegetation modeling include 
dielectric disks which are used to model larger flat leaves. Appendix B lists the 
expressions for scattering from a dielectric cylinder with arbitrary orientation. 

There are several possible scattering paths to consider (see Fig. 5-24): 1) direct 
backscattering from the vegetation elements, 2) specular scattering at the 
ground surface, followed by bistatic scattering at the vegetation element, 3) 
bistatic scattering at the vegetation element, followed by specular scattering at 
the ground surface, and 4) backscattering from the underlying ground surface. 
For each path, the wave incident on a scatterer in the vegetation traveled 
through the vegetation between the scatterer and the radar before it reaches the 
scatterer, and suffered some attenuation as a result. Also, because the 
vegetation elements are assumed to be longer than the wavelength, the 
scattering centers in the different paths will in general be separated by several 
wavelengths. This implies that any phase relationships between the different 
scattering paths will be uniformly random, meaning that the resulting scattered 
powers will add incoherently. The exception is cases 2 and 3, which are exactly 
the same path, but in opposite directions. In that case, there will be a 
deterministic phase relationship between the two paths, which means the 
signals will add coherently. We shall now discuss each of these scattering terms 
separately. 

 

iθ

iθ

iθiθ

b

2

z

3

4 1

Fig. 5-24. Scattering paths to consider for a single layer vegetation model.  
See the text for details. 



Applications: Measurement of Surface Soil Moisture 253 

5.7.1 Scattering from the Vegetation Layer (Scattering Path 1) 
The next step is to calculate the scattering coefficients from a layer randomly 
oriented scatterers. We shall model this by assuming that the scatterers are 
oriented according to a statistical distribution function that is given by 
p (θ φc c, ) . By definition, 

 ( )
2

0 0
, sin 1c c c c cp d d

π π
θ φ θ θ φ =∫ ∫  (5.7-1) 

Our interest is in calculating the backscattering radar cross-section of this layer, 
as well as the transmission coefficient for this layer. The latter is important in 
calculating the reflection from the underlying ground surface after the signals 
have propagated through the vegetation layer. 

First, let us consider a scatterer that is at a height z above the ground surface 
inside the vegetation layer as shown in Figure 5-24. The wave incident on this 
scatterer has already propagated a distance 

 ( )
cos i

b zd z
θ
−

=  (5.7-2) 

through part of the layer before reaching the scatterer. The strength of the 
electric field incident on this scatterer is therefore 

 
( )

( )
( )

0

0

h

v

isc inc incb z
h h h

b zv v v

E E Ee
b z

E E Ee

τ

τ

− −

− −

       = =  −              
α  (5.7-3) 

Here the superscript isc refers to the wave incident on the scatterer, while inc 
refers to the wave incident on the vegetation layer. Also, 

 ( )
( )

cos

e
p

p
i

b z
b z

κ
τ

θ

−
− =  (5.7-4) 

The extinction coefficients are average extinction coefficients as defined in 
Appendix B and takes into account the average extinction between the scatterer 
and the top of the layer. This wave is now scattered by the scatterer. In the 
backscatter direction, the scattering matrix of the scatterer is (see Appendix B) 

 ( ) ( ), , , , , , , ,s s s s i i i ii
i i s i s i c c ic ic sc sc

s s s s i i i i
θ φ θ θ φ φ θ φ θ φ θ φ

′ ′ ′ ′⋅ ⋅ ⋅ ⋅   
= = =    ′ ′ ′ ′⋅ ⋅ ⋅ ⋅   

h h h v h h v h
S S

v h v v h v v v
 

  (5.7-5) 
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After being scattered, the wave again propagates through the vegetation layer to 
the top before returning to the radar while being attenuated as shown in 
Eq. (5.7-3). Adding all these terms together, we find the scattering matrix of the 
scatterer, as seen from outside the layer, as 

 , ,  , ,  c , , z  α b z S i , ,  ,  s , , c α b z (5.7-6)           Sveg           i i s s  c         i s  c      

The radar cross-section is derived from the elements of the covariance matrix, 
which for the backscatter case, are defined by 

 S S* * * 2S S  
 hh hh hh  hv S Shh vv  
 2S S* * 2S S*  2S S  (5.7-7) 

hv hh hv hv hv vv   
 S S* 2 S S* S S*
  hh 
 vv vv hv  vv vv veg 

 

,  z  

 expression on the right in Eq. (5.7-6), we find 

Σ     i , ,  s  i , s    c , c    ,veg i i 

We note that if we expand the
that we can write the covariance matrix as 

,              zΣ     , ,      , , , z Κ b  zΣ , ,  , ,  ,  Κ b  (5.7-8)veg i i s i s i c c veg i i s s c c 

where 

2 b z e h  0 0  K 0 0  
  b z       

hh (5.7-9)  h     v b z Κ    0 e 0  0 Khvz   0  
 2 v b z  

 0 0 Kvv 
 

 0 0 e 
  

The average backscatter covariance matrix is found by calculating the ensemble 
average for the scatterer over all possible orientations. Note that only the inner 
matrices on the right-hand side of Eq. (5.7-6) and Eq. (5.7-9) are functions of 
the orientation of the scatterer. The average covariance matrix is then 

2  
  
 , ,  z
  Σ  i , ,  s    s  , c , , z p c Σ   veg   i  i ,      veg i i  i c

0 0  

     ,  sin  c d d cc      c

(5.7-10) 

Similarly, the average optical depth is found from 

b    2   
s    2 b z   Im S  , ,  ,  , ,      , sin     d d d           pp      pp  i i  i i  c c   c c c c ccos  ki 0z 0 0  

(5.7-11) 
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where ( )s zρ  is the density of the scatterers in 3scatterers m at a height z above 
the ground. The final step is now to integrate the contribution from all the 
scatterers in the layer. This is gives 

 ( ) ( ) ( )
0

, , ,
b

veg i i veg i i sz z dzθ φ θ φ ρ= ∫Σ Σ  (5.7-12) 

From Eq. (5.7-8) we can show that the average covariance matrix has the form 
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  (5.7-13) 

If we assume the density of the scatterers to be uniform in elevation above the 
ground surface, then only the K terms are functions of z, and we find 
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  (5.7-14) 

Here we used the short-hand notations 

 ;e e
hm h vm vb bτ κ τ κ= =  (5.7-15) 

which represent the total vertical optical path depths of the layer for the two 
polarizations. The radar cross-section is defined as 

 ( )4 ,veg veg i iπ θ φ=σ Σ  (5.7-16) 
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At this point it is instructive to look at the behavior of the vegetation layer in 
two extreme cases. First, when the optical depth is large, the second terms in 
Eq. (5.7-14) vanish, and the total scattering (apart from the strength of the 
covariance matrix terms) approach a constant value. For example, in the case of 
HH scattering, this constant value can be written as 

 *cos
4

4
s i

hh hh hh
hm

b S Sρ θ
σ π

τ
=  (5.7-17) 

In the other extreme, the layer optical depth is small enough that we can replace 
the exponential by a Taylor series expansion. In that case, the radar cross-
section becomes 

 * *cos 4
4 4

4 cos
s i hm

hh hh hh s hh hh
hm i

b S S b S Sρ θ τ
σ π π ρ

τ θ
= × =  (5.7-18) 

To first order, the backscatter from the layer is directly proportional to the 
density of the scatterers and the thickness of the layer. 

All these expressions involving scattering from cylinders are functions of the 
dielectric constant of the cylinder. We used the expressions reported by Ulaby 
and El-Rayes (1987) [35] for the vegetation dielectric constant, which is given 
by 

 v r fw f b bv vε ε ε ε= + +  (5.7-19) 

In this expression, εr  is the non-dispersive residual part of the dielectric 
constant. They report that in terms of the soil volumetric water content Mv , 
this quantity is given by 

 21.7 3.2 6.5r v vM Mε = + +  (5.7-20) 

The dielectric constant of free water is 

 18754.9
1 18

sal
f j

j f f
σ

ε = + −
+

 (5.7-21) 

Where f is the frequency in Gigahertz, and salσ  is related to the salinity of the 
water S (measured in parts per thousand on a weight basis) by  

 20.16 0.0013sal S Sσ = −   (5.7-22) 

The dielectric constant of bound water is 
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+
 (5.7-23) 

The volume fraction of free water is 

 ( )0.82 0.166fw v vv M M= +  (5.7-24) 

And the volume fraction of vegetation-bound water is 
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 (5.7-25) 

We shall express our simulations in terms of the vegetation volumetric moisture 
vM  and use the expressions above to calculate the dielectric constant. 

5.7.2 Backscatter from the Underlying Ground Surface (Scattering 
Path 4) 

The electromagnetic wave incident upon the ground surface travels through the 
entire vegetation layer before reaching the ground surface. As it does so, it is 
attenuated according to 
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 (5.7-26) 

This wave is incident upon the ground element. To calculate the scattering from 
this element, we shall assume that the scattering from the ground surface can be 
described by the small perturbation model, in which the scattering matrix for an 
untilted ground surface is given by 
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where 

 ( ) ( )2 2cos , 2 sinhh g i hh g i iS k h W kθ α ε θ θ′ = , (5.7-28) 

 ( ) ( )2 2cos , 2 sinvv g i vv g i iS k h W kθ α ε θ θ′ = , (5.7-29) 

and 
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2 2
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−
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, (5.7-30) 
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g g i g
vv g i

g i g i

ε ε θ ε
α ε θ
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g i
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π θ
=

 + 

. (5.7-32) 

The roughness spectrum W  given in Eq. (5.7-32) is that of a surface with an 
exponential correlation function with a correlation length gl . 

After scattering from the ground surface the wave travels again through the 
vegetation layer before returning to the radar, suffering attenuation given by Eq. 
(5.7-26) in the process. The covariance matrix of the ground layer is then 
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2 cos4 cos* *
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0

4 0 0 0
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− +−
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− + −
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 
 
   =   
 
 

σ  

  (5.7-33) 

This expression is true if we use the first order small perturbation model to 
represent the ground scattering. If higher order approximations are included, 
additional terms appear in this matrix, particularly in the cross-polarized 
element. 

5.7.3 Double Reflection Scattering (Scattering Paths 2 and 3) 
The next term to consider is the double reflection from a cylinder to the ground 
surface and back to the radar. This term involves calculating the product of the 
bistatic scattering matrix of the vegetation layer and the specular scattering 
matrix of the ground layer. Here we shall only consider the case of a flat ground 
surface. For a tilted surface, additional terms need to be considered; please see 
van Zyl (1993) [36] for details. 

Consider a scatterer at a height z b< inside the vegetation layer as shown in 
Figure 5-24. The incident wave is scattered as shown towards the ground 
surface where it is reflected in the specular direction after which it propagates 
through the entire vegetation layer back to the radar. The opposite path also 
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needs to be considered. In this case, the incident wave first travels through the 
entire vegetation layer to reach the ground surface where it is reflected in the 
specular direction. The reflected wave then propagates through part of the layer 
before it is scattered by the scatterer back in the direction of the radar. As the 
scattered wave propagates back to the radar, it again travels through part of the 
vegetation layer before reaching the radar. 

Let us first consider the path that interacts with the ground surface first. It is 
well known that the specular ray for a facet characterized by a surface normal 
n  and light incident along a unit vector k i  is given by 

 ( )2i i= − ⋅r k k n n  (5.7-34) 

Note that r  as given in Eq. (5.7-34) must be expressed in the forward scattering 
alignment coordinate system. The scattered wave propagation vector in the 
backscatter alignment coordinate system that we are using is the negative of r . 
At the ground surface, the incident and scattered propagation vectors are 
therefore 

 ( )1 1; 2igs i sgs i i= = − = ⋅ −k k k r n k n k  (5.7-35) 

The wave that is reflected in the specular direction from the ground is now 
incident upon the cylinder representing the vegetation, from which the scattered 
wave has to propagate back to the radar. This bistatic scattering at the cylinder 
is therefore characterized by incident and scattered wave propagation vectors 

 ( )1 12 ;icb i i scb i= = − ⋅ =k r k n k n k k  (5.7-36) 

where the subscript  is added to indicate that these refer to the cylinder. Note 

 
( )

( )
2 2

2 2

; 2

2 ;
icb i scb i i

igs i i sgs i

= = = − ⋅

= − = ⋅ − =

k k k r k n k n

k r n k n k k k
 (5.7-37) 

Figure 5-25 shows the scattering paths for specular scattering at the ground 
followed by bistatic scattering at the cylinder and vice versa. 

c
that Fig. 5-24 shows specular reflection at the layer inside the vegetation. This 
shows the propagation paths, and does not mean there is specular reflection at 
the cylinder itself. Since the cylinder may have any orientation, in general we 
have bistatic scattering at the cylinder.  

Finally, for the case of bistatic scattering at the cylinder, followed by specular 
reflection at the ground, these are 
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For the ground surface, the bistatic scattering matrix describing the specular 
reflection can be written as 

 ( )
( )

( )
2 2 22 cos

, 0
, , ,

0 ,
i

h g i k h
g i i s s

v g i

R
e

R
θ

ε θ
θ φ θ φ

ε θ
−

 
 =
 
 

R  (5.7-38) 

The two Fresnel reflections coefficients are 

 ( )
2

2

cos sin
,

cos sin

i g i
h g i

i g i

R
θ ε θ

ε θ
θ ε θ

− −
=

+ −
 (5.7-39) 

and 

 ( )
2

2

cos sin
,

cos sin

g i g i
v g i

g i g i

R
ε θ ε θ

ε θ
ε θ ε θ

− −
= −

+ −
 (5.7-40) 

The scattering matrix for the case that involves scattering at the ground first, 
can be written as 

 
Fig. 5-25. Scattering paths for the double reflection cases. 
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 ( ) ( ) ( )2
1 0

0 1

b b
hhc hvc

gc gb b
vhc vvc

S S
b z z b

S S

  −    =  −                
Sα α R α  (5.7-41) 

The number 2 in the subscript refers to the scattering path in Fig. 5-24. The 
matrix in the middle of the right-hand side of these expressions is needed to 
take into account that each of the other matrices is described in the backscatter 
alignment system. The term involving scattering at the cylinder first is 

 ( ) ( ) ( )3
1 0

0 1

b b
hhc hvc

cg g b b
vhc vvc

S S
b z b z

S S

′ ′

′ ′

 −    =      −            
Sα R α α  (5.7-42) 

Each of the matrices describing the scattering at the cylinder in Eq. (5.7-41) and 
Eq. (5.7-42) is of the form (see Appendix B) 

 
y y

s s s s hhc hvc i i i ihhc hvc
y y s s s s hvc vvc i i i ivvcvhc

S S S S
S SS S

  ′ ′ ′ ′⋅ − ⋅ ⋅ ⋅     =    ′ ′ ′ ′⋅ ⋅ − ⋅ ⋅      

h h v h h h v h
v h h h v h h h

 

  (5.7-43) 

where  or y b b= ' .  

For all these cases, we now need to find the elements of the transformation 
matrices shown in Eq. (5.7-43). We do this by defining local and global 
coordinate systems as described before using the propagation vectors derived 
previously for the interaction mechanisms. We shall describe each case 
separately below. 

For the case where the wave first interacts with the ground surface, Eq. (5.7-34) 
describes the direction in which the specularly reflected energy will travel after 
interacting with the surface. The elements of the transformation matrices for 
this case are therefore (see Appendix B for the methodology of how to derive 
these expressions) 

 
( ) ( )( )

( ) ( )( )( )
2 2 22

2

1 1 2

i i i
igs igs

i i i

 ⋅ + ⋅ ⋅ − ⋅ ⋅ ′⋅ =
− ⋅ − ⋅ − ⋅ ⋅

c z k z k c k z c z
h h

k z k c k z c z
, (5.7-44) 

 ( )

( ) ( )( )( )
2 2 221 1 2

i
igs igs

i i i

⋅ ×
′⋅ =

− ⋅ − ⋅ − ⋅ ⋅

k c z
v h

k z k c k z c z
, (5.7-45) 
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( )( )

( ) ( )
2 2 2 21 1

i i
sgs sgs

i i

⋅ − ⋅ ⋅
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c z k z k c
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, (5.7-46) 

and 
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( ) ( )
2 2 2 21 1

i
sgs sgs

i i

⋅ ×
′⋅ =

− ⋅ − ⋅

k c z
v h

k z k c
. (5.7-47) 

where c is defined in Eq. (B.1). 

For the case where the wave first scattered off the cylinder before reflecting in 
the specular direction from the ground, the propagation vectors are given by Eq. 
(5.7-37). The elements of the transformation matrices in this case are 

 3 3 2 2igs igs sgs sgs′ ′⋅ = ⋅h h h h , (5.7-48) 

 3 3 2 2igs igs sgs sgs′ ′⋅ = ⋅v h v h , (5.7-49) 

 3 3 2 2sgs sgs igs igs′ ′⋅ = ⋅h h h h , (5.7-50) 

and 

 3 3 2 2sgs sgs igs igs′ ′⋅ = ⋅v h v h . (5.7-51) 

The two signals propagating along the inverse paths add coherently. The total 
scattering matrix for this case is therefore 

 2 3gc cg= +S S S . (5.7-52) 

Performing the matrix multiplications shown in Eqs. 5.7-41 and 5.7-42, we find 
the elements of the scattering matrix to be 
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. (5.7-53) 

Here we used the short-hand notation 
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. (5.7-54) 

Reciprocity dictates that the primed and unprimed scattering matrices are the 
same. Therefore, 

 

( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }
( )

2

2

2

2

h

h v v h v h

v

b b
hh h hhc

b b z z z z b
hv v h hvc

vh hv
b b

vv v vvc

S R e S

S e R e R e S

S S

S R e S

τ

τ τ τ τ τ τ

τ

−

− + − − + −

−

′= −

′ ′= −

=

′=

. (5.7-55) 

Note that for both hhS  and vvS  the terms describing the attenuation is simply 
twice the attenuation through the entire vegetation layer, and does not depend 
on where inside the layer the scatterer resides. For the cross-polarized term, the 
attenuation terms does depend on where inside the layer the scatterer is. This is 
a consequence of the fact that for the cross-polarized terms, the incident and 
scattered waves have orthogonal polarizations. For part of the path, therefore, 
the one polarization suffers attenuation, while for the rest of the path, the other 
polarization is attenuated. The terms that are dependent on z therefore is a 
function of the difference in attenuation between the two polarizations as 
shown in Eq. (5.7-55). We now have to form the covariance matrix 
corresponding to this scattering matrix. This is 

 ( )

* * *

* * *
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2

, , , , , , 2 2 2
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 
  = = =   
 
 

Σ  

  (5.7-56) 

The subscript db refers to the double reflection suffered by the signals. Next, 
we average this matrix over all scatterer orientations, which gives 

( ) ( ) ( )
2

0 0
, , , , , , , , , sindb i i db i i s i s i c c c c c c cz z p d d

π π
θ φ θ φ θ θ φ φ θ φ θ φ θ θ φ   = = =   ∫ ∫Σ Σ  

  (5.7-57) 

Finally, we have to add the contributions from all the layers within the 
vegetation volume: 
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db i i db i i sz z dzθ φ θ φ ρ   =   ∫Σ Σ  (5.7-58) 

The radar cross section for this term is then 

 [ ] ( )4 ,db db i iπ θ φ =  σ Σ  (5.7-59) 

From Eq. (5.7-55) – (5.7-58), we find that if the density of scatterers is constant 
throughout the vegetation layer, the results are: 
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  (5.7-60) 

Note that when the attenuation coefficients for the two polarizations are small, 
the expressions become 
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  (5.7-61) 

5.8 Simulation Results 
In this section we present some results of a single layer vegetation model. To 
keep things simple, we will assume that the vegetation is grass-like, so that we 
can represent the vegetation elements with thin dielectric cylinders. We shall 
first discuss some general results, and then concentrate on the effects of soil 
moisture on the overall observed radar cross-section. 

Putting the results of the previous Section together, we write the total 
covariance matrix of the vegetated layer as: 

 [ ] [ ]tot veg db g   = + +   σ σ σ σ  (5.8-1) 

To illustrate the model, we assume the parameters for the vegetation layer and 
soil surface as shown in Table 5-1. We shall now discuss various different 
simulations to illustrate the effect of different vegetation parameters on the total 
scattering. 

Table 5-1. Parameters used in simulating the backscatter from a vegetation layer. 

Parameter Value 
Cylinder radius 2 mm 
Cylinder length 50 cm 
Cylinder density 900 cylinders/cubic meter 
Vegetation layer height 50 cm 
Orientation pdf Cosine squared around vertical 
Surface rms height 1 cm 
Surface correlation length 15.2 cm 
Radar wavelength 24 cm 
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5.8.1 Effect of the Angle of Incidence 
Figure 5-26 shows the HH scattering cross-sections for the three scattering 
mechanisms, plus the total scattering cross-section, which is the sum of the 
three individual scattering mechanisms, as a function of the angle of incidence. 
We notice that for angles of incidence less than 30 deg, the HH scattering is 
dominated by direct backscattering from the ground. For angles between 30 and 
about 55, double reflections dominate the HH return, while for angles larger 
than about 55 deg, the scattering is dominated by the vegetation layer. 

Fig. 5-27 shows the same plots, this time for the HV terms. Direct scattering 
from the ground is absent because we chose to model the surface scattering 
with a first-order small perturbation model, which predicts no cross-polarized 
return. In the cross-polarized return, we note that double reflections dominate 
for angles <30 deg, while vegetation scattering dominates for larger angles. 

The situation is quite different for the VV case shown in Fig. 5-28. For angles 
less than 35 deg, the scattering is dominated by the underlying ground surface 
scattering. For angles larger than 35 deg, the vegetation scattering dominates. In 
the case of VV, double reflection scattering is typically much less than the other 
two, and does not really contribute much to the overall scattering. 

 
Fig. 5-26. Backscatter cross-sections for the three different scattering  

mechanisms as a function of angle of incidence at HH polarization. 
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The specifics of which mechanism dominates is obviously a function of the 
parameters used to characterize the vegetation and the soil. These results do 
point out an important point to keep in mind when analyzing scattering from 
vegetated surfaces, however. The dominant scattering mechanism may be 
different for the different polarizations. Focusing on an angle of incidence of 
40 deg in Fig. 5-26 – Fig. 5-28, we note that the dominant scattering 
mechanism at HH is double bounce reflections, while at VV and HV the 
scattering from the vegetation canopy dominates. 

5.8.2 Effect of Cylinder Radius 
We shall evaluate the effect of the cylinder radius by fixing all other parameters 
at the values given in Table 5-1, and also fix the angle of incidence at 40 deg. 
We then vary the cylinder radius in our simulations. The results are shown for 
the different polarization combinations in Fig. 5-29 for the vegetation layer 
scattering only. From this calculation it is clear that larger cylinder sizes scatter 
much more efficiently and as a result the vegetation scattering contribution 
increases rapidly with increasing cylinder size. For larger cylinders, the 
increase in scattering is slower, so the rate of increase of the vegetation 
scattering also decreases. 

 
Fig. 5-27. Backscatter cross-sections for the three different scattering  

mechanisms as a function of angle of incidence at HV polarization. 
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Fig. 5-28. Backscatter cross-sections for the three different scattering  
mechanisms as a function of angle of incidence at VV polarization. 
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Fig. 5-29. Scattering from the vegetation layer as a function of the cylinder 
radius. For thin cylinders, there is a dramatic increase in scattering as the 
cylinder radius increases. 
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Figure 5-30 shows the scattering at HH polarization for all the scattering 
mechanisms. For very thin cylinders, the surface scattering dominates. As the 
cylinders become thicker, the double reflection term starts to dominate as the 
ground term is attenuated. As the cylinder radius increases further, the double 
reflection term also decreases, and the vegetation scattering becomes dominant. 
Not only is the vegetation scattering itself increasing, but the extinction through 
the vegetation layer is also increasing, as shown in Fig. 5-31. 
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Fig. 5-30. The scattering contributions of the different scattering mechanisms as a 
function of cylinder radius. Only the HH terms are shown. See the text for discussion. 
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Fig. 5-31. Extinction as a function of cylinder radius. The extinction generally  
increases as the cylinders get thicker. 

5.8.3 Effect of Cylinder Moisture 
The cylinder moisture determines the cylinder dielectric constant as described 
in Section 5.7.1. We now fix all the parameters to their values in Table 5-1 in 
Section 5.8, and also fix the angle of incidence at 40 deg. 

Panel (a) in Fig. 5-32 shows the vegetation scattering as a function of the 
cylinder water content. As expected, the radar backscatter increases as the 
cylinder water content (and hence the dielectric constant) increases. The higher 
dielectric constant means a larger dielectric contrast between the cylinder and 
the air, resulting in more efficient scattering. The stronger scattering at larger 
dielectric constant values (or equivalently higher cylinder moisture values) also 
leads to higher extinction as shown in the panel (b) in Fig. 5-32. 

5.8.4 Radar Vegetation Index 
We pointed out in Chapter 3 that the radar vegetation index is an indicator of 
the randomness observed in the scattering, similar to that measured by the 
entropy. We shall discuss this aspect next. The amount of vegetation is often 
characterized by the so-called vegetation water content. This quantity is the 
amount of water, typically expressed in kilograms per square meter, contained 
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(a) 

 
(b) 

 
Fig. 5-32. Vegetation scattering (a) and extinction coefficient (b) as a 
function of the cylinder moisture content. Both quantities increase rapidly 
with increasing cylinder moisture. 

in a column of vegetation with a surface area of 1 square meter. The example 
we analyzed above would translate to about 1.24 kg/m2. Unfortunately, the 
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vegetation water content is a function of many vegetation parameters, namely 
the radius, length, and density of cylinders, the depth of the vegetation layer, 
and volumetric moisture of the cylinders. 

Figure 5-33 shows the calculated radar vegetation index as a function of the 
vegetated water content for a number of different cases. The parameters for the 
different cases are shown in Table 5-2. 

First, we notice that for all cases the RVI increases as the vegetation water 
content increases. This is the result of the fact that at higher vegetation water 
contents, the scattering from the vegetation layer itself dominates, resulting in a 
higher RVI. The details differ between the cases however. 

Cases 1 and 2 are identical except for the vegetation moisture content. This 
quantity is used to calculate the dielectric constant of the vegetation as 
mentioned earlier. In each of these two cases, we keep the vegetation 
volumetric moisture constant, (and as a consequence the dielectric constant of 
the vegetation will be constant) and vary the number of cylinders per unit 
volume to increase the vegetation water content. Here vegetation water content 
refers to the water content of the layer, not to the moisture in each individual 
cylinder. These two cases would represent increasing amounts of vegetation 
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Fig. 5-33. Radar vegetation index as a function of the vegetation water content  
for various scenarios. See the text for discussion. 
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Table 5-2. Parameters for several cases of vegetated water content. 

Case Radius Layer Height Density Vegetation Moisture Soil Moisture  
1 1 mm 1 m Varies 0.5 0.2 
2 1 mm 1 m Varies 0.2 0.2 
3 2 mm 1 m Varies 0.2 0.2 
4 2 mm 0.5 m Varies 0.2 0.2 
5 2 mm 1 m 1000 Varies 0.2 
6 2 mm 1 m 1000 Varies 0.3 

elements such as one would encounter during a growing season, although the 
constant vegetation water content and layer height would be artificial. In the 
case of the lower vegetation moisture (Case 2) the RVI increases slower than 
the higher vegetation water content case. This is a consequence of two factors. 
First, the higher moisture case means the dielectric constant of the cylinders is 
higher, leading to stronger scattering by the vegetation, and hence larger RVI 
values, as discussed earlier. At the same time, the higher dielectric constant also 
means higher attenuation through the vegetation because of the larger 
extinction, which decreases the surface related terms, and leads to higher RVI 
values. 

Next, we compare cases 2 and 3. The only difference in this case is that for case 
3 the individual cylinders are larger than for case 2. As shown before, larger 
cylinders scatter more efficiently, and hence the vegetation term is relatively 
speaking larger than the others, leading to a larger RVI. At the same time, the 
more efficient scattering means a larger extinction through the vegetation layer, 
decreasing the contribution from the ground related terms (see Fig. 5-31). This 
also increases the RVI, so that case 3 generally has larger RVI than case 2. 

Case 4 is the same as case 3, except that the vegetation layer is half the height. 
This means that for the same vegetation water content, case 4 has double the 
cylinders that case 3 would have. The two RVI curves are identical. The reason 
for this is clear when the equations from the previous Section are considered. In 
all cases, we find the product of the density and the layer height. Therefore, if 
all other parameters are held constant, as long as this product is the same, we 
would expect the same result. 

The cases discussed so far all have constant vegetation water content. For a 
given vegetation canopy over short time scales, the vegetation elements do not 
change their size and number, and the layer height can be considered constant. 
However, due to changing soil moisture and other environmental conditions, it 
is possible that the cylinder moisture content can change, thereby changing the 
vegetation water content. This is studied with cases 5 and 6.  Both cases are 
identical except that the soil moisture of case 6 is higher than that of case 5. 
Here we keep the cylinder physical dimensions and number (density) fixed, and 
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vary the cylinder moisture content. Compared to case 3, this shows a different 
behavior. At first, when the vegetation water content is very low, (now 
vegetation water content is directly proportional to cylinder moisture), the 
dielectric constant of the cylinders is small, leading to inefficient scattering 
from the vegetation layer (see Figure 5-32), and a low RVI. As the moisture 
increases in the vegetation, the scattering from the vegetation quickly becomes 
dominant, leading to a rapid increase in the RVI. Once the vegetation scattering 
dominates, there is little additional change in the RVI. Case 6 shows indeed that 
the underlying soil moisture plays a relatively small part. When the surface is 
wetter (case 6), the soil term stays dominant a while longer, meaning that the 
rapid increase of the RVI happens for a slightly higher value of vegetation 
water content. This is a small effect, however. 

5.8.5 Effect of Soil Moisture 
The important question is whether we can observe changes in soil moisture by 
observing the overall scattering from the vegetation. As shown in the previous 
examples, under certain conditions, either the direct backscatter from the soil 
surface itself, or the double bounce scattering may dominate even though both 
these terms are attenuated. In these cases, we would expect to measure a change 
in the overall backscatter from the vegetation layer as the soil moisture changes. 

Figure 5-34 shows the results of a simulation where we have assumed that the 
vegetation moisture does not change, even though the surface soil moisture 
changes. All other parameters, such as cylinder length, diameter, etc, as well as 
surface roughness also remain constant. The values of the parameters used in 
the simulation are as given in Table 5-1, except we used a cylinder density of 
1600 cylinders per cubic meter. 

The total scattering terms for both HH and VV show an approximately linear 
relationship with the soil moisture when plotted in dB. In fact, when fitting a 
linear function to these graphs, we find 
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 (5.8-2) 

Both these functions fit the simulated data very well. From this one result it 
appears that the VV polarization shows more sensitivity to the underlying 
ground surface moisture. A look at the individual scattering mechanisms in 
Fig. 5-34 shows that the scattering from the ground surface actually dominates 
in this case. As the previous examples showed, when the vegetation water 
content increases, the scattering from the vegetation becomes more dominant. 
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Fig. 5-34. These graphs show the sensitivity of the various scattering terms to changes in 
the surface soil moisture, assuming that all other parameters are constant. The 
vegetation water content is 0.8 kg/m2. The incidence angle is 40 deg. 

Figure 5-35 shows the slope of the linear fits to the simulated data for different 
values of vegetation water content. These values were calculated using different 
values of the cylinder moisture to vary the vegetation water content. The 
cylinder size and density were kept fixed. 

The data shows, as expected, a decrease in sensitivity to surface soil moisture 
for increasing vegetation water content. The sensitivity at VV decreases faster, 
because the VV scattering from the vegetation and particularly the extinction 
for vertical polarization increases faster with increasing vegetation water 
content. Both these factors combine to decrease the sensitivity to scattering 
from the underlying soil surface. HH polarization retains a reasonable 
sensitivity to surface soil moisture even for the larger vegetation water content 
values. 

Different graphs are shown for different cylinder densities. The cylinder density 
has a small effect on the overall sensitivity to soil moisture, with smaller 
densities generally resulting in smaller sensitivities. At first glance this seems 
counter intuitive as one would expect fewer cylinders to have less extinction, 
and therefore should show more sensitivity to the underlying soil moisture. The 
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Fig. 5-35. This data shows a decrease in sensitivity to surface soil moisture as the 
vegetation water content increases. The VV sensitivity decreases faster than the  
HH sensitivity. 

explanation for the graphs lies in the fact that the sensitivity is displayed as a 
function of the water content of the vegetation layer; not the moisture content 
of the cylinders. The layer water content is, among other factors, the product of 
the cylinder moisture and the cylinder density. Therefore, for a particular 
vegetation layer water content, the lower density layer has a higher cylinder 
moisture content, and hence a larger dielectric constant. The higher dielectric 
constant gives a bigger increase in scattering efficiency (and a larger associated 
extinction) than what is lost because of the lower density, resulting in a lower 
sensitivity to soil moisture. Note that in the lowest density case the graph stops 
at a vegetation water content of about 3 kg/m2. At this value, the cylinders have 
to be 100% moisture in order for the vegetation layer to have this much water 
per unit area. 

In the simulations above, we assumed that the vegetation moisture stays 
constant, regardless of what the underlying soil moisture might be. In practice 
one might expect that as the soil gets wetter, the vegetation moisture might 
increase, even if there might be a delay between the two values. Unfortunately, 
there seems to be little quantitative experimental data on this topic. Figure 5-36 
shows the case where the vegetation moisture is 100% correlated with the soil 
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Fig. 5-36. These graphs show the strength of the various scattering components 
assuming that the soil moisture and the vegetation moisture are the same value. There 
is significant more sensitivity to moisture if these two quantities are the same. 

moisture. This simulation shows that there is a significant increase in sensitivity 
to soil moisture if the vegetation and soil moistures are correlated. In fact, the 
two functions for this case are 
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In fact, the HH sensitivity is nearly twice the maximum value we found before. 

This last example is perhaps unrealistic, but can be considered a limiting case. 
In practice we can expect some correlation between the vegetation moisture and 
the soil moisture, even if it is not exactly 100% as assumed above. Any 
correlation will increase the sensitivity to soil moisture over that calculated 
assuming no correlation. 

5.8.6 Inverting for Soil Moisture: The Data Cube 
The aim of remote sensing is to be able to infer some of the geophysical 
properties of the terrain from measurements. With a single frequency 
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polarimetric radar, we have a limited number of measurements. In the case of 
terrain with reflection symmetry, we have at most 5 independent measurements, 
the cross-sections at HH, VV and HV, and the magnitude and phase of the 
correlation between HH and VV. Our model, on the other hand, has many more 
input parameters, even for the simple single layer model described here. When 
this model is extended to multiple layers, the number of input parameters 
increases dramatically. It is therefore impractical to solve uniquely for all of 
these input parameters with only a limited number of observables. It is 
therefore clear that we will have to combine some of the physical 
characteristics of the vegetation into a single descriptor in order to have any 
chance of inverting the observations. 

In addition to the difficulty of having a limited number of observations, the 
modeling requires a large number of calculations for each case. This makes 
inversion of the data computationally quite challenging. One way to get around 
this problem is to construct “data cubes” for each model. This approach would 
calculate the polarimetric parameters for a range of input parameters. For 
example, one choice would be to fix many of the model parameters such as 
cylinder radius, length, and density, and then calculate the polarimetric 
parameters as a function of surface roughness, soil moisture, vegetation water 
content and angle of incidence. These values are then stored in files for later 
use. Each observation can then be “inverted” by searching these data cubes for 
the best simultaneous match to all the observables. 

Many different ways could be used to define the best match between the 
observed and simulated data. As an example, for a multi-polarized radar that 
measures HH, VV and HV cross-sections, one could choose to define the error 
between the observations and the simulations as 

 ( ) ( ) ( )2 2 2
hh obs hh sim vv obs vv sim hv obs hv simσ σ σ σ σ σΕ = − + − + − . (5.8-4) 

We can calculate this quantity for all values in the data cubes, and choose that 
set of parameters that minimizes this error to be representative of the vegetated 
terrain. 

The cube inversion method has been studied extensively by Arii (2009) [37] in 
his thesis, where he compares different combinations of polarimetric 
parameters and the accuracy with which the vegetation parameters can be 
inferred. He not only looked at the multi-polarization case described above, but 
he also looked at including all the polarimetric parameters in the inversion. 
Since some of the elements of the covariance matrix are complex numbers, he 
proposes using the natural logarithm of the radar cross-sections in the error 
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calculations. This will allow the incorporation of the measured polarimetric 
phases in addition to the magnitudes. 

Arii [37] found that for vegetation water content values less than about 0.5 
kg/m2 adding the other polarimetric parameters made little difference in the 
accuracy of the inversion for soil moisture. However, for vegetation water 
contents larger than this value, adding the cross-correlation between HH and 
VV made a substantial difference, improving the accuracy of the inversion 
substantially. 

Arii also points out that the inversion accuracy is very sensitive to the exact 
values of the cylinder parameters. In his investigation, he simulated the data 
cubes with a fixed radius of 2 mm, and then generated test data with radii 
ranging between 2 and 3 mm. He then used the data cubes to invert the data. 
The resulting errors in soil moisture estimates were largest for larger vegetation 
moisture contents, with the error exceeding 10% at a vegetation water content 
of 2.5 kg/m2 when the radius of the test cylinder was larger than 2.3 mm. Based 
on these results, Arii concluded that for such an inversion scheme to be 
successful, one would need use have a family of data cubes generated for 
different vegetation classes. 

5.9 Time Series Estimation of Soil Moisture 
So far we have discussed estimations of soil moisture that happens at a 
particular instant of time. We will call these “snap-shot” algorithms, since they 
would provide us with an estimate of the moisture as if we took a picture at a 
specific time. In doing so, we do not rely on any knowledge about the past 
values of the soil moisture at that specific location. In this Section we shall 
discuss a different approach in which we will track changes in the soil moisture 
over time. 

To derive such a time series algorithm, we note that the polarimetric 
backscattering cross-section can be written as 

 1 2( , ,......, )pq pq Nf P P Pσ = , (5.9-1) 

where Pi  (i = 1, 2, …, N) represents a remote sensing variable such as soil 
moisture, surface roughness, and parameters characterizing vegetation. The 
subscripts p  and q  can be h  or v  depending upon the polarization 
configuration. The time variation of the backscattering cross-section is 
calculated as 
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Notice that pq if P∂ ∂  represents the backscattering cross section sensitivity to 
physical quantities such as soil moisture. This is the term that is used in the 
“snap-shot” algorithms to estimate soil moisture from polarimetric radar data. 
However, the time-series formulation shown in Eq. (5.9-2) has an additional 
term, iP t∂ ∂ , that can be thought of as a temporal filter, which provides a 
weighting factor for each sensitivity. That is, if the time variation of a 
parameter such as soil texture and the vegetation structure is not significant 
enough to change the model function appreciably over a specified time scale, 
we can ignore the effect of that parameter on the temporal variation of the radar 
cross-section. 

To best define a time-series algorithm, we have to consider the time scale over 
which the radar cross-section varies. There are three fundamental time scales of 
importance: 1) diurnal time scale, 2) soil moisture response time after a 
precipitation event and 3) the time scale over which a model function is 
invariant; this is the time scale that soil moisture will be retrieved. In order to 
minimize the diurnal effect on the soil moisture retrieval accuracy, time-series 
data must be collected at the same solar time (elapsed time after sun rise). In 
addition, from the time scale of the soil moisture response due to a precipitation 
event, we can define the sampling requirement of the time-series approach. 

For the time-series approach, it is preferred that the radar data are collected 
using the same imaging geometry for each measurement. Especially the 
incidence angle should be constant for all time-series measurements unless the 
incidence angle effect on the backscattering cross-section can be properly 
compensated for. This can be accomplished with proper mission design. For 
instance, the Hydros radar configuration discussed by Entekhabi et al. (2004) 
[38] minimizes the imaging geometry change of a spaceborne radar. Even in 
this configuration, however, the azimuth angle of these observations can 
change; the impact of such azimuth angle variations was observed and 
characterized by Baup et al. (2007) [39] for surfaces in Mali. Except for one 
area that showed some azimuthal variation, they found little evidence, even in 
areas covered with sand dunes, for azimuth angle variations creating significant 
variations in radar cross-section. Nevertheless, it is obvious that a constant 
illumination geometry would eliminate any variations other than geophysical 
changes. 
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For bare surfaces, there are three parameters to be considered: soil moisture 
( )P1 , surface roughness ( )P2 , and soil texture ( )P3 . If P2  and P3  vary in time 
much slower than P1  (soil moisture), Eq. (5.9-2) can be approximated by 

 31 2 1

1
  if  ,  << pq pqf PP P P

t P t t t t
σ∂ ∂ ∂∂ ∂ ∂
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Under this assumption, the temporal variation of a backscattering cross section 
depends only on the soil moisture variation ( 1P t∂ ∂ ). Therefore, 
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It should be pointed out that if the surface roughness is influenced by soil 
moisture, this formulation can include this effect. For example, if the surface 
roughness changes when soil becomes dry after a precipitation event 

2 1( ( ))P g P= , then 
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In this case the backscattering cross section can be written as 

 1
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The time scale over which this approach can be used to track soil moisture 
changes depends on the time scale over which the quantity inside the square 
brackets change. As long as the time is short enough that we can consider this 
quantity to be constant, we can attribute changes in the observed radar cross-
section to changes in soil moisture. 

For vegetated surfaces, at least two additional parameters must be added to 
include the vegetation scattering: vegetation structure ( )P4  and vegetation 
dielectric constant or water content ( )P5 . If we ignore the vegetation structure 
( )P4  change and assume that the vegetation dielectric constant is affected by 
soil moisture ( P5 = h P( )1 ), the backscattering cross section change can be 
written as 

 1
1 5 1

pq pq
pq

f f h P
P P P

σ
∂ ∂ ∂

∆ ≈ + ∆ ∂ ∂ ∂ 
. (5.9-7) 
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Here, we have also assumed that the roughness change due to the soil moisture 
variation is much less significant than the dielectric constant change of 
vegetation. After a precipitation event, the dielectric constant of vegetation can 
change significantly as observed by McDonald et al. (2002) [40]. Both the 
vegetation dielectric constant and soil moisture will therefore be influenced by 
a precipitation event. This effect of the dielectric constant change of vegetation 
is represented by the second term in Eq. (5.9-7). 

The next step is to derive model functions using experimental data: those 
shown in Eq. (5.9-6) for bare surfaces and in Eq. (5.9-7) for vegetated surfaces. 
We note that if these model functions are approximately linear, ∆P1 does not 
have to be small since higher order terms of ∆P1 can be ignored. 

Model functions for bare surfaces can be derived using theoretical solutions 
such as SPM and IEM as shown in the previous Section. Kim and van Zyl 
(2009) [11] linked the radar cross-section expressed in dB to soil moisture 
directly. A similar time-series approach was successfully applied to European 
Remote Sensing Satellite (ERS) data by Wagner and Scipal [41]. For vegetated 
surfaces, Kim and van Zyl (2009) [11] used L-band radar data collected using a 
truck-mounted radar system from May to October 2002 at USDA-ARS (U.S. 
Dept. of Agriculture-Agricultural Research Service) OPE3 (Optimizing 
Production Inputs for Economic and Environmental Enhancement) test site in 
Beltsville, MD [42]. The results are shown in Fig. 5-37. 

From the experimental data Kim and van Zyl (2009) [11] found that both H- 
and V-polarization backscattering cross sections at L-band can be modeled 
better using a linear relationship between the radar cross-section expressed in 
dB and volumetric soil moisture ( mv ) as 

 1010log ( )pp vCm Dσ = +  (5.9-8) 

A similar result was reported previously at C-band by Ulaby et al. (1986) [17]. 
Therefore, using this linear relationship, one can write the time series algorithm 
for the soil moisture as 

 ( )1010logv ppm A Bσ= +  (5.9-9) 

Since the two unknowns, A  and B , may vary from one pixel to the next, one 
must develop a method to reliably estimate A  and B  for each pixel. Kim and 
van Zyl (2009) [11] point out that in order to determine the two unknowns ( A  
and B ) in Eq. (5.9-9), it is necessary to estimate at least two soil moisture 
values corresponding to two backscattering cross sections. As an example, if  
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Fig. 5-37. Linear fit of L-band HH and VV backscattering cross sections (dB) for various soil 
moisture (unitless) collected during the USDA-ARS OPE3 (2002) [42] field experiment for a 
corn field (biomass > 2.5 kg/m2). In order to remove the diurnal effect, the radar data 
collected near 8:00 AM were used in this figure. The incidence angle is 35 deg. 
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the extreme soil moisture values (as an example, 35% for the maximum value 
and 5% for the minimum value) of time-series data are known, A  and B  can 
be estimated using the corresponding maximum and minimum backscattering 
cross sections. This might not be very practical since these extreme values may 
not be known for each pixel. On the other hand, if the time period includes 
completely dry and completely wet (i.e., run-off) conditions, the estimation of 
A  and B  are relatively straightforward.  

Using experimental data, Kim and van Zyl (2009) [11] showed that for bare 
surfaces, it is possible to estimate volumetric soil moisture better than 2% if the 
extreme soil moisture values are known exactly. The accuracy slightly degrades 
for vegetated surfaces. If incorrect extreme values are used, the retrieval 
accuracy becomes worse. In order to evaluate the effect of the error in extreme 
soil moisture values statistically, Kim and van Zyl (2009) [11] performed a 
simple simulation by adding a random error to the exact soil moisture value of 
two extreme conditions (wet and dry). The random error is simulated using a 
uniform random variable. The simulation results are shown in Fig. 5-38. The 
abscissa value (x) in Fig. 5-38 represents the uniform random error over  
[–x, +x]. The retrieval error is calculated by averaging the magnitude of 
estimation errors when these random errors are introduced to the inversion 
process. For both bare and vegetated surfaces, the extreme soil moisture values 
(wet and dry) must be known better than 6% in order to reduce the retrieval 
error to be less than 4%. 

Our previous simulations showed that as the vegetation water content increase, 
the slope of the linear function relating radar cross-section to soil moisture 
changes (see Figure 5-35). Therefore, over the full growing season, one may 
have to segment the radar data in order to apply the correct model function for a 
vegetated surface. The Radar Vegetation Index (RVI) has been proposed to 
identify vegetated surfaces [11]. The RVI values for the time-series data from 
the USDA-ARS OPE3 are shown in Fig. 5-39. When RVI > 0.35, the biomass 
level of the corn field was higher than 2.5 kg/m2 except one data point. The 
peak biomass was about 7 kg/m2. From this analysis, a vegetation model 
function must be used when RVI > 0.35. When we consider the attenuation due 
to vegetation (biomass as high as 7 kg/m2), it is not obvious that the radar 
sensitivity to the soil moisture variation is due to the direct scattering from a 
soil surface. It is possible that the dielectric constant change of vegetation 
enhances the sensitivity. 
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 (b) Soil Moisture Retrieval Error (%): Bare Surface VV
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 (c) Soil Moisture Retrieval Error (%): Corn Field
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Fig. 5-38. Average retrieval errors of volumetric soil moisture 
(%): (a) HH for a bare surface (diamond: 30 deg, square: 40 
deg. and triangle: 50 deg.), (b) VV for a bare surface 
(diamond: 30 deg, square: 40 deg. and triangle: 50 deg.) and 
(c) HH and VV for a corn field (diamond: HH and square: VV) 
(Kim and van Zyl, 2009) [11]. 
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Fig. 5-39. RVI (Radar Vegetation Index) estimated from polarimetric radar data collected 
during the USDA-ARS OPE3 (2002) field experiment. The abscissa represents time in weeks. 
When RVI is compared with biomass measurements, the condition that RVI > 0.35 defines all 
data with biomass > 2.5kg/m2 except one point (6th week). 

5.10 Summary 
In this Chapter, we examined methods for using radar data to estimate surface 
soil moisture and roughness. Many different models exist to calculate the radar 
cross-section as a function of surface roughness and surface dielectric constant. 
Herein, we looked only at a small subset of these models and showed that they 
all predict sensitivity to soil moisture. 

We also looked at a few of the more commonly used inversion algorithms and 
compared the results. Most of these models perform reasonably well for bare 
surfaces. For vegetated surfaces, however, the models become very 
complicated and the soil moisture inversion becomes less accurate. 

Most of the models we discussed here fall into the class of “snapshot” 
algorithms; that is, they try to estimate the soil moisture using data only from 
one instant in time, effectively ignoring all prior information that might exist. 
We also discussed a different approach that holds the promise of being 
applicable to many different types of surface covers. This time series approach 
fits a linear function through the radar cross section as a function of soil 
moisture using the extreme values of the radar cross-sections as indicators of 
saturated wet and completely dry conditions. As long as these extreme values 
are accurate to within 6 percent, soil moisture can be estimated to an accuracy 
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of better than 4 percent. The obvious disadvantage of the time series approach 
is that inversions can only be performed once the extreme values have been 
observed. 

The science of inverting radar data for soil moisture will receive a significant 
increase in attention in the near future. As of the writing of this book, the 
Japanese Advanced Land Observing Satellite Phased Array type L-band 
Synthetic Aperture Radar (ALOS PALSAR) system is acquiring polarimetric 
SAR data that could be used to check many of these algorithms. The National 
Aeronautics and Space Administration (NASA) is also planning the Soil 
Moisture Active Passive (SMAP) mission for launch in 2015. This system will 
carry both a radar and a radiometer to routinely cover the globe specifically for 
the purpose of estimating surface soil moisture. Undoubtedly, this area of 
research will expand rapidly to meet this challenge, and the climate research 
community can look forward to excellent results from these missions. 
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Appendix A 
Tilted Small Perturbation Model Details 

Consider a tilted surface element as shown in Fig. A-1. The plane of incidence 
is the ( ,x z)  plane. The coordinate system in which the radar measures the 
scattering coefficients is the (h v, ,k )  system and is described by 

 

ˆ ˆ ˆsin cos
ˆ ˆˆ ˆ

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆcos sin
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θ θ

θ θ

= − −

− ×
= = −

×

− ×
= = − +

×

k x z

k zh y
k z

h kv x z
h k

. (A.1) 

We shall refer to the radar coordinate system as the global coordinate system 
and the tilted coordinate system as the local coordinate system. The local and 
global incidence angles are defined as 

 ˆ ˆcos l lθ = − ⋅k z . (A.2) 

and 

 ˆ ˆcosθ = − ⋅k z . (A.3) 

We define the local coordinate system such that the local z -axis coincides with 
the local normal vector of the tilted surface. Let α  denote the tilt angle in the 
range direction; that is, in the x z−  plane. We define positive values of α  as 
those that tilt the surface towards the radar. Similarly, let β  denote the tilt in 
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ĥ

k̂

ŷ
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Fig. A-1. Scattering geometry for a tilted surface. The surface is tilted by an angle α  in the 
range (or cross-track) direction and by an angle β  in the azimuth( or along-track) direction. 
The radar measures the scattering coefficients in the global coordinate system, whereas 
scattering models predict the scattering coefficients in the local coordinate system.  

the azimuth direction; that is, in the y z−  plane. We define positive values of 
β  as those that tilt the surface in a clockwise direction. The local normal to the 
surface can then be written as 
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with hx  and hy  the slopes in the x and y directions, respectively. Therefore, the 
z -axis unit vector in the local coordinate system is 
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Using Eq. (A.5) in Eq. (A.2), we find the local incidence angle as 
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The radar coordinates expressed in the local coordinate system are needed to 
calculate the scattering cross-section in the global coordinate system. The 
scattering matrix in the local coordinate system is calculated assuming 
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From Eq. (A.1) and Eq. (A.5) we find that 
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Using Eq. (A.8) and Eq. (A.1) in Eq. (A.7), we find 
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Note that in the absence of tilts, Eq. (A.9) and Eq. (A.8) reduce to Eq. (A.1). 

The scattering matrix in the local coordinate system is defined in these 
coordinates. We can now calculate the relationship between the scattering 
matrix measured in the local coordinates, which is usually what is predicted by 
models, and the one measured in the global coordinates as seen by the radar. 

Note that for the purpose of calculating the scattering cross-sections in the 
global coordinate system, we do not need to know the exact expressions for the 
local (xl , ,y zl l )  coordinates; they were already taken into account during the 
modeling process when the scattering model was originally formulated. All we 
need to do here is to transform from the local (h vl l, ,k )  coordinate system to 

the global (h v, ,k )  system. Let E
 t  be the electric field transmitted by the radar. 

Then 

 ˆ ˆˆ ˆt t t t t
h v hl l vl lE E E E E= + = +h v h v


. (A.10) 

From this, it follows that 

 ( ) ( )ˆ ˆ ˆ ˆˆt t t t
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
 (A.11) 

and 
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
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Thus, we can write 

 [ ]t t
lE E= T
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, (A.13) 

where the transformation matrix is given by 
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Similarly, 
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and 
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v l hl l v lE E E E= ⋅ = ⋅ + ⋅v v h v v


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Thus, we can write the transformation from the local to the global coordinates 
as 

 t t
lE E =  T

 
 , (A.17) 

where the ~ character means transpose. 

Now we are ready to derive an expression for the scattering matrix in the global 
coordinate system. First, we transform the electric field transmitted by the radar 
into the local coordinate system. This is defined by Eq. (A.13) and Eq. (A.14) 
above. Next, the scattered electric field in the local coordinate system is given 
by 

 ( ) ( ) [ ]sc t t
l l l l l lE E Eθ θ   = =   S S T
  

. (A.18) 

The addition of the local angle of incidence to the local scattering matrix is a 
reminder that the appropriate angle of incidence should be calculated using 
Eq. (A.6). After transforming this scattered electric field to the global 
coordinate system, we find 

 ( ) [ ]sc sc t
l l lE E Eθ     = =     T T S T

  
  . (A.19) 

Therefore, the scattering matrices in the global and local coordinate systems are 
related by 
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 ( ) ( ) [ ]l lθ θ     =    S T S T . (A.20) 

To understand the effect of this transformation, we now need explicit 
expressions for the elements of the transformation matrix. These are 

 [ ]
2 2

1 ; sin cos
y

x
yy

u h
u h

h uh u
θ θ

 
= = −  −+  
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These expressions show that the scattering matrix in the global coordinate 
system is related to the one in the local coordinate system through a rotation 
angle that is a function of three parameters: the azimuth slope hy  of the pixel, 

the range slope hx  of the pixel, and the angle of incidence θ  for the pixel. This 
rotation angle is 

 tan yh
u

ϕ = . (A.22) 

We can write Eq. (A.21) as 

 [ ] cos sin
sin cos
ϕ ϕ
ϕ ϕ
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T . (A.23) 

To be really useful in our studies, we need to know how the covariance matrix 
in the global coordinate system is related to the one in the local coordinate 
system. This can be derived as follows. First, we note that we can write 
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with 
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The covariance matrix is defined as 

 [ ] [ ] [ ][ ]** *
l l lSS S S    Σ = = = Σ   Q Q Q Q
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This expression allows us to calculate the covariance matrix in the global 
coordinate system once we know the covariance matrix in the local coordinate 
system. 
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Appendix B 
Bistatic Scattering Matrix of a Cylinder with 

Arbitrary Orientation 

In this appendix we summarize the equations describing the bistatic scattering 
from a finite length dielectric cylinder with arbitrary orientation. To describe 
the scattering, we shall use a global coordinate system (see Fig. B-1) wherein 
the cylinder orientation is described using a unit vector aligned with the long 
axis of the cylinder, as follows: 

 ( ), sin cos sin sin cosc c c c c c cθ φ θ φ θ φ θ= + +c x y z  (B.1) 

We shall assume that an electromagnetic wave is incident upon this cylinder in 
such a way that the propagation vector of the incident wave can be written as 

 sin cos sin sin cosi i i i i iθ φ θ φ θ= − − −k x y z . (B.2) 

We are interested in the scattered field that is represented by the propagation 
vector 

 sin cos sin sin coss s s s s sθ φ θ φ θ= − − −k x y z . (B.3) 

Using the backscatter alignment coordinate system, we define two triplets of 
local coordinates to describe the transverse components of the incident and 
scattered fields. These coordinates are defined as 

 cos cos cos sin sini i i i i iθ φ θ φ θ= − − +v x y z , (B.4) 



300  Appendix B 

x̂

ŷ
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Fig. B-1. Global backscattering alignment coordinate system used in the calculations. 

 sin cosi i iφ φ= −h x y , (B.5) 

 cos cos cos sin sins s s s s sθ φ θ φ θ= − − +v x y z , (B.6) 

and 

 sin coss s sφ φ= −h x y . (B.7) 

We shall assume that the incident wave is a plane electromagnetic wave. 
Because the cylinder is of finite size, the scattered wave is, in general, a 
spherical wave that propagates away from the cylinder. We shall assume that 
we know the expressions for the bistatic scattering matrix of a cylinder that is 
oriented vertically and denote this matrix by S (θi , ,φ θi s ,φs ) . We shall use the 
same definition as proposed by van Zyl and Ulaby [1], which relates the 
incident and scattered waves as follows: 

 [ ]
ikr

sc inc e
r

=E S E . (B.8) 
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 eikr 
The term on the extreme right    explicitly shows the amplitude and phase  kr 

 
of a spherical wave. Note that, by this definition, the scattering matrix is not 
dimensionless. Van de Hulst [2] defines the denominator of the spherical wave 
as kr; in Van de Hulst’s definition the scattering matrix is dimensionless. In our 
case, the dimension of the scattering matrix elements is meters. 

The elements of the bistatic scattering matrix for a vertically oriented cylinder 
are derived by Senior and Sarabandi [3] as 
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and 
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In these equations, a  is the radius of the cylinder, k0 = 2π λ  is the wave 
number of the incident wave, and l  is the length of the cylinder. Also, 
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 ( )( ) ( )2 22 21 sin sin cos sin cos
2 i s s i s s iB θ θ φ φ θ φ φ= + − + − , (B.17) 

 ( )( ) ( )1 1cos sin cos sin ; sin sin sin
2 2s s i i s s iB B

φ θ φ φ θ φ θ φ φ= − + = −  , (B.18) 

 0 0y k aB= , (B.19) 

 0 0 sin ix k a θ= , (B.20) 

and 
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with 

 2
1 0 cos ix k a ε θ= − , (B.24) 
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and 
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1 1
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x x
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The cylinder complex dielectric constant is ε . Note the dimension of each 
element of the scattering matrix. 

Equations (B.9) – (B.29) apply to the case of a vertically oriented cylinder. 
Returning to the case of a cylinder with arbitrary orientation, we will now 
define two local coordinate systems for the incident and scattered waves such 
that we can use these expressions to characterize the scattering in those two 
coordinate systems. We shall denote these coordinate systems by primed 
vectors. Starting with the incident electric field, we note that we can write this 
field as 

 inc inc inc inc inc
h i v i h i v iE E E E′ ′′ ′= + = +E h v h v , (B.30) 

from which it is easily shown that 
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h i i i ii h
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E E
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=    ′ ′⋅ ⋅    

h h v h
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. (B.31) 

The bistatic scattering matrix links the incident and scattered waves in the local 
coordinate systems aligned with the cylinder axis, as follows: 
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where the subscripts ic  and sc  indicate that the angles are relative to the 
cylinder orientation, rather than the z -axis, as was the case in Eqs. (B.9) – 
(B.29). 

The scattered wave can also be written as 

 sc sc sc sc sc
s s s s h s v sE E E E′ ′′ ′= + = +E h v h v , (B.33) 

from which we can show that 
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Combining Eqs. (B.31), (B.32), and (B.34), we find the bistatic scattering 
matrix of the cylinder as 
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The local coordinate systems are defined as 
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and 

 
( )

( ) ( )( ){ }1 , ,
,i i i c c i i c c

i c c
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×
v h k c k k c

k c
. (B.37) 

The scattered wave coordinate axes are defined in the same way. We note that 
we can write 

 ( ) ( )( )2, 1 ,i c c i c cθ φ θ φ× = − ⋅k c k c . (B.38) 

Also, note that the unprimed coordinate systems can be written like Eq. (B.36) 
and Eq. (B.37) with c(θ φc c, )  replaced by z . It then follows that 
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 i i i i′ ′⋅ = ⋅v v h h , (B.40) 

and 
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It can be shown that 
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and 

 ( )( ) ( ), sin sin sini c c i c c iθ φ θ θ φ φ⋅ × = − −k c z . (B.43) 

Using Eq. (B.43) and Eq. (B.42) in Eq. (B.41) and Eq. (B.39), respectively, we 
find that 
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and 
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For the scattered wave, we find that 
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and 
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which can be written as 

 ( ){ }1 cos sin sin cos cos
sins s s s c s c s c s
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θ θ θ θ φ φ
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and 

 ( )sin sin
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−
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The angles θic  and θsc  are defined by 

 ( ) ( )cos cos cos sin sin cosic i c i c i c iθ θ θ θ θ φ φ= − ⋅ = + −k c  (B.50) 

and 

 ( ) ( )cos cos cos sin sin cossc s c s c s c sθ θ θ θ θ φ φ= − ⋅ = + −k c . (B.51) 

It is also useful to look at simpler expressions reported in the literature. Barrick 
[4] used the expressions for the fields scattered by an infinitely long cylinder 
and then accounted for the finite length l  of the cylinder by multiplying by a 
factor 
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Under this assumption, and evaluating Eqs. (B.9) – (B.12) on the cone 
sin iB θ= , we find 
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and 
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where 

 ( )0
1 cos cos
2 i sV k l θ θ= + . (B.57) 

Note that the series coefficients given in Eqs. (B.21) – (B.29) have the 
following symmetry relations 

 0; ; ; 0TM TM TE TE
m m m m m mC C C C C C C− − −= = = − = . (B.58) 

This means that the far-zone scattered field in the plane of incidence is not 
depolarized. This, however, is not the case of other azimuth angles. Also, in the 
forward scattering direction, required for the calculation of the extinction 
coefficient, these expressions are 
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 ( ) ( ), , , , , , 0hv i i i i vh i i s iS Sθ φ π θ φ π θ φ π θ φ π− + = − + = , (B.60) 

and 
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Senior and Sarabandi [3] built on the work of Barrick [4] by integrating the 
current distribution over a cylinder of finite length. In contrast, Barrick [4] 
added a sin x x  term to the scattered field of an infinitely long cylinder to 
account for the finite length. As such, Senior and Sarabandi’s equations are 
possibly more accurate than those of Barrick, but require significantly more 
calculations. 

We shall use these expressions to calculate the composite scattering from a 
layer of vegetation. If we consider such a layer, there are three basic 
calculations for the layer as a whole that we need to perform. These include the 
backscatter from the layer, the bistatic forward scattering that would interact 
with the ground surface, and the attenuation through the layer. The latter is 
needed to calculate the attenuated backscatter from the underlying soil surface. 
The expressions listed so far can be used directly to calculate the first two 
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components. To calculate the attenuation through the layer, we shall make use 
of the optical theorem that states that the extinction cross section of a single 
particle is related to the forward scattering field through 

 ( )
0

2 Im , , , , ,e
p pp ic i ic i c cS

k
πσ θ φ π θ φ π θ φ = − +  , (B.62) 

where p  denotes the polarization of the wave. The dimension of this is meters 
squared, since the scattering matrix has dimension meters. The total extinction 
coefficient of a medium containing a random distribution of N  cylinders per 
unit volume is obtained by performing an ensemble average over the particles, 
as follows: 

 e e
p pNκ σ= . (B.63) 

The dimension of this quantity is m-1. Using this definition, the strength of the 
incident wave after propagating through a layer of thickness d  at an angle θi  
with respect to the vertical direction, is given by 
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h h
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E Ee
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. (B.64) 

To find the total field propagating in this direction, we need to add the bistatic 
scattered field in this direction to Eq. (B.64). 

With these expressions for the scattering from an arbitrarily oriented cylinder, 
one can define models to describe the scattering from vegetated terrain. 
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Appendix C 
Nomenclature 

C.1 Acronyms and Abbreviations 
AIRSAR Airborne Synthetic Aperture Radar 

ALOS PALSAR Advanced Land Observing Satellite Phased Array L-band 
Synthetic Aperture Radar  

ASAR Advanced Synthetic Aperture Radar (on (European Space 
Agency Environmental Satellite [Envisitat]) 

dB power in decibels 

deg degree 

DEM digital elevation model  

ed. editor 

Envisitat European Space Agency Environmental Satellite 

Eq. Equation 

ERS European Remote Sensing Satellite 

Fig. Figure 

GHz gigahertz 
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HH horizontal-horizontal 

HV horizontal-vertical 

IEEE Institute for Electrical and Electronics Engineers 

IEM Integral Equation Method 

IGARSS International Geoscience and Remote Sensing 
Symposium 

JPL Jet Propulsion Laboratory 

NASA National Aeronautics and Space Administration 

NNED non-negative Eigenvalue decomposition 

PFR pulse repetition frequency 

RASAM Radiometer-Scatterometer  

rms root mean square 

RVI radar thin vegetation index 

SAR synthetic aperture radar  

SIR-B Shuttle Imaging Radar-B (-C) 

SIR-C/X Synthetic Imaging Radar C-band and X-band 

SLAR side-looking aperture radars 

SMAP Soil Moisture Active Passive 

SNR signal-to-noise ratio 

SPIE Society of Photographic Instrumentation Engineers 

SPM small perturbation method  

VH vertical-horizontal  
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vol. volume 

VV vertical-vertical 

w.r.t with respect to 

C.2 Commonly Used Symbols 
R : Range 

c : Speed of light 

θ  or θi : Incidence angle 

B : Radar bandwidth 

τ p : Physical pulse length 

λ : Wavelength 

f0 : Center frequency 

σN : Noise equivalent backscatter cross section 

W : Antenna width 

L : Antenna length 

Pr : Received power by radar 

Pt : Transmit power by radar 

Gr : Receive antenna gain 

Gt : Transmit antenna gain 

σ0 : Normalized backscattering cross section 

v : Velocity of the radar platform 

PRF : Pulse repetition frequency 
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ĥ : Horizontal basis vector 

v̂ : Vertical basis vector 

0 1 2 3,  ,  ,  S S S S : Stokes parameters 

[ ]S : 2x2 complex scattering matrix 

scE : Scattered electric field vector 

trE : Transmitted electric field vector 

trp : Normalized transmit antenna polarization vector 

recp : Normalized receive antenna polarization vector 

V : Voltage measured by radar system 

A : Antenna polarization vector 

[ ]C : Scatter covariance matrix 

T : Scatter vector 

,  ,  ,  hh vv hv vhS S S S : Elements of 2x2 complex scattering matrix 

[ ]M : Stokes scattering operator 

1 2 3,  ,  λ λ λ : Eigenvalues of covariance matrix when hv vhS S=  

ˆie : Eigenvectors of covariance matrix 

ˆ ip : Eigenvectors of Pauli covariance matrix when hv vhS S=  

TH : Entropy 

α : Average alpha angle for the alpha-entropy algorithm 
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RVI : Radar vegetation index 

coR : Co-polarization ratio ( /hh vvS S ) 

xR : Cross-polarization ratio ( /hv vvS S ) 

1 2 3,  ,  k k k : Eigenvectors of covariance matrix when hv vhS S=  

[ ]RT : Tilt transformation matrix from the local to the global coordinates 

[ ]R : Receive system distortion matrix for calibration 

[ ]T : Transmit system distortion matrix for calibration 

[ ]D : System distortion matrix for calibration 

vm : Volumetric soil moisture 

ε : Dielectric constant 

hhσ : HH normalized backscattering cross section 

hvσ : HV normalized backscattering cross section 

vhσ : VH normalized backscattering cross section 

vvσ : VV normalized backscattering cross section 
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